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Chapter 1

Genesis

Chapter Outline: Structural versus Computational Mathematics. Historical perspectives.
Brief overview of complexity theory. Hilbert’s Tenth Problem. Turing Machines. Undecid-
ability. Cantor’s method of diagonalization. Undecidability of the halting problem. Time
and space bounded Turing machines. Hierarchy Theorems. Complexity Classes (L, NL, P,
NP, PSPACE, E, EXP).

1.1 Structural versus Computational

There have always been two major strands of mathematical thought since the time of an-
tiquity: Structural Theory and Computational Methods. For example, Euclid’s Elements is
a synthesis of much that was known in geometry up till that time, it is also largely struc-
tural in that it emphasizes (and establishes) theorems and deductive proofs; by contrast, the
writings of Diophantus, as in Arithmetica, were primarily algorithmic, where some of the
methods probably go back to Babylonian mathematics 2000 years before that. Of course
these strands of mathematical thought are not in opposition to, but rather, complement
each other. Even in Euclid’s Elements, one finds algorithmic gems such as The Euclidean
Algorithm which finds the greatest common divisor of two positive integers. It is a shining
example of an early triumph in algorithm design, whose correctness and efficiency demands
proof in a purely structural sense. Outside of the Greek tradition, other ancient civilizations
also had various emphasis on either the Structural Theory which prizes the framing and proof
of general theorems by deductive reasoning, or Computation which seeks efficient computa-
tional method to solve problems. For example, Chinese mathematicians of antiquity seem
to concern themselves primarily with computation.

To a great majority of the classical masters throughout history, starting with Archimedes,
Newton, Leibniz, Euler, Lagrange, Gauss, . . ., computation is an inseparable aspect of math-
ematics as a whole. It is a rather recent phenomenon that the computation is somehow del-
egated as secondary to the Big Math edifice, perhaps helped along by the influential schools
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such as Bourbaki. But in reality, much of the motivation for the big structural discoveries
were computational originally. For example, Calculus was invented so as to facilitate com-
putation of orbits of heavenly bodies as well as measuring surface areas and volumes; Galois
Theory and finite group theory was a discovery to investigate the solvability of equations by
radicals; the Prime Number Theorem was first conjectured by Gauss after much computa-
tional experiments. It is also true that much of the advances made in structural mathematics
had also greatly influenced the advances in computational mathematics.

While it can be said that the subject of algorithms is as old as mathematics itself, the
serious mathematical study of algorithms as such, rather than the use of them, is a relatively
new development.

Perhaps one could trace this beginning to Set Theory, that most structural of all subjects.
In his study of Fourier series (surely one of the most computational subjects in origin),
Cantor gave birth to a set of ideas that we now call (naive) set theory. Cantor’s ideas
are revolutionary in many aspects. In its basic framework it is highly non-constructive. For
example, Cantor gave a conceptually crisp and simple proof of the existence of transcendental
numbers, whereby inventing his famous diagonalization method. This proof is remarkable
in many ways:

Firstly, it is much simpler than the monumental achievement of Hermite and Lindemann
on the transcendence of e and π respectively. Perhaps one can still make the case that
the “real” transcendental number theory is more along the lines of Hermite, Lindemann
and Liouville, and not the mere existence proof by the magic of diagonalization. But even
the most dedicated practitioners of “hard analysis” today will not dismiss the elegance and
efficiency of Cantor’s method. On the other hand, today many interesting computational
problems, such as basis reductions for lattices, simultaneous Diophantine approximations,
and volume estimations of convex bodies, form very active research areas which can be traced
directly to the work such as Dirichlet, Liouville, Hermite and Minkowski.

Secondly, as Kronecker was quick to point out, Cantor’s method is inherently non-
constructive, and in his view, borders on the “philosophical”. In particular it did not conform
to the strictly finitistic and constructive approach that Kronecker had been advocating. To
the end of his day, Kronecker never accepted Cantor’s idea. The finitists distrust it on philo-
sophical ground, which is ironic because the finitists are particularly concerned with the
soundness of mathematical foundation, which is to be demonstrated in coming years to be
closely related to computational undecidability, in which Cantor’s diagonalization method is
a forerunner.

Thirdly, the diagonalization method was to find its great application in Turing’s undecid-
ability proof of the Halting Problem. It subsequently became one of the basic mathematical
tools in recurcsion theory, and in the founding of complexity theory with the proof of the
time and space hierarchy theorems.

Because of its fundamental importance we will review the diagonalization proof by Can-
tor.
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An algebraic number is a root of a polynomial with integral coefficients. A non-algebraic
number is called a transcendental number. A set is countable if it can be put into one-to-
one correspondence with the integers. It is clear that the set of all algebraic numbers is
countable, since we can count all integral polynomials, and each polynomial of degree n has
at most n roots.

Exercise: Show that the following is a pairing function which gives a one-to-one correspon-
dence between non-negative integers Z+ = {0, 1, 2, . . .} with the cartesian product Z+×Z+.

〈i, j〉 =

(
i+ j − 1

2

)
+ j.

Exercise: Show that the set of rational numbers, and the set of algebraic numbers are
countable.

Theorem 1.1 The set of real numbers is uncountable; in particular, there are non-algebraic
real numbers.

A curious historical note: In order not to offend Kronecker, who was powerful and some-
what petty at the same time and might block the publication of this work, Cantor had to
phrase his main result strictly on the existence of non-algebraic numbers, and not mention
anything of his emerging cardinality theory of the infinite.

Proof. Consider all binary infinite sequences B = {β}, where

β = b1b2 . . . bn . . . ,

and bi ∈ {0, 1}. We know that the real numbers in [0, 1] can be put in 1-1 correspondence
with this set B, via binary expansion.1

Claim: B is uncountable.

Suppose otherwise. Let β1, β2, . . . , βn, . . . , be an enumeration of all B, where each βi =
bi,1bi,2 . . . bi,n . . .. Write these sequences by the rows, and we obtain an infinite table as
follows.

1There is a technical problem of some real numbers in [0, 1] having two different infinite binary expansions.
But it is easy to see that these real numbers are precisely those with a finite terminating binary expansion,
and thus are rational numbers, and clearly countable. Therefore the claim of 1-1 correspondence with B is
still valid.

9



1 2 3 4 · · · i · · ·

β1 b1,1 b1,2 b1,3 b1,4 · · · · · · · · ·

β2 b2,1 b2,2 b2,3 b2,4 · · · · · · · · ·

β3 b3,1 b3,2 b3,3 b3,4 · · · · · · · · ·

β4 b4,1 b4,2 b4,3 b4,4 · · · · · · · · ·
...

...
...

...
...

. . .

βi bi,1 bi,2 bi,3 bi,4 · · · bi,i · · ·
...

...
...

...
...

. . .

Now we define a particular β = b1b2 . . . bn . . . ∈ B, which by its definition can not be on
this list: We go down the diagonal of this infinite table; for the n th entry, if it is 0 we let
our new bn = 1, and if it is 1 we let bn = 0. Formally, ∀n ≥ 1,

bn =

{
0 if bn,n = 1
1 otherwise.

Thus we “constructed” our β ∈ B to be “disagreeable”: It disagrees with the n th item on
the list in the n th place. Hence this β cannot be among those listed. (If it were the n th
sequence, what should its n th entry be?) ♣

It is self evident why Cantor’s method is called the diagonalization method.

Kronecker’s objections not withstanding, Cantor’s set theory opened up a mathematical
“paradise”, from which, Hilbert was said to have remarked that mankind will never be driven
out again. Nevertheless, it did bring troubles with it. In particular, at the turn of the 20th
century, a number of set theoretic paradoxes were found that pertain to the foundation of
mathematics.

Here is the famous Russell’s paradox.

“Surely” pure logic dictates that a set A either satisfies A ∈ A or A 6∈ A. Let’s form
A = {A | A 6∈ A}. In Cantor’s naive set theory this seems perfectly legitimate. If, Russell
says, we can form this set A, then is A ∈ A? If A ∈ A, then by its definition, A 6∈ A.
However, if A 6∈ A, then again by definition, A ∈ A.

1.2 Turing Machines and Undecidability

At the turn of the last century, paradoxes such as this one stirred up a lot of uneasiness with
the foundation of mathematics, which was to be formulated increasingly based on Cantor’s
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naive set theory. This created the strong desire to re-examine the foundation of mathematics,
and try to formalize all mathematics on an axiomatic basis without contradiction. (In the
modern axiomatic set theory, such paradoxes are avoided by being more careful as to what
is admissible as a set construction.)

Hilbert was a leading advocate of the formalist school. In his famous address to the
International Mathematicians Congress in 1900, he listed 23 problems which he thought to
be most likely to excite the imagination of mathematicians worldwide in the new century. A
number of Hilbert’s problems are concerned with foundational issues, such as the Continuum
Hypothesis. The 10th problem on the list asks the following: Find a systematic procedure
to determine if a polynomial with integral coefficients in several variables has an integral
solution. More broadly then, Hilbert initiated the study of Decision Problems where the
aim is to find an algorithm to decide for each instance of a problem. The research in the
next 40 years showed that the study of computability is intimately related to the foundation
of mathematics. Several other Hilbert problems also had a profound impact on the future
development of the foundation of mathematics and computability theory, such as the Con-
tinuum Hypothesis (#1) and Consistency Problem (#2), but it was the Decision Problem,
a.k.a. Entscheidungsproblem, that was the primary impetus to Turing’s seminal work which
established the foundation of computability theory.

It turns out that the notion of a systematic procedure to compute is intimately related
to the notion of a formal proof in axiomatic system. The work of Turing, Gödel, Church,
Post, and others, established that the original program envisioned by Hilbert cannot be
complete. While Hilbert only asked for an algorithm in the 10th problem, the possibility of
the non-existence of such an algorithm probably never crossed his mind. This turned out to
be the case in the end, as it was finally proved by Matiyasevich in 1970. But, it was Hilbert
who raised the question, and focus the attention on the very notion of what constitutes an
algorithm, what is computation. In answering Hilbert, computability theory was born.

It is to address Hilbert’s Entscheidungsproblem, Turing defined his model of a general
purpose computer—the Turing Machine. A Turing Machine (TM) has a finite state control
and an infinite input/output tape with a reading/writing head. A deterministic Turing
Machine moves in each step in a unique way determined by its current state, and the symbol
it is currently scanning. A move consists of a possible change of state and scanned symbol,
and moving the head left or right. A non-deterministic Turing Machine (NTM) may have
several legal moves, which are still determined by its current state and the scanned symbol.
(NTMs are not important for computability theory, but important for complexity theory
later.) An input x is accepted by a deterministic TM if the computation starting with initial
configuration ends in an accepting state. For a NTM acceptance is defined by the existence
of some sequence of legal moves that ends in an accepting state. Again for complexity theory
purposes, we also define multitape Turing Machines. For space bounded Turing Machines
with sublinear space bound we allow a separate read-only input tape, and a work tape (or
several tapes 2), and the space bound is counted only on the work tape(s). We assume the

2For space complexity it turns out a single work tape suffices.
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Tape

Head

Finite Control

Figure 1.1: Turing Machine

readers are already familiar with these notions; for detailed definitions, please see [3, 4, 2].

TMs are not the only model of computation formulated. In the 1930s a number of
different models were formulated; however every one of the general models were shown to be
equivalent to TMs in due course. The universality of TMs is captured by The Church-Turing
thesis which states that whatever can be computed can be computed by a Turing Machine.

Cantor’s diagonalization method was technically the opening salvo by Alan Turing.
Adapting Cantor’s method, Turing showed that there are problems which can not be com-
puted by any Turing Machine, and thus, by the Church-Turing thesis, uncomputable by
any algorithm whatsoever. Such problems are called undecidable problems. In particular,
the so-called Halting Problem for Turing Machines is one such problem. Furthermore, a
reduciton theory is developed whereby a host of problems can be shown undecidable.

The proof of the undecidability of the Halting Problem goes as follows.

List all the Turing Machines M1,M2, . . . row by row, and index the columns by the inputs
of all finite strings, which we will identify with integers j = 1, 2, . . .. Mark the (i, j) entry of
this table byMi(j), the outcome of machineMi on input j. We will only consider the outcome
of either “halt” or “not halt”. We are not claiming this outcome can be computationally
determined in general, and in fact the purpose of this proof is precisely to show that it
is impossible to determine this outcome by TMs, and thus by the Church-Turing thesis,
undecidable by any algorithm.

Thus we obtain an infinite table, much like that in Cantor’s proof.

Now suppose there is a decision procedure in the form of a Turing Machine M that,
for any 〈i, j〉, can decide whether Mi(j) halts or not in a finite number of steps. Let’s say
M(〈i, j〉) = 1 if Mi(j) halts and M(〈i, j〉) = 0 otherwise. Then one can design another
Turing Machine M ′ as follows: On any i, M ′(i) simulates M(〈i, i〉). If M(〈i, i〉) = 1, then
M ′(i) enters a loop and never halts. If M(〈i, i〉) = 0, then M ′(i) halts.

Now since all Turing Machines have been enumerated, there exists a k, such that our M ′

is Mk. But what happens to Mk(k)?
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1 2 3 · · · i · · ·

M1 M1(1) M1(2) M1(3) · · · · · · · · ·

M2 M2(1) M2(2) M2(3) · · · · · · · · ·

M3 M3(1) M3(2) M3(3) · · · · · · · · ·
...

...
...

. . .

Mi Mi(1) Mi(2) Mi(3) · · · Mi(i) · · ·
...

...
...

...
...

. . .

If Mk(k) eventually halts, then by the assumption of M , M(〈k, k〉) = 1, and thus M ′(k),
which isMk(k), never halts. IfMk(k) does not halt, then again by assumption, M(〈k, k〉) = 0,
and M ′(k) halts. Either way we have a contradiction. ♣

Next we will define time and space bounded computation. This is the domain of compu-
tational complexity theory. We will see that diagonalization method reappears, to establish
that more time or more space provably can compute more.

1.3 Time, Space and Non-determinism

The following notions are basic, and can be found in more details in any reference books
[3, 4, 2, 1].

A DTM is formally (Q,Σ, q0, δ, F ), where Q is a finite set of states. Σ is a finite set of
alphabet symbols, excluding a special symbol t. q0 ∈ Q is the starting state. F ⊆ Q is a
subset of accepting states. δ is a partial transition function that maps (Q− F )× (Σ ∪ {t})
to Q×Σ×{L,R}. The interpretation is as follows: when TM M is in state q ∈ Q−F , and
reading symbol A ∈ Σ∪{t}, if δ is defined, say δ(q, A) = (q′, A′,∆), where ∆ = L or R, then
in one step the partial transition function δ provides the next state q ′ ∈ Q, and overwrite
the symbol by A′ ∈ Σ, and moves left (∆ = L) or right (∆ = R). Thus, a TM is defined by
a finite set of quintuples of the form (q, A, q′, A′,∆), which can be written as an integer in
a standard encoding scheme, e.g., using repeated applications of our pairing function 〈·, ·〉.
We can further assume every integer encodes a TM, with the simple convention that an
“invalid” encloding corresponds to a TM that has no legal moves. Furthermore, we will
almost exclusively use the binary alphabet set {0, 1}.

We will use multitape TMs, which are similarly defined. The time complexity of deter-
ministic TM M is

timeM(n) = max{# of steps in M(x), for |x| = n}.
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For any function f(n),

DTIME[f ] = {L | for some M ,L(M) = L, and timeM(n) ≤ f(n), for all large n.}.
In other words, DTIME[f ] consists of problems that are computable by some TM with
running time at most f(n) asymptotically. By some silly tricks such as enlarging the alphabet
set, and the set of finite states, one can show that any constant factor does not matter. Thus
DTIME[f ] = DTIME[O(f)]. For technical reasons we will only consider “nice” functions
f(n), called fully time-constructible functions. This means that there is some TM M , which
for every n, and any input x of size n, M(x) runs in exactly f(n) steps and then halts.3

Almost any reasonable functions ≥ n, such as n, nk, ni(log n)j, 2(log)k
, 2nk

, and 22·
··
2n

. They
are also closed under addition, multiplication, exponentiation, etc. We will always assume
f(n) ≥ n, the time needed to read the input.

The model of TM is chosen because it is relatively robust. One can show, for in-
stance, that any k-tape TM running in time f(n) can be simulated by a 2-tape TM in
time O(f(n) log(f(n))). For our purposes we will only need the more trivial simulation in
time O(f(n)2), even by 1-tape TM. This simulation can be seen easily as follows: Devide
the single tape into 2k tracks, and use a large alphabet set with more than 22k symbols,
say. Keep on the single tape the contents of all k tapes, together with a mark for each head
position. Then one step of the computation of the k-tape TM is simulated by the 1-tape TM
with 2 sweeps. Note that each sweep of the tape area which has been used takes at most
O(f(n)) steps. For time complexity, the default model is multitape TMs as in the following
definitions.

Let poly denote the class of polynomials, or simply ni + i, i = 1, 2, . . .. Then the union

P =
⋃

f∈poly

DTIME[f ]

is the class of deterministic polynomial time. Clearly this definition is invariant when re-
stricted to 1-tape TMs. One can similarly define exponential time classes

E =
⋃

k>0

DTIME[2kn]

EXP =
⋃

k>0

DTIME[2nk

]

One can define space complexity similarly. In one aspect it is even simpler, since we can
use k tracks to mimic k tapes and there is no additional space overhead in the simulation. So
we will have just one work tape. However in another respect, there is a slight complicaiton.
This happens when we wish to study sublinear space complexity, which contain important
problems. In order to account for sublinear space, we use a separate read-only input tape,
in addition to a read-write work tape.

3It is a fact in complexity theory that there exist functions which are not fully time-constructible, but we
will not be concerned with that.

14



Finite Control

Heads

Input Tape

Output Tape

Work Tape

(read−only, two−way)

(read−write, two−way)

(write−only, one−way)

Figure 1.2: Multi-Tape Offline Turing Machine

On the read-only input tape, the input of length n is written, but these n cells do not
count toward space complexity. We only count the number of tape cells used on the read-
write work tape. Thus for space complexity, the standard model is what is known as an
off-line TM, which has one read-only input tape, and one read-write work tape. Then one
can define, in an obvious way,

spaceM(n) = max{# of cells on work tape used in M(x), for |x| = n}.

Again we restrict to “nice” functions, called fully space-constructible functions.

Exercise: Define fully space-constructible functions.

For any such function f(n), define

DSPACE[f ] = {L | for some M ,L(M) = L, and spaceM(n) ≤ f(n), for all large n.}.

We define
PSPACE =

⋃

f∈poly

DSPACE[f ],

the class of polynomial space. (There is a reason why we omit the word “deterministic”,
as we shall explain later.) We also have deterministic logarithmic space L = DSPACE[log].
Note again that constant factors do not matter, thus DSPACE[log] =

⋃
c>0 DSPACE[c log].

The notion called non-determinism is of central importance in complexity theory. This
notion is related to the process of guess and verification. We will consider two examples.
Boolean Satisfiability and Graph Accessibility.

Suppose we are given a Boolean formula ϕ in propositional logic, i.e., it is a well-
formed-formula made up from logical AND (∧), OR (∨) and NOT (¬), and Boolean vari-
ables x1, x2, . . . , xn. The problem is whether there is a truth assignment for the variables
x1, x2, . . . , xn such that ϕ evaluates to True. This problem is called the (Boolean) Satisfia-
bility Problem. The set of all satisfiable formulae is denoted as SAT.

15



No polynomial time algorithm is know for SAT. But whenever a formula ϕ(x1, x2, . . . , xn)
is satisfiable, i.e., ϕ ∈ SAT, there is an assignment, if one is given that assignment, one can
easily verify that ϕ is satisfiable, in particular it evaluates to True under that assignment.
We consider this process as consisting of two stages, first guess a witness, in this case a
satisfying assignment, second verification, to check indeed it is a satisfying assignment. Note
that ϕ is satisfiable if and only if such a guess exists which will pass the verification stage.
Of course, one can consider this guess-and-verify to go hand in hand. In this Satisfiability
Problem for example, we can imagine one guesses one bit at a time for each variable, and
evaluates the formula as each variable is assigned. We will formally define non-deterministic
Turing Machines (NTM) as TMs where for each state and tape symbol being read (q, A),
the transition function δ provides a finite set of allowable next-step transitions consisting of
a state q′, a tape symbol A′ and a left or a right movement, ∆ = L or R, of the tape head. A
NTM is defined by this set of quintuples of the form (q, A, q′, A′,∆). For DTM, every (q, A)
has at most one quintuple of the form (q, A, q′, A′,∆) signifying at most one legal move; with
NTM, each (q, A) can have a finite set of quintuples the first two entries being q and A (this
finite set is part of the definition of δ).

These two views of non-deterministic computations, namely, 2 stage guess and verify
or multiple valid moves per step, are clearly equivalent for SAT. For problems such as
SAT, or in general, for non-deterministic time classes (which is at least linear cn), the
first approach, guess-and-verify, is more intuitive. However, for formal treatment of non-
deterministic computations, it is easier with the second approach. This is especially so when
one is dealing with possibly non-terminating computations. 4 Another place the second
approach is more suitable is when we consider space bounded computation with sub-linear
space bound as in the following example (where there is not enough space to guess and write
down all the non-deterministic moves at the beginning.)

Consider the following Graph Accessibility Problem: Given a directed graph G, and two
vertices s and t, we ask whether there is a directed path from s to t. We denote by GAP
the set of all instances (G, s, t) where a directed path exists in G from s to t. (This problem,
when restricted to undirected graphs, is also very important. By replacing each undirected
edge by a pair of directed edges in the opposite direction, it is clear that the directed GAP
is a more general problem than the undirected version.)

For GAP, there is a simple polynomial time algorithm based on Depth-First-Search
(DFS). However DFS uses at least linear space. By contrast, if the space bound is lim-
ited, we have the following non-deterministic algorithm: Start from v0 = s, successively
guess the next vertex vi and verify that (vi−1, vi) is an edge. We can keep a counter to count
up to n, and accept iff within n − 1 steps, some vk = t. Note that we only need to keep at
any time a pair of current vertices on the work tape; when we guess for vi+1 we need only
to remember vi (in order to verify that (vi, vi+1) is an edge), but we no longer need to keep

4We will not be concerned with non-terminating computations. For example, one can design a subroutine
which acts as a time clock that runs exactly ni + i steps and shuts itself off, or a space bound which marks
f(n) (e.g. f(n) = log n or ni + i) many tape squares.
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vi−1 and all previously guessed vertices. In addition we only need to keep a counter to count
up to n. For a graph with n vertices, to name a vertex takes only log n space. Thus GAP is
in non-deterministic logspace.

We will only be concerned with time/space bounded NTM, and thus we can assume each
computational path terminates within the specified time/space bound. Then for a NTM N
and a fully time constructible f we define

timeN (x) = max{n+1,min
p
{# of steps along p, where N(x) accepts along computational path p}}, 5

timeN(n) = max{timeN(x), |x| = n},
NTIME[f ] = {L | for some N ,L(N) = L, and timeN (n) ≤ f(n), for all large n.}.

Of course L(N) = L means that x ∈ L iff there is some computation path p, along which N
accepts x. Similarly we can define non-deterministic space classes.

spaceN (x) = max{1,min
p
{# of worktape cells used in N(x), where N(x) accepts along p}}, 6

spaceN (n) = max{timeN (x), |x| = n},
NSPACE[f ] = {L | for some N ,L(N) = L, and spaceN(n) ≤ f(n), for all large n.}.

NP =
⋃

f∈poly

NTIME[f ],

NPSPACE =
⋃

f∈poly

NSPACE[f ],

and also
NL =

⋃

c>0

NSPACE[c log].

To recap, formally a non-deterministic TM (NTM) is simply a TM which has possibly
more than one legal moves at any configuration. These next-moves are specified by the
current state and the tape symbols it is currently reading. A NTM accepts an input x iff
there exists a legal computational path that ends in acceptance.

It is obvious that L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP.

We will show later that NSPACE[f ] ⊆ DSPACE[f 2], thus NPSPACE = PSPACE and
NPSPACE will not be used.

The relationship of P and NP is the most outstanding open problem in Computer Science.

5When N does not accept x, the time complexity is n + 1.
6When N does not accept x, the space complexity is 1.
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1.4 Hierarchy Theorems

The complexity classes as defined attempt to classify decidable computational problems ac-
cording to the inherent computational complexity of each problem. The first question one
must ask is: Does such a stratification really exist, i.e., could this be merely a definitional
mirage?

In order to truly establish the validity of the existence of computational complexity
theory, one must prove that problems do indeed have different inherent computational com-
plexity. This should not depend on merely the fact that, while we have fast algorithms for
some problems, we do not currently have fast algorithms for some others. The proof must es-
tablish for a given time or space bound f(n), the existence of some decidable computational
problems which do not possess any algorithm within that bound f(n).

The results establish these existence theorems are known as Hierarchy Theorems. One
can show, for any two time complexity functions T1(n) and T2(n), if T2 grows sufficiently
fast compared to T1, then there are indeed problems which can be solved in time T2 but can
not be solved in time T1. (Here we will also require a technical condition of T2 being time

constructible.) In fact, if limn→∞
T1(n) log T1(n)

T2(n)
= 0, then the above statement already holds.

We will prove a weaker theorem

Theorem 1.2 Given any T1(n), T2(n), if T2(n) is time constructible and

limn→∞
T1(n)2

T2(n)
= 0, then there is a language L ∈ DTIME[T2(n)]−DTIME[T1(n)].

The proof also establishes in particular,

Theorem 1.3 Given any totally recursive time bound T (n), there is a recursive language L
not in DTIME[T (n)].

There are also nonderministic time hierarchy theorems.

The Hierarchy Theorem plays the same role as the existence of undecidable problems.
Not only that, the proof also adapts the diagonalization method. (We have now seen it for
the third time.) On the minus column, just as Cantor’s slick proof establishing the existence
of transcendental numbers, these Hierarchy Theorems do not give us the specificity that
certain well known problems are hard. The present day research in complexity theory is
much more dominated by the quest for such “real” problems.

We will only give a proof sketch:

Proof. The general idea is diagonalization. First we note that all TMs can be effectively
enumerated as M1,M2, . . .. For a time constructible bound T (n), one can also design a
“clock”, a subroutine, which runs concurrently with any TM and shuts it off after T (n)
steps. We can effectively enumerate all “clocked” TMs, all of which runs within time T (n),
and every language in DTIME[T (n)] is accepted by one machine on this list.
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We will enumerate all the Turing Machines M1,M2, . . ., and consider each Mi on longer
and longer inputs. We simulate each of them on these inputs, for up to T2(n) steps for inputs
of length n. To be more precise, we will allocate a disjoint segment Si = {〈i, y〉 | i ≥ 1, y ∈
Σ∗}, and simulate Mi on every x ∈ Si. If the simulation on Mi(x) terminates in less than
T2(|x|), then we will do the opposite, i.e., we accept x if Mi(x) rejects, and we reject x if
Mi(x) accepts. If the simulation of Mi(x) does not terminate within T2(|x|) steps, then we
can decide arbitrarily, accept or reject.

To account for the possibility that the simulation of Mi(x) does not terminate within
T2(|x|) steps, we allocated an infinite subset of inputs for every Mi, Since one can simulate
(easily) a multitape TM Mi with running time T1(n) by a one tape TM in time T1(n)2, for
sufficiently large x ∈ Si, the simulation of Mi(x) will terminate within T2(|x|) steps. Now
suppose L ∈ DTIME[T1(n)]. Then for some TM Mi accepting L with runing time T1(n),
the simulation will terminate with a different outcome, for sufficiently large n. Thus the
language L′ defined by this simulation does not belong to DTIME[T1(n)]. However, by the
construction it is in DTIME[T2(n)]. ♣

Note that the simulation is carried out by a single TM, which must have a fixed number
of tapes. It is known that any k-tape TM with running time T (n) can be simulated by a
2-tape TM in time O(T (n) log(T (n))). This is the only modification needed in the above
proof to get a tighter hierarchy theorem quoted earlier.

The method of this proof is sometimes called delayed diagonalization. This is because,
the “diagonalizing action” which kills the TM Mi may happen at a later stage (in our case,
for an input in Si, perhaps much longer than i). The set Si has infintely many strings, thus
arbitrarily long strings. Thus the “diagonalizing action” will happen eventually, for every
TM with running time T1(n).

There is also a similar version of the Hierarchy Theorem for space complexity. In fact
since for space complexity we can simulate any TM in just one tape without any loss in
asymptotic space complexity, the theorem reads even tighter: (S2(n) ≥ log n is needed to
carry out some basic counting operations in simulations.)

Theorem 1.4 Given any S1(n) and S2(n) ≥ log n, if S2(n) is fully space constructible

and limn→∞
S1(n)
S2(n)

= 0 (i.e, S1 = o(S2)), then there is a language L ∈ DSPACE[S2(n)]

−DSPACE[S1(n)].

The approach is the same.

Exercise: Prove the Space Hierarchy Theorem.
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Chapter 2

Basic Concepts

Chapter Outline: In this chapter, we discuss some basic concepts. We define reductions,
NP-completeness, alternations, relativizations, leading to the Polynomial-time Hierarchy.

2.1 P and NP

In Chapter 1, we introduced deterministic and non-deterministic Turing machines and their
complexity bounded versions. Building on these notions, we defined deterministic and non-
deterministic time complexity classes. We continue the discussion by first recalling these
classes.

Definition 2.1 For any time-constructible function f(n),

DTIME[f ] = {L| for some deterministic TM M , L = L(M) and M runs in time f(n)}
NTIME[f ] = {L| for some non-deterministic TM M , L = L(M) and M runs in time f(n)}

Since every deterministic TM can also be viewed as a non-deterministic TM, we have the
following proposition.

Proposition 2.2 For any function f(n), DTIME[f ] ⊆ NTIME[f ].

We obtain the two central complexity classes, P and NP by considering deterministic and
non-deterministic TMs that run in polynomial time:

Definition 2.3

P =
⋃

f∈Poly

DTIME[f ]

NP =
⋃

f∈Poly

NTIME[f ]
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where Poly is the set of all polynomials.

It follows from these definitions that P ⊆ NP, and perhaps the greatest open problem in
computer science asks whether this containment is in fact proper, namely NP 6= P.

2.2 NP-Completeness

One of the most useful notions in complexity theory is that of completeness. In general,
one can define complete languages for any complexity class. This section is devoted to a
discussion of complete languages for the class NP. We start by defining another important
concept called reduction.

Definition 2.4 (Karp reduction) A language L1 reduces to another language L2 by a
Karp reduction, denoted as L1 ≤p

m L2, if there is a function f : Σ∗ → Σ∗, such that

1. x ∈ L1 ⇐⇒ f(x) ∈ L2, and

2. f is deterministic polynomial time computable.

Karp reduction is also known as polynomial time many-one reduction, which is the poly-
nomial time version of the recursion theoretic notion of many-one reduction. There are other
notions of reduction which will be discussed later. We now proceed to define the notion of
NP-completeness.

Definition 2.5 A language L is said to be NP-hard (under Karp reductions) if every lan-
guage L′ ∈ NP Karp reduces to L. L is said to be NP-complete if L ∈ NP and it is NP-hard.

We next exhibit a canonical NP-complete language ANP. It is defined as follows.

ANP = {〈M,w, 1t〉| M is a non-deterministic TM that accepts w within t steps}

Proposition 2.6 ANP is NP-complete.

Proof. It is easy to see that ANP is in NP. Given 〈M,w, 1t〉 as input, we simulate M on
w (non-deterministically) for t steps and accept the input if M accepts w. Clearly, this
algorithm runs in non-deterministic polynomial time.

We next show that ANP is NP-hard. Let L ∈ NP via a non-deterministic TM M that runs
in time O(nc), where c is some constant. Our reduction algorithm, given input w, simply
outputs 〈M,w, 1nc〉. It is clear that w ∈ L iff 〈M,w, 1nc〉 ∈ ANP. Our reduction algorithm
takes (deterministic) time O(nc), and hence runs in polynomial time. ♣
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We note that this proof can be easily adapted to many other complexity classes, as long
as the class has an enumeration by “clocked” machines. For example, for the class PSPACE,
we can define an enumeration of space bounded (by nj + j) TMs M〈i,j〉, and form such a
“universal language”, which will be complete for PSPACE.

APSPACE = {〈M,w, 1t〉| M = M〈i,j〉 accepts w within t = |w|j + j space}

Thus mere existence of complete languages for a standard complexity class which can
be represented by an enumeration of TMs is no surprise. However these are not “natural”
languages. Having shown the existence of an NP-complete problem, we turn our attention
to “natural” or “real-world” problems that are NP-complete. The great importance of NP-
completeness resides with these “natural” NP-complete problems. One such famous problem
is SAT.

SAT = {ϕ|ϕ is a satisfiable boolean formula }

The famous Cook–Levin theorem states that SAT is NP-complete.

Theorem 2.7 (Cook–Levin) SAT is NP-complete.

The proof goes by showing that, given a polynomial time NTM M and an input w,
the computation of the machine M on w can be encoded into a boolean formula so that
M accepts w if and only if the formula is satisfiable. Moreover, if the machine runs in
polynomial time, the length of formula will also be polynomial in the input length. The
basic idea is to use Boolean variables and logical connectives ∨,∧,¬ to form a propositional
logic formula, which is in CNF (a conjunction of some disjunctions of literals), which “says”
the computation M(x) accepts for some non-deterministic computational path. For a formal
proof of the theorem, we refer the reader to standard textbooks [2, 3, 4]. It really should
come as no surprise that boolean logic can express this. But the impact of realizing SAT is
such a universal problem for NP is tremendous.

Following the work of Cook, Karp showed that many other “natural” problems are also
NP-complete. It is with the realization of this abundance of “natural” NP-complete problems
that the importance of NP-completeness is truly demonstrated. Apart from its theoretical
importance, the notion of NP-completeness is also very useful from a practical perspective.
If an NP-complete problem is shown to be solvable in polynomial time, then every problem
in NP would also be solvable polynomial time, and hence, it would imply that NP = P. But,
it is widely believed that NP 6= P. One indication is perhaps that there are thousands of NP-
complete problems and no poly-time algorithm has been found for any of them. (Although
this is admittedly a weak argument in favor of the Conjecture.) So, showing a problem
to be NP-complete is taken to be a strong indication that the problem is not solvable in
polynomial time and hence computationally hard. In fact, following this scheme, over the
past three decades, thousands of “practical” problems have been shown to be NP-complete.
A book by Garey and Johnson [2], now a classic, includes a compendium of many of these
NP-complete problems.
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Going back to SAT, we saw that, given a boolean formula, it is NP-hard to decide whether
it is satisfiable or not. In this formulation, we allow the input to be any arbitrary boolean
formula. But in fact Cook’s proof shows that it remains NP-hard, even if we restrict the
input formula to be in conjunctive normal form (CNF) (i.e. the formula is an AND of ORs
such as (x1∨x2∨x3∨x4)∧ (x1∨x6)). It is common to refer to the above version (CNF-SAT)
simply as SAT.

Once we have established a certain problem Π to be NP-complete, to prove the NP-
completeness of another problem Π′ in NP, we can reduce the known NP-complete problem Π
to the given problem Π′. This is simply a consequence of the transitivity of Karp reductions.
The task is made easier if we start with a problem known to be NP-complete, and it has as
restrictive a form as possible. For example, it is easier to give a reduction from the CNF
version of SAT than from the general one. Proceeding along these line, we next show that
an even more restricted version of SAT, namely 3-SAT, is also NP-complete.

3-SAT is the set of all satisfiable boolean expressions of the form

ϕ =
n∧

i=1

3∨

j=1

li,j

where the literal li,j is either x or x, for some input variable x. Thus, (x1∨x2∨x3)∧(x2∨x3∨x4)
is an example of a 3-SAT expression. We now reduce SAT to 3-SAT.

In order to transform SAT to 3-SAT, we use a construction termed the “butterfly con-
struction”. The idea is that for any clause that is longer than three components, we split the
clause into clauses with 3 literals, by adding extra variables. Consider the following formula:

ϕ = (x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5 ∨ x6)

We simply split this formula into 3-clauses as follows:

ϕ → (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ x4 ∨ x5 ∨ x6)

→ (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ (y2 ∨ x4 ∨ x5 ∨ x6)

→ (x1 ∨ x2 ∨ y1) ∧ (y1 ∨ x3 ∨ y2) ∧ (y2 ∨ x4 ∨ y3) ∧ (y3 ∨ x5 ∨ x6)

Call the last formula ϕ′. Now we notice the following: If we have assigned all xi to be false
in ϕ, then in order to satisfy ϕ′, we can reason from left to right in ϕ′ one clause at a time,
and we see that all yj must be true: x1, x2 are false, so y1 is true; then y1, x3 are false, and so
y2 is true; etc. But still this would leave the last clause false. (Imagine an air bubble being
pushed from left to right.)

On the other hand, if we have assigned some xi to be true, then we can “propagate”
from this xi on both sides by assigning each yj appropriately so that all 3-literal clauses are
satisfied. For example suppose x3 is true. Then it looks something like the following, where
↑ represents true and ↓ represents false for the whole literal (including the not symbol):

This is the motivation for calling it the butterfly construction.
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y1 y1 x3 y2 y2 y3 y3

↑ ↓ ↑ ↓ ↑ ↓ ↑

Given any instance of SAT in CNF, we apply the same transformation to each clause
with length greater than 3 by adding new variables for each clause. If a clause has fewer
than 3 literals, there is a trivial transformation to make a conjunction of 3-clauses equivalent
to it. Then it is clear that the original formula is satisfiable iff the transformed formula is
satisfiable.

We have proved the following theorem.

Theorem 2.8 3-SAT is NP-complete.

One can also easily prove that the problem remains NP-complete if we restrict to SAT
instances with exactly k literals per clause, for any k ≥ 3. This is called k-SAT problem. It
is interesting to note that 2-SAT is decidable in polynomial time as it can be formulated as
a graph of logical implications and one can find if the implications are consistent or not in
polynomial time.

Exercise: Show that 2-SAT is in P.

With the NP-completeness of 3SAT in hand, we can show that many other problems are
NP-Complete by reducing 3-SAT to them.

2.2.1 NP-completeness of VertexCover, IndependentSet, Clique

We begin by defining VertexCover, or VC:

VC = {〈G, k〉 | ∃S ⊆ V (G), |S| ≤ k, every edge of G is incident to at least one vertex of S}

We now utilize a gadget-based construction to reduce SAT to VertexCover. The idea
of such a construction is to create objects in one system (in this case, we’ll be creating
specialized graphs) that correspond to the fundamental objects in another (clauses and
variables), such that a certain relation among the constructed objects in the first system
exists if and only if another relation exists among all objects in the second. In the case
of the construction for VC, we want certain vertices to be covered iff the assignments to
variables they represent correspond to a satisfying assignment.

Now, we give the construction. We reduce 3Sat to VC. We will find the limitation on the
size of the clauses to be advantageous here. Assume there are n variables x1, x2, . . . , xn and m
clauses. First, we construct vertices x1, x1, x2, x2, . . . , xn, xn. These vertices will correspond
to the possible truth assignments to the n variables present in the formula. We add edges
(x1, x1), (x2, x2), . . . , (xn, xn), which forces the constraint that we must select at least one
value for each variable. We call these the intra-variable edges.
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Then, we construct vertices l̂11, l̂12, l̂13, l̂21, l̂22, l̂23, . . . , l̂m1, l̂m2, l̂m3, which correspond to
the literals of each clause. These nodes are connected in a triangle for each clause: (∀i, 1 ≤
i ≤ m){(l̂i1, l̂i2), (l̂i2, l̂i3), (l̂i3, l̂i1))}. We call these the intra-clause edges.

Finally, each literal node l̂ij in a clause is connected to its corresponding vertex lij. For

example, if lij is xk, we have (l̂ij, xk); and similarly, if lij is xk, it will be (l̂ij, xk). We call
these the inter-formula edges.

Here is how (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) would be represented:

PSfrag replacements
x1 x1 x2 x2 x3 x3 x4 x4

Now we’ll step back and reason about our construction. Suppose the formula represented
is satisfiable. Then we can construct a vertex cover of size n + 2m. We pick the n vertices
corresponding to a satisfying truth assignment σ. (If x1 is set to “true” in σ, include the
vertex labelled x1 in the vertex cover, else include the one labelled x1.) Then, in each triangle
corresponding to a clause, we cover two literals which include all literals which are set false.
Note that if the formula is satisfied under σ, then any clause has at least one literal which is
true, hence at most two literals which are false. With one vertex for each pair of xi and xi,
and 2 vertices in each triangle, we note that all of the intra-variable and intra-clause edges
will be covered no matter what the assignment. We note also that all the inter-formula
edges are covered as well, if σ is a satisfying assignment: An inter-formula edge connecting
a variable node to a satisfied literal is covered by the variable node; an inter-formula edge
connecting a variable node to an unsatisfied literal is covered by the literal node in the
triangle for the clause. So we have a vertex cover of n+ 2m vertices.

Conversely, suppose there exists a covering with n + 2m vertices. We show that this
covering must represent a satisfying assignment. In order to cover all of the intra-variable
and intra-clause edges, we need at least n+2m vertices covered, 1 for each variable and 2 for
each clause. Therefore these n+2m vertices consist of exactly one for each pair (xi, xi), and
exactly two for each triangle. But this implies that only 2 of the 3 inter-formula edges for
each clause are covered by literal nodes in the triangle for the clause, the third inter-formula
edge must be covered by the node representing the literal. Hence, if we assign to true any
literal precisely when it is in the vertex cover, the formula is satisfied.

Therefore, the formula is satisfiable iff there exists a cover of size n+2m. We have proved
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Theorem 2.9 VC is NP-complete.

We also note that IndependentSet is NP-Complete. First we define the problem:

IS = {〈G, `〉 | ∃S ∈ V (G), |S| ≥ ` such that ∀u, v ∈ S : (u, v) /∈ E(G)}

Observe that, if C is a vertex cover of a graphG, then its complement V −C is an independent
set, and vice versa. Thus, a graph has a vertex cover of size ≤ k if and only if it has an
independent set of size ≥ n−k. We conclude that IndependentSet is NP-complete. They
are essentially the same problem.

Theorem 2.10 IS is NP-complete.

Finally, we note that Clique is NP-Complete. Clique is also essentially the same
problem as IndependentSet:

Clique = {〈G, `〉 | ∃S ∈ V (G), |S| ≥ ` such that ∀u, v ∈ S : (u, v) ∈ E(G)}

As such, by flipping the edges of G (construct a G′ such that V (G′) = V (G) and (u, v) ∈
E(G′) ⇐⇒ (u, v) /∈ E(G)), we see that by the VC reduction, Clique is also NP-Complete.

Theorem 2.11 Clique is NP-complete.

