
Towards Implementing Robust Geometric Computations

Christoph M. Hoffmann 1
Computer Science Department

Purdue University

John E. Hoperoft 2
Computer Science Department

Comell University

Michael S. Karasick 3
Computer Science Department

Comell and McGill Universities

1. Introduction
Computational geometry has the unique opportunity to

bridge the sharp gap between theoretical and applied com-
puter science. Indeed, practical computations with geometric
objects are of intense interest to a wide range of applied work
including computer aided design, robotics, mathematics,
engineering, etc. At the same time, these computations pose
many challenging problems of considerable theoretical depth
and interest.

Implementing numerically robust algorithms for compu-
tational geometry is a nontrivial task. Except for very limited
classes of geometric objects, it is incorrect to assume that
infinite precision arithmetic or symbolic computation will
yield correct implementations, because basic operations such
as translation or rotation introduce inaccuracies into the
representation. For example, a boundary representation of a
polyhedral solid consists of two components: A topological
component describing the incidence of vertices, edges and
faces, and a numerical component consisting of face equa-
tions. When the coefficients of the face equations have been
truncated, the topology may claim that four faces meet at a
vertex when in fact the face equations indicate that they meet

in a structure consisting of two vertices connected by a very
short edge. This inconsistency can lead to a fatal error in a
program that is manipulating the representation and is relying
on its consistency for program correctness.

It is desirable to assume that the incidence relations are
correct and that the numeric data are only approximations to
the real data. For instance, [10] shows that the number of

1Supported in part by NSF grants DCR 85-12443 and CCR 86-19817 and
ONR contract N0014-86-K-0465
2Supported in part by NSF grants DCR 85-02568 and DMC 86-17355 and
ONR contract N0014-86-K-0281
3Author's Address: IBM T.J. Watson Research Center, Yorktown
Heights, NY.

Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1988 ACM 0-89791-270-5/88/0006/0106 $1.50

significant digits more than quintuples when intersecting
linear, three-dimensional structures. Moreover, rotating a line
by exact angles such as sin (n/7) requires the symbolic
representation of high degree algebraic numbers. In these and
other cases, the machinery implementing exact arithmetic
operations soon dominates the running time of an algorithm
and renders it useless in practice.

It is clear that infinite precision computations cannot deal
with inaccuracies of the numerical data: Typically, an algo-
rithm computes a numerical quantity, say x, and then derives
logical information by testing whether x is less than, equal to,
or greater than zero. It is at this point where there is potential
for trouble: When x is less than a certain threshold e, the
numerical inaccuracies of the input and, possibly, the arith-
merle computations simply yield no further information.
Arbitrarily assuming that x = 0 leads to program failure.
Assuming that the input is correct as written yields, at best, an
unpleasant proliferation of microscopically small geomewie
structures, but may also lead to contradictory information and
program failure.

In this paper, we discuss several paradigms for develop-
ing provably correct implementations of geometric algo-
rithms, accounting for the possibility of imprecise numerical
input data. These paradigms are based on the concept that, in
the presence of numerical uncertainty, the logical decision
cannot be based on the arithmetic computation alone, but
must be consistent with all previous such decisions. It is our
experience that even in situations where a full correctness
proof of the algorithm is not yet completed, this paradigm
leads to robust and efficient implementations [5,6]. We illus-
trate these ideas in a variety of intersection problems.

2. The Reasoning Paradigm
If we base logical tests such as incidence on numerical

calculation, assuming approximate data and arithmetic opera-
tions of limited precision, then there is an interval of uncer-
tainty in which the numerical data cannot yield further infor-
mation. In such a situation, a decision must be made that has
to be consistent with other such decisions and with the
topological data. For example, points that have been declared
collinear by the topology must be treated as collinear points
by the algorithm. Malting decisions consistently requires
symbolic reasoning, and it is important to understand how
complex the reasoning steps could be.

