CS810: Homework 2 Due date: Thursday , March 13th, 2003

1. The class $\mathrm{S}_{2}^{p}$, "Symmetric second level" of the Polynomial Time Hierarchy", was defined by Russell and Sundaram in 1995 as follows: $L \in \mathrm{~S}_{2}^{p}$ iff there is a P-time computable 0-1 function $P$ on three arguments, such that

$$
\begin{align*}
x \in L & \Longrightarrow  \tag{1}\\
x \notin L & \left(\exists^{p} y\right)\left(\forall^{p} z\right)[P(x, y, z)=1]  \tag{2}\\
& \left(\exists^{p} z\right)\left(\forall^{p} y\right)[P(x, y, z)=0]
\end{align*}
$$

where as usual " $\exists^{p} y$ " stands for " $\exists y \in\{0,1\}^{p(|x|) "}$ for some polynomial $p(\cdot)$. Similarly " $\forall^{p} z^{\prime}$ stands for " $\forall z \in\{0,1\}^{q(|x|)}$ " for some polynomial $q(\cdot)$.
Prove that $S_{2}^{p} \subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.
What is the difference of $S_{2}^{p}$ and $\Sigma_{2}^{p} \cap \Pi_{2}^{p}$ in their definition? In other words, why can't we immediately claim $S_{2}^{p}=\Sigma_{2}^{p} \cap \Pi_{2}^{p}$ ? (This "equality" is in fact open.)
2. Strengthen the Karp-Lipton Theorem as follows: If NP has polynomial size circuits, then PH collapses to $\mathrm{S}_{2}^{p}$.
3. A set $T \subseteq 1^{*}$ is called a tally set. Show that SAT $\in P^{S}$ for some sparse set $S$ iff $\overline{\mathrm{SAT}} \in P^{T}$ for some tally set $T$.
4. In our proof of Mahaney's theorem, we used the Left-Cut, and "focused" on the left-most satisfying assignment if one exists.
Define a Right-Cut set for SAT, and give an analogous proof for Mahaney's theorem.

If we do not define the Right-Cut set for SAT, but still use Left-Cut, can we still argue in terms of right-most satisfying assignment? In particular, when we considered at a certain level $\ell$ in the tree of binary assignments, if we found two nodes have the same label (by the reduction), can we drop the left node? Prove your answer.
5. Suppose we have a p-time reduction from SAT to a co-sparse set $T$ (a set $T$ is co-sparse if its complement $T^{c}$ is sparse). Prove that $\mathrm{NP}=\mathrm{P}$.
6. For any p-time $1-1$ function $f$, prove that $f(\mathrm{SAT})$ is NP-complete.

Can you cook up such a function based on the exponentiation function $f$ (whose inverse is some version of the discrete log function), such that the proof of our theorem by Berman-Hartmanis on isomorphism of NPcomplete sets does not apply?
7. One can define log-space reduction for class P (as well as NP etc.) Define this, and show in particular that this reduction is also transitive. (Note in log-space, if you have reduction from $A$ to $B$ and from $B$ to $C$, in order to compute the composition, you don't have space to write down the intermediate results, which is beyond log-space.)
Define P-completeness for problems in P under log-space reductions.
Prove that the similar results of Berman-Hartmanis also hold for P-complete sets.

## Note:

Please be concise.