2.2.2 HamiltonianCircuit

Another graph problem we can define is HamiltonianCircuit, or HC. We define a Hamil-
tonian circuit to be an ordering of the vertices of a graph G as v1, v2, . . . , vn, such that we
can travel through all the vertices once and return to where we started: (v1, v2), (v2, v3), . . . ,
(vn−1, vn), (vn, v1) ∈ E(G). Then,

HC = {〈G〉 | ∃ a Hamiltonian circuit in G}

It is straightforward that HC is in NP, as we can verify that an ordering of the vertices
represents a cycle in polynomial time.

Reduction from VC

What follows is a proof of the NP-Completeness of HC. As with VC, we will utilize a gadget-
based construction. However, instead of reducing from 3Sat, we will reduce from VC.

Consider the following graph, which we will refer to as our gadget:
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There are only three ways to traverse this graph (which can be verified through inspection):
(1) An a-b-d-c pass— enter through a and exit through c, passing through b and d; or (2) a
b-a-c-d pass— enter through b and exit through d; or (3) traverse in two passes: first in an
a-c pass, and then in a b-d pass. In all cases reordering of entry and exit is possible. Here
are the three graphs corresponding to these paths:

Given G, an instance for VC, we construct G′, an instance for HC. For each edge e = (u, v)
in G, we use one such gadget in G′ representing the edge e. The left half of this gadget
represents u and the right half represents v. For each vertex u, we link together in some
arbitrary order, top to bottom, all of the u halves of the gadgets that represent edges incident
to v. (We’ll refer to this as a linked vertex chain.) Finally, let k be the size of the VC in
question, then we add vertices a1, . . . , ak and connect each of them to both the start and
end of each linked vertex chain.

The intention is to represent how the vertices are covered in G by the traversals of each
linked vertex chain emanating from a1, . . . , ak in G′. In the above pictures, if u is one of the
k vertices in the VC, then for each gadget on a linked vertex chain for the vertex u, we will
traverse either all the vertices (as in the first choice of traversal) when (u, v) is covered by
u alone, or half of the vertices (as in the third choice of traversal) when (u, v) is covered by
both u and v. If u is not in the VC, but v is, then all the vertices of this gadget will be
traversed as in the middle choice of traversal.
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We now give a short argument for the correctness of this construction. First, we show
how to traverse the graph if there is a vertex cover of size k. We note that if there is a cover
of size less than k, it can be easily extended into a cover of size exactly k simply by adding
extra vertices to the optimal cover, as they cannot hurt. So we assume k ≤ n and have a
cover of size k. For the ith vertex (say u) in the cover, we start at ai, trace out the linked
vertex chain for u before returning to ai+1, and if i = k we return back to a1, completing
the tour. For each linked vertex chain, say of u, we traverse each gadget corresponding to
an edge (u, v) as follows. If the edge is covered by u alone, then we traverse in an a-b-d-c
pass (where the a-c side corresponds to u), and if the edge is covered by both u and v, then
we traverse in an a-c pass. Clearly, from a VC of size k we get a Hamiltonian Circuit.

Now, we claim that if we have a cycle for the graph G′, there is a vertex cover of size k
in the original graph G. If we had a cycle, it would have to include all of the ai vertices and
all of the gadget vertices. But we know that in between each of the visits to the ai vertices,
we can only visit one linked vertex chain corresponding to one vertex u in G. We claim that
these k vertices form a vertex cover in G. For each gadget on this linked vertex chain of u
we can see by the way it was visited which edges the vertex u covers in G. By the way how
each gadget can be traversed, it follows that indeed these k vertices form a vertex cover in
G.

Theorem 2.12 HC is NP-complete.

2.3 Polynomial Hierarchy

We defined NP to be the class of all languages accepted by non-deterministic polynomial
time TMs. We can give an equivalent characterization of NP.

Definition 2.13 (Σp
1) A language L is in Σp

1 if there exists a boolean binary predicate D(·, ·)
computable in (deterministic) polynomial time, and a polynomial q such that, for all input
x,

x ∈ L⇐⇒ ∃y ∈ {0, 1}q(|x|)[D(x, y) = 1]

It is easy to see that NP = Σp
1. Suppose L ∈ Σp

1. We design an NP machine that given
an input x, simply guesses a string y of length q(|x|) and then accepts if D(x, y) = 1. On
the other hand, suppose L ∈ NP, via an NP machine M that runs in time q(n). Then, for
any input x,

x ∈ L ⇐⇒ (∃ a computational path p of length q(|x|) )[ M accepts x along the path p ]

Clearly, L ∈ Σp
1.

In the above formulation of NP, the predicate D is usually called a verifier and if
D(x, y) = 1, then y is called a certificate or proof for the input x. For example, in the
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case of SAT, we can construct a verifier as follows. Given a formula ϕ and a truth assign-
ment σ, accept (ϕ, σ), if σ satisfies ϕ. Any satisfying truth assignment of ϕ is a certificate.

We can generalize the definition of Σp
1 to define a larger class as follows.

Definition 2.14 (Σp
2) A language L is in Σp

2 if there exists a boolean predicate D com-
putable in polynomial time, such that

x ∈ L⇐⇒ ∃y∀z[D(x, y, z) = 1]

where |y| and |z| are polynomially bounded in |x|.

We will denote by ∃py for ∃y where |y| is polynomially bounded in |x|. By padding we
may assume there exists some polynomial q(·), such that ∃py means ∃y ∈ {0, 1}q(|x|). Again
by padding we may assume the same polynomial q(·) works for ∃py and ∀pz.

We next give a natural example of a language in Σp
2. We say that a boolean formula ϕ

is minimal if there are no shorter formulas that compute the same boolean function. For
example, the formula (x1∨x2)∨ (x1∨x3) is not minimal, because it has a smaller equivalent
formula: x1 ∨ (x2 ∨ x3). Let MEE (Minimum Equivalent Expression) represent the set of all
minimal boolean formulas, i.e., a boolean expression for which there are no shorter boolean
expressions equivalent to it. Then the language MEE, the complement of MEE, is a language
in Σp

2. We can express this language as,

ϕ ∈ MEE ⇐⇒ ∃ψ∀σ[|ψ| < |ϕ| and ϕ(σ) = ψ(σ)]

In the above definition, σ refers to various truth assignments and ϕ(σ) is the value of the
formula for the truth assignment σ.

Definition 2.15 (Πp
2) If L is in Σp

2, we say that Lc, the complement of L, is in Πp
2. Equiv-

alently, L is in Πp
2 if there exists a boolean predicate Q computable in polynomial time, such

that
x ∈ L⇐⇒ ∀y∃z[Q(x, y, z) = 1]

where |y| and |z| are polynomially bounded in |x|.

A natural example for the class Πp
2 is MEE, the set of all minimal propositional boolean

formula. We can express MEE as,

ϕ ∈ MEE⇐⇒ ∀ψ∃σ[|ψ| < |ϕ| −→ ψ(σ) 6= ϕ(σ)]

We extend the above definitions to define the classes Σp
k and Πp

k. For any integer k ≥ 0,
we define
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Definition 2.16 (Σp
k and Πp

k) A language L is in Σp
k if there exists a (k + 1)-ary boolean

predicate D computable in polynomial time, such that

x ∈ L⇐⇒ ∃py1∀py2 . . . Q
pyk[D(x, y1, y2, . . . , yk) = 1]

where Qp is either ∃p for k odd or ∀p for k even, and the superscript p denotes that all |yi|
are polynomially bounded in |x|. In the above definition, ∃ and ∀ alternate. We say that a
language L is in Πp

k, if its complement Lc is in Σp
k.

It is clear that

Lemma 2.17 For any integer k ≥ 0,

Σp
k ∪ Πp

k ⊆ Σp
k+1 ∩ Πp

k+1.

Definition 2.18 (Polynomial Time Hierarchy (PH)) PH=
⋃

k Σp
k =

⋃
k Πp

k

A picture of the polynomially time hierarchy is shown in Figure 2.1.
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Figure 2.1: Polynomial Time Hierarchy

It is a big open problem whether the polynomially hierarchy is infinite, i.e., whether it
has infinitely many distinct levels. It is quite conceivable that the hierarchy collapses to some
kth level, meaning, for all r ≥ k, Σp

r = Σp
k. Then as we shall see, equivalently, PH = Σp

k. But,
most people believe that it is infinite. One can prove a simple result related to collapsing
the hierarchy.

Theorem 2.19 If Σp
k = Πp

k for some k, then PH= Σp
k = Πp

k (the polynomial time hierarchy
collapses to the level k.)
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Comment: We note that Σp
k = Πp

k implies, and is implied by Σp
k ⊆ Πp

k, as well as Πp
k ⊆ Σp

k.
For, say Σp

k ⊆ Πp
k and L ∈ Πp

k, then Lc ∈ Σp
k. Thus Lc ∈ Πp

k. Hence L = (Lc)c ∈ Σp
k.

Proof. To get an idea of the proof, let us suppose that Σp
1 = Πp

1. We want to prove that
Σp

2 ⊆ Σp
1. Then by Lemma 2.17, Σp

2 ⊆ Πp
2, and thus Σp

2 = Πp
2, by the comment above.

Consider a language L ∈ Σp
2. Now for a string x,

x ∈ L ⇐⇒ ∃py∀pzP (x, y, z)

Rewrite this in terms of another predicate Q(〈x, y〉, z), where Q first “unravels” the 〈x, y〉
into x and y and calls P . Hence, we have

x ∈ L ⇐⇒ ∃py∀pzQ(〈x, y〉, z)

Observe however, that {〈x, y〉|∀pzQ(〈x, y〉, z)} is a language in Πp
1, which is equal to Σp

1 by
our assumption. Hence we can write the language as {〈x, y〉|∃pzE(〈x, y〉, z)} for some other
polynomial deterministic predicate E. So, we have,

x ∈ L ⇐⇒ ∃py∃pzE(〈x, y〉, z)

which can be rewritten as

x ∈ L ⇐⇒ ∃p〈y, z〉E ′(x, 〈y, z〉)

where the predicate E ′ does the following: it first unravels the 〈y, z〉 into y and z, and then
pairs x and y to form 〈x, y〉. It then calls E with 〈x, y〉 and z. This shows that L is a
language in Σp

1, and hence, Σp
2 ⊆ Σp

1.

In the general case, a similar proof works by induction that Σp
k = Πp

k implies that Σp
k+1 =

Πp
k+1. ♣

The notion of an oracle plays an indispensable role in complexity theory. Next, we discuss
oracles. Later we shall present an equivalent characterization of PH using oracles.

2.4 Oracle Turing Machines

An oracle Turing machine is a multi-tape Turing machine with a special tape called the
query tape. The TM also has three special states called q? (the query state), qyes and qno

(the answer states). Let A be a predetermined language. The computation of an oracle TM
with oracle A is defined as follows. During its computation, the TM may write a string z
on the query tape and enter the query state. In the next step, the machine will enter the
state qyes if z ∈ A and will enter the state qno if z 6∈ A. Informally, whether or not the
query string z is in A is determined automatically. We say that the TM asks the query to
an oracle for A and the oracle “magically” gives the correct answer in one step. Aside from
this ability to ask the oracle about a query string, the TM is otherwise the same as before.
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The idea is to abstract away that part of complexity of determining membership in A from
the complexity for the machine. The machine is bounded by its own complexity bound for
all the other steps in its computation, including to decide what string to ask the oracle and
to write down the query. In particular, if the machine is polynomial time bounded, it can
only make queries of polynomially bounded length.

Another way to explain the concept of oracle is to think in terms of algorithms. An
algorithm M , with an oracle A, denoted MA, is like a usual algorithm, except that, it gets
a “magic box” that would answer any question M can ask regarding membership in A, in
unit time. We think of the oracle as a procedure, and M can make function calls to the
procedure. (Strictly speaking though, an oracle A need not even be a computable set.)

We define PA to be the set of all languages that can be computed in deterministic
polynomial time, given oracle access to the language A. NPA is defined similarly. We
can define this notion of oracle to classes other than P and NP, as we shall see later. We can
further generalize, to have complexity classes as oracles. For example, if C is a complexity
class, NPC is defined to be,

NPC =
⋃

A∈C
NPA

We discussed Karp reduction (or p-time many-one reduction) before. A different reduc-
tion called Cook reduction (or p-time Turing reduction) can be defined via oracles. We say
that a language B Cook reduces to a language A in polynomial time, if there is a determin-
istic polynomial time algorithm that computes B, given A as an oracle. We denote this by
B ≤p

T A. In other words, B ≤p
T A iff B ∈ PA.

2.5 A Characterization of PH

Theorem 2.20 NPSAT = Σp
2

Proof. We first show that Σp
2 ⊆ NPSAT. Let L be a language in Σp

2. So there is a polynomial
time computable predicate D(·, ·, ·) such that,

x ∈ L⇐⇒ ∃py∀pz[D(x, y, z) = 1]

where the lengths of y and z are bounded by q(|x|) for some polynomial q. We can design
a NP oracle machine M that can decide L when given an oracle for SAT. Given x, M first
guesses a string y, then asks the question “Is it true that, ∀pz[D(x, y, z) = 1]”, where both y
and z are polynomially bounded by q(|x|). By Cook’s Theorem of SAT being NP-complete,
this can be transformed into a SAT query. (Strictly speaking an UNSAT query.) The SAT
oracle can answer this question. If the answer from SAT is ‘no’, i.e., ∀pz[D(x, y, z) = 1]”, M
accepts x. Such a y will exist iff x ∈ L. So M decides L correctly.
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We next show that NPSAT ⊆ Σp
2. Let L ∈ NPSAT and M be an NP Turing machine

that decides L, given access to a SAT oracle. Each path in M may ask many queries to the
oracle. We first construct an equivalent NP machine M ′ that asks at most one SAT question
on each computational path, and it makes the query at the end of the path.

Consider a single path inM . This path may ask multiple questions to the oracle. Consider
the first such question “ϕ ∈ SAT?”. At this point M ′ does not ask the oracle a question.
Instead, it guesses either “yes” or “no” as a non-deterministic move. On the branch it
guesses “yes”, it proceeds to guess a satisfying assignment to the queried formula ϕ. If the
guessed assignment satisfies ϕ, then M ′ proceeds with the computation of M with qyes. If the
guessed assignment does not satisfy ϕ, then this non-deterministic rejects. On the branch it
guesses “no” it simply takes this “no” as the oracle answer and proceeds with qno in M , while
remembering that it guessed “ϕ 6∈ SAT”. Subsequent queries to SAT are handled similarly.

Consider any path in M ′ that survived till the end and completed simulating a path in M .
This path is similar to the path in M , except that it has assumed that certain formulae were
unsatisfiable. Note that the fact that it has survived implies that all its assumptions that
certain formulae were satisfiable have already been verified. If the path in M being simulated
rejects, then M ′ should do so as well. Now suppose the path in M being simulated accepts.
The path in M ′ has to decide whether or not to accept. The path (since it has survived)
would have verified that the formulae it had assumed to be satisfiable were indeed satisfiable.
It now needs to verify whether the formulae it assumed unsatisfiable are indeed unsatisfiable.
It does this by asking a single SAT query. Suppose the formulas were ϕ1, ϕ2, . . . , ϕk. M ′

asks the query ϕ1 ∨ϕ2 ∨ . . .∨ϕk. Notice that all the formulae are unsatisfiable iff the above
formula is unsatisfiable. If the oracle confirms that all formulae guessed to be unsatisfiable
are indeed unsatisfiable, then this path accepts.

Now M ′ has an accepting path iff there is an accepting path in M . Note that an accepting
path of M ′ corresponds to some valid computational path of M , since all the guessed answers
to the queries are verified at the end before M ′ accepts. Now the acceptance of M ′ can be
formulated as a Σp

2 expression: ∃ a path p in M ′ such that p accepts and for all truth
assignments σ, the formula asked at the end of p is not satisfied by σ. ♣

One can extend Theorem 2.20 to other levels of the hierarchy. The above proof gives the
gist of the idea, “guess, delay and verify” queries. However, to carry this out formally for all
levels of PH, it is more expedient to use some structural formalism. This is a taste of that
branch of complexity theory called Structural Complexity Theory. There is a certain elegance
to the generality of the arguments given; on the negative side, one can be blinded by the
formalism and overlook the “real” point of the argument. Here, despite all the formalism,
the “real” point of the argument is “guess, delay and verify” queries.

We define an operator ∃.

Definition 2.21 Given any language L, and a polynomial p, define

∃.L = {x | (∃py)〈x, y〉 ∈ L},
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and for any class C,
∃.C = {∃.L | L ∈ C},

where as usual ∃py denotes ∃y ∈ {0, 1}p(|x|).

Similarly we can define the operator ∀.

Definition 2.22 Given any language L, and a polynomial p, define

∀.L = {x | (∀py)〈x, y〉 ∈ L},

and for any class C,
∀.C = {∀.L | L ∈ C},

where as usual ∀py denotes ∀y ∈ {0, 1}p(|x|).

Clearly co∀.C = ∃.coC. Also ∃.∀.P = Σp
2, etc.

We want to prove the following theorem.

Theorem 2.23 For any k,

NPNP··
·NP

= Σp
k,

where the height of the “tower” on LHS is k (the number of NP’s). This is also true relativized
to any oracle.

This is established in a sequence of claims.

Claim 1: for any oracle set A,
NPA = ∃.PA

It is trivial that ∃.PA ⊆ NPA. The NP machine simply guesses the string in the definition
of ∃. and does the PA computation.

Given a language L = L(NA) ∈ NPA for some NP machine N , we want to put its
acceptance criterion in the form of ∃.PA. It would be quite trivial if N only asks its queries
at the end of a computational path. So, we modify N to N ′, where on each path N ′

simulates N and, whenever N makes a query N ′ simply guesses an answer. At the end of a
computational path of N , N ′ accepts iff N accepts and all the query guesses are correct. ♣
Claim 2: for any oracle set A,

NP∃.PA

= ∃.∀.PA

One direction is easy, ∃.∀.PA ⊆ NP∃.PA

. A simulating oracle NP machine can guess the
string in ∃., and use its oracle in ∃.PA to answer queries in ∀.PA. Note that oracles in
complementary classes have the same power.
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Now consider any L = L(NB), where B ∈ ∃.PA. Let B = {w | (∃py)D(w, y)}, where
D is in PA. We wish to express the acceptance of NB on x in ∃.∀.PA. So we will guess
(∃) a polynomially long non-deterministic path p, as well as polynomially many answer bits
b1, . . . , bm, and some yi (one for each bi = 1 for the i th query “wi ∈ B?”), such that, (∀)
for any zj (one for each bj = 0 for the j th query “wj ∈ B?”), the following predicate holds
which is computable in PA— Machine N on x along path p asks some m queries w1, . . . , wm

such that for the i th query, if bi = 1 then D(wi, yi), if bi = 0 then ¬D(wi, yi), and, given the
answers being b1, . . . , bm, N accepts x. (Note this last use of “some m queries . . . ” is not a
use of quantifiers; the PA computation simply follows the path p to arrive at its first query
w1, and depending on b1 and its verification by D, proceed to find its second query w2, etc.)
♣

Of course since Claim 1 and 2 hold for all oracles A, it also holds when we replace A by
any class C.
Claim 3: for any oracle A,

NPNP··
·NPA

⊆ Σp,A
k ,

where the number of NP in the tower on LHS is k.

If k = 1 or 2, Claim 3 is direct from Claim 1 and 2. Assume k > 2. Claim 1 gives

NPNP··
·NPA

⊆ NP∃.PNP··
·NPA

,

where the height of the “tower” of NP on LHS is k and the number of NP on top of P on
RHS is k − 2. Apply Claim 2 to RHS we get

NP∃.PNP··
·NPA

⊆ ∃.∀.[PNP··
·NPA

] (2.1)

where the number of NP on top of P on the RHS is k − 2. This tower is clearly contained

in NPNP··
·NPA

with a tower of NP of height k − 1, which, by induction is contained in Σp,A
k−1.

However PNP··
·NPA

is closed under complement, so that it is also contained in Πp,A
k−1. Now

“plug in” in (2.1) we get

NPNP··
·NPA

⊆ ∃.∀.Πp,A
k−1 = Σp,A

k

♣
Now the reverse direction.

Claim 4: for any oracle A,

NPNP··
·NPA

⊇ Σp,A
k ,

36



where the height of the “tower” of NP on LHS is k.

This is simple: RHS is ∃.Πp,A
k−1. By induction Πp,A

k−1 ⊆ coNP···
NPA

where the tower has

height k − 1. But as oracles, complementary classes have the same power, so that NPC can

handle ∃.Πp,A
k−1, where C = NP···

NPA

where the tower in C has height k − 1. ♣
Claim 3 and 4 proves Theorem 2.23.

2.6 Complete Problems for Σ
p
k

We have seen canonical complete languages for the classes NP and PSPACE (see ANP and
APSPACE defined in Section 2.2). Similarly, one can construct canonical complete languages
for each level of the polynomial hierarchy Σp

k. In this section, we exhibit “natural” complete
languages for each Σp

k.

As usual, we say that a language L is complete (under polynomial time reductions) for
Σp

k, if L ∈ Σp
k and every language in Σp

k Karp reduces to L. The familiar Cook’s theorem
already gives us a complete language for Σp

1 = NP, namely the language SAT. We can get
complete languages for higher levels of the hierarchy by generalizing SAT.

Definition 2.24 A quantified boolean formula with k alternations over a set of n boolean
variables X = {x1, x2, . . . , xn} is an expression of the form

F = ∃X1∀X2∃X3 . . . QXk[f(x1, x2, . . . xn)],

where f is a (quantifier free) boolean formula over the n variables and X1, X2, . . . Xk ⊆ X
is a partition of X. Here, Q is the existential quantifier if k is odd, and it is the universal
quantifier if k is even.

We say that F is valid if the above expression is logically true. Meaning, there exists some
choice of values for the variables in X1 such that, for all choices of values for X2, there exists
some choice of values for X3 such that, so on . . ., the formula f evaluates to true.

Let QBFk be the set of all valid quantified boolean formulas with k alternations. It
is quite easy to adapt the proof of Cook’s theorem to show that for any k ≥ 1, QBFk is
Σp

k-complete.

Theorem 2.25 For any k ≥ 1, QBFk is Σp
k-Complete.

2.7 Alternating Turing Machines

Another way of looking at the Polynomial Time Hierarchy is to use Alternating Turing
Machines. An alternating TM is a nondeterministic Turing machine where each state is
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labeled as existential or universal. It functions the same way as a non-deterministic Turing
machine does, but the notion of acceptance is defined differently.

Recall that the configuration of an ordinary Turing machine is a tuple consisting of the
current state of the Turing machine, the symbols on the tape, and the position of the head.
As the Turing machine processes the input, it moves from one configuration to another. In
an Alternating Turing machine, we define an existential configuration as one in which the
current state of the Turing machine is an existential state, and a universal configuration as
one in which the state is a universal state.

Acceptance is defined recursively: A final configuration is an accepting or rejecting con-
figuration iff the state is accepting or rejecting. For non-final configurations, the acceptance
is defined as: An existential configuration of the Turing machine is an accepting configu-
ration if there is an accepting configuration among its next configurations in one step. A
universal configuration is an accepting configuration if all of its next configurations are ac-
cepting configurations. Finally x is accepted iff the beginning configuration is an accepting
configuration.

The relation between alternating Turing machines and quantifier alternations is as follows.
The proof is left as an exercise.

Theorem 2.26 Σp
k is precisely the set of languages L accepted by polynomial time alter-

nating Turing machines with k alternations with the starting configuration as an existential
configuration. Similarly, Πp

k is the set of languages L accepted by polynomial time alternating
Turing machines with k alternations with a universal starting configuration.

Exercise: Prove Theorem 2.26
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Chapter 3

Space Bounded Computation

Chapter Outline: Configuration graphs and the graph accessibility problem. Savitch’s
Theorem. Immerman-Szelepcsenyi Theorem.

3.1 Configuration Graphs

We begin this chapter by discussing configuration graphs. They are very useful in conceptu-
alizing the formal process of computation, and often realize this formal process in terms of
concrete graph theoretic questions. They are particularly useful in studying space bounded
computations.

Let M be a non-deterministic TM and x be an input of length n. At any point during
the computation, the configuration of M , which determines all the relevant future steps of
the computation, can be fully described by specifying the current state, the contents of the
tape, and the current position of the tape-head. If the machine M is time T (n) bounded,
then this information takes no more than O(T (n)) bits. For space bounded computation we
use off-line TMs. Let M be a S(n) space bounded machine. Note that for space bounded
machine the input tape is read only and its content does not change during the computation.
Then we can specify the configuration of M at any step by the current state (O(1) bits), the
position of the read-only head (log n bits), and the contents of the work tape together with
its tape-head (O(S(n)) bits). If S(n) = Ω(log n), as we will always assume in space bounded
computations in these Lectures, we can describe a configuration using O(S(n)) bits.

Consider the configuration in which the tape content is the input x (if M is not an off-
line TMs, then this x is followed by blank symbols of a combined length equal to the time
bound), the position of tape-head is 0, and the current state is the start state ofM . This is the
(unique) starting configuration. Also naturally, any configuration in which the current state
is a final state of M is called a final configuration. Technically TM computation is defined
in terms of these configurations. One defines a binary relation on pairs of configurations:
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c ` c′ iff in one step c can be followed by c′, i.e., there is a legal move in one step from c
to c′. For deterministic machines, there can be at most one next configuration after any c;
for non-deterministic machines there can be more than one. The number of such next valid
configurations is completely specified by the transition function δ, and thus there can be at
most a constant number of them. This constant depends only on M , and not on the input
x. We can extend these notions to Turing machines that use multiple tapes.

In either model the total number of possible configurations is 2O(f(n)), if f is the time or
space bound. Given an input x, we can construct a directed graph with these configurations
as nodes. We add an edge from configuration c to c′, if c ` c′. We then mark the start
and final configurations on this graph. We call this graph the configuration graph of M(x).
Notice that whether there is an edge from c to c′ can be determined by examining the given
configurations and the transition rules of the machine. Given any two configurations c and
c′, this can be checked out easily, in time linear in |c| + |c′|, and in space O(log(|c| + |c′|))).
It is easy to see

Proposition 3.1 Let M be a non-deterministic Turing machine and x be an input. M
accepts x iff at least one final node is reachable from the start node in the configuration
graph of M(x).

Theorem 3.2 For any function f(n) = Ω(log n), NSPACE[f(n)] ⊆ DTIME[2O(f(n))]

Proof. Let M be a non-deterministic machine that uses O(f(n)) space and x be the input.
To simulate the computation of M on x deterministically, we first construct the configuration
graph G. We then check if there is path from the start configuration to any one of the final
configuration. We can do this by depth first search. As the number of nodes is 2O(f(n)), we
can do this in time 2O(f(n)). The correctness is ensured by Proposition 3.1. ♣

3.2 Savitch’s Theorem

We next establish an important connection between non-deterministic and deterministic
space. We shall show that any non-deterministic computation can be simulated in determin-
istic space with only a quadratic blow-up in space usage. All the formalism of computation
and non-determinism aside, the crux of the matter is the following statement on a graph
theoretic problem—The Graph Accessibility Problem (GAP ).

Theorem 3.3 (Savitch) Given a directed graph G = (V,E) over n nodes and two nodes
s and t, we can test whether there is a path from s to t in O((log n)2) deterministic space.

Remark: Notice that the usual depth first search will use Ω(n) space. For each node
visited, DFS has to mark that it has been visited. Thus it needs at least n bits of space. Of
course DFS shows that GAP is in P.
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Proof. Instead of DFS, we make the following trivial observation: There is a path from u
to v with length at most t iff there is some w, and there are paths from u to w and w to v of
length at most dt/2e and bt/2c respectively. So we will use a recursive “middle-first” search.

First of all, if t can be reached from s, then it can be done so using a path of length at
most n (actually n − 1 suffices; for any path we can remove any cycle, and thus removing
all repeated appearances of any vertex along the path.) Then we apply the above observa-
tion. We go through all possible choices for a potential middle w. We check the existence
of the required two paths of length n/2 recursively. Given two nodes x and y, and integer
t (in binary), the following algorithm checks if there is a path of length at most t from u to v.

Reach(u, v, t)
If t = 1 then

If [(u = v) or (〈u, v〉 ∈ E)] then accept
else reject

If t > 1 then
For each node x in G,

If [Reach(u, x, t/2) ∧ Reach(x, v, t/2)] then accept
If haven’t yet accepted, reject.

We can check if t can be reached from s by calling Reach(s, t, n). One subtle issue is
that n has to be a power of 2 for our recursion to work well. If n is not a power of 2, we call
Reach(s, t, n′), where n′ = 2dlog ne.

The algorithm has a recursion depth of dlog ne. Thus the recursion stack has to store
information about log n recursive calls. For each call, we need to store u, v, t and x used in
that call. This needs O(log n) space. Thus the total space used is O((log n)2). ♣

We use the above theorem to prove

Theorem 3.4 (Savitch) For any space constructible function S(n) = Ω(log n), NSPACE[S(n)] ⊆
DSPACE[(S(n))2].

Proof. Let M be a non-deterministic machine that uses O(S(n)) space. We construct a
deterministic machine M ′ that uses O((S(n))2) space to simulate M . Given input x, M ′

considers the configuration graph G of M(x). It uses the above algorithm for GAP to test
whether any one of the final configurations of G is reachable from the starting configuration.
As there are 2O(S(n)) nodes in G, the space used by M ′ is O((S(n))2). One subtle issue is
that M ′ cannot construct the whole G, as that would require exponential space. So, it runs
the algorithm for GAP without explicitly constructing the graph. Whenever a query “Is
(x, y) ∈ E?” is made, it answers it by checking if configuration y can be reached from x in
one step. Space constructibility of S(n) is required as we need to compute the number of
nodes in G (for which we should know the value of S(n)). ♣

We next show that GAP is NL -complete (under log space reductions).
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Definition 3.5 A language B is NL-complete if B ∈ NL, and for any language A ∈ NL,
there is a deterministic Turing machine M that uses O(log n) space such that, for any x,
x ∈ A ⇐⇒ M(x) ∈ B.

Here we have tacitly extended the model of space bounded TMs by allowing it to have a
one-way write only output tape, which, like its one-way read only input tape, does not count
toward the space bound. (Of course it is easy to show that, if it has space bound S(n), the
output length is bounded by 2O(S(n)), or else the computation will loop and not terminate.)

Exercise: Show that logspace reductions are closed under composition.

Theorem 3.6 GAP is NL -Complete.

Since GAP is in P, and clearly P is closed under logspace reductions, a corollary is

Corollary 3.7 NL ⊆ P.

Proof. It is easy to see that GAP ∈ NL, as we simply guess a path (edge by edge and
verify every step as we go) of length up to n.

Let A ∈ NL via a machine M . We give a machine M ′ that reduces A to GAP . Given
an input x, M ′ simply outputs the configuration graph of M on x. Clearly M ′ can be
implemented in deterministic logspace. ♣

The spirit of this Theorem is the following: To discuss non-deterministic space bounded
computation, instead of the abstract formalism of automata theory, without loss of generality,
one can discuss the concrete problem GAP. NL is nothing but GAP.

3.3 Immerman-Szelepcsényi Theorem

In this section we prove the Immerman-Szelepcsényi theorem: NL is closed under comple-
mentation. Since GAP is NL-Complete, it is enough if we show that GAP is in NL .

Given a graph G and vertices s and t, we want to devise a non-deterministic algorithm
in Logspace, such that there are some computational paths that end in “yes” iff the graph
has no path from s to t (we call such a path an s-t path). This is a somewhat “unnatural”
way of thinking about GAP . Usually, we phrase algorithms such that non-deterministic
branches seek affirmative answers. In this case, however, if some branch says yes, then it
has incontrovertible evidence that there is NOT an s-t path; and moreover if there is NOT
an s-t path then some computational path should find such evidence.

While this “twist” is surprising, it is not contradictory, logically speaking. For example,
one might try to find a “cut” in the graph separating s and t. Note that such a cut exists iff
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there are no paths from s to t. However, we can’t simply look for a cut, because (presumably)
representing the cut would consume too much space.

Let G be a graph with n vertices, among which are two distinguished vertices s and t. The
algorithm runs in two phases. In the first phase, we count the number of vertices reachable
from the start vertex s. Define ci to be the number of vertices reachable from s, within i steps.
We incrementally compute c0, c1, . . . , cn−1. They are computed non-deterministically. From
ci to ci+1, we will assume the correct ci has been computed. Still, with ci written on its tape,
only some computational paths will find out the correct ci+1 and proceed. Consequently,
only some computational paths will find out the correct cn−1 and proceed to the next phase.
The unsuccessful paths would know that they are unsuccessful and die. In the second phase
the value of cn−1 is used to check if t is not reachable from s. In the following algorithm,
think of any surviving path as saying, “the fact I have not died means I have evidence”. The
pseudocode is given in Algorithm 1. The ideas used in the algorithm are described next.

We’ll incrementally build up counts for c0, c1, . . . , cn−1. Finding c0 is easy: only s is
reachable from s in zero steps, and so c0 = 1. c1 will be the number of vertices for which
there is a directed edge from s, to s itself. Suppose we have computed ci correctly and stored
it (only O(log n) bits are needed to store ci). We describe how to compute ci+1 from ci.

We undertake the following process for each v, in succession. Our “goal” for each v is to
see if we can reach it in at most i + 1 steps, and if so we should increment ci+1 for it. The
way we want to find this out is to “re-experience” the entire set of vertices counted in ci,
and for each such vertex u (which by definition are reachable from s in at most i steps), we
check if (u, v) is an edge in G, or u = v.

Of course any computational path which correctly computed ci has in the past encoun-
tered all these ci vertices. However we don’t have space to record all the names of these ci

vertices. Thus their identities are necessarily forgotten. So we go through all vertices, from
1 to n, and try to “re-experience” this list of vertices reachable within i steps.

So for any fixed v, we go through the following:

• For each u, we non-deterministically guess whether it was one of the ci vertices reach-
able from s in ≤ i steps. For any u, if we guess “yes”, then we try to validate our
guess. We do this by non-deterministically guess a path of length at most i from s to
u. If the validation succeeds, u is reachable from s in ≤ i steps. Here’s the moment of
truth from this u: if there is an edge from u to v in G, or u = v, we increment ci+1.
If the validation fails, i.e., this particular guessed path did not reach u, then our guess
was wrong somewhere. It could be wrong either because u is not one of the ci vertices
reachable from s in i steps, or our guessed path is not a valid path (even though some
such path might exist). In any case some guess along this path is wrong, so halt and
die! If we guess that u is not reachable from s in i steps, do nothing and move on to
the next u. In this whole process, we keep a count d of the number of vertices u for
which we guessed “yes”.
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• Finally, after processing all u, check if d = ci. (This is the “quality check”: after all
one can guess a lot of “no” and avoid all the validation and survive.) If d = ci, we have
accounted for all the ci number of vertices that are reachable from s in i steps, since
we have validated all the “yes” guesses. We conclude that all the “no” guesses were
correct as well. Therefore, if a computational path lived thus far, and got d = ci, then
indeed we have “re-experienced” all the vertices reachable from s in i steps. It follows
that we have incremented ci+1 for v along this computational path iff v is among the
ci+1 vertices from s in ≤ i+ 1 steps. On the other hand, any path with d 6= ci simply
halts and dies!

Algorithm 1: Shows GAP ∈ NL
Input: 〈G, s, t〉: where, G = (V,E) is a directed graph over n vertices,
s, t ∈ V
Output: accept ⇐⇒ there is NO path from s to t in G
Immerman-Szelepcsényi(G, s, t)
(1) c0 = 1
(2) for i = 0 to n− 2
(3) ci+1 = 0
(4) foreach node v ∈ V
(5) d = 0
(6) foreach node u ∈ V
(7) Guess yes or no: if no, skip the next steps (8) to (12):
(8) Guess a path of length i from s and if u is not among the

vertices on this path, then reject
(9) d = d+ 1
(10) if [(u, v) ∈ E] ∨ [u = v]
(11) increment ci+1

(12) goto 6 with next v
(13) if d 6= ci then reject
(14) d = 0
(15) foreach node u ∈ V
(16) Guess yes or no: if no, skip the next steps (17) to (19):
(17) Guess a path of length n − 1 from s , and if u is not among the

vertices on this path, then reject
(18) if u = t then reject
(19) d = d+ 1
(20) if d 6= cn−1 then reject
(21) else accept

Note: a lot of non-deterministic paths will “die” in this computation! Guessing a u
improperly for candidacy, for any v, will result in death as will guessing a u correctly, but
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then following the wrong path. However, some sequence of guesses will run this gauntlet
correctly all the way, and we’ll have a proper count for cn−1.

Now that we’ve computed cn−1, we’ll use it to answer the GAP question. The idea now
is the same: “re-experience” all cn−1 vertices and see if t is among them. Thus, we iterate
through all the vertices and (non-deterministically) try to account for the cn−1 vertices
reachable from s once again.

For each node v ∈ V , we do the following: We guess whether there’s a path of length
≤ n− 1 from s to v. If the guess is “no”, move on to the next vertex. If the guess is “yes”,
we verify it by guessing a path of length ≤ n − 1 and check if v is encountered along the
path. If the verification fails, die! If it succeeds, increment a counter d′. At the “moment
of truth” when a vertex v was verified to be among the cn−1 vertices reachable from s, we
check if it is t.

Finally, we accept 〈G, s, t〉 iff in the end d′ = cn−1 and t was never marked as one among
the cn−1 vertices.

Note that, in the pseudocode above we have made some slight modifications. In line (12)
after we confirmed that v should be counted in ci+1 we proceed to the next v′ immediately.
Also in line (18) we reject once we confirmed that t IS reachable. A subtle point: In
the pseudocode it is no longer the case that a path with some incorrect guesses must die.
Conceptually it is easier to think along the description above: All the guesses will be verified
eventually one way or another, and any computational path that made an incorrect guess
will eventually die. The whole process appears to be merely to re-experience again and again
the set of vertices reachable within some number of steps, and we do the important task of
computing the various counts ci and whether t was among cn−1 almost as an after thought.
♣

3.4 Polynomial Space

We devote this section for a discussion of polynomial space bounded computations. Let us
start with a comparison of deterministic and non-deterministic polynomial space bounded
computations.

Recall that PSPACE consists of all languages computable by deterministic Turing ma-
chines that run in polynomial space. One can consider the analogous non-deterministic class,
namely NPSPACE, which consists of all languages computable by non-deterministic Turing
machines that run in polynomial space.

Unlike the realm of time bounded computations, where the question of P vs. NP is
open, in the realm of space bounded computations, the analogous question of PSPACE vs.
NPSPACE is easy to resolve. The following theorem is a corollary to Savitch’s theorem.

Theorem 3.8 PSPACE = NPSPACE.
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Due to the above theorem, we will hardly talk about the notion of non-deterministic
polynomial space bounded machines.

Our aim for the rest of the section is two-fold. We first exhibit a complete language for
PSPACE. Then, we compare alternating Turing machines and PSPACE Turing machines.

3.4.1 QBF is PSPACE-Complete

In Section 2.2, we presented a canonical complete language (called APSPACE ) for PSPACE.
Here, we exhibit a “natural” PSPACE-complete language.

Definition 3.9 Let f be a (quantifier free) boolean formula over n boolean variables x1, x2, . . . , xn.
A quantified boolean formula F derived from f is given by,

F = ∃x1∀x2, . . . , Qxn[f(x1, x2, . . . , xn)].

Here, Q = ∃ if n is odd and Q = ∀, if n is even. We say that F is valid, if the above
statement is logically true. Meaning, “there exists some choice of x1 (namely, x1 = 1 or
x1 = 0) such that, for all choices x2, there exists some choice of x3 such that, so on . . ., such
that, the formula f evaluates to true under the truth assignment (x1, x2, . . . , xn).

Definition 3.10 (QBF)

QBF = {F |F is a valid quantified boolean formula}

Example. Consider the quantified boolean formula

F = ∃x∀y∃z[(x ∨ ¬y) ∧ (¬y ∨ z) ∧ (¬x ∨ y ∨ ¬z)]

F is a valid formula. To see that, let x = 1, and for y = 0 we can set z = 0 and for for y = 1
we can set z = 1. Hence, F ∈ QBF.

Note that even though we defined QBF to have strictly alternating quantifiers starting
with an existential quantifier, these requirements are not essential. We can always append
dummy variables to conform to this without increasing the size of the expression too much
(at most double the size.)

Our goal is to show that QBF is PSPACE-Complete. As the first step, we prove that
QBF is in PSPACE. We present a recursive procedure that solves QBF.

SolveQBF(F )
Execute one of the following cases.

1. Case 1 (F is a formula over zero variables):
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• If F is the formula “1” then return(F is valid).

• If F is the formula “0” then return(F is not valid).

2. Case 2 (F starts with an existential quantifier): Let F start with “∃x....”. Define
two quantified boolean formulas F1 and F2 by substituting x = 0 and x = 1 in F ,
respectively. Declare F to be valid if at least one of F1 or F2 is valid. We can check
this by making two recursive calls SolveQBF(F1) and SolveQBF(F2).

3. Case 3 (F starts with an universal quantifier): Let F start with “∀x....”. Define two
quantified boolean formulas F1 and F2 by substituting x = 0 and x = 1 in F , respec-
tively. Declare F to be valid if both F1 and F2 are valid. We can check this by making
two recursive calls SolveQBF(F1) and SolveQBF(F2) (after SolveQBF(F1) use
one bit the remember the result, and then reuse the space in the second call of Solve-
QBF).

Notice that the formulas F1 and F2 have one less variable than F . Thus, if we start with
a formula over n variables, the depth of the recursive tree would be n. So the total space
usage is polynomial. In short, we can simply do a tree-travesal of this binary tree of depth
n defined by F in polynomial space (actually linear space). We have proved the following
theorem.

Theorem 3.11 QBFis in PSPACE.

Our procedure for QBF is recursive. We often use recursion while writing space efficient
algorithms. We saw another example of recursive procedure while proving Savitch’s theorem.
In general, the amount of space used by a recursive procedure would be O(d · s), where d is
the depth of recursion levels and s is the local space usage per recursive level. It should be
clear that one can unravel the recursion easily, by using stacks, and obtain a non-recursive
procedure using the same amount of space O(d · s). But, it is often easier to write these
procedures recursively.

We next show that QBF is PSPACE-hard. Let M be a machine with space bound p(n)
and x be an input. The computation of M on x is captured by the configuration graph G of
size 2O(p(n)). Let c0 and cacc be the initial and accepting configurations of M . (We may wolog
assume there is a unique accepting configurations of M .) Then, we want to check if there is
a path of length at most 2O(p(n)) from c0 to cacc. We want to express the above question as
a quantified boolean formula.