Let M denote a geometric object such as a polygon and

106

let R denote a representation of the object. The difference
between an object and its representation is that the object can
have equations with arbitrary real numbers whereas the equa-
tions in the representations are fixed precision numbers. A
representation has associated with it a set of models. A model
is a geometric object with the same incidence structure as the
representation and numeric specifications that approximate
those of the representation. For many geometric objects the
representation is a model of itself, called the natural model.
A binary operation such as intersection is said to be correct
for input representations R 1 and R 2 if it produces an output
representation R3 such that there exist models M 1, M2, and
M3 where Mi is a model of Ri and M3 = M1 n M 2.

The fact that the algorithm is correct in this sense does
not mean that it can be used naively as a subroutine in a
larger problem. The notion of correctness is one which
applies only to a single operation. To see this, consider the
problem of intersecting robustly a pair of line segments. Each
line segment is represented by a pair of points whose coordi-
nates are only approximately correct. In our framework, a
correct implementation can be given using exact or approxi-
mate computation. The algorithm will give correct answers
for line segment intersection, but does not account for possi-
ble additional topological structure. Therefore, it cannot be
used unaltered to implement polygon intersection, since the
property of consecutive edge incidence in a common vertex is
not accounted for in the computation.

We examine the utility of the reasoning paradigm when
intersecting two and three polygons, and discuss the complex-
ity of the needed reasoning steps. As we shall see, virtually
no reasoning is required when intersecting two polygons, pro-
vided the algorithm is based on vertex/vertex and vertex/edge
incidence computations. This is not the case for simultane-
ously intersecting three polygons. There, theorems from pro-
jective geometry must be accounted for.

3. Intersecting Two Polygons
A representation for polygons consists of the following

data:

(1) Symbolic vertex specifications, of the form
v = (l,13, where I and l" are lines.

(2) Symbolic edge specifications, of the form e = (v,w)
where v and w are vertices.

(3) Numeric line specifications of the form
l = ax + by + c, where a, b, and c are numbers,
e.g., in floating-point format. Here line equations
are oriented such that the gradient (a,b) points to
the polygon exterior along the edge.

Note that the natural model polygon may not be simple. We
quantify the accuracy between a representation and a model
by

Definition. A representation R is g-correct provided
there is a model polygon M that satisfies the symbolic infor-
mation of the representation, is a simple polygon, and its ver-
tices are within e of the vertices of the natural model.

Next, we need the concept of minimum feature separa-
tion. Intuitively, a representation has minimum feature
separation if no two vertices are closer than a certain toler-
ance, all edges are larger than a certain minimum length, and

consecutive edges have angles not smaller or larger than
specific critical values. The purpose of this definition is to
limit the effect that perturbing the numerical data has on the
polygon geometry. The precise statement is the following:

Definition. A representation A has minimum feature
separation if consecutive" edges form an angle larger than
and smaller than ~ - t~, i f all edges are longer than 3 e, two
vertices are separated by at least 3 e, and no vertex is closer
to an edge than 3 e.

Here e is a function of ~ and represents the maximum
error the determination of vertex coordinates can incur assum-
ing that the lines intersecting in the vertex are at an angle t~.
For example, the condition number [3] of the two line gra-
dients can be used to define e.

Suppose a vertex of one model lies on an edge of the
other model. Then the vertex and the edge are said to be con-
strained. A vertex so constrained in turn constrains its adja-
cent edges. Thus, an edge can be constrained by its own ver-
tices as well as by vertices of the other object. An edge with
more than two constraints is overconstrained.

Lemma 1. Let M1 and M2 be two model polygons.
Then not every edge of Mt and every edge of M 2 can be
overconstrained.

Corollary. There is at least one edge of M1 or M2 that
is not overconstrained.

Lemma 2. Let R 1 and R 2 be two representations with a
set of incidence constraints of the forms "vertex u is on edge
e ," and "vertex v and w coincide." Then there are models of
M1 and M 2 such that the incidence constraints are satisfied
provided there is at least one edge that is not overconstrained.

