ME 748: Optimum Design of Mechanical Elements and Systems Spring 2007; Assignment-4

Due: $14^{\text {th }}$ March 2007; 5 pm in ECB 3108 (Maximum extension of 2 days!!)
Problem 1: Consider the minimization problem:

$$
\min f(x, y)=0.5 x^{2}+2.5 y^{2}
$$

Starting the initial guess point $(x, y)=(5,1)$ determine the next two points if one uses the conjugate gradient method.

Problem 2: Solve the following problem graphically:

$$
\begin{aligned}
& \text { Min: } f=\left(x_{1}-2\right)^{2}+\left(x_{2}+1\right)^{2} \\
& \text { s.t. } 2 x_{1}+3 x_{2}-4=0
\end{aligned}
$$

Then, verify that the necessary and sufficient conditions are satisfied at the minima.

Problem 3: Find the point on the parabola $y=(1 / 5)(x-1)^{2}$ that is closest to $(1,2)$. Pose as an optimization problem, and solve. Verify that the necessary and sufficient conditions are satisfied at the minima.

Problem 4: Consider the problem:

$$
\begin{aligned}
& \text { Min }: f=2 \pi x_{1}\left(x_{1}+x_{2}\right) \\
& \text { s.t. } \pi x_{1}^{2} x_{2}-1000=0
\end{aligned}
$$

Find the stationary point(s) by posing the optimality conditions and solving the resulting non-linear equations via the non-linear solver (fsolve).

Problem 5: Consider the spring problem defined by:

springSystem.initialNodeLocations $=[00 ; 10 ;-1-1 ; 2-1 ; 21 ;-11]$; springSystem.springConnectivity $=$ [3 1; 2 1; 6 1; 5 2; 4 2]; springSystem. Forces $=[10$ 20; 2 0 -20]; \% Fx and Fy applied on node 1 springSystem.stiffness $=[100100100100$ 100]'; springSystem.freeNodes = [1 2];
If the two free nodes are allowed to move on a circle of radius 0.5 , centered at (0.5 , 0), find the equilibrium points for the two nodes (using fmincon). Also, find the magnitude of the two reaction forces (due to the constraints).