Let us do this in general among arbitrary two configurations. Let c1 `2k c2 denote that
there is a path of length at most 2k from configuration c1 to configuration c2. We can use
ideas from Savitch’s theorem to express the above criterion as a quantified boolean formula.
Recall that such a path exists, if and only if there is a configuration c′ such that, there are
paths of length at most 2k−1 from c1 to c′ and c′ to c2:

c1 `2k c2 ⇐⇒ ∃c′[(c1 `2k−1 c′) ∧ (c′ `2k−1 c2)]

47



We can recursively expand the expression in square brackets. But, such a method would
end up in a formula of exponential size (because, the expression in square brackets involves
two recursive calls). So, we play a small trick. We can express the criterion as follows. The
criterion

(c1 `2k−1 c′) ∧ (c′ `2k−1 c2)

is equivalent to

∀( configurations u and v)[( (u = c1 and v = c′) ∨ (u = c′ and v = c2) ) =⇒ (u `2k−1 v)].

The advantage of this transformation is that the later expression used only one syntactic
expression of u `2k−1 v. We can expand it recursively. At the base case c1 `1 c2 for k = 0,
it can be expressed in a quantifier free boolean expression as in Cook’s Theorem. Thus for
c1 `2O(p(n)) c2 we obtain in polynomial time a quantified boolean formula F such that the
machine accepts x if and only if F is valid.

As configuration graph has 2O(p(n)) vertices, the final formula is of length O(p(n)). It
uses only polynomial number of quantifiers. Technically, the final formula is not quite in
the form required by our definition of quantified boolean formulas (Definition 2.24). But, F
can be converted to the required form easily by using standard logical equalities. We have
proved that following theorem.

Theorem 3.12 QBF is PSPACE-Complete.

Theorem 3.11 gives us an easy mechanism to compare PH and PSPACE. Recall that,
for any k ≥ 1, QBFk is Σp

k-Complete (Theorem 2.25). It is easy to see that QBF (with
unbounded number of alternations) is a generalization of QBFk (which can have only some
constant number k alternations). Hence, as a corollary to Theorem 3.11, we have the follow-
ing theorem (which is quite obvious at any rate when you think in terms of a tree traversal
for a generic language in Σp

k defined by quantifiers, or by a k-alternating TM.)

Theorem 3.13 For any k > 0, Σp
k ⊆ PSPACE. Thus, PH ⊆ PSPACE.

We can now extend Figure 2.1 to Figure 3.1.

3.4.2 APTIME = PSPACE

Our next goal is to connect PSPACE machines and alternating Turing machines (see Sec-
tion 2.7). We already saw that alternating Turing machines with constant number of al-
ternations accept precisely those languages in the various levels of the polynomial hierarchy
(Theorem 2.26). Here we shall consider polynomial time ATMs with unbounded number of
alternations.
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Figure 3.1: Polynomial Time Hierarchy and PSPACE

We say that a language is in the class APTIME, if it is accepted by an alternating Turing
machine running in polynomial time. These machines are allowed to use arbitrary number
of alternations. But, of course, as the machine runs in polynomial time, it can make at most
a polynomial (in input length) number of alternations. We proceed to prove that alternating
polynomial time and deterministic polynomial space are equal in power. In other words, we
prove that APTIME=PSPACE.

First, let us show that PSPACE ⊆ APTIME. One can give a proof using ideas from
Savitch’s theorem, similar to that of proving the PSPACE-hardness of QBF. But, as we have
already shown that QBF is PSPACE-hard (Theorem 3.12), we will use it to prove the claim.
Given a PSPACE machine M and an input x, our APTIME machine first deterministically
computes a quantified boolean formula F using the reduction given by Theorem 3.12. So, the
machine M accepts x if and only if F is valid. Validity of F can easily be tested in APTIME.
Without loss of generality, assume that F is in the standard form given by Definition 3.9.
Let F be over n boolean variables. The machine will start in existential mode and choose
a value for x1 (either 0 or 1). Then, it will enter universal mode and choose a value for x2.
In this way, we continue by alternating between existential and universal modes and choose
values for x1, x2, . . . , xn. Finally, each computational path will have a full truth assignment
in hand. The path will evaluate the underlying boolean formula on this truth assignment.
If the evaluation returns “true” then this path will accept, else reject. From the definition of
alternating Turing machines, it is clear that the machine accepts F if and only if F is valid.
(One can think of a computation graph of our APTIME machine as a complete binary tree
of depth n, where the kth level will have 2k nodes labeled xk. Nodes in odd level will be
existential and those in even levels will be universal. Each of the 2n leaves will correspond
to a full truth assignment and the leaf would evaluate the underlying boolean formula on
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that truth assignment.) We have proved the following claim.

Theorem 3.14 PSPACE ⊆ APTIME.

We next show that APTIME ⊆ PSPACE. Essentially, we consider the configuration
graph of the APTIME machine and do depth first search to find out if its starting configura-
tion is labeled “accept”. Our PSPACE procedure is similar to the recursive procedure used
to show that QBF is in PSPACE (Theorem 3.11).

We now give a bit more details. Let M be an APTIME machine and x be an input. Each
configuration can be stored in polynomial space. We write a procedure that takes as input
a configuration c and outputs whether it is an accepting configuration. We use recursion
and simply follow the definition of alternating Turing machines. It is easy when c is a leaf
configuration. We simply check if c is an accepting state (as specified in the description of
M). If so, c is an accepting configuration, else it is a rejecting configuration. Suppose the
input c is a non-leaf configuration. Consider each of its children c′, one by one. Recursively,
find out c′ is accepting or rejecting. If c is an existential configuration, then c is accepting if
and only if at least one of its children is accepting. Similarly, if c is a universal configuration,
then c is accepting if and only if all its children are accepting configurations.

Using the above procedure, we can find out if the starting configuration of M is accepting
or rejecting. As M runs in polynomial time our procedure will need only polynomial number
of levels of recursion. Each level needs only polynomial amount of space. Thus, the entire
procedure runs in polynomial space. We have proved the following claim.

Theorem 3.15 PSPACE ⊆ APTIME

Combining Theorem 3.14 and Theorem 3.15, we have the following conclusion.

Theorem 3.16 APTIME = PSPACE
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Chapter 4

Non-uniform Complexity

Chapter outline: Polynomial circuits, P/poly, Sparse sets. Equivalence among the three.
Karp-Lipton Theorem. Mahaney’s Theorem.

4.1 Polynomial circuits, P/poly, Sparse sets

As discussed in Lecture 1, Computational Complexity Theory has its genesis in Computabil-
ity Theory. This theory is based on Turing’s notion of a universal computing machine which
is specified by a strictly finite number of rules. A major accomplishment of this theory
is to demonstrate the existence of undecidable problems. While this was important both
mathematically and philosophically, once we absorbed the notion of a strictly finitary device
attempting to compute infinitely many instances of a problem as formulated by Turing Ma-
chines, the fact that there are some computational problems for which no TM can compute
correctly for all instances becomes not so surprising.

If we carry out a “delayed” diagonalization proof, one can easily produce undecidable
problems much like the Halting Problem, which nevertheless have very simple combinatorial
structures. For example, we can have undecidable problems for which there are at most one
string per length n. We can even make it much much sparser; all we need to do is to reject
all strings at length n except for the string 1n, and only for a very sparsely distributed set
of values of n’s (say, n = 22k

), we carry out a “delayed” diagonalization (say, against the
machine Mk). Combinatorially, this set is rather simple: we can, for example, represent this
set at length n by x1 ∧ x1 (when it is the empty set ∅) or x1 ∧ x2 ∧ . . .∧ xn (when it consists
of just 1n). Of course which case it is for each n is undecidable computationally.

However, by a simple counting argument, most of 22n
Boolean functions from {0, 1}n

to {0, 1} do not have such simple representations. So it appears that there is a differently
kind of complexity which is not accounted for by the consideration of computability in the
TM model, a tiny box attempting to decide for all possible length input. Moreover, in
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today’s complexity community, most researchers believe that the crux of the matter as to
why such problems as NP-complete problems seem to resist any polynomial time solution
is not due to the lack of a single strictly finitary device attempting to compute infinitely
many instances, but rather simply it is too “complicated” at a large length n. This notion
of “complicatedness” refers to a finite number (2n) of instances for any fixed large n. The
intuitive feeling is that for these apparently hard problems such as NP-complete problems,
for large n, the number of logical operations required to solve all instances of length n simply
grows faster than any fixed polynomial in n, perhaps more likely an exponential function in
n. Of course these are still conjectures with no proofs.

To formulate this intuition, one needs to define a different notion of “combinatorial”
complexity, one which focuses attention on a finite length n, and ignores the issue of whether
one can “string” them all together by a “uniform” finitary device such as a TM. This leads
to the notion of non-uniform complexity.

We consider Boolean circuits. A Boolean circuit on n input bits is a directed acyclic graph
(DAG) where each node is labeled by either an input variable xi or a logical gate. We may,
without loss of generality, assume these gates are ∧,∨,¬ as they already form a complete
logical basis. (Actually ∧,¬, or ∨,¬ already do, but usually we include all three.) The
default assumption is that nodes labeled by either ∧ or ∨ have indegree 2, and nodes labeled
by ¬ have indegree 1. Sometimes we allow ∧,∨ to have arbitrary indegrees, in which case we
say the circuit has unbounded fan-in. A Boolean circuit may have one or more node labelled
as output gate(s). The default is a single output node. Then a Boolean circuit computes a
Boolean function in the obvious sense. The size of a Boolean circuit is the number of edges
(wires) in the graph. If the outdegree is 1 for every node other than the input and output
node (a.k.a. an internal node) then the Boolean circuit is called a Formula. In this case
the Boolean circuit is essentially a tree, except at the input level. By De Morgan’s Law,
one can push the ¬ gates to the input level of the Formula, without increasing its size (or
at most by +n if not all negated variables are present). In a circuit or a formula, when all
negation signs appear directly on the variables, sometimes the edges connecting ¬ and its
respective variables are not counted in size, i.e., we couunt size in terms of inputs in the
literals x1, x2, . . . , xnx1, x2, . . . , xn. This process of pushing ¬ gates to the input level can be
carried out for Boolean circuits in general, with at most an increase of size by a factor of
2. (Replicate each node v with a copy for v.) The depth of a Boolean circuit is the longest
path from input nodes to output(s).

A Boolean function fn : {0, 1}n → {0, 1} is always computable by a Boolean circuit as
well as a Boolean formula; A Disjunctive Normal Form (DNF) or a Conjunctive Normal
Form (CNF) will do. These are of depth 2 (in constant depth circuits, we do not count
for depth the wires connecting the ¬ gates to the input level variables, i.e., we count the
depth in terms of inputs by literals.) However in terms of size, it is easy to show that many
Boolean functions have DNF and CNF size exponetial in n.

Exercise: The Parity function on n bits

⊕ : {0, 1}n → {0, 1}
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where ⊕(x1, x2, . . . , xn) =
∑n

i=1 xi mod 2 requires DNF and CNF size 2n−1.

The circuit size C(fn) of a Boolean function fn is the size of the smallest Boolean circuit
which computes fn. Similarly one can define formula size of fn (and such definitions can
be carried out for a variety of other models of computation: e.g., for any depth k, we can
consider the depth k size of fn, or if we consider only monotone circuit in which ¬ gates does
not appear, we can define the monotone circuit size for any monotone function fn.)

The class of problems we will focus on consists of Boolean function families {fn}n=1,2,...

with C(fn) = nO(1), i.e., function families which can be computed by circuit families with
size bounded by a polynomial in n. A language L is said to have polynomial size circuits, if
its family of characteristic functions at length n {L=n} does. A complexity class is said to
have polynomial size circuits, if every language in the class does.

Theorem 4.1 P has polynomial size circuits.

Proof. The proof is simple. Take any TM with time bound T (n), and input x of length
n. Then one can write down a square array of T (n)× T (n) cells, where each cell (i, j) refers
to the computation of M(x) at time step i and memory location j. It takes O(1) gates to
describe the following: the state M is in at time i, whether the tapehead is at location j at
time i, and what content is in tape square j at time i. For i = 1 this is determined by the
initial configuration. For i > 1, each cell (i, j) is determined by cells (i− 1, j − 1), (i− 1, j)
and (i− 1, j + 1). For example if the tapehead is not at these three locations at time i− 1,
then the cell at (i, j) should remain the same as (i−1, j); if the tapehead is among the three
locations at time i − 1, then the cell at (i, j) should be decided according to the finitary
transition function of M . In any case locally it is computed by a Boolean function of size
O(1). Thus the circuit which simulates the whole computation of M(x) has size at most
O(T 2(n)).

Note also that this circuit can be constructed by a logspace computation. ♣
A corollary of this theorem is that the Circuit Value Problem (CVP) is P-complete under

logspace reductions.

Circuit Value Problem: Given a Boolean circuit Cn on n inputs and an input of n
bits (b1, b2, . . . , bn), is Cn(b1, b2, . . . , bn) = 1?

Corollary 4.2 CVP is P-complete.

The robustness of a complexity measure is demonstrated by its invariance under small
changes. We noted that, e.g., the class P is unchanged whether we use multitape or onetape
TMs, or a variety of other models. This notion of having polynomial size circuits is also quite
robust. It does not depend on the particular logical basis functions ∧,∨,¬ we chose. Nor
does it change if we were to count size in terms of nodes, or allow unbounded fan-in, or push
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all negations ¬ to the bottom level, etc. Moreover, there are several equivalent definitions
for this class.

An advice function is l : N → Σ∗. Thus, for every length n, the function gives a string
l(n). The advice function is polynomially bounded if the length |l(n)| = nO(1).

Definition 4.3 Let 〈·, ·〉 be a standard pairing function, let C be a complexity class, then
L ∈ C/poly if there exists some set L′ ∈ C and a polynomially bounded advice function l,
such that for all x ∈ Σ=n,

x ∈ L⇔ 〈x, l(|x|)〉 ∈ L′.

It is important to note that the “advice” l(|x|) only depends on the length of x, but not x
itself. Thus, for L ∈ P/poly the advice function l can only give polynomially many bits of
advice to the P computation of L′ for all 2n inputs x ∈ Σ=n.

Theorem 4.4 L ∈ P/poly iff L has polynomial size circuits.

Proof. If L ∈ P/poly we can adapt the proof above for Theorem 4.1 to show that L has
polynomial size circuits.

If L has polynomial size circuits, then we can define an advice function l, such that l(n) is
a binary description of the circuit at length n, and the P language L′ on input 〈x, s〉 simply
evaluates the circuit encoded in s on x. ♣

This equivalence of P/poly and having polynomial size circuits is so well entrenched that
people frequently speak of one term and literally mean the other. Often P/poly is a shart
hand for having polynomial size circuits.

Another well-known equivalent condition of P/poly refers to sparse sets.

Definition 4.5 A set S ⊂ Σ∗ is called a sparse set if |S=n| = nO(1), i.e., there are at most
a polynomial number of strings at length n in S.

Clearly S is sparse iff |S≤n| = nO(1), since |S=n| ≤ |S≤n| ≤ (n + 1) max0≤m≤n |S=m|.
Sparse sets are considered as sets with low information content. Note that generally a set at
length n may have up to 2n strings.

Theorem 4.6 L ∈ PS for some sparse set S iff L has polynomial size circuits.

Proof. Suppose L ∈ PS via a P-time oracle TM M and a sparse set S. On length n
inputs, M can only query strings with length up to some polynomial of n in the oracle S.
Up to that length there are only polynomially many strings in S. If we explicitly listed all
these strings, then we can adapt the proof that P has polynomial size circuits to show that
L also has polynomial size circuits.
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Conversely, If L ∈ P/poly via advice function l, we can encode the advice string l(n) in
a sparse oracle. E.g.,

S = {〈1n, pn〉|pn is a prefix of l(n), n ≥ 0}.

Given S, we can “suck” out the bits of l(n) as follows: By querying 〈1n, 0〉 and 〈1n, 1〉 one
can find the first bit of l(n). Having found a prefix p of l(n), we query 〈1n, p0〉 and 〈1n, p1〉,
and we can extend the prefix p by one more bit (or we found that p = l(n) is already fully
extended.) ♣

The class P/poly is the non-uniform analog of P. It contains the class P, as well as non-
recursive sets. Since it also includes non-recursive sets, it is not possible to include the class
P/poly in any uniform complexity classes, such as EXP. However, the intuitive feeling is
that sets in P/poly are “easy”, in a combinatiorial sense. The belief is that NP 6= P because
NP 6⊂ P/poly. This remains the most concrete approach to a proof of NP 6= P.

However is it possible to include higher uniform complexity classes than P in the class
P/poly? What if NP ⊂ P/poly? An unlikely complexity theoretic consequence would
provide evidence that indeed NP 6⊂ P/poly. This is the content of the famous Karp-Lipton
Theorem.

4.2 Karp–Lipton Theorem

In this section, we prove the classical Karp-Lipton theorem. It deals with the question of
whether NP ⊂ P/poly? It is believed that NP 6⊂ P/poly. Karp-Lipton theorem gives some
evidence in this direction. It says that if NP ⊂ P/poly, then PH = ΣP

2 ∩ ΠP
2 .

By NP-completeness, NP ⊂ P/poly is equivalent to SAT ∈ P/poly. Also by the equiv-
alent formulations of P/poly, this is equivalent to the assertion that SAT(or any other
NP-complete language, or every NP-complete language, or every language in NP) has poly-
nomial size circuits. It is also equivalent to the assertion that SAT is polynomial time Turing
reducible to a sparse set S: SAT ∈ PS.

Self Reducibility: The main idea is self-reducibility of SAT. Suppose we are given a
circuit C that is suppopsed to compute SAT for all Boolean formulae of length at most n.
It may or may not compute SAT correctly. It may make errors in two ways. It may reject
a ϕ ∈ SAT, and/or it may also accept a ϕ 6∈ SAT. We can convert C into a circuit C ′,
that does not make errors of the second type. C ′ works by using C as a black box. Upon
input ϕ over the variables, x1, . . . , xm, it feeds ϕ to C. If C rejects, C ′ rejects. If C accepts,
C ′ tries to find a satisfying truth assignment σ to ϕ. To do that, C ′ converts ϕ to ϕ1, by
setting all the occurrences of x1 in ϕ to be TRUE. And asks C if ϕ1 is satisfiable. If so set
σ(x1)=TRUE, else set σ(x1)=FALSE. Now repeat this process, with ϕ1 in place of ϕ and
x2 in place of x1, to get the value for σ(x2). Continue this process for the other variables
we find a truth assignment σ. Then we check whether σ really satisfies ϕ, if so accept, else
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reject ϕ. If C is indeed a correct circuit for SAT, C ′ would also be a correct one. But, no
matter whether C is a correct circuit for SAT, C ′ may make errors only on one side. It may
reject a satisfiable formula. But, it would never accept an unsatisfiable formula, because it
only accepts when it has verified a satisfying truth assignment. This process of reducing
an instance of a problem (in this case SAT) to another instance of the same problem of a
smaller “size” (in this case the number of variables left unassigned) is called self-reducibility.

Theorem 4.7 (Karp-Lipton) If NP ⊂ P/poly, then PH = ΣP
2 ∩ ΠP

2 .

Remark: Originally Karp and Lipton proved the collapse to the third level of the Polynomial
Hierarchy. They noted in their paper that Sipser improved it to the second level of PH. The
proof we give uses an idea first noted by Hopcroft.

Proof. The assumption implies that SAT has polynomial circuits. Then, we show that
ΠP

2 ⊆ ΣP
2 . This would imply that PH collapses to ΣP

2 ∩ ΠP
2 .

Let L ∈ ΠP
2 . So, for some P-time predicate D, we have

x ∈ L⇐⇒ ∀py∃pz[D(x, y, z) = 0]

where |y| and |z| are polynomially bounded in |x|. We can convert the question of

∃pz[D(x, y, z) = 0]

into a SAT question via Cook’s Theorem. Meaning, we have a polynomial time computable
function ϕ(., .) such that

x ∈ L⇐⇒ ∀py[ϕ(x, y) ∈ SAT]

Let x be an input. We need to check whether x ∈ L. We simulate the ΠP
2 computation

of L as follows. Let the length of the formulas |ϕ(x, y)| be at most p(n), where n = |x| and
p(.) is some polynomial. By our assumption, there is a (poly-sized) circuit C∗ that would
work correctly for SAT for all formulas of length at most p(n). Our ΣP

2 computation, in
its “there-exists” phase, guesses a circuit C. Then uses self-reducibility to convert it into a
one-sided error circuit C ′. Now it enters the “for all” phase and checks whether

∀py[C ′(ϕ(x, y)) = 1]

Suppose x ∈ L. One of the paths in the “there-exists” phase would guess C∗, a correct
circuit for SAT. The corresponding C ′ will also be a correct circuit for SAT. As x ∈ L,
∀py, ϕ(x, y) will be satisfiable and our C ′ would accept all of them for these polynomially
bounded y’s. So we see that,

(∃pC)(∀py)[C ′(ϕ(x, y)) = 1]
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Suppose x 6∈ L. Then, there is some y0, polynomially bounded in length, for which
ϕ(x, y0) is not satisfiable. So, for all the guesses C, the corresponding C ′ would reject
ϕ(x, y0), because C ′ never accepts any unsatisfiable formula. Thus, we see that,

(∀pC)(∃py)[C ′(ϕ(x, y)) = 0]

More formally, define the following deterministic polynomial algorithm A(x,C, y): it first
computes C ′ from C using self-reducibility. Then, it computes the formula ϕ(x, y) using
Cook’s theorem. Output C ′(ϕ(x, y)). The claim is then

x ∈ L⇐⇒ (∃pC)(∀py)[A(x,C, y) = 1]

♣

4.3 Mahaney’s Theorem

In the last section, we discussed Karp–Lipton theorem, which says that if SAT has polynomial
size circuits, then the polynomial hierarchy collapses to the second level. In other words, if
SAT Cook reduces to some sparse set S, then the hierarchy collapses to the second level. A
natural question at this point is, what happens if SAT Karp reduces to a sparse set. Notice
that this is a stronger assumption. Mahaney’s theorem says that if SAT Karp reduces to
a sparse set, then NP=P. The theorem also has implications in the context of Berman-
Hartmanis conjecture, which we will discuss later. In this section, we prove Mahaney’s
theorem. This proof follows the idea of Ogihara and Watanabe.

Definition 4.8 Let σ = σ1σ2 . . . σm and τ = τ1τ2 . . . τk be binary strings. We say σ is to the
left of τ (denoted σ �l τ) if either σ is an extension of τ , or the first bit from the left where
they differ σ has bit 0 and τ has bit 1. Formally, let i = max{j | 0 ≤ j ≤ min{k,m}, (∀1 ≤
j′ ≤ j)[σj′ = τj′ ]}. Then σ �l τ if either i = k or i < k with σi+1 < τi+1.

We can view the above definition pictorially as follows. Consider the binary tree of partial
assignments to the n variables. Let σ and τ be two partial assignments, τ = τ1τ2 . . . τk and
σ = σ1σ2 . . . σm. σ is to the left of τ , if σ is below τ (i.e. τ is a prefix of σ) or σ is in a branch
to the left of τ . The order �l is the tree traversal order of Left-Right-Root.

We next define a language called left cut of SAT. Let ϕ be a formula and τ be a partial
assignment. The pair 〈ϕ, τ〉 is in LSAT, if some assignment σ to the left of τ satisfies ϕ.
Formally,

Definition 4.9 The leftcut set of SAT is the set LSAT = {〈ϕ, τ〉 | ϕ is a formula on n
variables and τ ∈ {0, 1}k, 0 ≤ k ≤ n, such that ∃ σ ∈ {0, 1}n with σ �l τ and ϕ|σ =
True.}

57



Clearly LSAT ∈ NP. The crucial property of LSAT is the following. Let ϕ be a formula
and σ and τ be two partial assignments, such that σ�lτ . Then, if 〈ϕ, σ〉 is in LSAT, then
〈ϕ, τ〉 is also in LSAT. In particular if ϕ ∈ SAT, then 〈ϕ, ε〉 ∈ LSAT.

Suppose we are given 〈ϕ, σ〉 and 〈ϕ, τ〉 and we have to bet on one of these to be in LSAT.
Clearly, we should place our bet on 〈ϕ, τ〉, if σ�lτ . In its contra-positive, if at least one of
them is out of LSAT, then we know 〈ϕ, σ〉 is out. The proof hinges on this property of LSAT.

Theorem 4.10 (Mahaney) For any sparse set S 6= ∅, SAT ≤p
m S ⇐⇒ P = NP.

Proof. Let S be any non-empty sparse set. The implication P = NP =⇒ SAT ≤p
m S is

trivial, so we need only prove that SAT ≤p
m S =⇒ P = NP.

Suppose SAT ≤p
m S. We shall design a polynomial time algorithm to solve SAT. First of

all, notice that LSAT is in NP. (Given 〈ϕ, τ〉, we guess a (full) truth assignment σ, then verify
that σ�lτ and σ satisfies ϕ; if so accept, else reject.) From the assumption SAT ≤p

m S, it
follows that LSAT ≤p

m S, via some polynomial time computable function f .

We will design a polynomial time algorithm for SAT. Let ϕ be the input formula over
n variables and we need to check if it is satisfiable or not. If ϕ is satisfiable, the algorithm
would, in fact, output the (lexicographically) left-most satisfying assignment.

Let us consider the binary tree formed by assignments on ϕ. The root of this tree
corresponds to the empty assignment (denoted by the empty string ε, where no variable
is assigned a value). Nodes of the tree correspond to partial assignments. We will do a
breadth-first search on this tree, starting with the root. The tree has exponentially many
nodes and we cannot hope to do a full search. Instead, as we go along, we will prune the tree
and explore only parts of the tree. At any point of time, we will maintain only polynomially
many nodes. We will ensure that, if ϕ is satisfiable, the left-most satisfying assignment is a
descendant of a node not pruned away.

Consider strings of the form 〈ϕ, σ〉, where σ = σ1σ2 . . . σm is some partial assignment for
the input formula ϕ. Length of these strings is at most |ϕ| + n. As the reduction f runs
in polynomial time, its output on these strings can be at most polynomial in n. Let this
number be l. The sparse set can have at most N strings of length ≤ l, where N is polynomial
in l, and thus also a polynomial in n. As we explore the binary tree, level by level, we will
maintain at most N nodes, at any point of time.

First, we explore the tree until we reach a level k, where the number of nodes 2k > N .
At this point, we start pruning. We run the reduction f on all these 2k partial assignments
(with ϕ as the formula) and obtain 2k output strings. We first look for duplicates. Let σ1

and σ2 be two partial assignments at level k such that f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉). If σ1�lσ2,
then we throw away σ2, i.e. we will not explore that subtree any further. If σ2�lσ1, then
we throw away σ1. Note that as f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉), either both (ϕ, σ1) and (ϕ, σ1) are
in LSAT or both are out. After removing all duplicates, if more than N nodes survive, we
throw away the left-most partial assignment at this level. We keep removing the left-most
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nodes until we have only N nodes. Clearly, after all is said and done at this level, we will
have at most N nodes that survive.

Then we continue at the next level, expanding only these subtrees. In general, suppose
r ≤ N nodes survive at level m. In level m+ 1, we consider their 2r children. If 2r ≤ N , we
can move on to level m+ 2. If not, we run the reduction f on these 2r nodes, and obtain 2r
output strings. We first eliminate duplicates and then, if more than N nodes still remain,
we eliminate the the left-most nodes, until we have at most N nodes. Continuing this way,
finally we will reach the leaf level of the tree. Here, all the nodes correspond to full truth
assignments of ϕ. We will have at most N surviving full assignments. For each of these
assignments, we check if any of them satisfy ϕ. If so ϕ is satisfiable. Otherwise, we claim it
is not satisfiable.

Clearly, we maintain at most N nodes at any level of the tree and N is polynomial in n.
Depth of the tree is n. Thus the algorithm runs in polynomial time. Suppose ϕ is satisfiable.
We argue that the left-most satisfying assignment will remain a descedant of some node kept
at any level, and thus survive at the leaf-level. We do this by induction on the level number
m. This is clearly so at the root level. Consider levelm and let the number of nodes surviving
at this level be r. By induction, the left-most satisfying assignment is a descendant of one
of the r surviving nodes. We consider the 2r children at level m + 1. If 2r > N . Suppose
f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1�lσ2. So we remove a duplicate. Let σ1�lσ2. In this case, we
throw away σ2. Clearly, the left-most satisfying assignment is not a descendant of σ2, for
otherwise we would have the contradiction that 〈ϕ, σ2〉 ∈ LSAT and 〈ϕ, σ1〉 6∈ LSAT, as σ1 is
strictly to the left of σ2. Thus, throwing away σ2 did not violate the inductive hypothesis.

After removing duplicates, if still some d > N nodes exist, let these nodes be σ1, σ2, . . . , σd.
Then we removed the left-most node σ1. We argue that this is also a correct procedure. By
contradiction, suppose the left-most satisfying assignment σ is a descendant of σ1. Then, σ
is to the left of all the d surviving nodes. Thus, all of 〈ϕ, σ1〉, 〈ϕ, σ2〉, . . . 〈ϕ, σd〉 are in LSAT.
So, f(〈ϕ, σ1〉), f(〈ϕ, σ2〉), . . . f(〈ϕ, σd〉) are all in S. Note that, all these strings are distinct
and there are d > N of them. But, by our assumption of sparseness of S, there can be
at most N strings in S (at this length). This contradiction shows that throwing away the
left-most node also maintains the inductive hypothesis. This completes the induction proof.
♣
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Chapter 5

Randomization

Randomness, both as a proof technique as well as a computational resource, has a significant
role in the modern theory of algorithm and complexity. In this Chapter we start our study
of randomization in computation.

5.1 Basic Probability

It is perhaps one of the primal experiences, much like the primal experiences with arithmetic
quantity or geometric shape, that people have come to “know” randomness. Any system-
atic exploration was started much later, starting with Pascal, Fermat and Laplace. But it
is always a nettlesome quesiton as to what exactly is “randomness”, and what exactly is
“probability”. I don’t think this question has ever been truly satisfactorily answered, de-
spite a lot of work on this topic. Perhaps there is no one single answer. However, brushing
aside the “nature” of what is “probability”, modern mathematics basically took the following
perspective, after Kolmogorov. We start with an arbitrary measure space (Ω,E, µ), where
Ω is some underlying set, equipped with a measure function µ : E → R+, where E is a
collection of subsets of Ω called a σ-algebra satisfying certain closure properties, and (being
a probability measure) µ(Ω) = 1. (Being a measure, µ must satisfy σ-additivity, namely for
disjoint countable family {Si} ⊆ E, µ(

⋃∞
i=1 Si) =

∑∞
i=1 µ(Si). E is a σ-algebra if Ω ∈ E,

and E is closed under countable union, intersection, and complement. We will not discuss
further the properties of a σ-algebra. For most of what we do, the set Ω will be finite, and
E consists of all subsets of Ω.)

The Kolmogorov foundation of probability theory is a brilliant device to refocus the
“theory of probability” as an internal mathematical subject, excluding all issues having to
do with what is “randomness” as we experience it in the external world. It essentially gets
rid of the issue of any reference to how this “probability theory” is to be related to the every
day (or not so every day) notion of “chance” in the external world. A gambler (or any user
of probability theory) has to decide what is an appropriate probability space to presume, as
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a mathematical model for his particular situation at hand. Ths modeling is external to any
mathematical theory of probability. The mathematics of “probability theory” in the sense
of Kolmogorov only helps to “calculate” the outcomes once the basic probability of events
have been assigned. Thus, in Kolmogorov’s probability theory, there is no meaning of a “fair
coin”; instead, one merely sets up a suitable probability space, such as {H,T}, and postulate
that µ(H) = µ(T ) = 1/2. It is murkier what a quantum physicist really means when he
talks about the “probability” of observing this or that quantum state.

What if we want “two independent fair coin flips”? In Kolmogorov’s probability theory,
we can set up a product probability space, {H,T}2, and assign µ(HH) = µ(HT ) = µ(TH) =
µ(TT ) = 1/4. Note that in this 4-point space, there is, strictly speaking, no notion of time.

While the Kolmogorov foundation is fine, it does seem to be somewhat sterile, and lacking
certain intuition of “probabilistic thinking”. For one thing, we do like to have a primitive
notion of an independent coin flip. Moreover, if after several independent fair coin flips, we
decided to have another one. This should not disturb any previous probability calculation.
Instead in Kolmogorov’s framework we must re-constitute a new probability space all over
again. Technically all previous probability calculations must be carried out now in this new
probability space. Of course they take the same values, but conceptually they now take
place in a different probability space. This, I find unnatural and unsatisfactory. Frequently
in an algorithm we want to be able to flip more coins as we go along. And this notion of
time step is natural and intuitively helpful. It is somewhat unnatural to suppose we must
have a super probability space in place a priori, which in its very definition has a built-in
structure of how many coin flips we can have. (There are ways around this in Kolmogorov’s
framework, but they all seem contrived and unnatural.)

Luckily, for almost everything we discuss here, it will be over some finite (or at most
countably infinite and recursive) space. Most of the time it will just be over some {0, 1}n, or
something similar. There will be no philosophical difficulties by taking a naive approach to
the concept of probability, but one which does admit a primitive notion of a new independent
bit. In principle we can enumerate all the basic events and assign them “atomic probabilities”
that add to one. Therefore we will take the following point of view. We will assume whenever
we need we can have an independent additional coin flip (which may not be a fair coin). We
will operate at a more intuitive level of “probability”, as if we had a definite meaning of a
physical “randomness”. Thus we can say, for example, perform the following random trials
independently for certain number of times with certain probability. We take this approach
with the understanding that, whenever any potential difficulty should arise, we immediately
retreat back to the safe cocoon of Kolmogorov foundation of measure space, and effectively
say that: the only meaningful thing is what’s happening in the following measure space; any
implication to the “outside world” (such as what exactly does it mean by a random step) is
not the responsibility of our probability analysis and any conclusions thereof.
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5.1.1 Markov’s Inequality

The first inequality to consider is Markov’s Inequality. It deals with any random variable that
takes only nonnegative values and the estimate is in terms of its expectation. Technically
we need to assume it has a finite expectation, however, one can apply it with abandon, for
when the nonnegative random variable has infinite expectation the estimate is trivially true.

Theorem 5.1 Let X be a random variable such that X ≥ 0 and E [X] <∞. For all a > 0,

Pr[X ≥ a] ≤ E [X]

a

The expectation E [X] is defined to be
∫
Ω
Xdµ. This theorem gives us a bound on the

probability that X takes on a value that is greater than its expected value by a given amount.
We give a quick proof of the theorem:

Proof. Let I be an indicator variable for the event X ≥ a. That is,

I =

{
1 if X ≥ a
0 if X < a

Clearly, E [I] = Pr[X ≥ a]. Then,

Pr[X ≥ a] =

∫

Ω

Idµ =

∫

X≥a

1dµ ≤
∫

X≥a

X

a
dµ ≤

∫

Ω

X

a
dµ =

E [X]

a
.

♣

5.1.2 Chebyshev Inequality

Theorem 5.2 For any random variable X with finite E [X] and Var(X), and let a > 0,

Pr[|X − E [X] | ≥ a] ≤ Var(X)

a2

Here the variance Var(X) is defined as E [(X − E [X])2] = E [X2]−E [X]2, and technically we
must assume it is finite. However, the above estimate is (trivially) true even if it is infinite.
Proof. Define a random variable Y = (X − E [X])2. Then,

Pr[|X − E [X] | ≥ a] = Pr[Y ≥ a2]

≤ E [Y ]

a2

=
Var(X)

a2

In the above derivation, the inequality is obtained using the Markov’s inequality. ♣
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5.1.3 Chernoff Bound

It may appear that Markov’s inequality is pretty weak. However it is very applicable in many
situations, mainly because it only assumes that the random variable under consideration is
non-negative and does not assume anything about its distribution. Judiciously applied it
can yield remarkably sharp bounds. In this section, we use it to prove the Chernoff bound,
which is a powerful inequality dealing with sums of independent random variables.

Before we give the statement of the Chernoff bound, we introduce the variables it will
use. Let {X1, X2, · · · , Xn} be a set of n independent, identically distributed random variables
such that each Xi has

Pr[Xi = 1] = Pr[Xi = −1] =
1

2
.

Let Sn be their sum: Sn =
∑n

i=1Xi.

Theorem 5.3 For all n, and for all ∆ > 0,

Pr[Sn ≥ ∆] < e−∆2/2n

Before proving this theorem, we note that it can be restated as

Pr[Sn ≥ ε · n] ≤ e−
1
2
ε2n = (e−

1
2
ε2)n

or
Pr[Sn ≥ α ·

√
n] ≤ e−

1
2
α2

If we think of ε and α as positive constants, then the first inequality says the probability
of having an Θ(n) deviation from expectation (0) is exponentially small, and the second
inequality says that this “tail probability” balances out at Θ(

√
n) away from expectation.

This last statement is in accord with the central limit theorem, which states that

lim
n→∞

[Sn ≥ α · √n] =

∫ ∞

α

1√
2π
e−

x2

2 dx.

The advantage of the Chernoff Bound is that it is valid for all n and a, and not merely a
statement of limit.

Now, we prove the theorem.

Proof. The trick is to consider the exponentiation of Sn, namely the random variable
eλSn . Here λ > 0 is some number to be fixed later. We compute the expectation of eλSn as
follows.

E
[
eλSn

]
= E

[
eλ

Pn
i=1 Xi

]
= E

[
n∏

i=1

eλXi

]
=

n∏

i=1

E
[
eλXi

]

To get the last equality, we use the assumption that the {Xi} are independent random
variables and hence {eλXi} are also independent. (Recall that, for independent random
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variables X and Y , the expectation is multiplicative E [XY ] = E [X] E [Y ].) For any i, the
random variable eλXi takes values eλ and e−λ, each with probability 1/2. Its expectation is

E
[
eλXi

]
= cosh(λ) =

eλ + e−λ

2

For λ > 0, the above quantity is bounded by

eλ + e−λ

2
< eλ2/2.

One can prove the above inequality by analyzing the Taylor expansion of LHS and RHS. We
do this analysis at the end of this proof. Using this bound, we have

E
[
eλSn

]
<

n∏

i=1

eλ2/2 = eλ2n/2

We can now apply Markov’s inequality to get:

Pr[Sn ≥ ∆] = Pr[eλSn ≥ eλ∆] ≤ E
[
eλSn

]

eλ∆
<
eλ2n/2

eλ∆

The above inequality is true for any λ > 0, so we are now free to choose λ to optimize it.
To get the tightest upper bound, we minimize the exponent in the above function. Standard
calculus technique shows that a minimum occurs at λ = ∆/n. This gives us

Pr[Sn ≥ ∆] < e−∆2/2n

Finally, we show that
eλ + e−λ

2
< eλ2/2.

The Taylor expansion of LHS is

coshλ = 1 +
λ2

2!
+
λ4

4!
+ · · ·

The Taylor expansion for the function ex shows that

eλ2/2 = 1 +
λ2

2
+

(λ2/2)2

2!
+

(λ2/2)3

3!
+ · · ·

Compare the two series term by term. The kth term of LHS is λ2k/(2k)!, while that of eλ2/2

is (λ2/2)k/k!. Focusing only on the even factors, we have (2k!) ≥ 2k · k! and strictly so for
k > 1. Thus,

coshλ < eλ2/2.

♣
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By symmetry,
Pr[|Sn| ≥ ∆] < 2e−∆2/2n

There are several different forms of Chernoff Bound which will be useful. They all concern
tail probabilities of sums of independent random variables. Theorem 5.3 can be generalized
as follows.

Let {X1, X2, · · · , Xn} be a set of n independent 0-1 random variables, with

Pr[Xi = 1] = pi, Pr[Xi = 0] = 1− pi,

and let p =
∑n

i=1 pi/n. We define the centralized random variables {Y1, Y2, · · · , Yn} where
Yi = Xi − pi, then

Pr[Yi = 1− pi] = pi, Pr[Yi = −pi] = 1− pi,

and E [Yi] = 0. Let Sn =
∑n

i=1 Yi =
∑n

i=1Xi − pn.

Theorem 5.4 For any ∆ > 0,

Pr[Sn ≥ ∆] ≤ e−2∆2/n.

By symmetry, the bound applies to −Sn as well, and so

Pr[|Sn| ≥ ∆] ≤ 2e−2∆2/n.

Note that when we take ∆ = δpn, then

Pr[|
n∑

i=1

Xi − pn| > δpn] < 2e−2δ2p2n.

Here is another form. Let {X1, X2, · · · , Xn} be a set of n independent 0-1 random vari-
ables, with Pr[Xi = 1] = p. Then

Theorem 5.5 For any 0 < δ < 1/2,

Pr[

n∑

i=1

Xi > (1 + δ)pn] < e−δ2pn/4

and

Pr[
n∑

i=1

Xi < (1− δ)pn] < e−δ2pn/2.

Theorem 5.5 is better than Theorem 5.4 for small p.

For not necessarily 0-1 random variables,
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Theorem 5.6 Let Xi, 1 ≤ i ≤ n, be mutually independent with all E [Xi] = 0 and all
|Xi| ≤ 1. Let Sn =

∑n
i=1Xi. Then for all ∆ > 0,

Pr[Sn > ∆] < e−∆2/2n.

The proofs of these versions of Chernoff Bound all follow similar lines.

A version of this type of bound also holds with hypergeometric distribution. Randomly
pick n balls without replacement, from N black and white balls, with pN black balls. Let S
be the number of black balls among n balls picked.

Then

Theorem 5.7 For any ∆ ≥ 0,

Pr[|S − pn| ≥ ∆] ≤ 2e−2∆/n.

This is known as the Hoeffding bound.

5.1.4 Universal Hashing

Definition 5.8 (Universal family of hash functions) Let U and T be finite sets.
Let S be an index set for a family of functions {hs : U → T}s∈S. {hs}s∈S is called a
universal family of hash functions if ∀α, β ∈ T,∀x, y ∈ U, x 6= y,

Pr
s∈S

[hs(x) = α ∧ hs(y) = β] =
1

|T |2

Notice that the RHS of the equation above 1/|T |2 is the probability of getting α and β when
we choose two elements independently and uniformly at random from T .

The proper treatment in the Kolmogorov framework will be to define a measure space
with the underlying set S, equipped with the uniform distribution. Then for all fixed x ∈ U ,
the map Zx : s 7→ hs(x) is a random variable.

We have ∀x 6= y ∈ U , ∀α, β ∈ T , Prs∈S[Zx(s) = α ∧ Zy(s) = β] = 1
|T |2 . Hence,

∀α ∈ T,∀x ∈ U , take any y ∈ U , and y 6= x, (we assume |U | ≥ 2),

Pr
s∈S

[Zx(s) = α] =
∑

β∈T

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β]

=
∑

β∈T

1

|T |2

=
1

|T |
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So, Zx is a uniform random variable on T . It follows that for any x 6= y ∈ U and α, β ∈ T ,

Pr
s∈S

[Zx(s) = α ∧ Zy(s) = β] = Pr
s∈S

[Zx(s) = α] · Pr
s∈S

[Zy(s) = β].

