## ME 748: Optimum Design of Mechanical Elements and Systems Spring 2007; Assignment-5

Due: $26^{\text {th }}$ March 2007; 5 pm in ECB 3108 (Maximum extension of 2 days!!)
You are welcome to use MATLAB to assist you in answering any of the following problems.

Problem 1: Consider the problem:

$$
\begin{aligned}
& \text { Min }: f=0.5 x_{1}^{2}+2.5 x_{2}^{2} \\
& \text { s.t. } x_{1}-x_{2}-1 \geq 0
\end{aligned}
$$

Find the stationary point graphically. Is the constraint active at the stationary point? Is the stationary point a minima? Justify your claim

Problem 2: Solve the following problem graphically:

$$
\begin{aligned}
& \operatorname{Min}: f=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2} \\
& x_{1}+x_{2}-4=0 \\
& x_{1}-x_{2}-2 \geq 0
\end{aligned}
$$

Then, verify that the necessary and sufficient conditions are satisfied at the minima.
Problem 3: Consider the problem:

$$
\begin{aligned}
& \operatorname{Min}: f=3 x_{1}^{2}-2 x_{1}-5 x_{2}^{2}+30 x_{2} \\
& 2 x_{1}+3 x_{2} \geq 8 \\
& 3 x_{1}+2 x_{2} \leq 15 \\
& x_{2} \leq 5
\end{aligned}
$$

Plot the contours and constraints marking the feasible region. Consider the points $(5 / 3,5),(1 / 3,5)$ and $(3.97,1.55)$. Are these points stationary? If so classify.

Problem 4: Find the maxima of $x y$ over a unit disk centered over the origin. Pose as an optimization problem, and solve.

Problem 5: Consider
$P\left\{\begin{array}{l}\operatorname{Min}: f(\bar{x}) \\ \text { s.t. } g(\bar{x}) \leq 0\end{array}\right.$ and the perturbed problem: $\quad P_{\varepsilon}\left\{\begin{array}{l}\operatorname{Min}: f(\bar{x}) \\ g(\bar{x})+\varepsilon \leq 0\end{array}\right.$
State and prove the relationship between the minimal functional values $f^{\min }$ and $f_{\varepsilon}^{\min }$ for the two problems.