Intuitively, the proof of Lemma 2 works as follows:
Remove all edges that are not overconstrained and also
remove their end points. By a counting argument, there
remain edges that now are not overconstrained. These are
removed, along with their end points. This process continues
with the remaining edges until all edges are removed. The
edges are now placed in reverse order of removal.

We can obtain an intersection algorithm based on
Lemma 2 as follows: Here e depends on the minimum feature
separation constant and the norm of the line equation L.

(1) Say that a vertex u is on an edge e =(v ,w) if
L (v) < e, where e is a chosen tolerance and L is the
line equation for e, and if u is between v and w and
not close to either vertex.

(2) Say that vertices u and v are coincident if u is close
toy .

It is possible that the algorithm overeonstrains every edge of
both polygons. A case for potential trouble is shown in Fig-
ure 1. This case is excluded by minimum feature separation.
A more subtle difficulty arises as shown in Figure 2 where the
tests announce incidences B on DE and E on BC implying
B = E or DE and BC are collinear. The test whether two ver-
tices are near must be such that if u and v are not coincident,
then neither u nor v is on both edges defining the other vertex.

Theorem 1. Let R I and R2 be two representations with
e correct models. Then there exists a representation R 1 n R 2
with a model M 3 such that there are models M1 and M2 of
R1 and R2 with M3 = Mi cn M2. Moreover, there exists a 8
such that all models are 5-correct.

107

Note that the theorem shows correctness and quantifies
the accuracy of the intersection algorithm. The accuracy cru-
cially depends on the incidence tests, especially the
vertex/vertex incidence tests.

After two representations have been intersected, the
result need not satisfy the minimum feature separation condi-
tion for e. Thus, a post-processor may be needed to restore
the minimum feature separation condition. This may require
the obliteration of short edges, i.e., affects the symbolic data
as well as the numeric data of the representation. As noted in
[7,11], adjusting the numeric data to fixed precision rational
data is expensive. It is not difficult to extend these results on
intersecting polygons to embedded planar graphs, provided
that no relationships of collinearity or parallelism are assumed
among the edges.

We can now explain why an algorithm for intersecting
polygons based on vertex incidence tests is robust whereas
one based on edge intersection computation is not. All
vertex-on-edge questions are independent but the set of edge
intersection questions is not. Asking if a vertex is on the
infinite line defined by an edge is not allowed. The reason for
this is that these questions add additional constraints on edges
and destroy the independence argument. In Figure 3, edges
AB and CD do not intersect and a vertex can be close to at
most one of the edges. However, asking if vertex v is on the
infinite line defined by AB and on the infinite line defined by
CD, could result in a constraint on both edges. In fact, a ver-
tex could constrain an arbitraiily large number of edges and
the proof of Lerrmaa 2 would not work. Similarly, we must
require that the polygons to be intersected be simple. If edge
AB were to cross edge CD and vertex v were close to the
point of intersection, then it would again constrain two or
more edges.

Even though there are no relationships assumed to hold
among the edges of each input polygon, edges in the output
polygon may have such relationships. For example, in Figure
4 two sides of a polygon must be on the same infinite line.
This will cause a problem when we try to intersect the result
with a third polygon. We may choose to discard all such rela-
tionships. Then we can iterate polygon intersection. How-
ever, in that case the algorithm cannot be used as a subroutine
by a more general algorithm whose correctness depends on
some global property that might be destroyed. One also
should be aware of the fact that the pairwise intersection algo-
rithm is not associative. In general,
(R 1 ¢"~R2) ("~R 3 ~R 1 ('~ (R 2 chR3). This suggests that
there should be two definitions ~or correctness of the polygon
intersection algorithm: one definition for the isolated problem
of intersecting two polygons and another definition if the
intersection algorithm is a subroutine of a larger computation.
This is exactly analogous to the edge intersection problem.