So, for any x 6= y ∈ U , the random variables Zx and Zy are independent. The definition of
universal hash function is equivalent to asking a set of pairwise independent and unifromly
distributed random variables, {Zx}x∈U . The random variables in this set may be jointly
dependent, but any two of them are independent.

However, instead of thinking in terms of pair-wise independent random variables Zx(s),
we rather think of hs(x) = Zx(s) as a random map from U to T , by randomly choosing an
index s ∈ S. The two views are of course completely equivalent here.

An Example: Let p be a prime number. Then Z/p = {0, 1, . . . , p − 1} with the
operations + and · forms a finite field. Consider the map hs=(a,b) : x 7→ ax+ b for a, b ∈ Z/p.
We will verify that {h(a,b)}a,b∈Z/p is a universal family of hash functions.

For all x, y, α, β ∈ Z/p, x 6= y, how many pairs (a, b) ∈ Z/p are there satisfying the
following equations?

ax+ b = α

ay + b = β

(In the above equations, a and b are the unknowns.) The determinant of this 2 × 2 linear
system is

det

(
x 1
y 1

)
= x− y 6= 0.

Therefore, there exists a unique solution such that this equation holds. Thus,

Pr
s=(a,b)∈(Z/p)2

[hs(x) = α ∧ hs(y) = β] =
1

p2
.

So, {h(a,b)}a,b∈Z/p is a universal family of hash functions.

This can be generalized to any finite field GF(pn). It is known that for any prime p and
any n ≥ 1, there is a finite field of pn elements. Up to isomorphism such a field is unique.
In particular, for any k ≥ 0, the polynomial X2·3k

+X3k
+ 1 is an irreducible polynomial in

Z2[X], and therefore we have an explicit finite field in the form of

Z2[X]/(X2·3k

+X3k

+ 1).

In the definition of this particular family of universal hash functions via affine linear
functions ax + b, if it is defined over a finite field GF(2n), we can truncate any number of
bits from n to make |T | = 2k, for any 0 ≤ k ≤ n. Whenever in the following we speak of
a family of universal hash functions, unless otherwise stated, we always refer to this family
of affine linear functions, and if necessary, over that particular family of finite fields GF(2n),
with n = 2 · 3k.
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The power of universal hash functions comes from the fact that on the one hand they
behave more or less like a random function, on the other hand they can be succintly specified
by only 2n bits.

5.2 Randomized Algorithms: MAXCUT

As a taste for randomized algorithms, we discuss the graph problem MAXCUT. Let G =
(V,E) be an undirected graph over n vertices. A cut C of G is a partition of vertices V into
disjoint union V1 ∪ V2. We also identify a cut with the set of edges between V1 and V2, i.e.,
e ∈ C consists of those edges with one of its incident vertices in V1 and the other in V2.

Definition 5.9 (MAXCUT) A MAXCUT of a graph G = (V,E) is a cut C such that |C|
is maximized over all cuts of G.

Similar to MAXCUT, MINCUT of G is defined as the minimum |C| over all cuts of G.
We know that MINCUT is in P. It can be solved using maximum network flow between all
pairs of vertices.

We know that MAXCUT is NP-complete, therefore we do not expect to solve it effi-
ciently. However, we can look for approximate solutions. To quantify the accuracy of our
approximations we will introduce a new term. We want a polynomial-time algorithm that
achieves a cut C such that

|C|
|C∗| ≥ r

where C∗ is a maximum cut. Such an algorithm is called an r-approximation.

5.2.1 Deterministic MAXCUT Approximation Algorithm

We can define a greedy algorithm that achieves a 1/2-approximation:
For a graph G = (V,E) with V = {1, . . . , n}, define Ei = {(k, i) ∈ E : k < i}. Initially, let
V1 = V2 = ∅. Then, for each i from 1 to n, add i to either V1 or V2 so that the number of
edges in Ei that are on the cut is maximized, i.e., put i in V1 iff |{k ∈ V2 : (k, i) ∈ Ei}| ≥
|{k ∈ V1 : (k, i) ∈ Ei}|. We claim that this heuristic achieves 1/2-approximation.

Let C be the cut obtained by the algorithm. The disjoint sets E1, E2, . . . , En partition
E. So, |E| = ∑

iEi. For each i ∈ V , let E ′
i = Ei ∩ C. Then, C =

⋃
iE

′
i. As sets Ei are

disjoint, the sets E ′
i are also disjoint. Thus, |C| = ∑i |E ′

i|. The main observation is that for
each i ∈ V , we have E ′

i ≥ Ei/2. We conclude that |C| ≥ |E|/2. As the size of any maximum
cut |C∗| ≤ |E|, we get |C| ≥ |C∗|/2.
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5.2.2 Randomized MAXCUT Approximation Algorithm

We present a randomized 1/2-approximation algorithm for MAXCUT. Then we show that it
can be derandomized in polynomial time. This example illustrates the ideas of randomization
and derandomization in a simple setting.

The randomized algorithm is very simple. Assign a monkey at each vertex and have each
monkey throw a dart. If it throws to the left, assign the vertex to V1, and if it throws to
the right, assign it to V2. More formally, given a graph G = (V,E), we assign each vertex
independently with equal probability to either V1 or V2. This will give us a cut C of G, and
we will show that the expected size of C ≥ |C∗|/2.

Consider an edge (i, j) ∈ E. Pr[(i, j) ∈ C] = 1/2. For e ∈ E, define χe to be a random
variable such that χe = 1 if e ∈ C and χe = 0 if e 6∈ C. Then |C| = ∑

e∈E

χe . Thus,

E[|C|] =
∑

e∈E

E[χe ] =
∑

e∈E

Pr[e ∈ C] =
|E|
2
≥ 1

2
|C∗|.

The first equality follows from linearity of expectation, E[X + Y ] = E[X] + E[Y ], for any
two random variables X and Y . This formula holds even if X and Y are not independent.

5.2.3 Derandomizing MAXCUT Approximation Algorithm Using
Universal Hash Functions

Let G = (V,E) be a graph with V = {0, . . . , n − 1}. Set k so that 2k ≥ n > 2k−1. Choose
a and b at random from GF(2k). For each i ∈ V , treat i as a member of GF[2k] compute
ai + b. Assign i to either V1 or V2 according to the first bit of ai + b. We claim that the
expected size of cut obtained is |E|/2.

Let χ
(a,b)

(i) = the first bit of ai+ b. We know that {ai+ b}a,b∈GF(2k) is a universal family
of hash functions. Thus, {χ

(a,b)
}a,b∈GF(2k) is a universal family of hash functions. Then, a cut

C obtained by the above randomized algorithm is given by C = {(i, j)|χ
(a,b)

(i) 6= χ
(a,b)

(j)}.
Because {χ

(a,b)
}a,b∈GF(2k) is a universal family of hash functions, Pr[χ

(a,b)
(i) 6= χ

(a,b)
(j)] =

1/2. Thus, using the analysis from Section 3, we have E[|C|] = |E|/2.

We can derandomize the above algorithm in polynomial time. There are less than 4n2

different choices for (a, b). To derandomize, we can examine the cuts created by {χ
(a,b)
}

for all a, b ∈ GF(2k) in polynomial time. One of these cuts is guaranteed to be at least
|C∗|/2 because E[|C|] ≥ |C∗|/2. This gives us a deterministic r-approximation algorithm for
MAXCUT.

Although this derandomized algorithm does not give a better approximation ratio than
the greedy algorithm, it is a parallel algorithm. For each pair (a, b), the determination of
which side of the cut each vertex is on can be determined separately regardless of the other
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vertices. Thus, this can be executed in parallel. Additionally, the cut produced from each
pair (a, b) can be determined in parallel. After all these cuts have been computed, the
maximum can be selected. We will say later that this can be computed in NC.

5.2.4 Goemans-Williamson Algorithm

Goemans and Williamson gave an approximation algorithm for MAXCUT with error ratio
of about 12%. Randomization plays an important role here combined with semidefinite
optimization.

Typically a subset of [n] can be described by a binary sequence in {0, 1}n. Although
this is not essential, we will find it here more convenient to describe such a subset V1 ⊆ V ,
which corresponds to a cut V1 ∪ (V \ V1), by a vector x ∈ {−1, 1}n, by letting xi = −1 iff
i ∈ V1. Then the cut size is

∑
e={i,j}(xi− xj)

2/4. Therefore the MAXCUT problem seeks to
maximize

1

4

∑

e={i,j}
(xi − xj)

2

subject to the constraint x ∈ {−1, 1}n. This constraint can be expressed as

x2
i = 1,∀i ∈ V.

Such a problem is called a quadratic programming problem, which, in its generality, is also
NP-hard (which is of course no surprise, since we have just reduced an NP-hard problem
MAXCUT to it.)

The next trick is to linearize the problem by introducing a set of new variables yij, 1 ≤
i, j ≤ n, with the intention that yij = xixj. Under this new set of variables, the objective
function becomes

1

4

∑

e={i,j}
(yii + yjj − 2yij)

to be maximized subject to
yii = 1,∀i ∈ V.

Observe that a “solution” yij need not correspond to any real solution xi. In particular,
if yij = xixj, then the matrix Y = (yij) is symmetric and positive semi-definite, being the
product of X and its transpose XT,

Y = XXT =




x1

x2
...
xn


 (x1 x2 · · · xn )

Not only that, since X is n×1, Y is of rank 1 (assuming X 6= 0, which is implied by yii = 1).
However, we choose to ignore this rank condition, yet preserve the constraint that Y is
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symmetric and positive semi-definite. The reason for this is that there is a polynomial time
algorithm, based on the ellipsoid method, which solves this “semi-definite” programming
problem optimally.

What we have done is called a “relaxation” of the original problem. The requirement of
Y being positive semi-definite amounts to a seemingly infinitely many inequalities

vTY v ≥ 0, ∀v ∈ Rn.

These are linear constraints on yij . It is a trick of the “semi-definite” programming algorithm
which can handle these infinitely many inequalities implicitly. We will not dwell further on
this, and simply assume such a polynomial time algorithm is available.

Coming back to MAXCUT, in polynomial time we find a symmetric and positive semi-
definite Y ∗, with y∗ii = 1 which maximizes 1

4

∑
e={i,j}(yii + yjj − 2yij) among all Y satisfying

these constraints. Let the maximum value be M ∗. Since this is a relaxation of the original
problem, M ∗ is an upper bound of the maximum cut size.

It is known that a symmetric and positive semi-definite matrix Y ∗ can be expressed as
a product of UUT, where U = (u1 u2 · · · un )T, where column vectors ui ∈ Rn. Moreover
this decomposition can be found in polynomial time.

Thus, y∗ii = uT
i ui = ||ui||2 = 1 says that each vector ui is a unit vector. Moreover,

“formally” retracing the expansion of
∑

e={i,j}(xi−xj)
2 into

∑
e={i,j}(yii + yjj−2yij), we get

M∗ =
1

4

∑

e={i,j}
||ui − uj ||2.

The next idea of Goemans and Williamson is brilliant. Randomly choose a hyperplane
Π in Rn. This amounts to choosing a unit vector v ∈ Rn, uniformly on the unit sphere, as
the normal vector to Π. (This can be carried out approximately with exponentially small
error; we are ignoring issues of discretizing the process here.) Now partition V according to
which side of Π the vector ui falls. More precisely, assign vertex i to V1 iff the inner product
〈ui, v〉 > 0.

If we express the cut size thus formed as a sum of 0-1 random variables, which indicate
whether edge e = {i, j} belongs to the cut, then the expectation is

∑

e={i,j}
Pr[ Π separates ui, uj].

To investigate this probability Pr[ Π separates ui, uj ], we only need to think of it in terms
of the 2-dimensional space spanned by ui and uj. Clearly this probability is θij/π where θij

is the angle between ui and uj. Meanwhile the length ||ui − uj|| is clearly 2 sin
θij

2
.

Simple calculus shows that the function

f(θ) =
θ

4
sin2 θ

2
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achieves minimum .69002507... at 2.331122370.... It follows that the expectation of the cut

∑

e={i,j}

θij

π
≥ .69002507

π

∑

e={i,j}
||ui − uj||2 ≈ 0.878 ·M ∗.

This is a randomized MAXCUT algorithm that achieves 87.8% approximation ratio.
There are ways to derandomize this algorithm, but we will not discuss this problem any
further.

5.3 Randomized Algorithm: Two Stage Hashing

One simple application of universal hashing is a Dctionary data structure by two stage
hashing developed by Fredman, Komlós, and Szemerédi (FKS). We will define a quantity
called the collision number, use no more complicated a tool as the Markov inequality to
prove its properties. The collision number is generally useful elsewhere as well.

Given a finite set U and a subset N ⊆ U , we want to build an efficient dictionary. A
dictionary is a data structure where we store information about the elements of N . Then,
upon receiving a query q ∈ U , we want to look-up the dictionary and tell whether q ∈ N or
not efficiently. For example, let U be the set of all “words” of length five over the English
alphabet and let N be the set of all proper English words of length five. This is where the
name dictionary comes about. Various performance criteria of interest are time required to
build the dictionary, space occupied by the dictionary and look-up time.

There are many deterministic schemes to implement a dictionary. These are usually
based on some balanced tree structure, and typically take O(log n) steps for each operation.
Yao was the first to question this fundamental methodology (“Should tables be sorted”) and
proposed hashing as an efficient alternative. The FKS two-stage hashing scheme is extremely
simple. It shows that given a universe U and a subset N ⊆ U , where n = |N |, one can build
a dictionary for N that has the following properties:

• The dictionary can be built in O(n) expected time.

• The dictionary occupies O(n) space.

• Dictionary lookup takes O(1) time.

Let us choose a set T to be our hash table. Size of the table |T | will be fixed later. We
choose a suitable hash function h : U 7→ T and for each element u ∈ U , hash it to the bucket
numbered h(u) in T . Then, given a query q ∈ U , we can check q ∈ N or not by scanning
the bucket given by h(q). We say that elements a, b ∈ N collide under h, if h(a) = h(b). It
is clear that more the number of collisions, it will take more time to look-up. Thus, the goal
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is to choose a good hash function h that minimizes the number of collisions, and yet does
not use too much space.

Let H be a universal family of hash functions from U to T . Such a family satisfies the
following property. For any u1, u2 ∈ U with u1 6= u2,

Pr
h∈H

[h(u1) = h(u2)] =
1

|T | .

Choose a hash function h at random from H. Let C be the random variable that gives
the number of collisions under h. For a, b ∈ N , a 6= b, let Xa,b be the indicator variable
that denotes whether a and b collide under h (i.e. Xa,b = 1 if h(a) = h(b), and Xa,b = 0
otherwise). Then,

C =
∑

{a, b} ⊂ N
a 6= b

Xa,b

Since the probability that two elements (a, b), where a 6= b, collide under a random hash
function h is 1

|T | , the expected number of collisions is

E [C] =

(
n

2

)
/|T |

Set |T | = n2. Then, E [C] < 1
2
. By Markov’s inequality, Pr[C ≥ 1] < 1

2
. So, Pr[C < 1] > 1

2
.

Since C is a integer variable, C < 1 implies that C = 0. Hence, if we choose h at random,
with probability at least 1/2, there will be no collisions under h. We can try various h at
random until we find a h with C = 0. The expected number of trials needed is less than 2.
This scheme is wonderful, except that, we have to allocate n2 space to get this bound. We
can do better by using the following two-stage hashing scheme.

In the first stage of the scheme, we allocate only |T | = n. Then, for a random h ∈ H,
E [C] < n

2
. Using Markov’s inequality again, Pr[C ≥ n] ≤ 1

2
. By trying various hash

functions at random, we can find a hash function with C ≤ n. The expected number of
trial will be only 2. Suppose we have found a hash function h0 with the number of collisions
C0 ≤ n. Next we proceed to the second stage of the scheme.

Let Ni be the set of elements of N that got mapped to ith bucket of T under h0. Let
ni = |Ni|. In the second stage, for each bucket 1 ≤ i ≤ |T |, we build a hash table Ti for the
set Ni, with |Ti| to be n2

i . Fix a universal family of hash functions Hi : U 7→ Ti. Then, for a
hash function h chosen at random from Hi, the expected number of collisions Ci is

E [Ci] =

(
ni

2

)
1

|Ti|
=

(
ni

2

)
1

n2
i

< 1/2.
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Thus, Pr[Ci ≥ 1] < 1/2, which implies Pr[Ci = 0] > 1/2. For each i, by trying various h at
random, with an expected number of less than two trials, we can find a hi with no collisions.
Thus in total we expect to try less than 2n times.

What will be the total size of the hash table (both stages combined)? It is given by

Total size = |T |+
|T |∑

i=1

|Ti| = n+
n∑

i=1

n2
i .

We now need a bound for the summation. We obtain a bound by using the fact that the
number of collisions in first stage C0 ≤ n. We express C0 in a different way to get the bound.

C0 =
n∑

i=1

(
ni

2

)

=
1

2

(
n∑

i=1

n2
i −

n∑

i=1

ni

)

Note that
∑n

i=1 ni = |N | = n. Thus,

|T |∑

i=1

n2
i = 2C0 +

n∑

i=1

ni ≤ 2n+ n = O(n).

So, the total space needed to store the main hash table T and the second level tables is
only O(n) (We will need space to store the hash functions h0 and various chosen hi. But
this needs only O(log |U |) space, which we assume to be negligible). We next compute time
required to build the tables. In the first stage, expected number of trials to find a “good”
hash function h0 is less than 2. Given a hash function h we can tell whether it is good or
bad in time O(n). Thus, expected time for first stage is O(n). In the second stage, for each
bucket i, expected number of trials to find a good hi is less than 2 and the time needed to
tell whether a h is good or bad is O(ni). Thus, total expected time in the second stage is
O(n1) +O(n2) + · · · +O(n|T |) = O(n).

Now let us turn to look-up operation. Given a query q, apply h0 to q to get the relevant
bucket i = h0(q), then apply the second level hash function hi to q and scan the bucket
hi(q) in table Ti. As each hi is chosen to be collision-free, there will be only one entry in the
bucket hi(q). If this entry is q, then report that q ∈ N . If it is not, report that q 6∈ N . This
process takes O(1) time since we simply apply hash functions (our universal family of hash
functions can compute any h(x) in time O(log |U |), which is assumed to be negligible).
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5.4 Randomized Complexity Classes

5.4.1 Definitions

Definition 5.10 (BPP) BPP stands for bounded error probabilistic polynomial time. A
language L is in BPP, if there is a boolean predicate D(·, ·), computable in deterministic
polynomial time such that,

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 3/4

x 6∈ L =⇒ Pr
y

[D(x, y) = 1] ≤ 1/4,

where |y|, the number of random bits used, is polynomial in length of the input |x|.

Definition 5.11 (RP) RP was the first class defined to capture feasible probabilistic com-
putation, and simply stands for randomized polynomial time. A language L is in RP, if there
is a boolean predicate D(·, ·), computable in deterministic polynomial time such that,

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y

[D(x, y) = 1] = 0,

where |y|, the number of random bits used, is polynomial in length of the input |x|.

Definition 5.12 (ZPP) A language L is said to be in ZPP if there is a polynomial time
computable function D : {0, 1}∗×{0, 1}∗ 7→ {0, 1, ?} such that if x ∈ L, for any y, its output
D(x, y) ∈ {1, ?}, and if x 6∈ L, for any y, its output D(x, y) ∈ {0, ?}. Moreover, D should
have high success probability:

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y

[D(x, y) = 0] ≥ 1/2,

where |y|, the number of random bits used, is polynomial in length of the input |x|.

Exercise: Prove that ZPP is the class of languages with expected polynomial time algo-
rithms that never make any errors.

5.4.2 Amplification of BPP

In this section, we show that the probability of success of a BPP algorithm can be “amplified”
to be as high as exponentially close to 1, with only a polynomial amount of extra work. We
use the Chernoff bound in Theorem 5.4.
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Let L be a language accepted by a probabilistic polynomial time TM M , in the following
sense:

x ∈ L =⇒ Pr[M(x; r) = 1] ≥ 1

2
+ ε

x 6∈ L =⇒ Pr[M(x; r) = 1] ≤ 1

2
− ε

for random strings r of some polynomial length in n = |x|. Here, ε can be as low as 1/p(n)
for some fixed polynomial p(·). We wish to amplify the success probability of the algorithm.
In particular, we want to get exponentially close to 1, meaning, for any fixed polynomial
q(·), we want a machine M ′ with

x ∈ L =⇒ Pr[M ′(x; r′) = 1] ≥ 1− e−q(n)

x /∈ L =⇒ Pr[M ′(x; r′) = 1] ≤ e−q(n)

We require that M ′ run in polynomial time, and hence the length of the random string
|r′| used by M ′ should also be polynomially bounded.

The idea is to run M a large polynomial number of times, and take the majority vote.
Given an input x, M ′ will simply run the machine M on input x some 2m + 1 times, with
m ≥ q(n)/(4ε2), say, and accept x iff at least m+ 1 runs of M on x accept. In this process
we will need independent and uniformly chosen random r1, r2, · · · , r2m+1, with a total length
of the random string |r′| = O(|r|q(n)/ε2).

Let Xi be the 0-1 random variable indicating the i-th run M(x; ri), p = Pr[M(x; r) = 1],
and S =

∑
i(Xi−p). Suppose x 6∈ L, then p ≤ 1

2
−ε. Apply Theorem 5.4 with ∆ = (2m+1)ε,

we get

Pr[M ′ accepts x] = Pr[
∑

i

Xi ≥ m+ 1] ≤ Pr[S ≥ (2m+ 1)ε] ≤ e−q(n).

Similarly, if x ∈ L, then p ≥ 1
2

+ ε, and

Pr[M ′ rejects x] ≤ e−q(n).

When ε−1 is polynomially bounded, so is m = O(q(n)/ε2). This achieves exponentially small
error probability.

Exercise: What if the threshold is not 1/2?

5.5 Sipser-Lautemann Theorem: BPP ⊆ PH

Let L be a language in BPP. We will show that L ∈ Σp
2. Without loss of generality, there is

a polynomial time computable predicate D(·, ·) such that,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1− 1/m

77



x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1/m

where the number of random bits used m is polynomially bounded in input length n = |x|.
For any input x ∈ {0, 1}n, define its witness set Wx = {y ∈ {0, 1}m|D(x, y) = 1}. So, if
x ∈ L then the witness set Wx is “fat”, whereas, if x 6∈ L, the witness set is “thin”. We will
show how to test whether Wx is fat or thin in Σp

2 and thereby prove that L ∈ Σp
2. Let us

first formalize the notion of fat and thin sets and prove some properties of such sets.

We say that S ⊆ {0, 1}m is fat, if |S|/2m ≥ 1−1/m. S is said to be thin, if |S|/2m ≤ 1/m.
In general a subset S may be neither fat nor thin. But, the witness sets we are interested in
are always either fat or thin. For a string u ∈ {0, 1}m, define S ⊕ u = {s⊕ u|s ∈ S}. Here,
s⊕ u denotes the m-bit string obtained by bit-wise XOR of s and u: if s = s1s2 . . . sm and
u = u1u2 . . . um, then s ⊕ u = s1 ⊕ u1 · · · sm ⊕ um. Think of {0, 1}m as a vector space, S
as a subset of this space and u to be a vector in it. Then, S ⊕ u is nothing but the subset
obtained by “shifting” S by u.

We first discuss informally the effect of shifting fat and thin sets. Suppose S is fat. Then,
if we choose a suitable number of shift vectors u1, u2, . . . , ur at random, with high probability,
the union of these shifts will “cover” the entire space:

⋃r
i=1(S⊕ ui) = {0, 1}m. On the other

hand, if S is a thin, then for any set of vectors u1, u2, . . . , ur, where r < m, the shifts will not
cover the space:

⋃r
i=1(S⊕ui) 6= {0, 1}m. We will formally prove these claims. Observe that,

with these claims, it is easy to put L in Σp
2: the condition “there is a set of vectors such that

Wx shifted by these vectors covers the entire space” can be expressed as a Σp
2 predicate!

Lemma 5.13 Let S ⊆ {0, 1}m.

1. If S is thin, then for any r < m, for any set of r vectors, the shifts cannot cover the
entire space:

Pr
u1,u2,...,ur∈{0,1}m

[
r⋃

i=1

(S ⊕ ui) = {0, 1}m
]

= 0.

2. If S is fat, then with high probability, randomly chosen shifts will cover the entire space:

Pr
u1,u2,...,ur∈{0,1}m

[
r⋃

i=1

(S ⊕ ui) = {0, 1}m
]
≥ 1− 2m

mr

Proof. The first part is obvious. For any vectors u1, u2, . . . , ur, the union of the shifts has
cardinality, ∣∣∣∣∣

r⋃

i=1

(S ⊕ ui)

∣∣∣∣∣ ≤ r · |S|

Since we assume that r < m and S is thin, |⋃r
i=1(S ⊕ ui)| < 2m. Thus, the shifts cannot

cover the entire space {0, 1}m which has cardinality 2m.
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To prove the second part, we will bound the probability of the negation of the event
under consideration. A set of vectors u1, u2, . . . , ur do not cover the entire space means that
some vector y ∈ {0, 1}m is not covered by these shifts. So,

Pr
u1,u2,...,ur

[
r⋃

i=1

(S ⊕ ui) 6= {0, 1}m
]
≤

∑

y∈{0,1}m

Pr
u1,u2,...,ur

[
y 6∈

r⋃

i=1

(S ⊕ ui)

]

Fix any y ∈ {0, 1}m. By the properties of ⊕ function, we see that y 6∈ S ⊕ u iff y ⊕ u 6∈ S
(we use the fact that for any u, u ⊕ u = 0). Thus, y will not be covered by the r shifts iff
{y ⊕ u1, y ⊕ u2, . . . , y ⊕ ur} ∩ S = ∅. For any u chosen uniformly at random from {0, 1}m,
y⊕u is distributed uniformly in {0, 1}m. (We use the fact that the function fy : u 7→ y⊕u is
1-1.) So, for a randomly chosen u, Pr[y⊕u 6∈ S] ≤ 1/m, because S is fat. By independence,
it follows that

Pr
u1,u2,...,ur

[{y ⊕ u1, y ⊕ u2, . . . , y ⊕ ur} ∩ S = ∅] =
r∏

i=1

Pr
ui

[y ⊕ ui 6∈ S] ≤
(

1

m

)r

.

We conclude that,

Pr
u1,u2,...,ur

[
r⋃

i=1

(S ⊕ ui) 6= {0, 1}m
]
≤

∑

y∈{0,1}m

Pr
u1,u2,...,ur

[
y 6∈

r⋃

i=1

(S ⊕ ui)

]

=
2m

mr
.

Part 2 of the lemma follows from the above bound. ♣
Using Lemma 5.13, we can show that BPP ⊆ Σp

2. For a suitable value of r, the lemma
will show that if S is fat, then for some set of r vectors, the shifts would cover the entire
space, and if S is thin, then for any set of r vectors, the shifts would not cover the entire
space. The above property can be tested in Σp

2. Formal proof is given below.

Theorem 5.14 (Sipser–Lautemann) BPP ⊆ Σp
2.

Proof. Let L ∈ BPP. Without loss of generality, there is a polynomial time computable
predicate D(·, ·) such that,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1− 1/m

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1/m

where the number of random bits used m is polynomially bounded in input length n = |x|.
For an input x ∈ {0, 1}n, define its witness set Wx = {y|D(x, y) = 1}. If x ∈ L then the
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witness set Wx is fat, whereas, if x 6∈ L, the witness set is thin. Choose r = m/2. Then,
from Lemma 5.13, we have

x ∈ L =⇒ Pr
u1,u2,...,ur

[
r⋃

i=1

(Wx ⊕ ui) = {0, 1}m
]
≥ 1− 2m

mr

x 6∈ L =⇒ Pr
u1,u2,...,ur

[
r⋃

i=1

(Wx ⊕ ui) = {0, 1}m
]

= 0.

For large m ( m > 4 so that 2m < mm/2), the first probability > 0. So, if x ∈ L, there exists
r vectors such that the shifts cover the entire space, and if x 6∈ L, for any r vectors, the
shifts do not cover the entire space. Observe that, for any u1, u2, . . . , ur,

r⋃

i=1

(Wx ⊕ ui) = {0, 1}m ⇐⇒ ∀y ∈ {0, 1}m [∨r
i=1(y ⊕ ui ∈Wx)]

It follows that,

x ∈ L ⇐⇒ ∃u1, u2, . . . , ur∀y ∈ {0, 1}m [∨r
i=1(y ⊕ ui ∈ Wx)] .

y ⊕ ui ∈Wx simply means that D(x, y ⊕ ui) = 1. So we conclude that,

x ∈ L ⇐⇒ ∃u1, u2, . . . , ur∀y ∈ {0, 1}m [∨r
i=1(D(x, y ⊕ ui) = 1)] .

The predicate ∨r
i=1(D(x, y ⊕ ui) = 1) is testable in polynomial time, as r is polynomial in n

and D is a polynomial time predicate. We conclude that L ∈ Σp
2. ♣

BPP is closed under complementation. So, we have also shown that BPP ∈ Πp
2. We can

also prove this claim directly by exhibiting a Πp
2 predicate. To do that, we first rephrase

Lemma 5.13. Observe that, for any set S ⊆ {0, 1}m and u ∈ {0, 1}m, (S ⊕ u)c = Sc ⊕ u.
Hence, for any u1, u2, . . . , ur,

[
r⋃

i=1

(S ⊕ ui) = {0, 1}m
]
⇐⇒

[
r⋂

i=1

(Sc ⊕ ui) = ∅
]
.

Moreover, S is thin iff Sc is fat. So, Lemma 5.13 can be rephrased as follows. Suppose S is
fat. Then Sc is thin. Applying Part 1 of the lemma to Sc, we see that for any set of r < m
shift vectors, u1, u2, . . . , ur, the intersection of the shifts of S is non-empty. Now suppose
S is thin. Then Sc is fat. Applying Part 2 of the lemma to Sc, we see that for randomly
chosen r shift vectors u1, u2, . . . , ur, with high probability, the intersection of the shifts of S
is empty. Formally,

Lemma 5.15 Let S ⊆ {0, 1}m.
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1. If S is fat, then for any r < m, for any set of r vectors, the intersections of the shifts
is non-empty:

Pr
u1,u2,...,ur

[
r⋂

i=1

(S ⊕ ui) 6= ∅
]

= 1.

2. If S is thin, then with high probability, randomly chosen shifts will have an empty
intersection:

Pr
u1,u2,...,ur

[
r⋂

i=1

(S ⊕ ui) = ∅
]
≥ 1− 2m

mr

Applying Lemma 5.15 to witness sets, with r = m/2, (assuming m > 4 so that 2m < mm/2),
then

x ∈ L =⇒ ∀u1, u2, . . . , um

[
r⋂

i=1

(Wx ⊕ ui) 6= ∅
]

x 6∈ L =⇒ ∃u1, u2, . . . , um

[
r⋂

i=1

(Wx ⊕ ui) = ∅
]

The above property can be expressed as a Πp
2 predicate:

x ∈ L ⇐⇒ ∀u1, u2, . . . , um∃y [∧r
i=1(y ⊕ ui) ∈ Wx)]

5.6 Isolation Lemma

The isolation lemma provides a mechanism to approximately compute the size of some set
S ⊆ {0, 1}m, such as a BPP witness set. In this section, we state and prove the lemma. In
the subsequent sections, we use the lemma to give an alternative proof that BPP ⊆ Σp

2, and
also discuss approximate counting.

Let S and T be finite sets andH be a universal family of hash functions from S to T . Two
distinct elements x, y ∈ S are said to collide under a hash function h ∈ H, if h(x) = h(y).
We say that a hash function h isolates an element x ∈ S, if no element in S collides with x.
One can imagine that h “likes” x and gives it a separate seat in T to sit alone comfortably!
A set of hash functions {h1, h2, . . . , hr} is said to isolate an element x ∈ S, if one of these
function hi isolates x. The set of functions is said to isolate all of S, if for every element
x ∈ S, there is some function hi in the set that isolates x.

Suppose we choose r hash functions h1, h2, . . . , hr, uniformly and independently at ran-
dom from H. What is the probability that the set of these functions isolates all of S? The
answer depends on the size of S compared to the size of T and the value of r. Intuitively, if
S is sufficiently smaller than T and r is large enough, with high probability, the randomly
chosen set of functions will isolate all of S. On the other hand, if S is large compared to T
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and r is small enough, then there is not enough space in T to give “separate seats” for all
the elements in S. For suitable choices of |T | and r, we can make the probability of isolation
zero.

Lemma 5.16 (Isolation Lemma) Let H be a universal family of hash functions from S
to T . Let h1, h2, . . . , hr be chosen uniformly and independently at random from H, where
r > 1.

1. If |S| ≥ r|T |, then

Pr
h1,h2,...,hr

[{h1, h2, . . . , hr} isolates all of S] = 0.

2. Suppose |S|r+1 ≤ |T |r. Then,

Pr
h1,h2,...,hr

[{h1, h2, . . . , hr} isolates all of S] > 1− |S|
r+1

|T |r .

(In the Lemma, if r = 1 then we require |S| > |T |, the statement still holds.)

Proof. The first part of lemma is quite obvious. Any hash function h ∈ H can isolate at
most |T | − 1 elements in S (it can assign “separate seats” for some |T | − 1 elements in S
and then map all the other elements to the last “seat” in T ). So, any set of r hash functions
can together isolate at most r(|T | − 1) elements. As |S| ≥ r|T |, no set of r hash functions
can isolate all of S.

We next prove the second part of the lemma. Fix any distinct elements x, y ∈ S. From
the properties of universal family of hash functions, the probability that x and y collide
under h is 1/|T |. So, for any element x ∈ S,

Pr
h∈H

[h does not isolate x] ≤
∑

y∈S−{x}
Pr
h∈H

[x and y collide under h]

<
|S|
|T |

It follows that, for any x in S, if we choose h1, h2, . . . , hr uniformly and independently at
random,

Pr
h1,h2,...,hr∈H

[none of the hi isolates x] <

( |S|
|T |

)r

.

Finally, the probability that randomly chosen r hash functions do not isolate all of S can be
bounded by summing up over all possible elements in S:

Pr
h1,h2,...,hr∈H

[{h1, h2, . . . , hr} does not isolates all of S]

≤
∑

x∈S

Pr
h1,h2,...,hr∈H

[none of h1, h2, . . . , hr isolate x]

< |S| ×
( |S|
|T |

)r
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We conclude that

Pr
h1,h2,...,hr∈H

[{h1, h2, . . . , hr} isolates all of S ] > 1− |S|
r+1

|T |r

♣

5.7 BPP ⊆ Σ
p
2 - Another Proof Using the Isolation Lemma

This section shows how to use the isolation lemma to put BPP in Σp
2. We first present the

proof idea informally. Let L be a language in BPP, via a randomized algorithm that uses
m random bits, where m is polynomial in the input length. We assume that the algorithm
has been suitably amplified. We will fix parameters r and size of the target set T suitably
in Lemma 5.16. For any input x, let Wx ⊆ {0, 1}m be the set of witness strings on which
the algorithm accepts the input x. The parameters will be chosen appropriately, so that if
x ∈ L, Wx will be large enough that no set of r hash functions h1, h2, . . . , hr will isolate all
of Wx; on the other hand, if x 6∈ L, Wx will be small enough so that, with high probability,
randomly chosen r hash functions h1, h2, . . . , hr will isolate all of Wx, and in particular there
will exist some set of r hash functions that isolates all of Wx. Hence, x 6∈ L iff there exist
a set of r hash functions {h1, h2, . . . , hr} that isolates all of Wx. The later condition can be
expressed as a Σp

2 predicate, thereby placing L in Πp
2. A formal proof follows.

Theorem 5.17 BPP ⊆ Σp
2 ∩ Πp

2.

Proof. Let L ∈ BPP. We prove that L ∈ Πp
2. As BPP is closed under complementation, the

lemma follows. Without loss of generality, there is a deterministic polynomial time boolean
predicate D(·, ·) such that for any input x ∈ {0, 1}n,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1

2

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≤ 1

4m

where the number of random bits used m is polynomial in the input length n. Wolog we can
assume m is a power of 2. Fix r = m, and let T be a set of size 2m/(2m). (As it is usually
the case in such proofs, the above choices of parameters such as the extent of amplification,
value of r and size of |T | are not crucial. We can fix them in many ways to make the proof
work! One such setting is given above). Let H be a universal family of hash functions from
{0, 1}m to T . For any input x, let Wx = {y|D(x, y) = 1}. Suppose x ∈ L. Then,

|Wx| ≥ 2m−1 = r · |T |.
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So, Lemma 5.16 shows that no set of r hash functions {h1, h2, . . . , hr} from H isolates all of
Wx. On the other hand, suppose x 6∈ L. Then, from our choice of parameters,

|Wx|r+1

|T |r ≤ 1

4m
.

Again, Lemma 5.16 implies that if we choose h1, h2, . . . , hr uniformly and independently at
random from H,

Pr
h1,h2,...,hr

[{h1, h2, . . . , hr} isolates Wx] ≥ 1− 1

4m
.

In particular, it follows that,

x ∈ L =⇒ ∀h1, h2, . . . , hr[{h1, h2, . . . , hr} does not isolate Wx]

x 6∈ L =⇒ ∃h1, h2, . . . , hr[{h1, h2, . . . , hr} isolates Wx]

So, we have,
x 6∈ L ⇐⇒ ∃h1, h2, . . . , hr[{h1, h2, . . . , hr} isolates Wx].

Given a particular set of {h1, h2, . . . , hr}, the predicate “{h1, h2, . . . , hr} isolates Wx” can be
expressed as

(∀y ∈Wx)(∃1 ≤ i ≤ r)(∀y′ ∈Wx − {y})[hi(y) 6= hi(y
′)].

At first glance, it seems we need to write a Πp
3 predicate to express the above condition.

But, we can do better and express it as a coNP predicate, because ∃1 ≤ i ≤ r is a bounded
quantifier and can be eliminated. This is a general principle in logic, but to be totally
concrete, we have {h1, h2, . . . , hr} isolates Wx if and only if

(∀y ∈Wx){(∀y1 ∈Wx − {y})[h1(y) 6= h1(y1)] ∨ . . . ∨ (∀yr ∈Wx − {y})[hr(y) 6= hr(yr)]}

which is equivalent to

(∀y ∈Wx)(∀y1, . . . , yr ∈Wx − {y})[(h1(y) 6= h1(y1)) ∨ · · · ∨ (hr(y) 6= hr(yr)].

We conclude that, x 6∈ L if and only if

(∃h1, . . . , hr)(∀y ∈Wx)(∀y1, . . . , yr ∈Wx − {y})
[(h1(y) 6= h1(y1)) ∨ (h2(y) 6= h2(y2)) ∨ · · · ∨ (hr(y) 6= hr(yr)].

We have shown that L ∈ Πp
2. ♣

5.8 Approximate Counting Using Isolation Lemma

Using Sipser’s Isolation Lemma, Stockmeyer showed how to do approximate counting in PΣp
2 .

In fact, his technique shows approximate counting at the level of RPNP already. Let us be
more precise.
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Definition 5.18 (#P) #P is a function class. A function f : {0, 1}∗ → N is in #P, iff
there is a p-time NTM M , such that f(x) = # of accepting paths of M(x).

So typically any NP langugae has a “counting” version; e.g., #SAT(ϕ) is the number of
satisfying assignments to the formula ϕ; #HAM(G) is the number of Hamiltonian circuits in
G. One can easily develop a notion of polynomial time reduction for these functions. It is no
surprise that both functions #SAT and #HAM are #P-complete under this reduction. This
follows from the fact that Cook’s reduction is parsimonious, i.e., they preserve the number
of solutions. (For instance, in Cook’s reduction from a generic NP langugae to SAT, every
accepting computation is in a unique way associated with a satisfying assignment.)

Less obvious, yet also #P-complete, is the permanent function: For any n by n matrix
A = (aij),

per(A) =
∑

σ∈Sn

a1,σ1a2,σ2 . . . an,σn,

where the sum is over all permutations σ : i 7→ σi. In other words, the permanent function is
defined much as the determinant function, except there are no more minus signs. For a 0-1
matrix, per(A) counts the number of perfect matchings of the bipartite graph with matrix
A.

Valiant showed that the permanent function is also #P-complete (even though the deci-
sion problem of graph matching is in P.)

Definition 5.19 (PP) PP stands for probabilistic polynomial time. A language L is in
PP, if there is a boolean predicate D(·, ·), computable in deterministic polynomial time such
that,

x ∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y∈{0,1}m

[D(x, y) = 1] < 1/2,

where the number of random bits used, m, is polynomial in length of the input |x|.

Note that, unlike BPP and RP, every polynomial time NTM defines a PP language,
whereas not every polynomial time NTM defines a language in BPP or RP. BPP, RP and
ZPP are “promise classes” in the sense that a polynomial time predicate (or equivalently a
polynomial time NTM) defines a language in BPP, RP or ZPP only if it satisfies some global
conditions. Moreover, these conditions are over all input length n, and not decidable in
general. Therefore we do not have an enumeration of these classes simply by an enumeration
of their acceptors. This implies that we do not have a universal language, nor a complete
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language by this process. It is an open problem whether such complete languages exist. (Of
course if BPP = P, then they indeed exist.) For PP, one can easily enumerate the class, and
therefore complete languages exist. For example, the set of Boolean formulae on n variables
having at least 2n−1 satisfying assignments is such a language.

It is also easy to see that

Theorem 5.20

PPP = P#P .

Next we discuss approximate counting. Given a formula ϕ over n variables, the goal is to
approximately count the number of satisfying truth assignments of ϕ. Let S = {σ|ϕ(σ) = 1}
be the set of all such assignments. We want to compute the first c · log n bits of |S|, where
c is any constant. This can be done by a polynomial time algorithm using a Σp

2 oracle, as
shown by Stockmeyer. In fact, his technique can accomplish the same task with just an NP
oracle, if we are ready to settle for a randomized polynomial time algorithm.

Our main tool is the isolation lemma, Lemma 5.16. We first rephrase the lemma in a
more suitable format:

Lemma 5.21 Let S ⊆ {0, 1}n, and let H be a family of 2-universal hash functions from
{0, 1}n to {0, 1}k. For all m ≥ k, choose h1, h2, . . . , hm independently at random from H.

1. if |S| ≤ 2k−1 then

Prh1,...,hm [∀x ∈ S some hi isolates x ] ≥ 1− 1

2m−k+1

2. if |S| > m2k then
Prh1,...,hm [∀x ∈ S some hi isolates x ] = 0.

The idea is to try all values of k from 1 to n, and attempt to find a k such that |S| ≈ 2k.
(We may assume our S 6= ∅; at any rate with one query to SAT we can verify this.) For
any ∅ 6= S ⊆ {0, 1}n, there is some kS, where 1 ≤ kS ≤ n, such that 2kS−1 ≤ |S| ≤ 2kS .
If we take every k in the range 1 ≤ k ≤ n + 1, and randomly pick m = 2n hash functions
h1, . . . , hm : {0, 1}n → {0, 1}k, then for each k ≥ kS + 1, we would get isolation with
probability ≥ 1− 1

2n . For each k we ask the SAT oracle, whether the chosen set of h1, . . . , hm

has the property that “∀x ∈ S, one of hi isolates x”. Since there are only m = 2n hash
functions this is a SAT query. We pick the least k0 such that the oracle confirms isolation.
Then k0 ≤ kS +1, with probability ≥ 1− 1

2n . (We abort if for no k the chosen hash functions
achieve isolation; this happens with exponentially small probability.) Also by the second
part of Lemma 5.21, we know definitely |S| ≤ 2n2k0 . Denote by U = 2n2k0 , then with high
probability,

U

8n
≤ |S| ≤ U.
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This give us a randomized polynomial time algorithm using a SAT oracle to approximate
|S| within O(n). We’d like to do better. To do this, we use a little trick to amplify the
accuracy.

First we build a set S ′ such that

S ′ = S × S × · · · × S︸ ︷︷ ︸
m times

⊆ {0, 1}nm

where m is polynomial in n. Then we run the previous algorithm on the set S ′ to get an
estimate U ′ for S ′ such that

U ′

8nm
≤ |S ′| ≤ U ′.

Now we set e(S) = (U ′)1/m. It follows that

e(S)

(8nm)1/m
≤ |S| ≤ e(S).

By choosing m to be a sufficiently large polynomial in n, we can get

e(S) ·
(

1− 1

nc

)
≤ |S| ≤ e(S),

for any constant c.

5.9 Unique Satisfiability: Valiant–Vazirani Theorem

Assuming NP 6= P, SAT cannot be solved in polynomial time. One may suspect that it is
difficult to design a polynomial time algorithm for SAT because the input formula may have
myriad truth assignments and it is hard to get hands on one of them. This suspicion leads
to the following interesting problem, called USAT (Unique SAT). We are given a formula ϕ
which is guaranteed to be either unsatisfiable or has exactly one satisfying truth assignment.
Is USAT solvable in polynomial time? Here we show some evidence that it is unlikely. We
prove that if USAT is solvable in polynomial time, then NP = RP.

Theorem 5.22 Suppose there is a polynomial time algorithm A, which for a given boolean
formula ϕ, answers

A(ϕ) =





No if ϕ has no satisfying assignments;
Yes if ϕ has exactly one satisfying assignment;

Yes/No if ϕ has more than one satisfying assignments.

Then NP = RP.
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Proof. Note that the algorithm A may output anything (YES or NO) if it is given a
formula with more than one satisfying truth assignment. Assuming A runs in polynomial
time, we design a RP algorithm for SAT. The idea is to use some coin tosses and convert ϕ
into more constrained formula ϕ′, so that if ϕ is unsatisfiable, ϕ′ will also be unsatisfiable.
And if ϕ is satisfiable, with non-trivial probability, exactly one of the satisfying assignments
of ϕ will satisfy ϕ′. Once we are successful in obtaining such a ϕ′, we can apply the algorithm
A to it.

To start with assume that ϕ is satisfiable and let #ϕ be the number of satisfying truth
assignments of ϕ. In order to convert ϕ to ϕ′, the algorithm needs an estimate for #ϕ. It is
computationally hard to estimate #ϕ. So, we simply pick a k with 1 ≤ k ≤ n at random!
The hope is that 2k−1 ≤ #ϕ ≤ 2k. The probability that k satisfies the above condition is
1/n, as long as #ϕ 6= 0. Assume that we are lucky and k indeed satisfies the above condition.
Next we choose a set T of size 2k+1. If 2k−1 ≤ #ϕ ≤ 2k, then 2(#ϕ) ≤ |T | ≤ 4(#ϕ), meaning
|T | is neither too big nor too small compared to #ϕ. We then setup a universal family of
hash functions H from the set of all assignments {0, 1}n to T , and we randomly pick a hash
function h from H and an element α from T . We will show that, with non-trivial probability,
there will be a unique satisfying truth assignment x such that h(x) = α. So, we consider
the question: “Is there a truth assignment t such that ϕ(t) = 1 and h(t) = α”. By Cook’s
theorem this can be converted to a SAT question ϕ′, and it will have a unique satisfying
assignment iff there is a unique t satisfying ϕ, and is mapped to α by h. If we are lucky in
choosing the “correct” k, h and α, ϕ′ will have exactly one satisfying truth assignment.

Algorithm for SAT:
Input: A formula ϕ over n variables.

1. Choose a number 1 ≤ k ≤ n uniformly at random.

2. Let T = {0, 1}k+1, let H be a universal family of hash functions from {0, 1}n to T .

3. Choose h ∈ H and α ∈ T uniformly at random.

4. Let ϕ′ be the Boolean formula from Cook’s theorem, encoding the NP predicate “(∃t ∈
{0, 1}n)[(ϕ(t) = 1) ∧ (h(t) = α)]”.

5. Run the procedure A for USAT on ϕ′. Accept ϕ iff A(ϕ′) = accept and the truth
assignment extracted using A via self-reducibility indeed satisfies ϕ.

It is clear that, if ϕ is unsatisfiable then our algorithm will reject it with probability one. So,
assume that ϕ is satisfiable. Then over the random choices of k, h and α, we show that our
algorithm accepts ϕ with probability Ω(1/n). This probability can then be easily amplified,
making it an RP algorithm.

First of all suppose 2k−1 ≤ #ϕ ≤ 2k. The probability that k satisfies the above condition
is 1/n. Under this assumption, we have 2(#ϕ) ≤ |T | ≤ 4(#ϕ). We say that two satisfying
distinct truth assignments a and b (with a 6= b) collide under h, if h(a) = h(b). Over the
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random choice h, let C be the random variable that counts the number of collisions. We
first show that the expected number of collisions E [C] is small. For any fixed a 6= b, the
probability that a and b collide is 1/|T | (this follows from the definition of universal family
of hash functions). For any pair of satisfying truth assignments a 6= b, let Xa,b be a 0-1
random variable such that Xa,b = 1, if a and b collide under h and Xa,b = 0, if they don’t
collide. Its expectation is E [Xa,b] = 1/|T |. The number of collisions C is the sum of over all
Xa,b. So, expectation of C is

E [C] =
∑

(a,b)

E [Xa,b] .

The summation above ranges over all distinct pairs of satisfying truth assignments. The
number of such pairs is

(
#ϕ
2

)
. Hence,

E [C] =

(
#ϕ

2

)
1

|T | ≤
#ϕ

4
.

Using Markov’s inequality, we have

Pr

[
C ≥ #ϕ

3

]
≤ E[C]

#ϕ/3
≤ 3

4
.

So, with probability at least 1/4, the number of collisions C is at most #ϕ/3. In general,
if there are c collisions, at most 2c satisfying truth assignments can participate in collisions.
(This can be shown easily by the inductive argument: Take any such x and pick any y 6= x
such that h(x) = h(y). Now remove x and y. There can be at most c − 1 collisions left
among the remaining points, and thus at most 2c − 2 points.) Thus, in our case, at most
2/3 · #ϕ satisfying truth assignments can participate in some collision. It follows that at
least #ϕ/3 satisfying truth assignments are mapped to a unique image. Call these ≥ #ϕ/3
images in T good: i.e., there is a unique satisfying assignment a such that h(a) = t. Recall
that |T | ≤ 4(#ϕ). So, at least 1/12 fraction of elements in T are good. Therefore, with
probability at least 1/12, the randomly picked element α is good.

We can now lower bound the probability that ϕ′ has a unique satisfying truth assign-
ment. Assume that ϕ is satisfiable. Then, with probability 1/n, the number k chosen by
the algorithm satisfies 2k−1 ≤ #ϕ ≤ 2k. Assuming k satisfies the above condition, with
probability at least 1/4, the number of collision C is at most #ϕ/3. Assuming C ≤ #ϕ/3,
with probability at least 1/12, the randomly chosen α is good. If α is good, then ϕ′ has
exactly one satisfying truth assignment. Putting together,

Pr
k,h,α

[ϕ′ has a unique satisfying truth assignment] ≥ 1

n
· 1
4
· 1

12
=

1

48n

As we noted already, if ϕ is unsatisfiable, our algorithm has zero probability of accepting
it. If ϕ is satisfiable, our algorithm accepts it with probability at least 1/(48n). So our
algorithm is an RP algorithm with success probability 1/(48n). We can amplify this success
probability, as usual, by running the algorithm multiple times. For example, by running the
algorithm 96n times, the success probability can be amplified to 1/2. ♣
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5.10 Efficient Amplification

Suppose we have some language L in RP. Thus membership of x in L can be determined by
running over witness strings y ∈ {0, 1}n, for some n = |x|O(1), and achieving

x ∈ L =⇒ Pr
y

[D(x, y) = 1] ≥ 1/2

x 6∈ L =⇒ Pr
y

[D(x, y) = 1] = 0.

A naive method of amplification of this probability can be obtained by running independent
y1, . . . , yk ∈ {0, 1}n. Thus, with kn random bits, we can achieve error probability 1/2k. A
similar process with majority vote can be carried out for BPP langugaes, justified by the
Chernoff bound. This probability is the ratio of the number of “bad” coin flips (2k(n−1))
over the total number of coin flips (2kn). Is there any way to achieve this reduction of error
probability more efficiently?

5.10.1 Chor-Goldreich Generator

It turns out that there are several methods. Here is a first try. Let {hs} be a family of
universal hash functions from {0, 1}n → {0, 1}n. Now by randomly choosing s, we simply
take the pairwise independent samples yi = hs(i) as “witness” strings, for i = 1, . . . , k. (We
consider i = 1, . . . , k as embedded in {0, 1}n, as long as k ≤ 2n.) For our RP langugae L,
clearly if x 6∈ L then all D(x, yi) = 0. Suppose x ∈ L, we estimate the error probability that
all D(x, yi) = 0. We do this by using the Chebechev bound. Let Zi be the 0-1 r.v. such that
Zi = 1 iff D(x, yi) = 1.

Theorem 5.23 If x ∈ L, then

Pr
s

[(∀1 ≤ i ≤ k)D(x, yi) = 0] ≤ 1/k.

The proof is a simple application of the Chebechev bound. Let x ∈ L. Then Zi are pair-wise
independent with expectation µ = E[Zi] = Pry[D(x, y) = 1] ≥ 1/2, and as a 0-1 r.v. Zi has
variance ≤ 1/4. Then

Pr
s

[(∀1 ≤ i ≤ k)D(x, yi) = 0] = Pr
s

[
k∑

i=1

Zi = 0

]
≤ Pr

s

[∣∣∣∣∣

k∑

i=1

Zi − kµ
∣∣∣∣∣ ≥ k/2

]
≤ 1/k.

This is called the Chor-Goldreich generator, which achieves error 1/k with 2n bits. Of
course one can not use this generator to achieve exponentially small error probability since
this would require exponentially many evaluations of the hash function.
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5.10.2 Hash Mixing Lemma and Nisan’s Generator

The following generator of Nisan’s was primarily devised for space bounded computations.
But it can also be used for deterministic amplification.

Again let {hs} be a family of universal hash functions from {0, 1}n → {0, 1}n. Pick
uniformly and independently s1, . . . , sk, and consider the following recursive definition of
Gi(y; s1, . . . , si), for 0 ≤ i ≤ k. First G0(y) = y, and for i ≥ 0,

Gi+1(y; s1, . . . , si+1) = Gi(y; s1, . . . , si) ◦Gi(hsi+1
(y); s1, . . . , si),

where ◦ denotes concatenation. Thus, G1(y; s1) = y ◦ hs1(y), G2(y; s1, s2) = y ◦ hs1(y) ◦
hs2(y) ◦ hs1(hs2(y)), etc. It may appear that in G1(y; s1), it is not very clever since it uses
3n bits to produce only 2n bits. The genius of this generator comes when you realize that
this generator exponentially stretches its input seed. For Gk, it takes (2k + 1)n bits, and
produces 2kn bits. Also note that for any particular bit position, it is very simple to compute
this bit in a random access manner, without recursion and without even having to compute
the earlier bits sequentially. For Gk, the i th block of n bits can be directly obtained as
follows. Let the k-bit binary representation of i be ikik−1 . . . i1, then the i th block of n
bits is hi1

s1
hi2

s2
. . . hik

sk
(y), where h1

sj
denotes hsj

and h0
sj

denotes the identity function. With
read-only access to the hash function seeds s1, s2, . . . , sk, this can be computed in space
O(k + n). These considerations will become important for its primary intended purpose for
space bounded computations; but they are not crucial for our purpose of amplification here.

How good are these bits? The following lemma is the technical tool to address this
question.

Lemma 5.24 (Hash Mixing Lemma) Let ε = 2−n/3. Then for all subset E ⊆ {0, 1}n ×
{0, 1}n, for all but an ε/4 fraction of s,

| Pr
y∈{0,1}n

[y ◦ hs(y) ∈ E]− µ[E] | < ε,

where, µ[E] is the probability measure of the set E, i.e., µ[E] = Pry,z∈{0,1}n[y ◦ z ∈ E].

Proof. We want to estimate the fraction s such that it is “bad”:

| Pr
y∈{0,1}n

[y ◦ hs(y) ∈ E]− µ[E] | ≥ ε. (5.1)

For any fixed y we define the indicator random variable (random over s)

Zhs
y =

{
1 if y ◦ hs(y) ∈ E
0 otherwise.

We can write Pry∈{0,1}n[y ◦ hs(y) ∈ E] as a sum of pair-wise independent random variables
(random over s)

1

2n

∑

y∈{0,1}n

1[y◦hs(y)∈E] =
1

2n

∑

y

Zhs
y ,

91



then it has expectation
1

2n

∑

y∈{0,1}n

µ′[Ey] = µ[E],

where Ey is the fibre-set over y, Ey = {z | y ◦ z ∈ E}, and µ′[Ey] is the 1-dimensional
probabiliy measure µ′[Ey] = |Ey|/2n.

Therefore we can use Chebechev inequality to estimate this deviation. Thus the “bad”
event (5.1) over s has probability at most

1

ε2
Var

[
1

2n

∑

y

Zhs
y

]
=

1

ε2
1

22n

∑

y

Var[Zhs
y ] (5.2)

≤ 1

ε22n4
, (5.3)

where the first equality uses the fact that Zhs
y are pair-wise independent (over distinct y’s),

and the second inequality follows from the trivial fact that a 0-1 random variable has variance
at most 1/4.

Hence, for ε = 2−n/3, for all but a ε/4 fraction of s,

| Pr
y∈{0,1}n

[y ◦ hs(y) ∈ E]− µ[E] | < ε.

♣
We now return to our problem of deterministic amplification for RP languages. Suppose

x ∈ L, and the witness set is Wx ⊆ {0, 1}n. Assume n ≥ 9 and µ(Wx) ≤ 1/2 is the error
probability of a single random try.

Theorem 5.25 If x ∈ L then

Pr[Gk(y; s1, . . . , sk) ⊆Wx] ≤ (µ(Wx))
2k

+ (k/4 + 2)ε,

where ε = 2−n/3.

Proof. The intuitive idea is to use the kε term to take care of the exceptional probability
of “bad” hash functions hsi

in k “rounds”, and for “good” hash functions, the estimate
should be as if it were uniform, with error term O(ε).

For 1 ≤ i ≤ k, fixing any s1, . . . , si−1, define the set

Ai = {y | Gi(y; s1, . . . , si−1) ⊆ Wx}

We will apply the Hash Mixing Lemma to the set Ei = Ai × Ai. We say that si is bad for
Ei (with respect to the fixed s1, . . . , si−1) if si belongs to the ε/4 fraction of exceptional s in
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the Hash Mixing Lemma. Note that which si is bad depends on s1, . . . , si−1. However, for
any s1, . . . , si−1 there can be at most ε/4 fraction of s that can be bad, the rest are “good”.

We will use the integration notation
∫

over the probability measures on s and y. Then

Pr[Gk(y; s1, . . . , sk) ⊆Wx] (5.4)

=

∫

s1 bad

+

∫

s1 good

∫

s2 bad

+ · · · +
∫

s1 good

∫

s2 good

. . .

∫

sk−1 good

∫

sk bad

(5.5)

+

∫

s1 good

∫

s2 good

. . .

∫

sk good

∫

y

. (5.6)

The first k terms are all ≤ ε/4. Note that for the i th term, each
∫

s1
, . . . ,

∫
si−1

is over a

probability measure, so that the upper bound ε/4 on
∫

si bad
passes through.

Now we fix s1, . . . , sk where si is good on Ei for s1, . . . si−1, and consider
∫

y

= Pr
y

[Gk(y; s1, . . . , sk) ⊆Wx].

Write β = µ(Wx). Then β ≤ 1/2. We will prove by induction that

∫

y

≤ β2k

+ 2ε.

Any upper bound on this probability becomes an upper bound of
∫

s1 good

∫
s2 good

. . .
∫

sk good

∫
y
,

as each
∫

si
is over a probability measure.

For k = 0, trivially
∫

y
= β. For k = 1, by the Hash Mixing Lemma

∫

y

≤ Pr
y,z

[y ◦ z ⊆ Wx] + ε ≤ β2 + ε.

Similarly, for k = 2,
∫

y

≤ Pr
y,z

[G1(y; s1) ◦G1(z; s1) ⊆Wx] ≤ (β2 + ε)2 + ε ≤ β22

+ 2ε,

since 2β2 + ε ≤ 1. For the general Gk+1, with k ≥ 2,
∫

y

≤ (β2k

+ 2ε)2 + ε ≤ β2k+1

+ 2ε.

Here we used n ≥ 3 and therefore ε ≤ 1/8.

This proves that

Pr[Gk(y; s1, . . . , sk) ⊆Wx] ≤ (µ(Wx))
2k

+ (k/4 + 2)ε,
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For k ≥ 3, a cleaner expression holds:

Pr[Gk(y; s1, . . . , sk) ⊆Wx] ≤ (µ(Wx))
2k

+ kε.

♣
In terms of the number of random bits needed to achieve error probability 2−k, Nisan’s

generator uses O(n log k) bits.

5.10.3 Leftover Hash Lemma and Impagliazzo-Zuckerman Gener-
ator

Take ` and k as integer parameters. (A reasonable choice will be ` ≈ k ≈ √n to balance
out the bounds.) This generator produces k + 1 blocks of n-bits each, using a source of
3n+ k` bits. Let {hs} be a family of universal hash functions from {0, 1}n → {0, 1}n−`. The
generator G is defined from {0, 1}2n × {0, 1}n × ({0, 1}`)k → ({0, 1}n)k+1 as follows:

G(s, Y1, Z1, . . . , Zk) = Y1 ◦ Y2 ◦ · · · ◦ Yk+1,

where ◦ denotes concatenation, s ∈ {0, 1}2n, Y1 ∈ {0, 1}n, Zi ∈ {0, 1}`, and

Yi+1 = hs(Yi) ◦ Zi,

for 1 ≤ i ≤ k.

The way this should be read intuitively is this: We first take Y1 as is. When we use Y1

to test for membership of an RP language, not all of n-bits of randomness in Y1 is used. So
we should use a hash function to “extract” some “leftover” randomness, getting hs(Y1). We
supply some fresh true random bits Z1 to make up Y2. Then we repeat this process at Y2,
until Yk.

How good is this generator? The technical tool to address this question is the following
Leftover Hash Lemma. Before that we need definitions.

For any discrete probability distribution P and Q on a finite set X, the `1-distance is
defined as

||P −Q||1 =
∑

x∈X

|Px −Qx|,

where Px and Qx denote the probability of x ∈ X under P and Q respectively. For any event
E ⊆ X, the difference in probability |P (E)−Q(E)| = |∑x∈E Px −

∑
x∈E Qx| ≤ ||P −Q||1.

In fact separating out those Px > Qx from Px ≤ Qx, it is easy to see that

||P −Q||1 = 2 max
E
|P (E)−Q(E)|,

i.e., twice the maximum difference in probability. (This quantity maxE |P (E) − Q(E)| is
called the statistical distance between P and Q. However, some authors also call ||P −Q||1
their statistical distance.)
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A distribution P is caled ε-uniform if ||P −U ||1 ≤ ε, where U is the uniform distribution
on the same set (same support) as P .

Similarly we can define the `2-distance

||P −Q||2 =

√∑

x∈X

(Px −Qx)2.

The collision probability c(P ) is defined as

c(P ) = Pr
x,x′∈X

[x = x′] =
∑

x∈X

P 2
x ,

where x and x′ are independently taken according to P .

The next lemma is a simple application of the Cauchy-Schwarz inequality.

Lemma 5.26 If c(P ) ≤ 1+ε2

|X| , then P on X is ε-uniform.

Proof. By Cauchy-Schwarz,

||P − U ||21 ≤ |X|
∑

x∈X

(Px −
1

|X|)
2 = |X|

(
c(P )− 1

|X|

)
≤ ε2.

♣
In the next lemma we want to compute the collision probability of s◦hs(y) when we have

some restriction of y (such as y is taken from some (non)-witness set of some RP language.)

Lemma 5.27 Let s and y be taken uniformly and independently from S and Y ′ ⊆ Y , and
let hs be a hash function from Y to T . Let P be the probability distribution s ◦hs(y), and let
X = S × T . Then

c(P ) =
1 + |T |

|Y ′|
|X| .

Proof. We simply compute, taking s, s′ ∈ S and y, y ∈ Y ′ uniformly and independently,

c(P ) = Pr[(s = s′) ∧ (hs(y) = hs′(y
′))]

=
1

|S| Pr[hs(y) = hs′(y
′)|s = s′]

=
1

|S| (Pr[y = y′] + Pr[y 6= y′] · Pr[hs(y) = hs(y
′)|y 6= y′])

≤ 1

|S|

(
1

|Y ′| + 1 · 1

|T |

)

=
1

|X| ·
(

1 +
|T |
|Y ′|

)
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♣
With the above notations, applying the previous two lemmas in sequence,

Lemma 5.28 (Leftover Hash Lemma) The distribution s ◦ hs(y) is ε-uniform, where
ε =

√
|T |/|Y ′|.

Now we are ready to prove

Theorem 5.29 For x ∈ L so that µ(Wx) ≤ 1/2,

Pr[G(s, Y1, Z1, . . . , Zk) ⊆Wx] ≤ (µ(Wx))
k+1 + 2−(`+1)/2.

Proof. The intuitive idea of the proof is as follows. We first charge µ(Wx) for the first
Y1 ∈ Wx. Then on the condition that Y1 ∈ Wx, the hashed value hs(Y1) with appended
uniform bits Z2 makes a distribution quite close to uniform, and upon replacing hs(Y1) ◦ Z2

by n true random bits Ŷ2 we only pay a small price, and an inductive argument takes over.

Now we give the proof. Fix `, we induct on k. Let

ek = Pr[G(s, Y1, Z1, . . . , Zk) ⊆ Wx],

where the probability is over all the unform and independent random choices of s, Y1, Z1, . . . , Zk.
Clearly e0 = µ(Wx). For k ≥ 1,

ek = µ(Wx) Pr[G(s;Y2, Z2, . . . , Zk) ⊆Wx | Y1 ∈Wx],

where Y2 = 〈hs(Y1) ◦ Z1〉. The probability is still over all s, Y1, Z1, . . . , Zk, except now we
have the condition that Y1 ∈Wx.

Thus we can consider Wx as our subset Y ′ in Lemma 5.27, and estimate the statistical
distance between the distributions

〈s ◦ Y2 ◦ Z2 ◦ . . . ◦ Zk〉

and

〈s ◦ Ŷ2 ◦ Z2 ◦ . . . ◦ Zk〉
where Ŷ2 is independent and uniform over {0, 1}n, the same length as Y2 = 〈hs(Y1) ◦ Z1〉.
Let ε =

√
2n−`/(µ(Wx)2n) = 1/

√
2`µ(Wx) as in Leftover Hash Lemma, then

Pr[G(s, Y2, Z2, . . . , Zk) ⊆Wx | Y1 ∈Wx] ≤ Pr[G(s, Ŷ2, Z2, . . . , Zk) ⊆Wx] + ε/2,

as the probability over any event, such as the behavior under G, under these two distributions
can only differ by at most ε/2, half the `1-norm distance.
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It follows that,
ek ≤ µ(Wx)(ek−1 + ε/2).

We will inductively assume

ek−1 ≤ (µ(Wx))
k + 2−(`+1)/2,

then we have

ek ≤ µ(Wx)


(µ(Wx))

k + 2−(`+1)/2 +
1

2
√

2`µ(Wx)


 ≤ (µ(Wx))

k+1 + 2−(`+1)/2.

The last inequality follows from the fact that µ(Wx) ≤ 1/2, and
√
µ(Wx)/2` ≤ 2−(`+1)/2.

♣

5.10.4 Expander Mixing Lemma

Let G = (V,E) be a d-regular undirected graph with n = |V | nodes. The adjacency matrix
of G is a symmetric 0-1 matrix defined as

M(i, j) =

{
1 if {i, j} ∈ E
0 otherwise.

Any real symmetric matrix has n real eigenvalues λ0, λ1, . . . , λn−1 (counting multiplicity)
and n corresponding orthogonal unit eigenvectors v0, v1, . . . , vn−1. Thus the inner product
〈vi, vj〉 = δij, andMvi = λivi. It is clear that the all-1 vector is an eigenvector with eigenvalue
d. Normalizing we let v0 = 1√

n
(1, 1, . . . , 1)T , and λ0 = d. Let

λ = max
1≤i≤n−1

|λi|

denote the second largest eigenvalue in absolute value. The gap between d and λ controls
the expansion property of G.

We can express every vector v in terms of the eigenvectors v =
∑

0≤i≤n−1 αivi, then
Mv =

∑
0≤i≤n−1 αiλivi.

For any two sets A,B ⊆ V , let E(A,B) denote the set of ordered pairs of vertices which
are also edges of G,

E(A,B) = {(a, b) | a ∈ A, b ∈ B, {a, b} ∈ E}.

What should the size of E(A,B) be approximately? If we fix A, and randomly pick a subset
B of a certain cardinality |B|, then |E(A,B)| is a sum of random variables X1 + . . .+X|B|,
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where each Xj is the number of ordered pairs of the form (a, bj), such that {a, bj} ∈ E,
where a ∈ A and bj is the j th element of the set B. These Xj are not independent; but each
bj is still uniformly distributed on V . Each Xj can be further expressed as a 0-1 sum of |A|
many 0-1 random variables, Xj = X1,j + . . . +X|A|,j , where each Xi,j is the contribution of
the i th element ai of A to Xj. Clearly then, the expectation E[Xi,j ] = d/n, and |E(A,B)|
has expectation d|A||B|/n.

The following lemma says |E(A,B)| is close to this average, the extent to which this is
close is controlled by λ.

Lemma 5.30 (Expander Mixing Lemma) For all A,B ⊆ V ,

∣∣∣∣|E(A,B)| − d|A||B|
n

∣∣∣∣ ≤ λ
√
|A||B| ≤ λn.

Proof. Express the charecteristic functions χA and χB in terms of the eigenvectors,

χA =
∑

0≤i≤n−1

αivi, and χB =
∑

0≤i≤n−1

βivi,

where αi = 〈χA, vi〉 and βi = 〈χB, vi〉. Clearly α0 = |A|/n and β0 = |B|/n.

Our proof tries to separate out the “main term” and the rest in the sum

|E(A,B)| =
∑

i∈A,j∈B

M(i, j)

= χT
AMχB

=

(
∑

0≤i≤n−1

αivi

)
·
(

∑

0≤i≤n−1

βiλivi

)

=
∑

0≤i≤n−1

λiαiβi

=
d|A||B|

n
+

∑

1≤i≤n−1

λiαiβi

Thus,
∣∣∣∣|E(A,B)| − d|A||B|

n

∣∣∣∣ ≤ λ
∑

1≤i≤n−1

|αiβi|

≤ λ||α||2||β||2
= λ||χA||2||χB||2
= λ

√
|A||B|

≤ λn
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♣
There is an alternative way to state this result that brings home the similarity to the

Hash Mixing Lemma. Consider either (1) taking a uniform x ∈ V and then taking a uniform
neighbor es(x) (where s picks one of d values uniformly), or (2) taking two independent and
uniform points x and y in V . Then for all A,B ⊆ V ,

|Pr
x,s

[x ∈ A, es(x) ∈ B]− Pr
x,y

[x ∈ A, y ∈ B]| ≤ λ/d.

Note that the first term is |E(A,B)|
nd

, and the second term is |A||B|
n2 , then

∣∣∣∣
|E(A,B)|

nd
− |A||B|

n2

∣∣∣∣ =
1

nd

∣∣∣∣|E(A,B)| − d|A||B|
n

∣∣∣∣ ≤
λ

d
.

Expander graphs are those with a large gap between λ and d = λ0. One can explicitly
construct expander graph families with n→∞, and with constant d, and λ ≤ 2

√
d.

For all n′ and d′, one can construct expander graphs with n′ ≤ n ≤ 2n′ and d′ ≤ d ≤ 2d′,
and achieves λ ≤ d9/10.

A simple application is the following Karp-Pippenger-Sipser generator. Consider an
expander graph with vertex set {0, 1}n, and degree d. Assume λ ≤ d9/10. With “seed”
z ∈ {0, 1}n, G(z) produces all d neighbors of z: G(z) = {z1, . . . , zd}.

Theorem 5.31 For x ∈ L so that µ(Wx) ≤ 1/2,

Pr[G(z) ⊆Wx] ≤ 2

(
λ

d

)2

.

Proof. Let A be the set of vertices all of whose neighbors are in Wx. Let B = Wx. Then
E(A,B) = ∅. By Expander Mixing Lemma,

∣∣∣∣0−
d|A||Wx|

2n

∣∣∣∣ ≤ λ
√
|A||Wx|.

Since |Wx| ≥ 2n/2, we get

|A|
2n
≤ 2

(
λ

d

)2

.

♣

5.10.5 Ajtai-Komlós-Szemerédi Generator

The idea of using expander graphs can be significantly furthered. The intuitive idea is that,
after the initial random vertex, one can take a random walk on the expander graph. If the
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graph has vertex set {0, 1}n, and constant degree d, then each additional step of the random
walk takes only O(1) random bits. So if we take k steps, we will use only n+O(k) bits. In the
meanwhile the names of the vertices the random walk visited form k blocks of n-bits each.
Conditional on the previous vertices being in (or not in) the witness set Wx ⊆ {0, 1}n, the
properties of the expander graph ensure that the random walk tends to “disperse” quickly,
and therefore these names of the vertices on the random walk in a way simulate true random
samples.

Consider an expander graph with vertex set {0, 1}n, and constant degree d. We will as-
sume λ/d ≤ 1/4; this can be constructed. Take the seed bits z ∈ {0, 1}n, and s1, s2, . . . , sk ∈
{1, . . . , d}. We take y0 = z, and for i ≥ 1, yi is the neighbor of yi−1 indexed by si. Then

G(z; s1, s2, . . . , sk) = {y0, y1, . . . , yk}.

Theorem 5.32 For x ∈ L so that µ(Wx) ≤ 1/2,

Pr[G(z; s1, s2, . . . , sk) ⊆Wx] ≤ 2−Θ(k).

Proof. The proof idea is to express the probability distributions after i steps of the random
walk in the spectra (eigenvalues and eigenvectors) of the expander graph, and analyze the
probability (expressed in `1-norm) in terms of `2-norm.

Write N = 2n. Choosing uniformly z ∈ {0, 1}n gives the uniform distribution, which
can be represented by a vector in RN as p0 = (1/N, . . . , 1/N)T . Let M̂ = 1

d
M be the

probability transition matrix of the Markov chain defined by the random walk, where M is
the adjacency matrix of G. If p is a distribution on G, then after one step of the random
walk, the distribution is M̂p. Define P = PWx

to be the projection matrix, which has a 1 in

every diagonal entry corresponding to an element of Wx, and 0 elsewhere else. Then

Pr[y1 ∈Wx] = ||PM̂p0||1.

Denote by νi the distribution of yi conditional on {y1, . . . , yi−1} ⊆ Wx. Let wi =
Pr[{y1, . . . , yi} ⊆Wx]. Then

wi = wi−1νi(Wx).

Inductively assume
wi−1 = ||(PM̂)i−1p0||1,

and νi is given by the vector
1

wi−1
M̂(PM̂)i−1p0.

Then

νi(Wx) =
1

wi−1

||(PM̂)ip0||1.
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It follows that

wi =
1

wi−1

||(PM̂)ip0||1.

To complete the induction we consider the distribution νi+1. For any vertex j,

Pr[(yi+1 = j) ∧ (yi ∈Wx | {y1, . . . , yi−1 ⊆Wx] = νi(Wx) · νi+1(j),

which is also equal to
∑

k∈Wx
νi(k)M̂j,k.

Therefore νi+1 is given by the vector

1

νi(Wx)
M̂P

(
1

wi−1
M̂(PM̂)i−1p0

)
=

1

wi
M̂(PM̂)ip0.

This completes the induction.

(We can also show Pr[{y0, y1, . . . , yk} ⊆ Wx] = ||(PM̂)kM̂p0||1. But this only contributes
another factor of 1/2.)

Now write any vector v in terms of the eigenvectors vi, v =
∑

0≤i≤n−1 αivi, then

||PM̂v||2 ≤ ||PM̂α0v0||2 + ||PM̂
∑

1≤i≤n−1

αivi||2

≤ ||Pα0v0||2 + ||M̂
∑

1≤i≤n−1

αivi||2.

Here we used the fact that M̂v0 = v0, and the orthogonal projection matrix P has `2-norm
||P || ≤ 1. More concretely, for any vector u, ||Pu||22 =

∑
i∈Wx

u2
i ≤

∑
1≤i≤N u

2
i = ||u||22.

Recall v0 = 1
N

(1, . . . , 1)T . Note that ||Pv0||22 = |Wx|
N

= µ(Wx), and M̂vi = (λi/d)vi, it
follows that

||PM̂v||2 ≤
√
µ(Wx)|α0|+ ||

∑

1≤i≤n−1

(λi/d)αivi||2

=

√
µ(Wx)|α0|+

√ ∑

1≤i≤n−1

(λi/d)2|αi|2

≤
√
µ(Wx)||α0v0||2 + (λ/d)||

∑

1≤i≤n−1

αivi||2

≤
(√

µ(Wx) +
λ

d

)
||v||2,

where the last inequality is because both α0v0 and
∑

1≤i≤n−1 αivi are orthogonal projections
of v =

∑
0≤i≤n−1 αivi.
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Finally, by Cauchy-Schwarz,

wk = Pr[{y1, . . . , yk} ⊆Wx]

= ||(PM̂)kp0||1
≤
√
N ||(PM̂)kp0||2

≤
√
N

(√
µ(Wx) +

λ

d

)k

||p0||2

≤
√
N
(√

1/2 + 1/4
)k 1√

N

= 2−Θ(k)

In order to achieve error probability 2−k, the AKS generator uses n+O(k) true random
bits.
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Chapter 6

Hartmanis Conjectures

In this lecture, we discuss Berman-Hartmanis isomorphism conjecture.

6.1 Introduction

The Berman-Hartmanis conjecture, also known as the isomorphism conjecture is related to
NP vs. P question. We start with a definition. Two languages A and B are said to be
p-isomorphic (polynomial time isomorphic), if there is a polynomial computable, polyno-
mial time invertible, 1-1 and onto reduction from A to B. Formally, we need a function
f : Σ∗ 7→ Σ∗, such that i) f is 1-1 and onto, ii) x ∈ A ⇐⇒ f(x) ∈ B, iii) f polynomial
time computable, iv) f−1 is polynomial time computable. Berman and Hartmanis observed
that all “known” NP-Complete problems are p-isomorphic to each other. Here, “known”
refers to, for example, all problems in Garey and Johnson. We will get into to the issue of
proving this claim, shortly. Based on this claim, they formulated the now-famous conjecture:

Berman-Hartmanis isomorphism conjecture: Any two NP-Complete sets are p-
isomorphic to each other.
The most interesting aspect of the conjecture is that, if it is true then NP 6= P. Because, if
NP = P, then, even finite sets would be NP-Complete. But, a finite set cannot be isomor-
phic to a infinite set like SAT. The conjecture has been studied extensively in the past two
decades. If the conjecture is true, then not even sparse sets can be NP-Complete, because
SAT is an “exponentially” dense set and there cannot be a polynomial time isomorphism
from a dense set to a sparse set. This raises an interesting issue of whether sparse sets can
be NP-Complete. Mahaney’s theorem (which we proved in an earlier lecture) shows that no
sparse set can be NP-Complete, unless NP=P. The isomorphism conjecture remains open.
Some recent evidence shows that it may be false. We will discuss this evidence at the end
of the lecture.
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We now return to the claim made by Berman and Hartmanis: all “known” NP-Complete
problems are p-isomorphic to each other. The claim is based on their following theorem.
Suppose there are polynomial time computable, polynomial time invertible, 1-1 and length
increasing reductions from A to B and B to A. Then, A and B are p-isomorphic to each
other. (We will state the theorem more formally later.) They observe that such reductions
exist for all “known” NP-Complete problems. Proof of the above theorem is based on a
theorem due to Cantor. We prove Cantor’s theorem first, and then continue our discussion
of the isomorphism conjecture.

6.2 A Theorem of Cantor

Theorem 6.1 If A and B are sets such that there exists a 1 − 1 map from A to B and a
1 − 1 map from B to A, then there exists a 1 − 1 correspondence (i.e., a map that is both
1− 1 and onto) between A and B

Proof.

Let f be a 1− 1 map from A to B, and g be a 1− 1 map from B to A.

If either f or g is also onto, then it is a 1− 1 correspondence. We will henceforth assume
that neither f nor g is onto and prove that there still exists a 1− 1 correspondence.

Consider the following two sequences of subsets of A and B: A0 = A, B0 = B, and the
rest of the Ai and Bi are given by:

Ai = g(Bi−1) Bi = f(Ai−1)

These two sequences are shown pictorially in figure 6.1.

The first thing to note about this sequence is that Ai ⊂ Ai−1 (i.e., Ai is a proper subset
of Ai−1) for all i ∈ N, and the same is true for the Bi. To see this, observe first that it is
clear from the definitions of Ai and Bi that Ai ⊆ Ai−1 and Bi ⊆ Bi−1. We will show (by
induction on i) that successive sets are not equal.

Observe that A1 = g(B0). Since g is not onto, there exists an element in A1 that is not
in A0. Similarly, B1 ⊂ B0.

Now, assuming that Bi ⊂ Bi−1, let x be any element of Bi−1 − Bi. Note first that
g(x) ∈ Ai, since Ai = g(Bi−1). We claim that g(x) /∈ Ai+1. If g(x) ∈ Ai+1, then ∃y ∈ Bi

such that g(y) = g(x). Since x /∈ Bi, this would imply that two distinct elements (x and
y) of B are mapped to the same element of A, contradicting the stipulation that g is 1− 1.
This completes the induction and proves that Ai ⊂ Ai−1 for all i ∈ N. A similar argument
can be made for the Bi.
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f g

Figure 6.1: A pictorial representation of the sequences created by applying the functions
f(x) and g(x). The Ai’s are listed by cardinality with the largest on the left. The same is
true of the Bi’s.
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Figure 6.2: The pictorial description from 6.1 modified to include the sets
⋂∞

i=0Ai and⋂∞
i=0Bi. Again, the largest sets are on the left of the image while the smallest (i.e.

⋂∞
i=0Ai

and
⋂∞

i=0Bi) are on the right.

Now, with these facts in hand, we note that the set A can be decomposed as follows:

A = (A0 − A1) ∪ (A1 − A2) ∪ · · · ∪ (A0 ∩ A1 ∩ A2 ∩ · · ·)

=

( ∞⋃

i=0

(Ai − Ai+1)

)
∪
( ∞⋂

i=0

Ai

)

Similarly,

B =

( ∞⋃

i=0

(Bi − Bi+1)

)
∪
( ∞⋂

i=0

Bi

)

Thus, for any element x ∈ A, either x ∈ (Ai−Ai+1) for some (unique) i, or x ∈ Ai for all
i (see figure 6.2). We’ll define a function F : A→ B, which will be a 1− 1 correspondence,
as follows: if x ∈ ⋂∞

i=0Ai, then F (x) = f(x). Otherwise, x ∈ (Ai −Ai+1) for some i. In this
case,

F (x) =

{
f(x) if i is even
g−1(x) if i is odd

That is, an element x of A is mapped to B by either f or g−1, depending on which
subset(s) of A it falls into. Note that for all i > 0, Ai contains only elements that are in the
image of g, so g−1(x) is well-defined in all cases where we use it. It remains for us to show
that F is 1− 1 and onto.
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We start with 1 − 1. We first consider an element x ∈ ⋂∞
i=0Ai and argue that no other

element of A maps to F (x) under F . Here we have F (x) = f(x). Moreover, note that
f(x) ∈ ⋂∞

i=0Bi. Consider any element x′ ∈ A with x′ 6= x. If x′ ∈ ⋂∞
i=0Ai, F (x′) = f(x′)

and as f is 1-1, F (x) 6= F (x′). If x′ 6∈ ⋂∞
i=0Ai, then x′ is mapped to some element in

Bi − Bi−1, for some i. Hence, such an x′ cannot be mapped to an element in
⋂∞

i=0Bi. So,
F (x) 6= F (x′). Next consider an element x ∈ (Ai−Ai+1) for some i. We have two cases: if i
is even, then f(x) ∈ (Bi+1−Bi+2) – i.e., the largest j for which f(x) ∈ Bj is odd; if i is odd,
then g−1(x) ∈ Bi−1−Bi – i.e., the largest j for which g−1(x) ∈ Bj is even. Thus, an element
of A mapped by f never collides with an element mapped by g−1. Since f and g are both
1− 1, elements mapped by f never collide with each other, and likewise for g−1. Thus, F is
1− 1.

It may be obvious at this point that F is also onto, but we will prove it for good measure.
Let y be an element of B. Suppose y ∈ ⋂∞

i=0Bi. Clearly, y ∈ B1 and hence, for some x ∈ A,
f(x) = y. For any i, notice that y ∈ Bi = f(Ai−1) and f is 1-1 and hence, x ∈ Ai−1. Thus,
x ∈ ⋂∞

i=0Ai, and hence, F (x) = f(x) = y. Suppose, y ∈ Bi−Bi+1 for some i, then we again
look at two cases: if i is even, then y is mapped to by g(y); if i is odd, then i is mapped to
by f−1(y), which is guaranteed to exist, since every odd Bi is the image under f of some Aj.
Thus, F is 1− 1 and onto.