4. Simultaneously Intersecting Three Polygons
Rather than intersecting polygons successively, we may

consider intersecting more than two polygons simultaneously.
We show that doing so introduces new complexities into the
reasoning done to resolve numerical uncertainty.

When intersecting three polygons simultaneously, one
cannot arbitrarily place a vertex with respect to a nearby edge
as illustrated in Figure 5. Assume that we are given three
polygons X, Y and Z, whose boundaries include the line seg-

ments shown in Figure 5. If one claims the incidences

(A,A'), (C,C') , (1,1"), (2,2'), (3,3"), (4,4"), (5,5'), and (6,6'),

then, by Pascal's Theorem, the edges (3,4), (1',6), and (A,C)
must intersect in a common point:

• P a s c a l ' s Theorem. If alternate vertices (1,3,5, and 2,4,6)
of a hexagon are collinear then the three points that are the
intersection of the lines (1,2) and (4,5), (2,3) and (5,6), and
(3,4) and (6,1), are collinear.

The theorem is illustrated in Figure 6. Thus the problem
of intersecting three polygons is sufficiently complex that
determining if vertices are on edges requires a theorem prover
powerful enough to handle theorems from projective
geometry such as Pascal's Theorem. It is not difficult to
prove that intersecting two embedded planar graphs with col-
linearity constraints requires proving all theorems of linear
projective geometry (p2).

5. Line Sweep Algorithms
We consider the line segment intersection problem again

as vehicle to explore other paradigms for implementing
geometric computations: Given n line segments
l l , 12 In and a collection of subsets of the I i that appear
to intersect at various points, find a consistent set of intersec-
tions.

Since the geometric structure of the problem is simple,
the following solution could be proposed: Assume the natural
model and compute all intersections with sufficient precision
to find the exact intersection points. If the line coefficients
are integers of length L, then a precision of 3L + 2 is needed
[10]. This approach is the exact -as-wri t ten paradigm. How-
ever, the coefficients in the line equations often are not exact,
and it is unlikely that any three lines will intersect in a single
point. In many applications close coincidence really would be
coincidences were it not for the approximate line coefficients.
In those cases it is desirable that we perturb the line positions
so as to enlarge the number of common intersections.

Assume then that the equations of the lines are only
approximate and adjust the equations so as to change a maxi-
mal number of near incidences of three lines to true
incidences. This can be done as follows. Select a maximal
set of lines with the property that no three lines go through
any one point. These lines are said to be of type 1. The
intersection point of a line of type a with a line of type b is
said to be of type a-b. Each line not in S appears to go
through a type 1-1 intersection point. If a line not in S
appears to go through two or more type 1-1 intersection
points, then add it to S and call i t type 2. New intersections
of types 1-2 and 2-2 may be created. Now add to S a maxi-
mal set of lines that go through type 1-1 intersection points
and no other intersection points. These lines are designated
type 3. All remaining lines appear to go through a type 1-1
intersection point and a point of type 1-2, 1-3, 2-2, 2-3 or 3-3.
These remaining lines are designated type 4.

The equation for each line of type 1 is assumed to have
exact coefficients. Coefficients of lines of type 2 are adjusted
so that they go exactly through two points of type 1-1. Thus
their coefficients require higher precision than the coefficients
of type 1 lines. In turn lines of types 3 and 4 have their

t08

coefficients adjusted. Finite precision arithmetic is then used
to test all other intersections. For example a line of type 2
may go through three intersection points of type 1 but only
two of the points were used in defining it. The third point
must be tested to determine if indeed it is a real intersection.
In this manner we can insure that the set of answers for line
intersection is indeed consistent. Again, with input
coefficients of length L, a precision of mL digits suffices,
where m is approximately 27, see [10]. Note, that implement-
ing this strategy using the line sweep paradigm entails report-
ing the true intersection points off-line. A greedy on-line
algorithm implementation would create lines of higher type
and lead to an unacceptable growth in the number of digits
required to test incidence correctly that is not independent of
the problem size.