6.3 Myhill’s Theorem

One interesting theorem that can be proven using a similar proof is Myhill’s theorem.

Theorem 6.2 Every RE-complete set has a 1-1 onto recursive, invertible map to every
other RE-complete set.

This theorem shows that essentially, there is only “one” RE-complete set. In other words,
any two undecidable, r.e. sets are just computable renaming of each other. We will not prove
the theorem in this class.

6.4 The Berman-Hartmanis Conjecture

Berman and Hartmanis conjecture that all NP -Complete problems are p-isomorphic to each
other. The conjecture is based on the following theorem.

Theorem 6.3 Let L1 and L2 be two sets such that there are functions f : Σ∗ 7→ Σ∗ and
g : Σ∗ 7→ Σ∗ that satisfy

1. f and g are polynomial time computable.
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2. f and g are 1-1.

3. f and g are length increasing. That is, for any x, |f(x)| > |x| and |g(x)| > |x|.

4. f is a reduction from L1 to L2 and g is a reduction from L2 to L1.

5. f and g are polynomial time invertible. That is, there is a polynomial time algorithm
that given x either outputs the (unique) y such that f(y) = x or says no such y exists.
Similarly, such an algorithm exists to compute g−1.

Then, L1 and L2 are p-isomorphic. That is, there is a polynomial time computable, polyno-
mial time invertible reduction F from L1 to L2 which is 1-1 and onto.

Proof. We follow the proof of Cantor’s theorem. Let A0 = B0 = Σ∗. Then, as in Cantor’s
proof, define

Ai = g(Bi−1) and Bi = f(Ai−1)

First of all notice that, a string x of length n cannot be in An+1, because both f and g are
(strictly) length increasing. Thus,

⋂∞
i=0Ai and

⋂∞
i=0Bi are empty. Let x be any string and i

be the (unique) integer such that x ∈ Ai−Ai+1. Because,
⋂∞

i=0Ai is empty, i is well-defined.
Now let,

F (x) =

{
f(x) if i is even
g−1(x) if i is odd

That completes the definition of F . We need to argue that F satisfies the required properties:

1. F is 1-1 and onto: The proof is same as Cantor’s proof.

2. F is a reduction from L1 to L2 : For any x, F (x) is either f(x) or g−1(x). The claim
follows from the fact that f is a reduction from L1 to L2 and g is a reduction from L2

to L1.

3. F is polynomial time computable : Given an x, all we need to do is, determine whether
we are in the even or odd case. After that, we need to either compute f(x) or g−1(x)
and both these can be done in polynomial time. Notice that x ∈ A1 iff g−1(x) exists.
Similarly, x ∈ A2 iff f−1(g−1(x)) exists and x ∈ A3 iff g−1(f−1(g−1(x))) exists. In
general, to determine whether x ∈ Ak, we need simply apply g−1 and f−1 alternatively
k times and check whether that element exists or not. Now our goal is to find the unique
d such that x ∈ Ad − Ad+1. We already noted that x 6∈ An, where n = |x|. Hence,
d ≤ n. Recall our assumption that f−1 and g−1 are polynomial time computable. So,
the idea is to start with x and apply g−1 and f−1 alternatively: compute

x0 = x, x1 = g−1(x), x2 = f−1(x1), x3 = g−1(x2), x4 = f−1(x) . . .

Notice this, the strings in this sequence get shorter as we move on (i.e. |xi+1| < |xi|),
because f and g are length increasing. After some steps, we will have to stop, becuase
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either f−1 (or g−1) does not exist or we end up with a string of length 1. Suppose we
computed till xi succesfully and xi+1 does not exist. Then, x ∈ Ai but x 6∈ Ai+1, (i.e.
d = i). As f−1 and g−1 are computable each step of this process can be carried out in
polynomial time. As d ≤ n, we will need at most n steps.

Using this theorem, Berman and Hartmanis observed that any two “known” NP-Complete
sets are p-isomorphic to each other. Because, for any “known” NP-Complete problem, the
NP-Completeness reduction can easily be modified to make it 1-1, length increasing and
polynomial time invertibe! As examples, we will consider SAT and Hamiltonican circuit.

Let L be any lnaguage in NP and f be the reduction from L to SAT. We will construct
a new reduction f ′ from L to SAT which is length increasing and 1-1. Let x = a1a2 . . . an ∈
{0, 1}∗ be the input string of length n. Reduction f ′ first computes ϕ = f(x). Then construct
a new formula ϕ′. ϕ′ uses all the boolean variables of ϕ and n new variables z1, z2, . . . , zn.
New formula ϕ′ = ϕ ∧ (l1 ∨ l2 ∨ . . . ∨ ln), where the lieteral li is zi, if ai = 1 and zi if ai = 0.
It is clear that ϕ is satisfiable iff ϕ′ is satisfiable and hence, f ′ is a reduction from L to
SAT. Moreover, |ϕ′| > |x|. Finally, given ϕ′, we can easily extract the string x. Thus, f ′ is
polynomial time invertible.

A similar trick can be used in case of Hamiltonican circuit (HC). Let L be any language
in NP and f be a reduction from L to HC. We construct a new reduction f ′. Given input
x = a1a2 . . . an, f ′ first computes the graph G = f(x). f ′ will output a new graph G′. G′ is
obtained by first adding 3n+ 1 new vertices s1, s2, . . . , sn+1, u1, u2, . . . , un, and v1, v2, . . . , vn

to G. For each 1 ≤ i ≤ n, if ai = 0 then add the edges si → ui → vi → si+1; if ai = 0
then add the edges si → vi → ui → si+1. Thus, we have created some “chain” of vertices,
that depend on input x. Finally, take any edge (s, t) in G and “replace” it with the chain
constructed from x. Namely, remove the egde (s, t) and add edges (x, s1) and (sn+1, t). It is
clear that G has a Hamiltonican circuit iff G′ has one. Moreover, |G′| > |x| and given G′,
we can extract x easily.

For all “known” NP-Complete problems, say those listed in Garey and Johnson, we can
do such simple tricks to make the reduction length increasing and 1-1. Then, the above
theorem implies that all known NP-Complete problems are p-isomorphic to each other.
Based on this evidence, Berman and Hartmanis conjectured that all NP-Complete problems
are p-isomorphic to each other. But, now a days, it is widely believed to be fasle. The
Joseph-Young conjecture gives some evidence for this belief.

6.5 Joseph-Young Conjecture

The Joseph and Young conjecture states that there is an NP-Complete languages A such
that there is no polynomial time invertible reduction from SAT to A. Such a language would
fail to satisfy the requirements of Theorem 6.3. The language A is constructed based on
the assumption that one-way functions exist. Loosely speaking, a function is one-way, if it
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is computable in polynomial time, but not invertible in polynomial time. It is not known
whether one-way functions exist (existence of one-way functions imply NP 6= P). But, there
are some candidate functions believed to be one-way. One example is multiplication. Given
two numbers a and b, it is easy to compute their product ab. But the inverse of multiplication,
namely, factoring is believed to be hard. Suppose we have a one-way function f . It is easy
to show that for any 1-1 function g, the language g(SAT) is NP-Complete. In particular,
f(SAT ) is NP-Complete. Now, the conjecture is that there is no invertible reduction from
SAT to f(SAT ).
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Chapter 7

Interactive Proof Systems

In Chapter 1, we defined a prover-verifier model for languages in NP. Let us take SAT as
an example language in NP. Suppose the prover wants to prove that a given formula is
satisfiable. He can do so by giving a satisfying truth assignment as a certificate. The verify
can verify in polynomial time whether the assignmnet indeed satisifies the formula. Suppose
the formula is actually unsasfiable. How can the prover provide a concise certificate that the
formula is unsasfiable? In other words, is there a proof system for unsatisfiability? Next two
chapters develop proof systems for languages beyond NP. In these proof systems, the prover
and verifier have many rounds of interaction. We start with an example for an Interactive
Proof system (IP).

7.1 Interactive Proofs – An Example

We explain IP with an example. We say that two graphs G = (V,E) and H = (V ′, E ′) are
isomorphic, if relabeling G would give H. Formally, G and H are isomorphic, if there is a
one-one and onto function σ : V → V ′, such that (u, v) ∈ E iff (σ(u), σ(v)) ∈ E ′. If G and H
are isomorphic, we write it as G ∼= H. For a permutation σ on V , we denote σ(G) = (V,Eσ),
where, Eσ = {(σ(u), σ(v))|(u, v) ∈ E}. Define the following two languages:-

GI = {(G,H)|G ∼= H}

GNI = {(G,H)|G 6∼= H}
It’s easy to see that GI is in NP. We can simply guess a σ and verify whether σ(G) = H.
What about GNI? It’s in co-NP, by definition. But what about a proof system for GNI?
No concise proof for GNI is known. Here, we describe what’s called an interactive proof for
GNI.

An Interactive Proof system (IP) for L consists of two players, prover and the verifier.
The prover claims that a string x is in L and the verifier has to verify it. The prover
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has no computational limitations, he is all powerful, whereas, the verifier is a probabilistic
polynomial time player. They can interact with each other. The verifier can toss some coins
and ask the prover some question and prover answers it. This process of interaction can go
on for some polynomial number of rounds. At the end, the verifier accepts or rejects the
input. If x ∈ L, then we require that the verifier accept with probability ≥ 3/4 and if x 6∈ L,
then he accepts with probability ≤ 1/4. As usual, the values 3/4 and 1/4 are arbitrary and
can be amplified.

We now describe an IP for GNI. So, let G and H be the two input graphs and the prover
claims that G 6∼= H. The verifier tosses a coin. If HEAD, he chooses G else chooses H. Let
the chosen graph be S. Then, he chooses a random permutation σ and sends Sσ = σ(S)
to the prover. The prover has to send the original coin toss of the verifier. If G and H
were really non-isomorphic, then, Sσ will be isomorphic to exactly one of G or H and the
prover can find it easily and correctly guess the coin toss. On the other hand, if he were
cheating and G ∼= H, Sσ be isomorphic to both G and H. So the prover, can at most make
a wild guess at what the coin toss was. He will have probability only 1/2 to succeed. We
can run this process a polynomial number of times to make the probability of cheating to
be exponentially small.

It’s easy to see that NP ⊆ IP . The verifier keeps quiet! On input x, the prover sends
him the certificate that x ∈ L. The verifier verifies whether it’s a valid certificate.

7.2 Arthur-Merlin Games

Arthur-Merlin games are restricted versions of IP. In AM we allow only one round of in-
teraction betwen the prover and verifier. Here we call the prover as Merlin and the verfier
as Arthur. Merlin is an all powerful magician, whereas, Arthur is a humble probabilistic
polynomial time monarch! Merlin wants to prove that a string x is in L. As in IP, he does
this by interacting with Arthur.

Definition (AM): L ∈ AM iff ∃ a polynomial time predicate P such that

x ∈ L⇒ Pry[∃z, P (x, y, z) = 1] ≥ 3

4

x /∈ L⇒ Pry[∃z, P (x, y, z) = 1] ≤ 1

4

The strings y and z are polynomially bounded in length of x.

Remarks: We can see that AM ⊆ IP . AM is a restricted version of IP. Arthur simply
tosses coins and chooses a random string y and sends it to Merlin. Merlin sends back a
certificate z. Arthur, evaluates the polynomial predicate P (x, y, z). If x ∈ L, for most coin
tosses y of Arthur, Merlin will have some valid proof z. On the other hand, if x 6∈ L, for
most y, Merlin will not have a valid proof z.
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As usual, we can amplify the success probabilities. Arthur, chooses many random strings,
y1, y2, . . . yr and sends them all to Merlin. Merlin replies back with z1, z2, . . . zr. The predicate
P is modified to P ′ which would simulate P (x, y1, z1), . . . P (x, yr, zr). Then take the majority.
We can use Chernoff bounds to show that the success probability is amplified exponentially
in r. Thus, we can replace 3

4
by 1− 1

2n , and 1
4

by 1
2poly(n) .

Now suppose we have a university president who wants no error. He wants probabilities
1 and 0, respectively. For example, if x 6∈ L, then ∀y∀z it is false. Indeed, we can consider,
four possibilities here.

(1.)

{
x ∈ L then for most y, there exists z that makes it true
x 6∈ L then for most y, for all z it is untrue

(2.)

{
x ∈ L then for all y, there exists z that makes it true
x 6∈ L then for most y, for all z it is untrue

(3.)

{
x ∈ L then for all y, there exists z that makes it true
x 6∈ L then for all y, for all z it is untrue

(4.)

{
x ∈ L then for most y, there exists z that makes it true
x 6∈ L then for all y, for all z it is untrue

Statement (1.) is simply the definition of AM. Statements (3.) and (4.) are both cases
which fall into NP. Statement (2) defines, what we call AM1, one sided error version of AM .
We discuss it shortly.

We note that we can always transform ∃z|z|≤nO(1)P (x, y, z) = 1 to a satisfiability issue by
using Cook’s theorem. Therefore, the general form of AM is:

For x ∈ L, then for most y, we get ϕx,y ∈ SAT.

For x 6∈ L, then for most y, we get ϕx,y 6∈ SAT.
where the map x, y 7→ ϕx,y(z) is computable in polynomial time.

We can think of AM as follows: We think of AM by writing AM = BP ·NP .

We define AM1 to be the statement of (2.). Formally,

Definition (AM1): L ∈ AM1 iff ∃ a polynomial time predicate P such that

x ∈ L⇒ Pry[∃z, P (x, y, z) = 1] = 1

x /∈ L⇒ Pry[∃z, P (x, y, z) = 1] ≤ 1

4

AM1 can be thought of as co−RP.NP . It is immediate that AM1 ⊆ AM. We have the fol-
lowing surprising theorem. We now prove that AM = AM1. Equivalently, BP.NP=coRP.NP.

Theorem: AM = AM1.
Proof: Let L be in AM and A be the underlying polynomial predicate. We amplify the
success probability such that,

x ∈ L =⇒ Py∈{0,1}m[∃z ∈ {0, 1}r, A(x, y, z)] ≥ 1− 1

m
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x 6∈ L =⇒ Py[∃z, A(x, y, z)] ≤ 1

m

Recall that a set E ∈ {0, 1}m is called thin if |E| ≤ 2m/m. E is called fat if Ec is thin.
A set may be neither thin nor fat. Let k ∼ logm.

We already proved the following lemma about fat and thin sets:-
Lemma: If E is fat then,

Prs1,s2,...sm∈{0,1}m[
m⋂

i=1

(E ⊕ si) 6= φ] = 1

If E is thin, then,

Prs1,s2,...sm [
m⋂

i=1

E ⊕ si 6= φ] ≤ 1

2m(k−1)

Fix an input x. Let Ex = {y|∃z, A(x, y, z) = 1}. If x ∈ L, then, E is fat. If x 6∈ L, E
is thin. We shall construct a new one sided error protocol for L as follows:- Suppose Merlin
claims x ∈ L. He will prove this claim by showing that Ex is fat. To do this, Arthur will
give him set of random shift strings s1, s2, . . . sm. Merlin will produce a y ∈ ⋂m

i=1E ⊕ si. By
above lemma, for any set of random strings, such a y exists. But, Merlin has to prove that
y, indeed, has this property. Equivalently, for 1 ≤ i ≤ m, y ⊕ si ∈ E. To prove this, he
produces, z1, z2, . . . zm such that, A(x, y ⊕ si, zi) = 1. On the other hand, if x 6∈ L, by the
second part of the above lemma, the probability that such a y exists is very small.

Formally, we now present a polynomial predicate A′ as required by the definition of AM1.
A′(x, s, z′) takes three arguments, where x is the input string, s =< s1, s2, . . . sm > will be
a string of length m2; z′ =< y′, z1, z2, . . . zm > will be a string of length m+mr, where r is
the length of z in the original AM protocol.

A′(x,< s1, s2, . . . sm >,< y′, z1, z2, . . . zm >) =

m∧

i=1

(A(x, y′ ⊕ si, zi)

As explained already, with the help of the ”fatness” lemma, we can easily verify that A′ has
the required properties. ♣

We now compare IP with AM. One main difference is that, in IP, the coin tosses of
Arthur are private, whereas, in AM, they are public. In IP, Merlin cannot see the coin tosses
of Arthur, whereas, in AM he can see them. (In our definition of AM, Merlin can see the ”y”
and then say his proof ”z”.) Nothing is hidden from Merlin. To explain this better, recall
our IP protocol for Graph non-isomorphism.

Suppose G1 6∼= G2. The original interactive proof system worked as follows:- the verifier
takes b ∈R {0, 1} and σ ∈R Sn. Then, sends over σ(Gb) to the prover (and hides his coin
toss). Then the prover sends back b′ and claims that Gb′

∼= σ(Gb). The verifier then verifies
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this. We can’t use this protocol straightaway in the Arthur-Merlin setup. In AM, Merlin
invites Arthur to send the bits, i.e., σ and b. Now Merlin can easily cheat Arthur.

But, we can design a clever AM protocol for GNI. Play this game. Aut(G) is defined to
be the set of all graphs isomorphic to G. Look at Aut(G0) ∪ Aut(G1). This set is large, in
fact much larger than one of Aut(G0) or Aut(G1). If G0

∼= G1 then these sets are the same.
Otherwise, we have twice the size for this larger set. Merlin tells us which one of the sets is
larger. Merlin engages in a proof of the size of these.

7.3 Merlin–Arthur Games

MA is similar to AM, except that Merlin moves first. He presents a proof to Arthur(a
probabilistic polynomial time player), who verfies whether the proof is valid.

Definition (MA): L is in MA if, there exists a polynomial time computable predicate
A(., ., .) such that,

x ∈ L =⇒ ∃zPry[A(x, y, z) = 1] ≥ 3

4

x ∈ L =⇒ ∀zPry[A(x, y, z) = 1] ≤ 1

4

where |y| and |z| are polynomially bounded in |x|.
Remarks: Here, if x ∈ L, a single proof ”z” should work for most of the coin tosses ”y”
of Arthur. If x 6∈ L, no matter what proof Merlin presents, Arthur is unlikely to accept it.
MA is like N.BPP. Similar to NP, but the verfication procedure is in in BPP. The proof ”z”
is a publishable proof. You can write it down and then check it. It’s like a relaxed way of
proving.

Again, we can amplify this from 3
4

to 1− 2−q(n), for any polynomial q(n).

Proposition: BPP ⊆MA.
Proof: Arthur simply ignores Merlin, and just tosses some coins and simulats the BPP
algorithm. As we remarked,MA is likeN.BPP , so it’s quite obvious that BPP ⊆ N.BPP =
MA. ♣

It’s easy to see that,
Proposition: NP ⊆MA. ♣

As in AM, we can define the one sided error version of MA, namely MA1:-
Definition (MA1): L is in MA if, there exists a polynomial time computable predicate
A(., ., .) such that,

x ∈ L =⇒ ∃zPry[A(x, y, z) = 1] = 1

x ∈ L =⇒ ∀zPry[A(x, y, z) = 1] ≤ 1

4

where |y| and |z| are polynomially bounded in |x|.
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We saw that AM = AM1. We can prove a similar result for MA:-
Theorem: MA = MA1. Proof is left as a homework. ♣

MA is like N.BPP and MA1 is like N.coRP . We have shown above that N.BPP =
N.coRP . Can we employ similar techniques to show that BPP ⊆ coRP? Unfortunately, we
can’t. Because we do not allow the intervening of the prover. In the proof that MA ⊆ MA1

we allowed the prover to give the proof and the shifts, so we did have the intervening of the
prover.

We now establish a link between MA and AM . We show that MA ⊆ AM . Let L ∈MA
via a polynomial predicate A(., ., .) that meets the requirements mentioned in the definition
of MA. One naive attempt to prove L ∈ AM would be to use the same predicate A for the
AM protocol. This would work, when x ∈ L. As per MA, there is some proof z0 that works
for most of Arthur’s coin tosses y. In AM, irrespective of Arthur’s coin tosses, Merlin can
give this same proof z0. This would satisfy, Pry[A(x, y, z0) = 1] ≥ 3/4. But, this idea fails
in case x 6∈ L. A satisfies the condition that, for any z, only a small fraction y would work.
But, for each y, some z may work. So, Merlin can cheat Arthur when x 6∈ L. Our proof will
make use of this naive idea, but, by amplifying sufficiently, the success probability of MA,
we avoid the pitfall described above.

Theorem: MA ⊆ AM .
Proof: Let ∈MA. As we know that MA = MA1, L ∈MA1. Furthermore, we can amplify
the success probability so that, we have a polynomial predicate A(., ., .) that satifies,

x ∈ L⇐⇒ ∃z [Pry[A(x, y, z) = 1] = 1]

x 6∈ L⇐⇒ ∀z
[
Pry[A(x, y, z) = 1] ≤ 1

2m+1

]

where, m = |z|, and m is polynomial in |x|.
Now we can use the same predicate A for our AM protocol. The main point is that,

when x 6∈ L, for any z, most of the y’s do not work. By a counting argument, we see that,
for half of the y’s, no z works:-

Pry[∃z, A(x, y, z) = 1] ≤
∑

z∈{0,1}m

[Pry[A(x, y, z) = 1] ≤
∑

z∈{0,1}m

1

2m+1
=

1

2

On the other hand, when x ∈ L, there is some z0, that satisfies, Pry[A(x, y, z0) = 1] = 1.
This z0 can serve as a proof for Merlin, for all the coin tosses of Arthur. We have shown
that,

x ∈ L⇐⇒ Pry[∃z, A(x, y, z) = 1] = 1

x /∈ L⇐⇒ Pry[∃z, A(x, y, z) = 1] ≤ 1

2

We can reduce the probability of getting cheated, from 1/2 to smaller value, by repeatedly
running, A. ♣
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7.4 AM With Multiple Rounds

In AM and MA, we had two rounds of interaction, one by Arthur, and one by Merlin. We
can generalize to include more rounds of interactions. For example, we have MAM. Merlin
moves first, then Arthur moves, then Merlin.

Definition (MAM):

x ∈ L⇐⇒ ∃z1

[
Pry[∃z2, A(x, y, z1, z2)] ≥

3

4

]

x ∈ L⇐⇒ ∀z1

[
Pry[∃z2, A(x, y, z1, z2)] ≥

3

4

]

We can think of MAM in two ways. One way is MAM=N.AM, just like NP, but the
verfication procedure is an AM predicate (instead of a polynomial predicate. To get the
second way, first think of MA as MA(P). The undelying predicate is a polynomial predicate.
Then, MAM is MA(NP). In other words, take the original definition of MA, and replace the
phrase, ”where A is a polynomial predicate” by ”where A is a NP predicate”.

As with MA and AM, we can also have a one sided error version of MAM, named MAM1.
We can prove the following theorem, using, essentially, the same technique we used to prove
that AM = AM1.

Theorem : MAM = MAM1. ♣
Then, we proceed as in the proof of MA ⊆ AM , to show that MAM ⊆ AMM . But,

what is AMM? This means, that Arthur picks the random string y1. Then, Merlin gives a
proof z1. Then, again Merlin gives a proof z2. But, Merlin can combine these two moves
into a single move and give z1 · z2. Thus, AMM is same as AM. In other words, we extend
the proof MA ⊆ AM to show that MAM = MA(NP ) ⊆ AM(NP ). But what is AM(NP)?
Observe that it is same as AM. We have proved that:-

Theorem: MAM = AM . ♣
We can generalize further to involve more rounds mixing M’s and A’s. For example,

MAAAMMAAAMM. But we can certainly, replace a streak of A’s by a single A and a streak
of M’s by a single M. In the above example, we have MAAAMMAAAMM⊆ MAMAM. Just
like MAM is same as AMM, we can make MAMAM to be AMMAM, by changing the starting
MA to be AM. Now again compress the ”MM” into ”M” to get AMAM. We can continue
this process of turning ”MAM” into ”AM” then, compressing streaks of M’s into a single
M (and streak of A’s into single A) to get AM. Define, AM[k] to be AM with k rounds of
interaction. We have ”shown” that,

Theorem: AM[k]=AM. ♣
A formal proof can be given by by using induction. The above theorem is valid only when

k is a constant. What if the number of rounds is dependent on the input length? Meaning, if
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the input is x, we allow poly(|x|) rounds of intreaction. Define AM[poly] to be such a class.
Then, it’s known that

Theorem: AM[poly]=PSPACE. ♣
We have proved that

MA1 = MA ⊆ AM1 = AM = MAM

In fact, we showed that, any finite (fixed number of) iterations of M and A is ⊆ AM.

7.5 AM and Other Complexity Classes

We now study the relationship of AM with respect to other classical complexity classes.
Recall that, L is said to be in Σp

2, if there exists a polynomial predicate D(., ., .) such that,

x ∈ L⇐⇒ ∃y∀z[D(x, y, z) = 1]

where |y| and |z| are polynomially bounded in |x|. A language L is said to be in ΠP
2 , if its

compliment Lc is in ΣP
2 .

We know that AM is contained in ΠP
2 . This is easy to see that AM1 ∈ ΠP

2 . L is in ΠP
2 ,

if there is a polynomial predicate A such that,

x ∈ L⇐⇒ ∀y∃z[A(x, y, z) = 0]

x 6∈ L⇐⇒ ∃y∀z[A(x, y, z) = 1]

Verify that, AM1 ⊆ ΠP
2 . If x ∈ L, for all coin tosses y of Arthur, Merlin has some proof z.

Whereas, if x 6∈ L, we have some y (in fact, most of the y), for which, all proofs of Merlin
are invalid. As AM1 = AM, we have proved the theorem,

Theorem: AM ⊆ Πp
2 ♣

We know that NP ⊆ AM. We also know that graph non-isomorphism is in AM. Can
we generalize this to prove that, coNP ⊆ AM? But it is unlikely, as shown by the following
theorem.

Theorem: If coNP ⊆ AM, the polynomial hierarchy (PH) collapses to AM.
Proof: The proof is a simple application of our theorem that MAM = AM. From the
definition of ΣP

2 , we see that, ΣP
2 = N.(coNP ). As we assumed that, coNP ⊆ AM, we have

ΣP
2 ⊆ N.(AM). We already observed that N.AM = MAM and that MAM = AM. Thus,

ΣP
2 ⊆ AM. As, AM ⊆ ΠP

2 , we have that ΣP
2 = ΠP

2 = AM, which implies that PH = AM . ♣
We now prove that MA ⊆ ZPPNP . We use ideas from our proof that BPP ⊆ ZPPNP .

Theorem: MA ⊆ ZPPNP .
Proof: Let L ∈MA. There exists a polynomial predicate D, such that,
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x ∈ L⇐⇒ ∃y [Prz[D(x, y, z) = 1]] = 1

x 6∈ L⇐⇒ ∀y [Prz[D(x, y, z) = 1]] ≤ 1

m

where, |y| = |z| = m, and m is a polynomial in n = |x|. Such an amplification can easily be
achieved.

Recall that, a set E ⊆ {0, 1}m is called thin, if |E| < 2m/m. E is called fat, if Ec is thin.
That is, |E| ≥ (1− 1/m)2m. Call E to be perfect if E consists of all strings in {0, 1}m.

Recall our proof of BPP ⊆ ZPPNP . There given input x, we tested, whether the
witness set Ex, is fat or thin, in a zero error manner, using a SAT oracle. We are going to
do the same, with little more sophistication.

Fix an input x. We say that y beats z if D(x, y, z) = 1. For a y, let Ey be the set of z’s
that y beats. The main observation is that, if x ∈ L, there there is some y, such that, Ey

is perfect. If x 6∈ L, then for all y, Ey is thin. These are the two conditions that our ZPP
machine will test (with the help of an oracle.)

We shall first try to find whether there is a y with perfect Ey. We pick, at random some
polynomial zi’s. Then ask the oracle, if there is some y that beats all these zi. If the answer
is ’no’, we can safely reject x. But, if the answer is ’yes’ we can’t be sure and we proceed.
We then use self-reducibility to find y0 that beats all these zi. We then ask the oracle, if this
y0 beats all z’s. If so we can safely accept x. If not, we next try to check whether Ey is fat
or thin. To do that wee pick m random strings s1, . . . sm. And ask the oracle, if Ey0 , when
shifted by these strings will cover the all the z’s. Verify that this is an NP question. If Ey0

is fat we have a high probability that the answer would be ’yes’. On the other hand, if Ey0

is thin, the probability is zero. We also know that, if x is not in L, for all y0, Ey0 is thin.
Thus, if we get the answer ’yes’ from the oracle, we can safely accept. If we get the answer
’no’, we are in trouble. Three cases are possible here:-

• Case 1: x ∈ L, but the oracle gave us a y0 with a thin Ey0 ;

• Case 2: x ∈ L, the oracle gave us a a good y0, but our shift strings were not good
enough to cover (a low probability event).

• Case 3: x 6∈ L, and so the y0 is thin.

So, if we get the answer ’no’, we give up. We see that case 2 is a low probability event.
Cases 1 and 2, can happen only when there is a thin y0, that can beat our random strings
{zi}. But Ey0 being thin, how can y0 beat so many zi? We argue this formally later.

Formally, the ZPP machine M , given SAT oracle works as follows:- Let x be the input
string.
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1. Pick m2 strings z1 . . . zm2 at random from {0, 1}m.

2. Ask the oracle if there is a y such that for all i, D(x, y, z) = 1. If the answer is ’no’,
then REJECT. If ’yes’, use self-reducibility to get a y0 that beats all these zi.

3. Choose m strings s1, . . . sm, at random from {0, 1}m.

4. Ask the oracle, whether Ey0 when shifted by these random strings will cover all the
z’s. That is, ask if the following predicate is true or not

∀z
[
z ∈

m⋃

i=1

Ey0 ⊕ si

]

If the above predicate is true, then ACCEPT. If not, output ”?”.

Correctness: In step 2, when we reject, we have that for any y, it fails to beat at least
one zi. So, there cannot be any perfect y. We are correct in rejecting x. In step 4, suppose
we ACCEPT. We claim that we are again correct in accepting x. By contradiction, suppose
x 6∈ L. Then every y is bad. For a bad y, Ey < 2m/m. So shifting by m strings cannot cover
all of {0, 1}m.

Now we argue that the probability that we output ”?” is low. First let’s bound the
probability that we will have a non-good y0 at the end of step 2. Fix a y0 which is not good.
That is Prz[y0 beats z] ≤ (1− 1/m). We picked up m2 strings at random. The probability
that y0 beats all these strings is ≤ (1− 1/m)m2 ∼ e−m. There are at most 2m such y’s. So,
the probability that there exists some y which is not good, but beats all these m2 strings is
≤ 2m/em. This probability is exponentially small. So, with high probability, there are no
non-good witnesses that can beat all the m2 strings. (So, if x 6∈ L, we would stop at step 2,
with high probability).

Assume that we proceeded to step 4, and y0 is good. Then, with high probability, the
shifting by m strings would cover all of {0, 1}m. This we proved already in proving that
BPP ∈ ZPPNP . Recall the lemma that if S ∈ {0, 1}m has cardinality at least 2m(1−1/m),
then,

Prs1...sm∈{0,1}m

[
m⋃

i=1

S ⊕ si = {0, 1}m
]
≥ 1− 1

2m(k−1)

where k ∼ logm. So the probability that we output ”?” is bounded by (2m/em)+ (2−m(k−1).
♣

The structure among the complexity classes, so far is:- /* A BETTER PICTURE WITH
ZPPNP TO BE DRAWN */
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coAM AM = AM1

| |
coMA MA = MA1

/ \ / \
coNP BPP NP

\ / \ /
coRP RP

\ /
ZPP
|
P

7.6 LFKN Protocol for Permanent

We start the discussion by reviewing the definition of permanent of a matrix. Let M = (aij)
be a n× n matrix where each entry is n bits long. We define,

Perm(M) =
∑

σ=(σ1,...,σn)∈Sn

a1σ1 · · · anσn

where Sn is the set of all permutations over the set {1, . . . n}.
There is alternative way to express the permanent. It is similar to the way we usually

compute the determinent, except that we do not have those minus signs:

Perm(M) =
n∑

i=1

a1i · Perm(M1i)

where M1i is the (n− 1)× (n− 1) submatrix obtained by deleting row 1, and column i. The
proof of equivalence of the two definitions is that every term appears exactly once in both
expressions.

We are now ready to discuss the interactive proof system, The input is a n×n matrix M ,
with each entry n-bits. Since permanent has n! terms, |PermM | ≤ 2nO(1)

. The prover P first

chooses a huge prime p > 2nO(1)
and sends it to the verifier V . Using the recent polynomial

time AKS algorithm for primality testing, the verifier can check that p is indeed a prime
number. The prover next sends the Perm(M) modulo p. As p is large enough, taking modulo
p is fine. Hereafter, all the actions take place modulo p.

So the prover has produced a number α with the claim that Perm(M) = α mod p. If
prover’s claim is true, we want the verifier to get convinced with probability 1. If not, the
verifier has to be convinced with only a small probability.

The protocol revolves around the following polynomial. Define

F (x) =
n∑

i=1

(x− 1)(x− 2) · · · (̂x− i) · · · (x− n)

(i− 1)(i− 2) · · · (̂i− i) · · · (i− n)
M1i.
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The above notation means that in the ith term of the summation, (x − i) is missing in the
numerator and (i− i) is missing in the denominator. The coffiecients of the polynomial are
(n− 1)× (n− 1) matrices. The polynomial has the following important property.

If we set x = i, of the n terms in the summation, except the ith term, all the other terms
evaluate to 0. The ith term evaluates to M1i. Thus we have F (1) = M11, and in general, for
1 ≤ i ≤ n, F (i) = M1i. F (x) has been constructed using the matrix analog of the well-known
Lagrange interpolation The polynomial can be viewed in two ways. It is a polynomial whose
coefficients are (n− 1)× (n− 1) matrices. It is also a (n− 1)× (n− 1) matrix whose entries
are polynomials (in x) of degree n− 1. We will view F (x) mainly using the second method.

Think of F (x) as a (n − 1) × (n − 1) matrix whose entries are polynomials of degree
(n − 1). What is the permanent of F (x)? It is a polynomial of degree ≤ (n − 1)2. Denote
this polynomial as g(x) = Perm(F (x)). The polynomial g(x) has many useful properties.
First of all it can used to calculate the permanent of the minors M1i easily:

Perm[M1i] = Perm[F (i)] = Perm[F (x)]|x=i = g(i).

Secondly, we can calculate the permanent of M :

Perm[M ] =
n∑

i=1

a1i · Perm[M1i] =
n∑

i=1

a1i · g(i).

The beauty of the polynomial g(x) is that it can do more! We saw that, for any 1 ≤ i ≤ n,
g(i) = Perm(M1i). But, in fact, g(x) can be used to compute the permanent of many other
matrices! Choose any r ∈ Z/p. Evaluate F at r to obtain the (n − 1) × (n − 1) matrix
Nr = F (r). If 1 ≤ r ≤ n, Nr is nothing but Mir and for other values, Nr is some matrix!
The main idea of the proof is that g(r) = Perm(Nr), for any r ∈ Z/p. Thus g can be used
to compute permanent of some p many matrices (and p >> n). Still g is very short: it is
only polynomially long in n. Now let us get back to the discussion of the interactive proof
system and put our observations into use.

So the prover has sent a value α with claim that α = Perm(M). Next he sends a
polynomial g′(x), with the implicit claim that g′(x) = g(x) (of couse, he could be lying!).
The verifier first checks whether these two claims are consistent: check if

α =
n∑

i=1

a1i · g′(i).

If the above test fails, verifier halts and rejects the prover’s claim. Suppose the above test
passed.

We can make a simple observation:

α 6= Perm(M) =⇒ g 6= g′.

Even if the prover is a liar, he has to be consistent with his lies! If he lies and gives
α 6= Perm[M ], he has to lie again and give a g′ different from g. Otherwise, the above
consistency check will fail and verifier will catch him!
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The next step is the heart of the proof. The verifier computes the polynomial F (x). He
can compute F (x) easily, without the help of the prover. Next the verifier chooses a random
number r from Z/p and computes Nr = F (r). As we saw already, permanent of Nr can be
computed

Perm(Nr) = Perm[F (r)] = g(r).

Of course, the verifier cannot compute the polynomial g. But, he has the g ′ given by the
prover, who claimed that g′ = g. So the verifier simply computes g′(r) and assumes that
g′(r) = Perm(Nr).

There are two possible cases to analyze: g′ = g and g′ 6= g. If g′ = g, then clearly,
g′(r) = Perm(Nr). On the other hand, suppose g′ 6= g. What is the probability (over the
random choice of r) that g′(r) = Perm(Nr)? We know that g and g′ are both polynomials
of degree (n − 1)2. So they can agree on at most (n − 1)2 many choices of x ∈ Z/p. As r
was a random value chosen from Z/p,

Pr
r∈Z/p

[g′(r) = g(r)] ≤ (n− 1)2

p
.

We chose p to be exponential in n. So except for a (exponentially) small probability, if
g′ 6= g, then g′(r) 6= Perm(Nr). Let us summarize the discussion so far: if α 6= Perm[M ],
then g′ 6= g and hence, with probability exponentially close to 1, g′(r) 6= Perm(Nr). But, by
claiming that g = g′, the prover has, implicitely, claimed that Perm(Nr) = g′(r).

The situation the same as the one with which the story started, but it is ”smaller”.
Initially, the provr claimed that α = Perm(M), where M was a n × n matrix. Now, he has
claimed that g′(r) = Perm(Nr), where N is a (n − 1) × (n − 1) matrix. And if the prover’
first claim was a lie, then the second claim is also a lie, with very high probability! How can
the verifier validate the claim? Simply, by repeating the same process!

After (n − 1) rounds, the two players would be left with a matix of size 1 × 1, say (x),
and the prover would have (implicitely) claimed its permanent to be some β. The verifier
can esily check this: Is Perm[(x)] = x = β? If not he rejects the original claim of the prover
that α = Perm(M). If α 6= Perm(M), then probability that β 6= Perm[(x)] is at least
1−n ·(n−1)2/p. (The factor n comes from the n rounds). We conclude that a honest prover
will win with probability 1. And a dishonest prover will win with probability exponentially
small.

Exact protocol: M is the n × n input matrix. The prover claims that Perm(M) = α.
The first thing prover does is to choose a prime number p ∼ 2n3

, (note: p >> Perm(M)).
He sends it to the prover along with a proof that it’s prime (using Pratt’s theorem that
Primes∈ NP). All the computation hence forth take place modulo p.

1. Prover’s claim is that Perm(M) = α, where M = (aij) is a n× n matrix.

2. If M = (x) is a 1× 1 matrix, the verifier checks α = x. If they do not match he rejects
else accepts.
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3. The verifier computes

F (x) =
n∑

i=1

(x− 1)(x− 2) · · · (̂x− i) · · · (x− n)

(i− 1)(i− 2) · · · (̂i− i) · · · (i− n)
M1i.

4. Prover sends a polynomial g′(x) degree (n− 1)2 (with the implicite claim that g′(x) =
Perm[F (x)]).

5. Verifier checks

α =
n∑

i=1

a1i · g′(i).

If they do not match reject.

6. Verifier picks r ∈R Z/p and sends it to prover.

7. Verifier computes Nr = F (r), a (n− 1)× (n− 1) matrix.

8. Verifier sets M ←− Nr, n←− n− 1 and α←− g′(r).

9. Go back to step 1.

If the α = Perm(M), the prover can provide correct polynomials g and the verifier will
accept with probability 1. Suppose α 6= Perm(M). The verifier will reject in step 4 of some
round. If that does not happen, to make verifier accept in the end in step 1, the verifier has
to be lucky in at least one round, where the random r satisfies g′(r) = g(r). Probability for
this to happen in any particular round is ≤ (n − 1)2/p. So probability for it to happen in
one of the n rounds is ≤ n(n − 1)2/p. As p ∼ 2n3

, this error probability is exponentially
small. ♣
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Chapter 8

IP=PSAPCE
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Chapter 9

Derandomization

Chapter Outline: Derandomization intro. Psudo random generators. Next-bit prediction
and pseudo-random equivalence. Oneway functions. Weak-oneway implies strong oneway.
Goldreich Levin hardcore bit. Constructing pseudo random generators using GL-hardcore
bit.

AN INTRO TO DERANDOMIZATION IS REQUIRED HERE.

9.1 Pseudorandom Generators

Informally, a pseudorandom generator G is a polynomial time algorithm, that stretches
a short random string called seed into a long pseudorandom string. G is a successful, if
its output cannot be distinguished from truly random strings, by any efficient adversary. In
other words, the output of G is computationally indistinguishable from truly random strings.
We formalize the notion of computational indistinguishability in two models, and show their
equivalence.

A generator is a polynomial-time computable, deterministic function G : {0, 1}n →
{0, 1}l(n) where l(n) > n. An adversary is a probabilistic polynomial time Turing machine.

Pseudorandom Generators: We call the first model of formalism as pseudorandom model.
Here, we adopt the following convention. An adversary A, given an input string, outputs 1,
if it it thinks its input is pseudorandom, and outputs if it thinks its input is truly random.
With respect to a generator G, we define the the success of an adversary A, at a length n
as:-

δA
n = |Prx∈{0,1}n[A(G(x)) = 1]− Pry∈{0,1}l(n)[A(y) = 1]|

So δA
n is larger if the adversary is distinguishing well.

Definition (Pseudorandom Generator): We say that G beats A if ∀ polynomials p(·),
∀ sufficiently large n, we have δA

n < 1
p(n)

. G is defined to be a pseudorandom generator if G
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beats every adversary.

Remark: By the above definition, A beats G if there exists p(·) such that for infinitely
many n we have δA

n > 1
p(n)

.

Next bit unpredictability: In this second model, adversary A is given first i bits of the
output of the generator. It has to predict the (i+ 1)th bit. For an adversary A, at a length,
the success is measured as,

βA
n = Pr x∼Un

i∈R[0..l(n)−1]
[A(G(x)1,...,i) = G(x)i+1]−

1

2

Thus, we take average over all i. Any adversary can easily get a success of 1/2 by simply
guessing. So, we have subtracted 1/2, to normalize.

Definition (Next-bit unpredictable generator): We say that G beats A if ∀p(·), ∀
sufficiently large n, we have βnA < 1

p(n)
. G is defined to be a next-bit unpredictable if G

beats every adversary.

The first model is due to Yao and the second is due to Blum and Micali. The equivalence
was shown by Yao.

Theorem (Yao): G is pseudorandom if and only if G is next-bit predictable.
Proof: Equivalently, G is not pseudorandom if and only if G is not next-bit predicatable.
So, we show that, some adversary beats G in the pseudorandom model if and only if some
adversary beats G in the next bit model.