Although logically consistent, the model so obtained
may require large coefficient perturbations. Figure 7 illus-
trates the problem: If we select lines a, b, c, and d as a maxi-
mal set of type 1 lines, then a small perturbation of the input
coefficients of the equation for b creates a very large perturba-
tion of line g. It is much better to select the lines a, d, e, and
f as type 1 lines. In view of this, the following approach

yields an algorithm for polygon intersection that is likely to
yield practically satisfactory results for polygon intersection:
Consider one polygon exact as written, i.e., use the natural
model for it. Now perturb the edge positions of the other
polygon by trying to satisfy first those near-incidences on an
edge that are farthest apart. If this distance is small such that
the resulting vertex position would be perturbed by more than
a specified maximum distance, then drop one of the con-
straints. Again, one can implement this algorithm with
bounded precision arithmetic.

6. Robustly Computing the Intersection of Two Polyhedra
The intersection of two polyhedra can be obtained by a

sequence of polygon intersections. Two types of difficulties
arise in this approach. In certain situations we are dealing
with more than two polygons simultaneously. The other
difficulty is that line segments belonging to different polygons
may arise from the same face and thus cannot be adjusted
independently.

Consider the intersection of an arbitrary polyhedron with
a convex polyhedron. There is a surprising degree of flexibil-
ity in the definition of correctness. From a mathematical
point of view, the intersection of a convex polyhedron P 1
with an arbitrary polyhedron P2 is equivalent to intersecting
P2 with the set of halfspaces defining the convex polyhedron.
However, with approximate representations, intersecting P i
and P2 differs from intersecting P2 with each of the
halfspaces defining P 1. In the first case, given representations
R 1 and R2, R3 is a correct result if there exist corresponding
models Mi such that M 3 = M1 c~ M2. In the second case, the
definition of correctness for a halfspace representation R n and
a polyhedron representation R 1 is that there exist correspond-
ing models M1 and M n such that we obtain an output
representation R2 with model M2 such that M2 =M1 n M n .

The intersection of R I and R 2 is then obtained by succes-
sively intersecting with halfspaces. A representation R n that
is a correct intersection by the second definition need not be
correct for the first definition since intersection is not associa-
tive. Whatever definition is adopted, it must yield valid

objects that agree with the ordinary set theoretic intersection
for objects none of whose features coincide or nearly coin-
cide. Moreover, it must be implementable in a provably
correct manner.

The usefulness of the second definition is that it can be
implemented in a provably correct fashion. When intersecting
with a halfspace, we must determine for each vertex of the
polyhedron on which side of the plane that bounds the
halfspace it lies. Numerical computation suffices for certain
vertices. If the polyhedron is trihedral, we can arbitrarily
place the other vertices on one side or the other, except that if
several vertices of the same face are near the plane then we
must place them in a consistent manner. For example, we
cannot claim that three noncollinear vertices of a face are on
the plane and a fourth vertex of the same face is off the plane.
However, since the output polyhedron need not be trihedral,
this approach does not lead to an algorithm for intersecting a
trihedral and a convex polyhedron.

The halfspace intersection approach requires one of the
polyhedra to be convex. A better algorithm that can be
extended to the intersection of arbitrary polyhedra Px and P2
is as follows: Intersect the plane of each face of P 1 with solid
P2 to obtain a set of cross sectional graphs. Each cross sec-
tional graph is clipped by the face of P 1 associated with the
plane that gave rise to the cross section. Similarly intersect
the plane of each face of P2 with solid P1 and clip the cross
sectional graphs with the appropriate face of P2. The
representation of P I ('~P2 is then constructed from these
cross sections.

Constructing the cross section is analogous to intersect-
ing polyhedra with a half space. Clipping the cross sections,
however, presents added difficulties. First, if the plane cuts
P2 so that the cross section contains a face, an edge, or a ver-
tex of P2, then the cross sectional graph will have a structure
that represents two cross sections of P2; i. e., the cross sec-
tion on each side of the plane. Thus the cross section is
equivalent to superimposing two polygons and clipping gives
rise to a third. Figure 8 shows a polyhedron and one of its
cross sections. Clipping with the polygon shown again intro-
duces a complexity equivalent to Pascal's theorem. In the
case where one of the polyhedra is convex, the solid on one
side of the plane was discarded, as described above. This
reduced robust clipping to intersecting two polygons. When
neither polyhedron is convex we can simplify clipping by dis-
carding edges of the cross sectional graph that arise solely
because of the structure of the solid on the side of the plane
determined by the positive face normal. This reduces the
cross sectional graph to a collection of polygons intersecting
only at vertices and hence reduces the clipping problem to the
polygon intersection problem which can be done robustly.

Two problems arise. The first has to do with constraints
on the edges of the polygons involved. For example, in the
cross sectional graph, it may be the case that several edges
arise from the intersection of the cross sectional plane with
the same face of the solid. In this case the resulting edges
must be on the same infinite line. These additional con-
straints may not permit robust clipping. Note, however, that
the problem can be resolved, as shown in Figure 9, by parti-
tioning the face.

The second problem is one of global consistency.

109

Although each cross sectional graph can be clipped robustly,
we must make sure that they are clipped consistently, as
explained next.

7. (;lipping Different Cross Sections Consistently
Given two faces F 1 and F2 we must insure that the

cross sectional graphs generated by the planes of F 1 and F2
are clipped in a consistent manner. Since an edge a of F 1
and an edge b of F 2 may be generated by the same face F3,
they cannot be reoriented independently in the respective
planes (Figure 10). In addition, a face of the other solid may
intersect the planes containing F 1 and F 2 simultaneously, and
thus its intersection lines may also not be moved indepen-
dently. Both types of constraints must be accounted for.
They become especially delicate when an edge e' of the
polyhedron P2 intersects a face of polyhedron P 1 near an
edge e of the face. Here, the edge e' intersects the face plane
in a vertex of the cross section graph, and we must specify
where this vertex lies with respect to the face boundary e.
Further complications arise in the vicinity of a vertex of e,
and a detailed case analysis is required. See also [6].

8. Discussion

We have presented several paradigms for correctly
implementing a variety of geometric computations. The rea-
soning paradigm considers the numerical information to be
approximate to real data, and seeks to derive information from
the symbolic data describing adjacencies. As we showed, the
reasoning component varies considerably with the geometric
structure of the input: Intersecting two polygons is easy, but
intersecting simultaneously several polygons requires proving
theorems from projective geometry. So far, we have been
unable to prove correctness of a polyhedral intersection imple-
mentation, but we feel that this approach will succeed. We
have implemented a polyhedral intersection algorithm based
on these ideas and have tested it in a variety of cases. For
example, a unit cube was intersected with randomly rotated
copy of itself. The resulting polyhedron was in turn inter-
sected with a randomly rotated copy of itself, and so on.
After twelve iterations, the polyhedron shown in Figure 11
was obtained; see also [5,6]. When intersecting polyhedra
with a rotated copy, angles as small as 1/10,000 of a degree
have been used. As the angle of rotation is diminished, the
algorithm starts to consider near-coincident features to be
coincident. Below a certain threshold, the algorithm declares
the two copies to be identical. Experimental evidence given
in [6] suggests that the algorithm gives a topologically correct
result for all rotation angles except those in a very small
range. Depending on the particular experiment, this range has
been as large as 10 -5 degrees and as small as 10 1° degrees.