Part I: Suppose A is an adversary in the next bit model. We want to find an adversary A′

that performs equally good in the pseudorandom model.

Fix n. A′ takes as input a l(n) bit string and has to predict whether its truly random or
pseudorandom. A′ uses it A as an oracle. A′ on input y1, . . . yl(n), does the following:-

1. First choose a random i ∈ [0..l(n)− 1].

2. If A(y1, . . . , yi) = yi+1 then output 1, i.e., guess pseudorandom. Otherwise output 0,
i.e., guess truly random.

Suppose the success of A, at length n is, βA
n .

Prx∼Un [A′(G(x)) = 1] = Pr x∼Un
i∈R[0..l(n)−1]

[A(G(x)1,...,i) = G(x)i+1] = βA
n +

1

2

If the input to A′ is truly random, irrespective of the i chosen by A′, A can output yi+1 with
probability only 1/2. So,

Pry∈{0,1}l(n)[A(y) = 1] =
1

2
Thus,

δA′

n = Prx∈{0,1}n[A(G(x)) = 1]− Pry∈{0,1}l(n)[A(y) = 1] = βA
n +

1

2
− 1

2
= βA

n
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Thus, for all n, δA′

n = βA
n . If A can beat G in next-bit model, A′ can beat G in the

pseudorandom model.

Part II: Now suppose that A is an adversary for G in the pseudorandom random model,
with success δA

n at length n. We construct an adversary A′ in the next bit model.

Fix n. Let the input to A′ be b1, . . . , bi. A
′ has to predict the next bit bi+1. A

′ does the
following:-

1. Choose l(n)− i random bits ri+1, . . . , rl(n) at random.

2. Compute a = A(b1, . . . , bi, ri+1, . . . , rl(n)).

3. If a = 1 output ri+1, else output ri+1.

The intuition is that A outputs 1 more often when given all pseudorandom bits. And outputs
0 more often when given all truly random bits. We input A with a mix of i pseudorandom
bits and (l(n) − i) truly random bits. bi+1 is either ri+1 or its compliment. If ri+1 = bi+1

then A gets one more pseudorandom random bit and is more likely to output 1. To put it
in a reverse Bayesian way, if A outputs 1, we are more likely to have ri+1 = bi+1. To get a
formal proof, we first quantify the behavior of A when given a mix of pseudorandom and
truly random bits. Suppose we input A with i pseudorandom bits and l(n)− i truly random
bits. The probability that A outputs 1, for such a mix, is denoted by pi. Formally,

pi = Pr x∼Un
ri+1,...,rl(n)∈R{0,1}

[A(G(x)1,...,i ◦ ri+1, . . . , rl(n)) = 1

First observe that,
p0 = Pry∈R{0,1}l(n)[A(y) = 1]

pl(n) = Prx∈R{0,1}n[A(G(x)) = 1]

Thus, pl(n) − p0 = δA
n .

We next compute the success of A′ in terms of δA
n . For any 0 ≤ i < l(n), we denote the

success of A′ as βA′

n,i. We let w = b1, . . . bi, ri+1, . . . , rl(n). Then,

βA′

n,i = Pr[A′(b1, . . . bi) = bi+1]

= Pr[A(w) = 1 and ri+1 = bi+1] + Pr[A(w) = 0 and ri+1 6= bi+1]

= Pr[ri+1 = bi+1] · Pr[A(w) = 1|ri+1 = bi+1] + Pr[ri+1 6= bi+1 · Pr[A(w) = 0|ri+1 6= bi+1]

=
1

2
(Pr[A(w) = 1|ri+1 = bi+1] + Pr[A(w) = 0|ri+1 6= bi+1])

The first quantity inside the parenthesis, is easy to compute. When ri+1 = bi+1, we are
giving one more pseudorandom bit to A. So,

Pr[A(w) = 1|ri+1 = bi+1] = pi+1
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. To compute the second quantity:-

pi = Pr[A(b1, . . . , bi, ri+1, . . . , rl(n)) = 1]

= Pr[ri+1 = bi+1]× Pr[A(w) = 1|ri+1 = bi+1] + Pr[ri+1 6= bi+1 × Pr[A(w) = 1|ri+1 6= bi+1]

=
1

2
pi+1 +

1

2
Pr[A(w) = 1|ri+1 6= bi+1]

So,
Pr[A(w) = 0|ri+1 6= bi+1] = pi+1 − 2pi + 1

Substituting in the equation for βA′

n,i, we get,

βA′

n,i =
1

2
(pi+1 + pi+1 − 2pi + 1) =

1

2
+ pi+1 − pi

Now we can compute the success βA′

n of A′ when i is chosen at random.

βA′

n =

l(n)∑

i=0

1

l(n)
βA′

n,i

=

l(n)∑

i=0

1

l(n)

(
1

2
+ pi+1 − pi

)

=
1

2
+

1

l(n)

l(n)∑

i=0

pi+1 − pi

=
1

2
+

1

l(n)
(pn − p0)

=
1

2
+

δA
n

l(n)

The success probability of A′ is polynomially related to that of A. So, if A beats G in
the pseudorandom model, A′ beats G in the next-bit model. ♣

9.2 One-way Functions

In this lecture, we define weak and strong one-way functions. Informally, a function f is one-
way, if it’s easy to compute f(x) given x, but hard to compute x given f(x). The notion of
weak one-way requires that any probabilistic polynomial time algorithm that tries to invert
f , fails for at least a significant fraction of inputs. The notion of strong one-way requires
that any probabilistic polynomial time algorithm fails to invert f , except for an insignificant
fraction of inputs. We make these notions precise and then show that existence of weak
one-way function implies the existence of strong one-way functions.
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Definition (weak one way function): A function f : {0, 1}n → {0, 1}p(n) is called weak
one way function, if there exist an l > 0 such that, for all probabilistic polynomial time
algorithms A, for sufficiently large n, A fails to invert f fails in, at least, 1/nl fraction of the
inputs. Formally,

Prx∼Un [f(A(f(x)) 6= f(x)] ≥ 1

nl

Definition (strong one way function): A function f : {0, 1}n → {0, 1}p(n), is called
strong one way function, if for all probabilistic polynomial time algorithm A, for all polyno-
mials p, for sufficiently large n,

Prx∼Un [f(A(f(x)) = f(x)] ≤ 1

p(n)

In other words, A can invert f in only a negligible fraction of inputs.

Theorem (Yao): Strong one-way functions exist if weak one-way functions exist. Proof:
Assume that f : {0, 1}n → {0, 1}p(n) is a weak one-way function. We construct a strong
one-way function F : {0, 1}m×n → {0, 1}m×p(n). m is a parameter polynomial in n and we
will fix it later. F is defined to be

F (x1, x2 . . . xm) =< f(x1), f(x2), . . . f(xm) >

The claim is that F is strongly one-way. The intuition is as follows:- Suppose an algorithm
tries to invert F in the naive way, by inverting each component of its input. It will have
a success probability of

(
1− 1

nl

)
in inverting each individual component. So it will have a

success probability ≤
(
1− 1

nl

)m
in inverting F . If we choose, m = nl+1, this probability will

be ≤ e−m. We next prove the claim formally.

By contradiction, assume that F is not strong one-way. Then there is an algorithm A
can invert F on ≥ e−n+ 1

nk fraction of its inputs, for some k. We want to invert f on > 1− 1
nl

fraction of our 2n inputs.

Our algorithm A′ to invert f is the following: Upon input y = f(x), first randomly
pick i ∈R {1, . . . ,m}. Then, randomly (uniformly) pick x1, . . . , xi−1, xi+1, . . . , xm ∈ {0, 1}n.
Construct,

Y = 〈f(x1), . . . , f(xi−1), y, f(xi+1), . . . , f(ym)〉
where y = f(x) is in the ith position. Ask A to invert Y . Let it’s output be X ′ =
(x′1, x

′
2, . . . x

′
m). If y = f(x′i), output x′i. If A′ succeeded in inverting F at Y , we would

have succeeded in inverting y. We repeat the process some polynomial (to be fixed later)
number of steps, to enhance our success probability. If we are unsuccessful in all these
polynomial number of trials, we give up.

We now argue that our algorithm inverts f in more than 1/nl fraction of its inputs. Define
a bipartite graph of 2n vertices on one side and 2m·n vertices on the other side. Strings in
{0, 1}n are the vertices in the left side L and strings in {0, 1}m·n are the vertices on the
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right side R. Add an edge between x and (x1, . . . , xm) if x = xi, for some i. The graph is
a multigraph (meaning, there may be more than one edge between a pair of vertices). For
a node x, we let N(x) denote the multi-set of its neighbors. Let G ⊆ R are the points at
which A can invert F .

Now let’s review our algorithm A′. Given f(x), A′ (implicitly) chooses a random element
r ∈R N(x), then computes Y = F (r) and then asks A to find r. A′ wants to find x=ith

component of r. If N(x) ∩G is large, then with high probability Y will be in G. If Y ∈ G,
then A′ will invert Y successfully and hence A′ will invert f(x) successfully. We shall argue
that for ”large” fraction of x, N(x) ∩G is ”large”.

To make the above argument formal, let’s first state some simple facts. |L| = 2n. |R| =
2m·n. The degree of each node in R is m. The degree of each node in L is m2n(m−1). Our
bipartite graph is an ”expander”, in the following sense.

A bipartite graph has (ε, δ)-expansion property, if for all S ⊆ L, with |S| ≥ ε|L|, we have
that |N(S)| ≥ (1 − δ)|R|. In other words, for any small set in L, its neighbor set is large.
Our graph has good expansion properties.

Let S ⊆ L be of size |S| ≥ ε|L|. What’s the size of N(S)? Pick a random Y ∈ R. Let
Y = (x1, x2, . . . xm). What’s the probability that Y 6∈ N(S)? So,

Pr[Y 6∈ N(S)] = Pr[x1 6∈ S, . . . xm 6∈ S] ≤ (1− ε)m

We want this probability to exponentially small. So, choose m = n/ε. Then,

Pr[Y 6∈ S] ≤ (1− ε)m ≤ e−n

And
|N(S)| ≥ (1− e−n)|R|

We shall fix the parameters now. Fix:-

ε0 =
1

nl
;m =

n

ε0
= nl+1; δ0 = e−n

Thus, our graph has (ε0, δ0)-expansion property.

We assumed that the adversary A invert F in e−n + 1
nk fraction of the inputs. Let α = 1

nk .
Then |G| ≥ (δ0 + α)|R|.

Let S ⊆ L, be any set with |S| ≥ ε0|L|. As our graph has (ε0, δ0)-expansion property,
|N(S)| ≥ (1− δ0)|R|. So,

|G ∩N(S)| = |G| − |G ∩N(S)| ≥ |G| − |N(S)| ≥ (α + δ0)|R| − δ0|R| = α|R|

So |G ∩ N(S)| ≥ α|R|. The left degree of the graph is m2n(m−1). So, the total number of
edges incident on S is |S|m2n(m−1). How many of these are good? Meaning, how many have
the other vertex in G? From each one of these vertices in |G∩N(S)|, at least one edge goes
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to S. Thus, the number of good edges incident on S is at least α|R|. What’s the average
number of good edges incident on S?

#good edges

total # of edges
≥ α|R|
Sm2n(m−1)

=
α2n·m

Sm2n(m−1)
≥ α

m

2nm

2n2n(m−1)
=
α

m

So, for any set S of size at least ε0|L|, the fraction good edges is more than α
m

.

Now consider the set,

S =

{
x ∈ L

∣∣∣ |{(x, g) | g ∈ G}||N(x)| <
α

m

}

For this set, the fraction of good edges is < α
m

. So its size should be < ε0|L|. So, the set

D =

{
x ∈ L

∣∣∣ |{(x, g) | g ∈ G}|
deg(x) = |N(x)| ≥

α

m

}

has cardinality |D| ≥ (1− ε0)|L|.
We are given f(x) as input to invert. We randomly pick a neighbor r of x, compute

Y = F (r), use A to invert Y and get x. Suppose x ∈ D. Then, with probability ≥ α
m

, r will
be in G and we will be successful. If we repeat the process m

α
, we will be successful. The

main point is that α was assumed to be 1/nk, a inverse polynomial. So m/α is polynomial.
As |D| ≥ (1− ε0)|R|, Prx[x ∈ D] ≥ (1− ε0) = 1− 1

nl . Thus, we will invert f with probability
≥ 1− 1

nl . This contradicts the assumption that f is 1/nl-hard. ♣

9.3 Goldreich-Levin Hardcore Bit

Let f be a strong one-way permutation. A hardcore predicate for f is a boolean function g
such that, it’s hard to compute g(X,Y ), given f(X) and Y , Formally, for any probabilistic
polynomial time algorithm, for all polynomials p, for sufficiently large n,

Prx,y∈R{0,1}n[A(f(x), y) = g(x, y)] ≤ 1

2
+

1

p(n)

We show that such predicates can be constructed for any strong one-way permutation
f . The construction is due to Goldreich and Levin. Define g(X,Y ) to be the inner product
X · Y of X and Y . That is, if X = x1x2 . . . xn and Y = y1y2 . . . yn, then, X · Y =

∑
xiyi,

where the summation is over mod 2.

We claim that g is a hardcore predicate for f . On the contrary, suppose there is an
algorithm A that can compute g(X,Y ), given f(X) and Y , with probability 1

2
+ 1

nc . We
show that, using A as a black-box, f can be inverted with high probability.

For two string X = x1 . . . xn and Y = y1 . . . yn, we define X + Y to be the bit-wise XOR
of X and Y . That is, X+Y = z1 . . . zn, where zi = xi +yi (mod 2) . Define X̂ = x̄1x2 . . . xn,
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the string X with first bit flipped. We have X ·(Y +Z) = X ·Y +X ·Z. So, X ·Y +X · Ŷ = x1.
This last property plays an important role in our construction. Our goal is to compute x1

correctly, with high probability. Then use the same procedure to compute other bits of X,
there by inverting f .

Let m = O(log n). We will fix its exact value later. Choose m strings Y1, Y2, . . . Ym ∈
{0, 1}n at random. Let ε1, ε2, . . . , εm be some fixed m bits, not all 0. Define Yε1ε2...εm =

∑
εiYi.

The above one is a random variable. It will be uniformly distributed over {0, 1}n. Take any
δ1δ2 . . . δm ∈ {0, 1}m − {0}m, such that ε1 . . . εm 6= δ1 . . . δm. For some i, εi = 1 and δi = 0
(or vice versa). Yi is chosen uniformly from {0, 1}m and it contributes only to Yε1...εm . So
the random variables Yε1...εm and Yδ1...δm are independent. Thus the set of 2m − 1 random
variables {Yε1...εm}, for ε1 . . . εm ∈ {0, 1}m − {0}m, are pairwise independent.

Now we are ready to present our construction. We first choose Y1, Y2, . . . , Ym ∈R {0, 1}n.
Then guess the values of X ·Y1, X ·Y2, . . . , X ·Ym to be b1, b2, . . . , bm. Assume that we guessed
correctly! Then, for any ε1, . . . , εm we can compute X · Yε1ε2...εm correctly:-

X · Yε1ε2...εm = X · (ε1Y1 + · · ·+ εmYm) =
∑

εi(X · Yi) =
∑

εibi

Fix some ε1, . . . , εm and compute X ·Yε1ε2...εm as above. Then use the black-box A to compute

X · ̂Yε1ε2...εm . Assume that A computed this correctly. We can now compute the first bit x1

of X, x1 = X · Yε1ε2...εm + X · ̂Yε1ε2...εm . (Recall that for any Y , x1 = X · Y + X · Ŷ .)
How to make the correct guesses for b1, . . . , bm? As m = O(log n), total number of possible
values for b1 . . . bm is polynomial in n. So we can run the above procedure for every possible
sequence of guesses. And one of the guesses would be correct. To make the black-box work
well with high probability, we run the above procedure over all possible (polynomial number
of) ε1, . . . εm. Then, we take the majority. We would get x1 this way. Similarly, compute
other bits. Using Chebyshev inequality, we shall show that with high probability (over the
random choices for Y1, Y2, . . . , Ym), we would have got the correct x1, x2, . . . , xm. We can
verify whether we are correct by checking f(x1x2 . . . xm) = f(X). If we are not correct, we
run the experiment again, by choosing at random another set of Y1, Y2, . . . , Ym.

We next present the algorithm in full. The input is f(X). It tries to compute X.
Choose Y1, Y2, . . . , Ym ∈R {0, 1}n.
For all 2m choices of b1 . . . bm ∈ {0, 1}m do:-

For 1 ≤ k ≤ n do:-

For each ε1 . . . εm ∈ {0, 1}m − {0}m do:-

Use A to compute the the vote

Vε1,...,εm =
∑m

i=1 εibi + A[f(X), Yε1ε2...εm + 0k−110n−k]
Set xk to be the majority of the above 2m − 1 votes.

If f(x1, . . . , xk) = f(X), output x1 . . . xk and EXIT.

The above procedure runs in polynomial time, as m = O(log n). In the above procedure,
as we run through all possible b1, . . . , bm, in some iteration we would achieve ∀i[bi = X · Yi].
Consider that particular iteration. What’s the chance that we would get x1 correctly? This
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depends upon the what’s the majority of the votes. Each ε1, . . . , εm casts a vote for the value

of x1. The vote Vε1,...,εm will be correct, if A succeeds in computing X · ̂Yε1ε2...εm correctly. We
already observed that the 2m − 1 random variables Yε1ε2...εm are uniformly distributed over
{0, 1}n and they are pairwise independent. So, by our assumption that A can compute the
inner product with probability ≥ 1

2
+ 1

nc , each vote will be correct with at least that much
probability. We now apply Chebyshev over these 2m − 1 votes. Let χ be a random variable
that counts the number of correct votes among these 2m − 1 votes. χ is a sum of 2m − 1
pairwise independent 0-1 random variables. Each of these individual random variable has a
success probability, at least, 1

2
+ 1

nc . Expectation of χ is

E[χ] ≥ (2m − 1)

(
1

2
+

1

nc

)

Due to pairwise independence, var χ is the sum of variances of the individual 0-1 random
variables. The variance of any 0-1 random variable is at most 1. So, var χ ≤ 2m − 1. By
Chebyshev,

Pr[ majority of 2m − 1 votes wrong ] = Pr

[
χ <

2m − 1

2

]

≤ Pr

[
|χ− E[χ]| > 2m − 1

nc

]

≤ var χ
(

1
nc (2m − 1)

)2

=
(2m − 1)n2c

(2m − 1)2

=
n2c

2m − 1

Take m ∼ (2c log n + 2). Then the probability that x1 is not correct is at most 1
n2 . The

probability that any one of x1, x2, . . . , xn is not correct is at most 1
n
. By repeating the above

experiment, we can improve our success probability.

9.4 Construction of Pseudorandom Generators

Show how to construct PRG using gl-hardcore bit.
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Chapter 10

Computing With Circuits

For the next few lectures, we will deal with circuit complexity. First we will concentrate on
small depth circuits. As the depth of a circuit corresponds to parallel computation time,
small depth circuit complexity captures efficient parallel computation. Before we prove
circuit lower bounds, which show cannot be computed by small depth circuits, we should
gain some appreciation of what can be done by these circuits. So we first exhibit some
computational power of these circuits. We start with one of the simplest computations:
integer addition.

10.1 Binary Addition

Given two binary numbers, a = an−1 . . . a1a0 and b = bnbn−1 . . . b1b0, we can add the two
using the school method – adding each column from right (the least significant bit) to left
(the most significant bit), with carry bit along the way. In other words, r = a+ b, where

an−1 . . . a1 a0

+ bn−1 . . . b1 b0
rn rn−1 . . . r1 r0

can be accomplished by first computing r0 = a0⊕ b0 (⊕ is exclusive or, which can be further
written out in terms of ∨ and ∧) and computing a carry bit, c1 = a0 ∧ b0. Then, we can
compute r1 = a1 ⊕ b1 ⊕ c1 and c2 = (c1 ∧ (a1 ∨ b1)) ∨ (a1 ∧ b1), and in general, for k ≥ 1 we
have

rk = ak ⊕ bk ⊕ ck
ck = (ck−1 ∧ (ak ∨ bk)) ∨ (ak ∧ bk)

Certainly, the above operation can be done in polynomial time. The main question is, can
we do it faster in parallel? Note that the computation expressed above is sequential. Before
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computing rk, one needs to compute all the previous output bits. Of course, one can always
express the bits rk in CNF (or DNF) form. Such a circuit will have depth just 2 and hence,
could add fast in parallel. But this argument via CNF (or DNF) would give exponential size
circuit in general.

It turns out that there is indeed a way to do this in fewer levels (i.e. low depth or fast
parallel time) and polynomial size. This is usually called Carry-Look-Ahead. In computing
rk = ak ⊕ bk ⊕ ck, the main problem is computing ck and what we would like is to be able
to compute the carry bit ck in one step for any k. Notice that for c1 to be 1, we must have
a0 = b0 = 1. In general, for ck to be 1, a carry bit has to be generated at some position
i < k, and should be propagated all the way through to position k. To be precise,

ck = ∃i(0 ≤ i < k)
[
ai ∧ bi

∧
∀j(i < j < k)(aj ∨ bj)

]

which can be rewritten as

ck =
∨

0≤i<k

[
ai ∧ bi ∧

∧

i<j<k

(aj ∨ bj)
]

Notice that this computation can be done in constant depth since nothing in it depends on
previous results. To do the above computation in constant depth, of course, we would need
gates with arbitrary fan-in.

10.2 NC and AC Classes

We next define the classes ACi and NCi. First, we define AC0.

Definition. AC0 is the set of languages that have constant depth, polynomial size
circuits (unbounded fan-in). Formally, L ∈ AC0 if for every n, there exists a circuit Cn with
unbounded fan-in gates AND, OR and NOT, such that

1. ∀x ∈ {0, 1}n, Cn(x) = L(x)

2. |Cn| < nO(1)

3. depth(Cn) = O(1)

We showed that addition is in AC0 (formally, we should define a language version of
addition, for example, the ith bit of the sum). We say that a language is in uniform AC0

if the circuit Cn is computable in log-space. Meaning, there is a Turing machine, which
given 1n as input, outputs the circuit Cn and the machine runs in space O(log n). Next, we
generalize the notion to define ACi.

Definition. ACi is the set of languages L such that for every n, there exists a circuit Cn

with unbounded fan-in gates AND, OR and NOT, such that
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1. ∀x ∈ {0, 1}n, Cn(x) = L(x)

2. |Cn| < nO(1)

3. depth(Cn) = O[(log n)i]

ACi allows circuits to use gates with unbounded fan-in. The class NCi is similar to ACi,
except that only bounded fan-in gates are allowed by NCi. More precisely, we require that
each boolean ∨ and ∧ is binary. The following containments (for uniform NC and AC classes)
are easy to see:

AC0 ⊆ NC1 ⊆ AC1 ⊆ NC2 ⊆ . . . ⊆ P

As with other hierarchies in complexity theory, we know very little about whether this
hierarchy is strict or if it collapses. One thing we know is that AC0 6= NC1. This is because,
one can do parity in NC1, but not in AC0. It is easy to see that we do parity in NC1, by
divide and conquer. Later, we will show that parity cannot be done in AC0.

10.3 Multiplication

Now that we have shown binary addition to be in AC0, we turn our attention to binary
multiplication. Again, the school method involves multiplying one of the numbers by each
of the digits of the other number and adding all the results to get the final result. But since
we are doing binary multiplication, each of these digits is either a 1 or a 0. Thus, we either
write the number (shifted appropriately) or not, and add all of these (at most n) numbers
together. Thus, multiplication is nothing more than the addition of these n numbers, each
of at most 2n− 1 bits, as shown in the example below.

1 0 0 1
× 1 1 0 1

1 0 0 1
1 0 0 1

1 0 0 1
1 1 1 0 1 0 1

So the question is how to add m binary numbers, each of at most m bits. To add these
numbers quickly, we introduce a new trick called 3-2 trick. This trick is to take 3 numbers
a, b, c, and output 2 new numbers d, e, such that the sum of the 2 new numbers is the same as
the sum of the 3 input numbers: a+ b+ c = d+ e. To do this, we imagine doing an addition
at every bit position i separately. Given ai, bi and ci, we can produce the sum as two bits,
uv ∈ {00, 01, 10, 11}. The school method would have set the leading bit u as the carry bit
and propogated onward. Instead we write down v as the ith bit of d, and u as the i+1th bit
of e, where d and e are the two output numbers. More precisely, for 0 ≤ i < n in parallel, we
take the three bits ai, bi, and ci, and set di = ai⊕bi⊕ci and ei+1 = (ai∧bi)∨(ai∧ci)∨(bi∧ci).
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Now we have converted the addition of three numbers to the addition of two numbers in
constant depth with bounded fan-in circuit (which are sometimes called NC0).

To make use of this for the addition of m numbers, we apply divide and conquer. After
O(logm) parallel rounds of the 3-2 tricks, we are left with two numbers to add, at which
point we add them using the carry-look-ahead method. Thus, the parallel time (depth) to
add the m m-bit numbers can be done in NC1.

Other operations that are also in NC1 are integer division and inner product. Using
the Chinese Remainder Theorem, it can be shown that division is in NC1. (For division,
the uniformity of the circuit had been a tricky issue. For many years one can only achieve
P-uniformity; but recently it has been shown that it can be done in logspace-uniform NC1.)

10.4 Inner Product, Matrix Powers and Triangular Lin-

ear Systems

We now turn our attention to matrix computations and solving linear systems of the form
Ax = b. First, consider multiplying two n× n matrices A and B. Each entry of the output
matrix is an inner product of a row of A and a column of B. All these can be carried out in
parallel. Each inner product involves n multiplications and then summing up the products.
The multiplications can be carried out in parallel in NC1. Summing up the n products can
be done in a “binary tree fashion” with log n levels. Thus matrix multiplication can be
done in NC1. How about computing Am? Using repeated squaring, it is clear we need only
O(logm) levels of matrix squaring and multiplying. In particular, for a n×n matrix A with
each entry an O(n)-bit integer, AO(n) can be computed in NC2.

Our next goal is to solve linear equations. Recall that a linear system is of the form
Ax = b where A is a matrix of coefficients, b is a vector of constants and x is a vector of
unknowns. To simplify our discussion, suppose that A is a non-singular n× n matrix.

We first consider the simplest case. Suppose A is lower triangular with unit diagonals;
that is, A is of the form

A =




1 0 0 . . . 0
a2,1 1 0 . . . 0

a3,1 a3,2 1
. . .

...
...

...
...

. . . 0
an,1 an,2 an,3 . . . an,n




We first write A = I−∆ where ∆ is strictly lowe triangular (i.e. has zeros along the diagonal
as well as above the diagonal). Note that ∆2 has zeros in not only the upper triangular and
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diagonal entries, but also the diagonal just above the main diagonal. ∆ is called a nilpotent
matrix, in that for some m, ∆m = 0. In fact ∆n = 0. By analogy of geometric sereis, we
write

(I −∆)−1 =
∞∑

i=0

∆i

As ∆n = 0, only the first n terms of the above series are non-zero. So,

(I −∆)−1 = I + ∆ + ∆2 + . . .∆n−1

Of course, so far this argument is dubious, since it is arrived at by analogy. This argument
can be made rigorous. However we will be theoretical computer scientist for once, a.k.a.
mathematicians in a hurry, and justify this simply by verifying that the finite sum exhibited
indeed is the inverse of I − ∆, QED. Thus, if our linear system is such that A is lower
triangular, (as A is non-singular, by dividing out the diagonal entries, we can assume it has
unit diagonals), we can compute the inverse of A by evaluating the above finite series. This
involves only matrix multiplication and addition. Finally, the solution is given by x = A−1b.
This entire process is certainly in NC2.

This process works great for lower triangular matrices, but we want to solve any linear
system. We can do that using Gaussian elimination, which is certainly not parallel as each
step depends on what was done in the previous step. We want to somehow reduce the
problem of inverting general matrices to the problem of inverting lower triangular matrices,
in parallel efficiently. We do that next.

10.5 Determinant and Linear Equations

We show how to solve general linear equations in NC2.

The goal is to solve a given system of linear equations: Ax = b, where A is a non-singular
n × n matrix, b an n dimensional column vector and x = (x1, x2, . . . , xn) is the vector of
unknowns. Our aim is to compute the determinant of A in NC2. Once we do that, the
solution x can be found by using Cramer’s rule: xi = det(Ai)/ det(A), where Ai is the
matrix obtained by replacing the ith column of A by the column vector b.

10.5.1 Trace of a matrix

Trace of an n× n matrix A, denoted Tr(A), is the sum of its diagonal entries. That is,

Tr(A) =
n∑

i=0

aii

We next state some properties of trace.
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Proposition 10.1 For two n× n matrices A and B, Tr(AB) = Tr(BA).

Proof.

Tr(AB) =
∑

i

∑

k

aikbki =
∑

k

∑

i

aikbki =
∑

k

∑

i

bkiaik = Tr(BA)

♣
The following lemma is well-known for a spectural decomposition of a matrix. More

precise information of the matrix J (called Jordan normal form) is known, but we will only
need this form. We will use the lemma to establish more properties of trace and eigenvalues.

Lemma 10.2 Let A be an n × n matrix. There exist n × n matrices T and J such that
A = T−1JT , where J is an upper triangular matrix whose n diagonal entries are the n
eigenvalues of A.

Proposition 10.3 Let A be an n × n matrix and λ1, λ2, . . . , λn be its eigenvalues. Then,
for k ≥ 0,

Tr(Ak) =
n∑

i=1

λk
i .

Proof. Let A = T−1JT . Then we have

Ak = (T−1JT )k = T−1JkT

So,

Tr(Ak) = Tr(T−1JkT ) = Tr(T−1TJk) = Tr(Jk)

The second equality follows from Proposition 10.1. Note that J is an upper triangular
matrix whose n diagonal elements are λ1, λ2, . . . , λn. Hence, the diagonal elements of Jk are
λk

1, λ
k
2, . . . , λ

k
n. So,

Tr(Jk) =

n∑

i=1

λk
i

♣
Next, we can express the determinant of a matrix as the product of its eigenvalues.

Proposition 10.4 For an n× n matrix A with eigenvalues λ1, λ2, . . . , λn, we have

det(A) =
n∏

i=1

λi
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Proof. Consider the decomposition A = T−1JT . Then,

det(A) = det(T−1JT ) = det(J) =
n∏

i=1

λi

♣
From last section, for 1 ≤ k ≤ n, we know how to compute Ak in NC2. Hence, we can also

compute Tr(Ak) =
∑n

i=1 λ
k. Notice that we have computed all these sums without explicitly

computing λ1, λ2, . . . , λn. Our aim is to compute det(A), the product of eigenvalues. One
could explicitly compute these eigenvalues and then take their product. But, computing
eigenvalues is at least as hard as computing the determinant. Instead, we will directly
compute their product using the known traces Tr(Ak), 1 ≤ k ≤ n.

Think of the eigenvalues as unknowns or variables. Then, Tr(Ak) and det(A) are poly-
nomials over these variables. These polynomials are symmetric polynomials and we can
express the polynomial det(A) in terms of the polynomials Tr(Ak). Towards that end, we
shall diverge a little bit and study the symmetric polynomials.

10.5.2 Symmetric polynomials

We will focus on polynomials over n variables x1, x2, . . . , xn. A polynomial over these vari-
ables is symmetric, if renaming the variables does not change the polynomial. Formally,

Definition 10.5 (Symmetric polynomial) A polynomial p on x1, x2, . . . , xn is sym-
metric if ∀σ ∈ Sn (i.e., for all possible permutations of 1 through n), p(x1, . . . , xn) =
p(xσ1, xσ2, . . . , xσn).

Two families of symmetric polynomials are important for our purpose here: Newton’s
symmetric polynomials and elementary symmetric polynomials. We first give Newton’s
symmetric polynomials. For 0 ≤ k ≤ n, the kth Newton’s symmetric polynomial is given by

sk =
n∑

i=1

xk
i

It is clear that these polynomials are symmetric. We could define sk for k > n, but we will
only need 0 ≤ k ≤ n. Note that s0 = n.

We now give the elementary symmetric polynomials. For 1 ≤ k ≤ n, the kth elementary
symmetric polynomial is given by

pk =
∑

1≤i1<i2<...<ik≤n

xi1xi2 . . . xik

Since every choice of k variables appears as a product exactly once, these polynomials are
symmetric. It is convenient to define p0 = 1. Note that pn =

∏
i xi.
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(Notice the correspondence between these polynomials and trace and determinant we
discussed before. In particular, Tr(Ak) =

∑n
i=1 λ

k
i is the kth Newton’s symmetric polynomial,

whereas, det(A) =
∏n

i=1 λi is the nth elementary symmetric polynomial.)

One can express the elementary symmetric polynomials in terms of Newton’s polynomials.
For example,

p1 =
n∑

i=1

xi = s1.

Similarly, since s2 =
∑n

i=1 x
2
i ,

p2 =
∑

1≤i<j≤n

xixj.

Thus,

s2
1 =

(∑
xi

)2

= s2 + 2p2.

Therefore,

p2 =
1

2
(s2

1 − s2).

In fact any symmetric polynomial can be expressed as a polynomial of Newton’s polynomials
as well as expressed as a polynomial of elementary symmetric polynomials:

Theorem 10.6 (Fundamental theorem of symmetric polynomials) Every polyno-
mial on x1, . . . , xn is symmetric iff it can be expressed as a polynomial of s1, . . . , sn (as well
as p1, . . . , pn).

We can use this theorem to relate the elementary symmetric polynomials and Newton’s
polynomials. But, we need more specific formulas relating the two families of polynomials.
So, next we state and prove a relationship between these two families that is useful in
computing determinants in NC2.

Theorem 10.7 For 1 ≤ k ≤ n,

pk =
1

k
(pk−1 · s1 − pk−2 · s2 + · · · ± p0 · sk)

Proof. For k,m ≥ 0, define the polynomial:

fm
k =

∑

1≤i1<...<ik≤nj /∈{i1,...,ik}
xi1xi2 . . . xikx

m
j

How many terms are there to sum over? Note that there are two distinct parts, the product
xi1xi2 . . . xik and xm

j . There are
(

n
k

)
· (n − k) terms. Clearly, the boundary cases are fm

0 =∑n
j=1 x

m
j = sm and f 0

k = (n− k) · pk.
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We now derive a formula for pk · sm, when k ≥ 1 and m ≥ 0:

pk · sm =

(
∑

1≤i1<...<ik≤n

xi1xi2 . . . xik

)
·
(

n∑

j=1

xm
j

)

=
∑

1≤i1<...<ik≤n,j /∈{i1,...,ik}
xi1xi2 . . . xikx

m
j +

∑

1≤i1<...<ik≤n,j∈{i1,...,ik}
xi1xi2 . . . xikx

m
j

The first sum is fm
k . What about the second sum? It’s a bit tricker, but a moment reflection

convinces us that it is nothing but fm+1
k−1 , as each term in fm+1

k−1 occurs eactly once in the
second sum. So, for k,m ≥ 1, we have

pk · sm = fm
k + fm+1

k−1

For k = 0, since p0 = 1, p0 · sm = sm = fm
0 .

Now consider the alternating sum:

pk · s0 − pk−1 · s1 + pk−2 · s2 − . . .+ (−1)kp0 · sk

= (f 0
k + f 1

k−1)− (f 1
k−1 + f 2

k−2) + . . .+ (−1)k−1(fk−1
1 + fk

0 ) + (−1)kfk
0

This is a telescoping sum, where all the terms cancel out, except for f 0
k . By definition,

f0
k = (n− k)pk. Hence,

(n− k)pk = pk · s0 − pk−1 · s1 + pk−2 · s2 + · · · + (−1)kp0 · sk

Note that s0 = n and p0 = 1. So,

(−1)k−1p1sk−1 + · · · + pk−2s2 − pk−1s1 + kpk = (−1)k−1sk.

♣

10.5.3 Csanky’s Algorithm for Determinant

Recall that we are interested in computing the determinant of a given non-singular n × n
matrix A. Let its eigenvalues be λ1, λ2, . . . , λn. We can compute Sk = Tr(Ak) in NC2. Our
goal is to compute,

det(A) = Pn = λ1λ2 . . . λn

Think of the eigenvalues as variables or unknowns. Then, Sk and Pk can be viewed as
polynomials. For each 1 ≤ k ≤ n, Sk is nothing but the kth Newton’s symmetric polynomial
and Pk is nothing but the kth elementary symmetric polynomial. We have these equalities
relating Pk and Sk. Now, the idea is to treat {Pk} as the unknowns and solve for {Pk} as a
system of linear equations. We can write

(−1)k−1Sk−1P1 + · · · + S2Pk−2 − S1Pk−1 + kPk = (−1)k−1Sk.
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Recall that we started off with the problem of solving linear system of equations. Have we
made any progress? Yes! The crucial point is that, now the system is lower triangular! To
be more pedantic, let us write the above system in matrix form:




1 0 0 · · · 0
−S1

2
1 0 · · · 0

S2

3
−S1

3
1 · · · 0

...
...

...
. . . 0

(−1)n−1Sn−1

n
(−1)n−2Sn−2

n
(−1)n−3Sn−3

n
· · · 1







P1

P2

P3
...
Pn




=




S1

−S2

2

+S3

3
...

(−1)n−1Sn

n




We already saw how to solve system of linear equations whose coefficient matrix is lower
triangular in NC2. Using that method, we can solve the above system of equations and
compute P1, P2, . . . , Pn. Finally, Pn = det(A) is the required answer.
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Chapter 11

Circuit Lower Bounds

Chapter Outline: Razborov-Smolensky, Decision trees, Switching Lemma, Parity lower
bounds, Non-approximability results for parity

11.1 Historical Notes

Discuss history of circuit lower bounds. Furst-Saxe-Sipser, Yao, Cai, Hastad.

11.2 Razborov-Smolensky Theorem

Constant depth size 2nε
boolean circuits together with Mod 3 gates cannot compute parity.

We will prove the above result in next two sections. We first show that constant depth cir-
cuit can be approximated by a low degree polynomial. Then we show that such polynomials
cannot approximate parity function.

11.2.1 Approximating Constant Depth Circuits by Low Degree
Polynomials

In this section, we show that constant depth circuits can be approximated by low degree
polynomials over GF(3).

Theorem 11.1 We can approximate the function F (x1, x2, . . . , xn) = x1 ∨ x2 ∨ . . . ∨ xn

with a low degree polynomial. More precisely, for any positive integer k, there is a degree
≤ 2k polynomial P in x1, . . . , xn, over GF(3) that agrees with y on at least 2n(1 − (1

3
)k) of
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assignments. That is,

Prσ∈{0,1}n[P (σ) = F (σ)] ≥ 1−
(

1

3

)k

The claim is also valid for the
∧
,¬andMod3 functions.

Proof. We use the probabilistic method to prove the lemma. Fix an assignment σ1 =
(c1, c2, . . . , cn) ∈ {0, 1}n. Choose a1, a2, . . . , an ∈ GF (3) uniformly at random. Consider
the polynomial F̂ = (

∑n
i=1 aixi)

2). Note that, as we are working in GF(3)={-1,0,1}, F̂
evaluates to 0 or 1 for any input. What is the probability that F̂ (σ1) = F (σ1)? If F (σ1)
evaluates to 0, then F̂ also evaluates to 0 (regardless of the random values ai). On the other
hand, suppose F (σ1) = 1. Let j be the largest index such that cj = 1. Then

Pr[F̂ (σ1) = 1] = Pr



(

n∑

i=1

aici

)2

= 1


 = Pr



(

j∑

i=1

aici

)2

= 1


 = Pr

[
j∑

i=1

aici 6= 0

]

The last equality is due to the fact that in GF(3), x2 = 1 ⇐⇒ x 6= 0. We evaluate the
last quantity by conditioning on the first j − 1 terms of the summation. These could sum
up to 0,1 or -1. But regardless this value, we have 2/3 chance for the summation to be
non-zero, because cj = 1 and aj is chosen at random from GF(3). To conclude, for any fixed
σ1 ∈ {0, 1}n,

Pra1,a2,...,an∈GF (3)[F̂ (σ1) = F (σ1)] ≥
2

3

There are 3n ways to choose the coefficients ai’s of the polynomial and there are 2n

assignments for the variables x1, x2, . . . , xn. Consider the following table in which each
row represents one possible vector of coefficients and each column represents a possible
assignment.

Assignment of the xi

σ1 σ2 σ3 · · · σ2n

a(1)

a(2)

a(3)

...
a(3n)

Consider an assignment σj = c1, c2, . . . , cn and a coefficient vector a(i) = (a1, a2, . . . , an).
Place a 1 in the cell (a(i), σj) in the above table, if (

∑n
j=1 aic

2
) = F (c1, c2, . . . , cn, and place a

0 otherwise. By our probability calculation above, any column of the table has 1 in at least
2/3 of the cells. Thus, at least 2/3 of the entries in the entire table are 1. It follows that
there is some row that has a 1 in at least 2/3 of its cells. Let this row be r1 and let F̂1 be the

polynomial corresponding to this row, i.e. F̂1(x1, x2, . . . , xn) =
∑n

i=1 a
(r1)
i xi. If we choose an

148



assignment σ at random, we have

Prσ∈{0,1}n[F̂1(σ) = F (σ)] ≥ 2

3

Now ignore all the columns in which the row r1 has 1. At most 1/3 of the columns
remain. All these columns have 1 in at least 2/3 of their cells. Again by the same argument,
there is some other row r2 that has 1 in at least 2/3 of these remaining columns. We let
F2 be the polynomial corresponding to row r2. Next ignore these columns. At most (1/3)2

columns would remain. We continue like this for k iterations. At most (1/3)k columns would
remain. We would have constructed polynomials F̂1, F̂2, . . . , F̂k.

Being the OR function, F evaluates to 0 for only one assignment, namely σ0 = (x1 =
0, x2 = 0, . . . , xn = 0). All our k polynomials evaluate to 0 on this assignment and for any
other input they all evaluate to 0 or 1. Consider the columns (or assignments) that were
ignored. These are “covered”by our polynomials in the sense that if F (σ) = 1 then at least
one of these polynomials Fi also evaluates to 1 on σ. So if we take OR of our polynomials
F̂ = F̂1 ∨ F̂2 ∨ . . . ∨ F̂k, then for any “covered” assignment σ, F̂ (σ) = F (σ). But 1− (1/3)k

of the assignments are covered. So

Prσ[F̂ (σ) = F (σ)] ≥ 1−
(

1

3

)k

Only one problem remains. How do we OR two polynomials to get another polynomial? We
use the trick mentioned in the beginning. We let F̂1 ∨ F̂2 = 1− (1− F̂1)(1− F̂2). So we take
OR of all the k polynomials this way and let the required polynomial P to be F̂1∨F̂2∨. . .∨F̂k.
What is the degree of P? Each F̂i has degree 2 (because of the squaring). Thus P has degree
at most 2k.