Even though the reasoning paradigm is logically satisfac-
tory, it may not have very good numerical behavior and may
lead to large perturbations. The placement strategy of Section
5 strikes a compromise in that some numerical data is taken
as accurate while other data is perturbed. This approach
seems to produce smaller perturbations than the reasoning
paradigm. Nevertheless, in practice this has not been a prob-
lem, and the paradigm has led to a polyhedral intersection
algorithm that is substantially more robust than the algorithms
previously reported in the literature.

The exact-as-written paradigm of Section 5 is very satis-

factory for simple objects such as line segments. It has been
used for provably correct polyhedron intersection [10], but
has a number of draw-backs. Briefly, it is not possible to
rotate or translate such a polyhedron without reconstructing it
from the rotated or translated primitives, due to the presence
of very small features. Moreover, it seems that this paradigm
cannot be extended to nonlinear geometric objects: The inter-
section point of linear structures with rational coefficients has
rational coordinates, but the same is not true for nonlinear
structures. Finally, the proliferation of small features is not
desirable in many applications.

9. References

[1] H. Durrant-Whyte (1986)
"Concerning Uncertain Geometry in Robotics," Interna-
tional Workshop on Geometric Reasoning, Oxford, Eng-
land, July 1986.

[2] H. Edelsbrurmer, J. O'Rourke, R. Seidel (1986)
"Constructing Arrangements of Lines and Hyperplanes
with Applications," SIAM J. Comput. 15, 341-363.

[3] G. Golub and C. van Loan (1983)
"Matrix Computation," Johns Hopkins Press, Baltimore.

[4] D. Greene, F. Yao (1986)
"Finite-Resolution Computational Geometry," Proc.
27th IEEE Symp. on Found. Comp. Sci., Toronto, 143-
152.

[5] C. Hoffmann, J. Hopcroft, M. Karasick (1987)
"Robust Set Operations on Polyhedral Solids," Tech.
Rept. 87-875, Comp. Science, Cornell University

[6] M. Karasick (1988)
"On the Representation and Manipulation of Rigid
Solids," PhD thesis, McGill University, Montreal.

[7] J. Lagarias (1985)
"The computational complexity of simultaneous
Diophantine approximation problems," SIAM J. Comp.
14, 196-209

[8] V. Milenkovic (1986)
"Verifiable Implementations of Geometric Algorithms
Using Finite Precision Arithmetic," International
Workshop on Geometric Reasoning, Oxford, England,
July 1986.

[9] T. Ottrnann, G. Thiemt, C. Ullrich (1987)
"Numerical Stability of Geometric Algorithms," Proc.
3rd Syrup. Comp. Geometry, Waterloo, 119-125.

[10] K. Sugihara (1987)
"An approach to error-free solid modeling," Notes,
Instit. for Math. and Applic., Univ. of Minnesota

[11] K. Sugihara (1987)
"On finite precision representations of geometric
objects," Res. Memo RMI 87-06, Dept. of Math. Engr.,
Univ. of Tokyo

i i 0

y~

\ /

Jj
Figure 1

g

/~ ~ N.~X\x ~

Figure 2

111

&

/ *
/

/

22

D

Hg~e3

I

Figure 4

112

4
×:

k

C

¥:
C t

z~

| t

\ l "

\. I

Figure 5

\
t

\

113

!

~3~ .--- --- l j f J

g

Figure 6

V~
ti

Figure 7

114

m

I
t

' Figure 8

7

: Figure 9

115

I11.

5

Figure I0

116

~,t I 1 ~ • " ~ 1 - ~ ' I " ~ , . ~ , ~ ~ , . ~ , ~
.... ~ , ~ , t ~ ~ . ~ . ~,~,~t~

• . " 7 I ~ ' Y i - " , . ~ ' ~ " ~ t " ~ i ~.x-~. "~..

, _ ~ , q . . . ~ " / ~ . . 1 ~ . . - . ~ - - - - . . < - . . . e . ~ ; . ~ . ~ . ~ , . . ~ , . .., , , ~ ~ ~ .~

Polyhedral approximation to a sphere

Figure 11

117