Thus we have constructed a polynomial of degree at most 2k that agrees with the OR
function F on at least 1 − (1/3)k assignments. Same way we can approximate AND and
NOT functions.

Next we show that any depth d circuit C of size s over n inputs, can be approximated
by a low degree polynomials. We use the above lemma to approximate each of the s gates
by polynomials of degree 2k. We construct a polynomial to approximate the circuit by
combining these polynomials. For example, consider a two input ∨–gate g that receives its
inputs from two other gates g1 and g2 (which are at lower depth). The polynomial for gate
g constructed by Lemma 11.1 be P (y1, y2). We substitute the polynomials for gates g1 and
g2, say Fg1 and Fg2 for y1 and y2 in P to get the polynomial Fg for gate g. This way, we
start at the input level and move upto the output level of the circuit to get the polynomial
FC to approximate the circuit. As the depth of the circuit is d and the polynomials for the
gates (from Lemma 11.1 are of degree 2k), the degree of FC would be (2k)d.

Choose an input x1, x2, . . . , xn ∈ {0, 1} at random. What is the probability that FC does
not agree with circuit C on this input? FC will fail to agree with the circuit C only when at
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least one of the s polynomials (of the gates) fails. By the guarantee given by Lemma 11.1,
for any specific gate, this happens with probability at most s

3k . Thus probability that at
least one gate fails is at most 1

3k . Thus,

Prx1,x2,...,xn∈{0,1}[FC(x1, x2, . . . , xn) = C(x1, x2, . . . , xn)] ≥ 1− s

3k

We have shown that

Theorem 11.2 For any circuit C of depth d and size s on n boolean variables, for any
integer k, there is a polynomials F (x1, x2, . . . , xn) of degree at most (2k)d over GF(3) whose
value is equal to the output of the C on at least 2n(1 − s/3k) inputs. The circuit is allowed
to use AND, OR, NOT and Mod3 gates.

11.2.2 Low Degree Polynomials Cannot Approximate Parity

11.3 Switching Lemma and Parity Lower Bounds

11.3.1 Decision Trees

Decision trees are used to represent boolean functions.

Definition 11.3 (Decision trees) A decision tree is a rooted binary tree t with every
leaf labeled as 0 or 1. Every internal node is labeled with an xi. The two edges from an
internal node are labeled with 0 and 1 respectively. We do not disallow variables to repeat
along a path from the root to the leaf.

Definition 11.4 (Decision tree depth) The depth of a decision tree is defined to be
the number of edges in the longest path from the root to a leaf.

Figure 11.1 shows an example of a decision tree.

A decision tree T defines a boolean function as follows:

1. if depth(T ) = 0, then it is a constant function (either 0 or 1)

2. if depth(T ) = d + 1 (d ≥ 0): inductively assume that the left subtree and the right
subtree respectively define a boolean function. Call the boolean function defined by
the left subtree G and the right subtree as H. Also assume that the root is labeled as
xi and has the left edge labeled 0 and the right edge labeled 1. Then,

F (x1, x2, . . . , xn) =

{
G(x1, x2, . . . , xn) if xi = 0
H(x1, x2, . . . , xn) if xi = 1
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1

0 1
0 1

0 1

x2

x1x3

0

1 0

0 1

x4

0

Figure 11.1: An example of a decision tree

Both G and H are also functions in xi, but if we disallow xi from repeating along any
path from root to leaf in the decision tree, we can leave it out of the functions G and H.
Then instead, we can write G as a function of x1, x2, . . . , xi−1, xi+1, . . . , xn, which is often
written as G(x1, x2, . . . x̂i, . . . , xn)

Hence, the function F is in fact:

F = (G ∧ x̄i) ∨ (H ∧ xi)

We can instead choose to write G as F |xi=0 and H as F |xi=1 and rewrite the above
equation as:

F = (F |xi=0 ∧ x̄i) ∨ (F |xi=1 ∧ xi)

This expansion gives us a way to write the formula in DNF (i.e., ∨ of ∧’s). If F |xi=0

and F |xi=1 can be written as a DNF where every conjunct has size at most t, then we get a
formula F in DNF in which every conjunct is of size at most t+ 1.

Definition 11.5 (Decision tree complexity) For boolean function f , the decision tree
complexity, DC(f), is the minimum depth of the decision trees that compute f .

Lemma 11.6 D (f) = D
(
f̄
)

Proof: The set of boolean decision trees that compute f are in 1-1 correspondence with
those that compute f̄ . (Just flip the bits at the leaves of the tree.) ♣

As demonstrated in the previous section, a boolean function computed by a decision tree
of depth d can be expressed as a boolean formula in disjunctive normal form (DNF), where
each conjunct has size at most d. Using that idea, we get the following corollary.
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Corollary 11.7 A boolean function f and its complement f̄ can be expressed in DNF
in which every conjunct has size ≤ DC(f). So f can be written as a DNF formula with
conjuncts of size ≤ DC(f), and as a CNF formula with disjuncts of size ≤ DC(f).

The above mentioned special case of DNF where every conjunct is bounded in size will
be useful in our discussion. The following definition spells this out.

Definition 11.8 (t-AND-OR) Boolean formula G is a t-AND-OR if G = G1∧G2 ∧ · · · ∧
Gw, where each Gi is the OR of at most t literals. So Gi = x̃1 ∨ x̃2 ∨ · · · ∨ x̃s, for s ≤ t, and
x̃i ∈ {xi, x̄i}. (Likewise, a t-OR-AND is a formula in disjunctive normal form with at most
t terms in each conjunct.)

11.3.2 Random Restrictions

Definition 11.9 (Restriction) A restriction ρ is a partial assignment to variables of
boolean formula G. Specifically, it is a mapping ρ : {1, 2, · · · , n} 7→ {0, 1, ∗}. The restriction
of G by ρ, written G|ρ, is the boolean function obtained by setting xi to ρ(i) if ρ(i) ∈ {0, 1}
and leaving xi as a variable otherwise.

A random p-restriction is a restriction ρ where, for each i, one independently assigns ρ(i)
such that:

Pr[ρ(i) = ∗] = p, and

Pr[ρ(i) = 0] = Pr[ρ(i) = 1] =
1− p

2

11.3.3 Proving Circuit Lower Bounds for Parity: Overview

Here we will present a high level overview of proving lower bounds relating depth and size
of circuits computing parity. A formal proof will be presented in subsequent lectures.

Before proceeding, let us review some conventions. Suppose we have a circuit that uses
negation gates. By using de Morgan’s law, we can push down the negation gates until they
reach the input level. Thus, any boolean circuit can be transformed to an equivalent one
such that all the negation gates occur at the bottom level (i.e. any negation gate takes
it input only from variables). This transformation can be accomplished increasing the size
at most twice the original and without any increase in depth. We assume that the input
consists of both the variables and their negations so that size of a circuit refers to the number
of AND and OR gates. We do not restrict fan-in or fan-out of the gates. So, without loss
of generality, we can assume that the circuit is “leveled”: a circuit of depth d is made of
d levels so that all gates in a level are of same type and edges are only between adjacent
levels. Thus, AND and OR gates will alternate across levels. From now on, we consider
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only circuits with above properties. By convention, output level (made of just one gate) is
numbered 1 and the bottom level (where gates take their input from variables) is numbered
d.

Now we are ready to state the the lower bound theorem.

Theorem 11.10 For sufficiently large n, Parityn cannot be computed by a depth-d circuit

of size ≤ 2cn1/d
, where c > 0 is some constant.

One can prove the theorem with c = 0.143781. Here we will prove a weaker version where
c ≈ 0.1. The main ingredient of the proof is the switching lemma, which is as follows.

Lemma 11.11 [Switching Lemma] Let G be a t-And-Or formula. Let ρ be a random p-
restriction. Then, for all ∆ ≥ 0,

Pr[DC(G|ρ) > ∆] ≤ (5pt)∆. (11.1)

Assuming the switching lemma, we sketch a proof of Theorem 11.10. Set p = γ0/t, where
γ0 > 0 is a suitable constant fixed later. We will apply the lemma with ∆ = t. Then, the
lemma says that when we apply a random p-restriction to a t-AND-OR formula G, with
probability at least 1− (5γ0)

t, the resultant formula G|ρ has DC ≤ t. As we noted before, a
formula with DC ≤ t, can be expressed as a t-OR-AND formula. Thus, with high probability,
the t-AND-OR formula G|ρ can be “switched” into an equivalent t-OR-AND formula. Using
this ability to “switch”, we can prove Theorem 11.10.

We first consider some restricted type of circuits. A circuit C of depth d is said to be
of type Cd(s, t) if it satisfies the two conditions: i) the gates at the bottom-most level (i.e.
input level) have fan-in ≤ t; ii) number of gates at levels above the bottom level ≤ s. Thus,
we have a bottom fan-in condition (bfi), which restricts fan-in of the bottom level gates. The
gates above the bottom level (or the “internal” gates) are allowed to have any fan-in. At the
end, we will relax these conditions and prove the theorem for any d-depth circuit (this part
is easy).

Assume, without loss of generality that, the gates at the bottom level are OR gates (if
not consider ¬C). Each gate at one level above ((d− 1)th level) is an AND gate which gets
its input from the OR gates at level d. Think of each such AND gates and along with the
OR gates as a small circuit. Any such small circuit sc is computing a t-AND-OR formula,
because of the bottom fan in condition. Choose a random p-restriction ρ and consider the
circuit C|ρ. By the switching lemma, with probability ≥ 1−(5γ0)

t, the formula computed by
the small circuit sc (in C|ρ) has DC ≤ t. As we discussed, this formula is (also) a t-OR-AND
formula. Thus, we can replace the AND-OR circuit sc by an OR-AND circuit, where the
AND gates have fan-in ≤ t. Suppose there are sd−1 AND gates at level d− 1. Assume that
we were lucky and our random restriction ρ is good so that we are able to replace all these
sd−1 AND-OR circuits by sd−1 OR-AND circuits with bottom fan-in ≤ t. The resultant
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circuit is made of OR gates in level d− 1, OR gates is level d− 2 and AND gates in level d.
We can now merge the levels d−1 and d−2 in C|ρ to get a circuit that has only d−1 levels.
There are a few things to note. The new circuit may have more gates at its bottom level
than the original circuit. But, number of internal gates in the new circuits is s − sd−1 ≤ s.
Thus, the number of internal gates didn’t increase. Next, bottom fan-in of the new circuit
is ≤ t. The new circuit has only d − 1 levels. To summarize, the new circuit is of type
Cd−1(s, t) and is equivalent to C|ρ. Of course, the new circuit is not computing the same
function as the original one. But, this is not an issue when it comes to the parity function.
We will elaborate this shortly.

Now the idea is to apply the above process of switching d − 2 times: we pick a random
p-restriction ρ1 and apply it to C, then pick a random p-restriction ρ2 and apply it to C|ρ1

and so on. Suppose we were lucky in picking all these d− 2 random restrictions. Then, we
will be left with a circuit C ′ of type C2(1, t).

Suppose the original circuit C computes parity on n bits. What does the new circuit C ′

compute? After applying all the d − 2 random restrictions, some of the n variables would
have been assigned 1 or 0 and the rest would remain as variables (i.e assigned *). Let the
number of variables remaining be N (which is a random variable). Observe that C ′ computes
the parity on these N variables.

Suppose all the d − 2 random restrictions were good and suppose N > t. Then, C ′ is a
circuit of type C2(1, t) that computes parity on N > t variables. That is impossible. (C ′

computes a formula G1∧G2∧ . . .∧Gw, where each Gi is an OR of ≤ t literals. In particular,
G1 has some a ≤ t < N literals. Set all these literals to 0. Then output of C ′ is 0. But,
since N > a, G1 does not include some variable x. Set all the variables except those in G1

and x to be 0. Now, set x appropriately, so that the parity is 1. Thus, C ′ does not compute
parity of N variables).

The rest of proof is to show that with non-zero probability two properties are satisfied:
i) the d− 2 random restrictions are good (i.e. they allow us to “switch” t-AND-OR circuits
to t-OR-AND circuits in all instances) and ii) N > t. We first note that instead of picking
d − 2 random restrictions, we could equivalently pick just one random restriction. Suppose
we have a formula F we apply a random p1-restriction followed by a random p2-restriction.
Observe that, equivalently, we can apply a random (p1 · p2)-restriction. (Distribution of the
boolean functions obtained in the two cases will be the same). In our scenario, instead of
applying d− 2 random p-restriction one by one, we can equivalently apply a single random
pd−2-restriction.

We have a circuit C of type Cd(s, t) and a random pd−2-restriction ρ. We need an estimate
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on the probability that C|ρ can be transformed (by switching) into a C2(1, t) circuit. As C
has s internal gates, we will need do s many “switches”. The probability of failing in any one
of these instances is bounded ≤ (5pt)∆ = (5γ0)

t. Thus, probability that we fail to convert
C|ρ into an equivalent C2(1, t) circuit is ≤ s · (5γ0)

t. Formally,

Pr[C|ρ is not equivalent to a C2(1, t) circuit] ≤ s · (5γ0)
t (11.2)

Now we estimate the random variable N , the number of input variables of C|ρ. E[N ] =
n · pd−2 = n · (γ0/t)

d−2.

We will fix γ0 and t to obtain a bound on E[N ] and the RHS of ( 11.2). Set γ0 = 1/10
and t = γ0n

1/(d−1) Then,

Pr[C|ρ is not equivalent to a C2(1, t) circuit] ≤ s · (5γ0)
t = s · 2−(0.1)n

1
(d−1)

.

We have E[N ] = n1/(d−1). Then, using Chernoff bound, we get

Pr[N < t] = Pr[N < γ0 · E[N ]] < e−
(1−γ0)2

2
·n

1
d−1

< e−(0.4)n
1

d−1

Let c < 0.1 be a constant. For sufficiently large n, if s ≤ 2−c·n1/(d−1)
, then

s · 2−(0.1)n
1

(d−1)
+ e−(0.4)n

1
d−1

< 1.

Let us summarize. Let s < 2−c·n1/(d−1)
and C be a circuit of type Cd(s, t) that computes

parity of n bits. Then, with non-zero probability, C|ρ can be transoformed into a C2(1, t)
circuit that computes parity on N > t bits. In particular, there exists a random restriction
ρ0 that satisfies both these properties. But, a circuit of type C2(1, t) cannot compute parity
on > t bits. A contradiction. We have proved the following theorem.

Theorem 11.12 For s ≤ 2−c·n1/(d−1)
, circuits of type Cd(s, t) cannot compute parity on n

bits. Here, c can be any constant < 0.1.

It is now easy to prove Theorem 11.10. Observe that a circuit of size s and depth d can
be viewed as a circuit of type Cd+1(s, 1). Then use Theorem 11.12. Later, we will prove a
better version of the switching lemma, do a careful analysis and improve the contant c from
0.1 to 0.143781.

11.3.4 Switching Lemma: Proof

In this lecture, we prove the switching lemma.

Lemma 11.13 Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw. Let ρ be a random p-
restriction. Then, for all ∆ ≥ 0,

Pr[ DC(G|ρ) ≥ ∆ ] ≤ (5pt)∆. (11.3)
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Lemma 11.14 Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw. For any β, 0 < β < t,

let ρ be a random p-restriction, where p = β
t−β

, and let α = β/ln

[
1+
√

1+4eβ

2

]
. Then for all

∆ ≥ 0, we have
Pr[DC(G|ρ) ≥ ∆] ≤ α∆.

Proof. We prove these two lemmas together. We will prove the following stronger claim:

For any boolean function F ,

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ] ≤ α∆, (11.4)

where α will be set to 5pt. (If the condition is not satisfied, the conditional probability is
defined to be 0.) Lemma 11.13 follows by taking F to be the constant function 1.

The intuition is as follows. We will assign some random restriction ρ with parameter p.
Note that p is � t, the bfi. Thus, one expect for a conjunct, say G1, the number of ∗ left in
G1 after this ρ is 0, i.e., all the variables are assigned one way or another. Since we assign
it with ± with equal probability, and since G1 is an OR, we expect one of the variables is
assigned in the right way so that G1 ≡ 1. Thus, G1 ≡ 1 is a low information event. We will
“carry” this information along and proceed to G2. It is the “rare” event that some xi in G1

which gets a ∗ that we want to charge a price (in probability) of p.

As we move along in this process, we will be carrying more and more events of the form:
over a collection subsets of literals, each subset has at least one literal which gets assigned in
a particular way (0 or 1). The general form of such a condition is no less generic than saying
a certain AND of OR’s which is evaluated to true. But that is nothing but the condition that
an arbitrary boolean function being true under the restriction. This is the “information”
accumulated so far in the process of dealing with Gi one by one.

Note that, at least intuitively, given some arbitrary boolean function F being true under
the restriction ρ, (i.e., F |ρ ≡ 1), does not reduce the probability p that any variable receiving
∗. Now we prove the theorem formally.

The statement (11.4) is trivially true for ∆ = 0, since the RHS becomes 1 in this case.
Thus, we may assume ∆ > 0. We prove (11.4) by induction on w, the number of clauses
conjuncted to form G. The base case of w = 0 is trivial, since G ≡ 1 by definition and the
statement holds since the LHS is 0. By induction, assume that (11.4) holds for all conjuncts
of up to w − 1 clauses.

Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw. Let G′ = G2 ∧ . . . ∧ Gw. Let ρ be a
random p-restriction. By renaming literals, we can assume WLOG that G1 =

∨
i∈T xi for

some T with |T | ≤ t.

To prove the claim, we consider two cases G1|ρ ≡ 1 and G1|ρ 6≡ 1. The case of G1|ρ ≡ 1
is easy. G1|ρ ≡ 1 implies that G|ρ ≡ G′|ρ. So, by induction

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ ≡ 1 ] = Pr[ DC(G′|ρ) ≥ ∆ | (F ∧G1)|ρ ≡ 1 ] ≤ α∆.
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Rest of the proof deals with the case G1|ρ 6≡ 1. That is, we want to prove the following
statement as well.

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ] ≤ α∆ (11.5)

We have renamed the variables so that G1 =
∨

i∈T xi. Then G1|ρ 6≡ 1 means that for each
i ∈ T , ρ(i) = 0 or ∗. For each ρ such that G1|ρ 6≡ 1, consider the set of all i ∈ T such that
ρ(i) = ∗. Moreover, if ρ(i) = 0 for all i ∈ T , then G1|ρ ≡ 0 and hence, G|ρ ≡ 0 implying
DC(G) = 0. Thus, it is not the case that ρ(i) = 0 for all i ∈ T . So,

{ρ : F |ρ ≡ 1, G1|ρ 6≡ 1,DC(G|ρ) ≥ ∆}
=

⋃

∅6=Y ⊆T

{ρ : ρ(Y ) = ∗, ρ(T − Y ) = 0, F |ρ ≡ 1,DC(G|ρ) ≥ ∆ }. (11.6)

Let

aY = Pr[ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0 | F |ρ ≡ 1 ∧G1|ρ 6≡ 1 ]. (11.7)

So, (11.8) can be written as

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ]

=
∑

∅6=Y ⊆T

aY · Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧G1|ρ 6≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0]

=
∑

∅6=Y ⊆T

aY · Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0] (11.8)

We will bound this sum from above by considering the individual terms. First consider
the case of a fixed |Y | < ∆.

Fix ρ such that DC(G|ρ) ≥ ∆ and F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0. We claim that
there exists σY : Y → {0, 1}, such that DC(G|ρ|σY

) ≥ ∆− |Y |.
Suppose not. Then for all σY : Y → {0, 1}, DC(G|ρ|σY

) < ∆− |Y |. So we can construct
a decision tree for G|ρ as follows. Start with a full binary tree of depth |Y | in which each level
determines the value of xi for some i ∈ Y . Now let each leaf of this full binary tree, which
represents a restriction σY , be the root of a decision tree for G|ρ|σY

of depth ≤ ∆−|Y |. The
result is a decision tree for G|ρ of depth ≤ ∆. So DC(G|ρ) < ∆, which is a contradiction.

We conclude from this contradiction that such a σY exists. We also note that σY 6= 0Y .
For if σY = 0Y , then G1|ρ|0Y ≡ 0, so G|ρ|0Y ≡ 0, so DC(G|ρ|0Y ) = 0.

Since σY 6= 0Y , we haveG1|ρ|σY
≡ 1, soG|ρ|σY

≡ G′|ρ|σY
and DC(G′|ρ|σY

) = DC(G|ρ|σY
) ≥

∆− |Y |.
Now, again treating ρ as a random p-restriction, we have

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0]
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≤ Pr[∃σY : Y → {0, 1}, DC(G′|ρ|σY
) ≥ ∆− |Y | | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0]

≤
∑

σY :Y →{0,1}

σY 6=0Y

Pr[ DC(G′|ρ|σY
) ≥ ∆− |Y | | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0]

(11.9)

G′ is a formula with w−1 clauses. We would like to invoke the induction hypothesis to bound
the above sum. But, the condtion “F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0” does not fit the
induction hypothesis. We can overcome this as follows. Suppose ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0.
Then, F |ρ ≡ 1 iff for any (partial) truth assignment τY : Y → {0, 1}, we have F |ρ|τY ≡ 1.
To express this formally, set

0T−Y = the all 0 assignment on T − Y ,

F̃ =
∧

τY :Y →{0,1} F |0T−Y |τY
and

ρ̃ = ρ restricted to the complement of T .

Then whenever ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0, as in the condition on the probabilities in (11.9),

F̃ |eρ ≡ 1 ⇐⇒ F |ρ ≡ 1

Again, suppose ρ(Y ) = ∗ and ρ(T −Y ) = 0. Then, for any σY : Y → {0, 1}, we have G′|ρ|σY

is equivalent to (G′|0T−Y |σY
)|eρ. Thus,

Pr[ DC(G′|ρ|σY
) ≥ ∆− |Y | | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0]

≤ Pr[ DC((G′|0T−Y |σY
)|eρ) ≥ ∆− |Y | | F̃ |eρ ≡ 1]

As G′|0T−Y |σY
has (at most) w − 1 clauses, we can apply induction hypothesis and get

Pr[ DC((G′|0T−Y |σY
)|eρ) ≥ ∆− |Y | | F̃ |eρ ≡ 1] ≤ α∆−|Y |

So (11.9) becomes

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ∧ ρ(Y ) = ∗ ∧ ρ(T − Y ) = 0] ≤ (2|Y | − 1)α∆−|Y | (11.10)

We have proved the above bound for |Y | < ∆. Now consider the case |Y | ≥ ∆. Here
(11.10) holds trivially, because |Y | ≥ ∆ > 0 and α < 1 imply (2|Y | − 1)α∆−|Y | ≥ 1.

So (11.8) becomes

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ] ≤
∑

∅6=Y ⊆T

aY · (2|Y | − 1)α∆−|Y | (11.11)

Let

bY = Pr[ ρ(Y ) = ∗ | F |ρ ≡ 1 ∧G1|ρ 6≡ 1 ]. (11.12)
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Clearly bY ≥ aY . Also, we see intuitively that Z ⊆ T , bZ = Pr[ ρ(Z) = ∗ | F |ρ ≡ 1∧G1|ρ 6≡
1 ] ≤ q|Z|, where q = p/(p+ 1−p

2
) is the probability of ρ assigning any variable to be ∗ given

that it is assigned to be either ∗ or 0. For we already saw that G1|ρ 6≡ 1 means that each
variable in Z is assigned either 0 or ∗. The additional condition that F |ρ ≡ 1 can only
decrease the probability that some variable is assigned a ∗. We will give a rigorous proof
that bZ ≤ q|Z| at the end of these notes.

It follows that

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ] ≤
∑

∅6=Y ⊆T

aY · (2|Y | − 1)α∆−|Y |

=
∑

Y ⊆T

aY · (2|Y | − 1)α∆−|Y | (11.13)

≤
∑

Y ⊆T

bY · (2|Y | − 1)α∆−|Y |

≤
∑

Y ⊆T

q|Y | · (2|Y | − 1)α∆−|Y |

≤ α∆

[(
∑

Y ⊆T

(
2q

α

)|Y |
)
−
(
∑

Y ⊆T

( q
α

)|Y |
)]

= α∆

[(
1 +

2q

α

)|T |
−
(
1 +

q

α

)|T |
]

(11.14)

The last equality in the above derivation is obtained using the identity,
∑

X⊆A x
|X| = (1 +

x)|A|.

If we set c = 1/ loge φ ≈ 2.078, where φ = 1+
√

5
2
≈ 1.618 is the golden ratio, then we have

e2/c − e1/c = φ2 − φ = 1. Then, setting α = cqt < 5pt, we get

(
1 +

2q

α

)t

−
(
1 +

q

α

)t

=

(
1 +

2

ct

)t

−
(

1 +
1

ct

)t

< e2/c − e1/c = 1. (11.15)

since (1 + λ
t
)t < eλ for all t (to see this, compare (term by term) the binomial expansion of

LHS and Taylor series of RHS).

We have shown that

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ] < α∆.

This completes the proof of

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1 ] < (5pt)∆.

♣
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Now we prove the tighter bound for Lemma 11.14. Note that

bY =
∑

Y ⊆Z⊆T

aZ ,

and by the Möbius Inversion Formula,

aY =
∑

Y ⊆Z⊆T

(−1)|Z−Y |bZ

Substituting
∑

Y ⊆Z⊆T (−1)|Z−Y |bZ for aY in (11.13), we have

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ]

≤
∑

Y ⊆T

∑

Y ⊆Z⊆T

(−1)|Z−Y |bZ · (2|Y | − 1)α∆−|Y |

=
∑

Z⊆T

bZ(−1)|Z|α∆
∑

Y ⊆Z

[(−2

α

)|Y |
−
(−1

α

)|Y |
]

Therefore

Pr[ DC(G|ρ) ≥ ∆ | F |ρ ≡ 1, G1|ρ 6≡ 1 ]

≤ α∆
∑

Z⊆T

bZ(−1)|Z|

[(
1− 2

α

)|Z|
−
(

1− 1

α

)|Z|
]

= α∆
∑

Z⊆T

bZ

[(
2

α
− 1

)|Z|
−
(

1

α
− 1

)|Z|
]

≤ α∆
∑

Z⊆T

q|Z|

[(
2

α
− 1

)|Z|
−
(

1

α
− 1

)|Z|
]

= α∆

{[
1 + q

(
2

α
− 1

)]|T |
−
[
1 + q

(
1

α
− 1

)]|T |
}

≤ α∆

{[
1 + q

(
2

α
− 1

)]t

−
[
1 + q

(
1

α
− 1

)]t
}

Now, we want to choose an appropriate α so that the quantity in curly braces above is ≤ 1.
Set q = β/t. Then,

[
1 +

( 2

α
− 1
)β
t

]t

−
[
1 +

( 1

α
− 1
)β
t

]t

< e(
2
α
−1)β − e( 1

α
−1)β

So, we want to maintain e(2/α−1)β − e(1/α−1)β < 1. Solving this equation, we get

α =
β

ln

[
1+
√

1+4eβ

2

] . (11.16)
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This completes proof of Lemma 11.14. ♣
Now we will show that for any Z ⊆ T , bZ = Pr[ ρ(Z) = ∗ | F |ρ ≡ 1 ∧G1|ρ 6≡ 1 ] ≤ q|Z|,

where q = p/(p+ 1−p
2

). Before we proceed, note that for Z ⊆ T , we have

Pr[ ρ(Z) = ∗ | G1|ρ 6≡ 1 ] = q|Z|,

since G1|ρ 6≡ 1 means that ρ assigns only ∗ or 0 on T .

We now show that
bZ ≤ Pr[ ρ(Z) = ∗ | G1|ρ 6≡ 1 ]

This is trivial if Z = ∅. Suppose Z 6= ∅.
Note that bZ ≤ maxρ′ Pr[ ρ(Z) = ∗ | F |ρ ≡ 1, G1|ρ 6≡ 1, ρ|Zc = ρ′ ].

Consider any fixed restriction ρ′ on the complement of Z, ρ′ : Zc → {0, 1, ∗}. Then, there
is a unique extension of ρ′ over Z, call it ρ∗, that satisfies ρ∗(Z) = ∗.
We claim that

Pr[ ρ(Z) = ∗ | F |ρ ≡ 1, G1|ρ 6≡ 1, ρ|Zc = ρ′ ] ≤ q|Z|.

The event ρ(Z) = ∗ refers to the unique ρ∗, under the condition ρ|Zc = ρ′. If F |ρ∗ ≡ 1 then
F |ρ ≡ 1 for all extensions ρ of ρ′ to Z. Hence F |ρ ≡ 1, G1|ρ 6≡ 1, ρ|Zc = ρ′ refers to the 2|Z|

assignments ρ, such that ρ(i) ∈ {0, ∗} for all i ∈ Z. Out of these 2|Z| assignments, ρ(Z) = ∗
occurs with probability q|Z|. On the other hand, if F |ρ∗ 6≡ 1, then the above conditional
probability is 0 and the claim trivially holds. Hence, the claim is true and bZ ≤ q|Z|. ♣

11.3.5 Switching Lemma: Improved Lower Bounds

We now improve the bounds in switching lemma. Using the lemma, we establish lower
bounds on size of circuits computing or approximating parity.

In the last lecture we proved the following lemma.

Lemma 11.15 Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw. For any β, 0 < β < t,

let ρ be a random p-restriction, where p = β
t−β

, and let α = β/ln

[
1+
√

1+4eβ

2

]
. Then for all

∆ ≥ 0, we have

Pr[DC(G|ρ) ≥ ∆] ≤ α∆.

In the above lemma, α is minimized when β = β0 ≈ 0.227537. In which case, α = α0 ≈
0.4164447. Let γ0 = β0/2≈0.1137685.

Using Lemma 1, we will prove the Lemma 2, a stronger version of switching lemma.
The key is the the following composite property of random restrictions. Observe that a
p1-restriction followed by a p2-restriction has the same effect with a single p1p2-restriction.
This property holds because the boolean variables are independently assigned at each step.
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Lemma 11.16 Let G be a t-And-Or formula G1 ∧ G2 ∧ . . . ∧ Gw, and let ρ be a random
γ0/t-restriction. Then for all ∆ ≥ 0, we claim

Pr[DC(G|ρ) ≥ ∆] ≤ α0
∆

Proof. Let q = β0/t and p = q
2−q

. Then q = 2p
1+p

= p

p+ 1−p
2

is the probability a variable is

assigned a * in a random p-selection under the condition that it is assigned * or 0.

We have shown that

Pr[DC(G|ρ′) ≥ ∆] ≤ α0
∆,

where ρ′ is a random p-restriction.

Since p = q
2−q

> q
2

= γ0

t
, we know that γ0/(pt) is still a number less than 1. Because of the

composite property of random restriction, a random γ0/t-restriction ρ can be realized by first
applying a random p-restriction ρ′, followed by a γ0

pt
-restriction. Note that DC(G|ρ′) < ∆

means there exists a decision tree with depth less than ∆, which can compute G. Therefore
we would also be able to compute G within less than ∆ depth with the more stringent
restriction ρ. That is to say,

Pr[DC(G|ρ) ≥ ∆] ≤ Pr[DC(G|ρ′) ≥ ∆] ≤ α0
∆.

11.3.6 Circuit Lower Bounds

Consider general constant depth circuits. Denote by Cd(s, t) the class of depth d circuits
with bfi (the abbreviation of bottom fanin) ≤ t, and the number of gates above the first level
≤ s. Denote by Cd(s) the class of depth d circuits without a bfi condition but with total
size ≤ s. It is clear that a circuit in Cd(s) can be considered as a circuit in Cd+1(s, 1), by
adding an extra layer of gates with fan-in 1.

The following lemma is proved using the switching lemma. In Lecture 16, we discussed
on how to use the switching lemma to prove circuit lower bounds. We use the same ideas
here and hence, we provide only a sketch of the proof.

Lemma 11.17 For all C ∈ Cd(s, γ0n
1/d), we have

Pr[DC(C|ρ) ≥ γ0n
1/d] ≤ s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d

,

where ρ is a random 1/n
d−1

d -restriction.
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Proof. Let t = γ0n
1/d and p = 1/n

1
d . Let C ∈ Cd(s, t). Denote the number of gates on

each level as s1, s2, . . . , sd from the bottom to the top (output level). Clearly, sd = 1 and∑d−1
i=1 si = s. Apply Lemma 2 repeatedly d−1 times, each time with a random p-restriction.

After applying the first random restriction, suppose all the s1 many t-AND-OR circuits
at level 1 have DC ≤ t. Then, we can switch these into t-OR-AND circuits and merge first
and second levels eliminating a level. This process also eliminates s1 gates from the circuit.
Nonetheless, for each gate at the bottom level, it is possible that we cannot switch. By
Lemma 2, for any one of the s1 circuits, probability that we fail to to switch is ≤ αt

0. So
the probability of failure at this level is at most s1 ·αt

0. Accumulating the probability of the
failure on each level, and combining with the Lemma 2, we have

Pr[DC(C|ρ) ≥ γ0t] ≤
∑

i

si · αt
0 = s · αt

0 = s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d

Finally, by the composite property of random restrictions, applying d−1 random p-restrictions
has the same effect as one random pd−1-restriction. The proof is complete.

We can apply Lemma 3 to C ∈ Cd(s) by first transforming them into C ∈ Cd+1(s, 1).
But we can actually do slightly better by a more delicate technique. Here we omit the proof
of the following better bound.

Lemma 11.18 For all C ∈ Cd(s), we have

Pr[DC(C|ρ) ≥ γ0n
1/d] < s · αγ0n1/d

0 ≈ s · 2−0.143781·n1/d

,

where ρ is a random α0/(2n
d−1

d )-restriction.

These results can be used to prove circuit lower bounds for the parity function. Consider
any circuit C in Cd(s, γ0n

1/(d−1)). Apply d−2 rounds of random 1/n1/(d−1)-restrictions. With

probability > 1− s · 2−0.143781·n1/(d−1)
, we get a circuit in C2(1, γ0n

1/(d−1)) after switching and
merging. The process is equivalent to applying a single random n(d−2)/(d−1)-restriction. Let
N be the random variable for number of variables left (i.e., variables assigned *). Then, its
expectation E[N ] = n1/(d−1). By Chernoff bound we have,

Pr[N ≤ γ0n
1

d−1 ] < e−
(1−γ0)2

2
·n

1
d−1

< e−0.3927n
1

d−1
.

Hence, if s < 20.143781·n1/(d−1)
, the probability is approaching 1 that both C is reduced to a

circuit in C2(1, γ0n
1/(d−1)) and N > γ0n

1/(d−1). Suppose the circuit we started with computes
parity on n variables. Then, the circuit obtained after applying the random restriction
computes parity on the remaining N variables. Clearly, a C2(1, t) circuit cannot compute
parity on > t variables (see Lecture 16). We have proved the following lemma.
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Lemma 11.19 For all C ∈ Cd(s, γ0n
1/(d−1)), if C computes the parity function, then its size

s must satisfy

s ≥ 20.143781·n1/(d−1)

.

Lemma 11.19 can be used to obtain lower bounds for general circuits (without bfi).
Again, we can simply transform a circuit in Cd(s) into a circuit in Cd+1(s, 1), then apply
Lemma 11.19. Using a more direct and finer analysis, one can prove the following lemma.

Lemma 11.20 For all C ∈ Cd(s), if C computes the parity function, then its size s must
satisfy

s ≥ 20.143781·n
1

d−1

11.3.7 Inapproximability Type Lower Bounds

Now we consider the inapproximability type lower bound. By inapproximability, we mean
circuits with certain restrictions (like size, depth and bfi) cannot compute parity on signif-
icantly more than half of the possible cases. Specifically, for the parity function, we can
simply guess 0 and 1 as the function value. So, it is easy to get 50% success. We want to
show that, one cannot do significantly better. The decision tree depth lower bound is ideally
suited for deriving the inapproximability type lower bound, and the decision tree perspective
was introduced precisely for this reason. Our goal is to show that, when the sizes of the
circuits are below some lower bound, the circuits will make asymptotically 50% error on all
possible inputs.

Let C be a depth d circuit. Note that after some restriction ρ, if C is reduced to a
decision tree of depth smaller than the number of variables left, then for exactly half of the
0-1 extensions of ρ, C agrees on the parity. This is because at every leaf of the decision tree,
the circuit C is completely determined.

Consider Pr[ C(x1, . . . , xn) = ⊕(x1, . . . , xn) ], where ⊕(x1, . . . , xn) denotes the parity
function, and the probability is over all 2n assignments. This random restriction technique
can be realized by first assigning any random restriction, followed by an unbiased 0-1 as-
signments for all the remaining variables. Let E1 denote the event that after the random
restriction, we end up with a decision tree of depth not more than t, and let E2 denote the
event that the number of variables N assigned to * is more than t. Then let E = E1 ∧ E2,
and let [C = ⊕ ] denote [C(x1, . . . , xn) = ⊕(x1, . . . , xn) ] for convenience. As we already
pointed out, Pr[C = ⊕ |E ] = 1/2 due to a property of the parity function.

Expending in terms of conditional probabilities, we have

Pr[C = ⊕] = Pr[E] · Pr[C = ⊕|E] + Pr[¬E] · Pr[C = ⊕|¬E]

= (1− Pr[¬E]) · Pr[C = ⊕|E] + Pr[¬E] · Pr[C = ⊕|¬E]

= Pr[C = ⊕|E] + Pr[¬E](Pr[C = ⊕|¬E]− Pr[C = ⊕|E]).
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As we noted, Pr[C = ⊕ |E ] = 1/2, and Pr[C = ⊕|¬E] ≤ 1. Then substitute these 2
observations into the above equation,

∣∣∣∣Pr[C = ⊕]− 1

2

∣∣∣∣ ≤
1

2
Pr[¬E].

Since Pr[C = ⊕] + Pr[C 6= ⊕] = 1, we have

Pr[C = ⊕ ]− Pr[C 6= ⊕ ] = 2

(
Pr[C = ⊕ ]− 1

2

)
,

and hence
|Pr[C = ⊕ ]− Pr[C 6= ⊕ ]| ≤ Pr[¬E].

Now we specify the parameters of the random restrictions. Let m = γ0n
1/d. First

consider any C ∈ Cd(s, γ0m). Let t = γ0m and apply Lemma 11.17. With a random
1/n(d−1)/d-restriction, we have

Pr[¬E1] ≤ sαt
0 ≈ s2̇0.143781·m.

Again by using the Chernoff bound, we estimate Pr[¬E2] = Pr[N ≤ γ0m] as follows.

Pr[¬E2] ≤ e−
(1−γ0)2

2
m < e0.3927m.

Thus Pr[¬E2] is dominated by Pr[¬E1]. This analysis gives the following bound.

Lemma 11.21 For all C ∈ Cd(20.07189n1/d
, γ0n

1/d), we have

|Pr[C = ⊕ ]− Pr[C 6= ⊕ ]| ≤ 2−0.07189n1/d

.

Again straightforward application of the above lemma gives inapproximability results for
general circuits (without bfi). A more careful analysis leads to the following lemma.

Lemma 11.22 For all circuits C ∈ Cd(20.07189n1/d
), we have

|Pr[C = ⊕]− Pr[C 6= ⊕]| ≤ 20.07189n1/d

.
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Chapter 12

Miscellaneous Results

12.1 Relativized Separation of NP and P

We construct an oracle relative to which NP 6= P. And also another oracle relative to which
NP = P.

Theorem 12.1 (Baker, Gill, Solovay) There are computable languages A and B such
that

1. NPA = PA.

2. NPB 6= PB.

Proof (Part I): This is easy to show. Choose A to be any PSPACE-Complete language.
Then,

NPA ⊆ PSPACEA ⊆ PSPACE ⊆ PA

The first inclusion is because, we can simulate an NP machine in PSPACE by running
through all the possible guesses of the NP machine. The second inclusion is because A is
in PSPACE, and hence we can resolve queries to A in PSPACE without asking the oracle.
As A is PSPACE-Hard, any PSPACE language can be reduced to A. So the last inclusion
holds.

Proof (Part II): For any language B, let TB be the language

TB = {1n|∃x, |x| = n, x ∈ L}

We first show that for any B, TB ∈ NPB. Given 1n as input, simply guess a string x of
length n, then, use the oracle to verify whether x ∈ B. If so accept, else reject.

We construct a language B such that TB 6∈ PB. The basic idea is simple. Intuitively, any
machine that decides TB, given 1n as input, has to find out whether there is some string of
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length n in B. But there are 2n such strings. No polynomial machine, can ask that many
queries to oracle B.

Let N1, N2, . . . be an enumeration of all deterministic polynomial time Turing machines.
Let the running time of Ni be bounded by ni. Such an enumeration can be achieved by,
first enumerating all deterministic TMs and then adding a ”clock” of size ni to the ith TM.
We shall diagonalize over all these Ni. We construct B in stages. We can think of B being
empty initially, and we add some strings to it in each stage. In the kth stage, we make sure
that, Nk does not decide TB.

We describe the kth stage. We heave already simulated N1, N2, . . . Nk−1 in previous (k−1)
stages and would have answered many oracle queries. Let n0 be the maximum length of any
query asked by any of these k − 1 machines in our simulations. By the end of stage k − 1,
we would have constructed B up to some length n0. At the kth stage, we make sure that Nk

does not decide TB. Now, choose n, such that n > n0 and 2n > nk and simulate Nk(1
n). The

catch is in the second condition. Nk is a machine with time bound nk. It can ask at most
nk queries. If it asks a query of length smaller than n0, we already know the answer-(we
have already constructed B up to length n0). If it asks any query of length more than n0,
we simply answer ”no”. (That is, keep those strings out of B). Now it’s time to diagnolize.
At the end of simulation, suppose Nk accepts 1n. We keep all strings of length n out of B.
Suppose Nk rejects 1n. It could have asked at most nk queries of length n (all of which we
answered ”no”). As 2n > nk, there exists at least one string y of length n that was not a
query of Nk. We add this string to B. In either case, Nk has failed to decide 1n correctly.

A formal algorithm to enumerate B is as follows. Think of B being empty initially and
we add strings to it in stages. At any stage k, Qk represents the set of queries asked by Nk

in that stage. And n0 is set to 0 initially. Run the following procedure for k = 1, 2 . . ..

1. Choose an n, with n > n0 and 2n > nk. Set Qk to be empty set.

2. Simulate Nk(1
n) for nk steps. If q is a query by Nk,

• Add q to Qk.

• If |q| ≤ n0 then answer B(x) else answer ”no”.

3. At the end of simulation:-

• If nk rejects 1n:– choose a string y of length n not in Qk and add it to B.

• If nk accepts 1n:– do nothing.

4. Let q be the longest string in Qk. Set n0 ←− max{n0, |x|}.
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