ME 748: Optimum Design of Mechanical Elements and Systems Algorithms for Unconstrained Optimization

Problem: $\min_{\overline{x} = \{x_1, x_2, \dots, x_N\}} f(\overline{x})$; Special case quadratic $f(\overline{x}) = \frac{1}{2} \overline{x}^T Q \overline{x} + \overline{x}^T b + c$; Q is assumed to be positive definite

	Algorithm	Description	Performance		Comments
			Quadratic	General	
0 th Order	Grid	Sample \overline{x} over a grid (first coarse and then fine)	Robust, and easy to code but extremely slow for large N , where N is the number of free variables in \overline{x} Robust, and easy to code but extremely slow for large N , where N is the number of free variables in \overline{x}		Recommended as the starting method for global optimization
	Random	Random sample of \overline{x} (first coarse and then fine)			
	Alternating Coordinate	Perform a line-search by cycling among the unit vectors e_i	Converges in N line-searches if Q is diagonal. Else can be very slow.	Converges in N line-searches if the Hessian is diagonal. Else can be very slow.	
	Powell	First perform a line- search by cycling among the unit vectors e_i , then search along newly generated directions	Converges in N line-searches if Q is diagonal. Else quadratic convergence.	Converges in <i>N</i> line-searches if Hessian is diagonal. Else quadratic convergence.	Recommended as the best overall among 0 th order methods.
1 st Order	Steepest Descent	Perform a line-search along the gradient $\nabla f(\overline{x})$ at each point.	Converges in 1 line-search if Q has identical eigen-values. Else poor performance	Typically poor performance	
	Fletcher Reeves Conjugate Gradient	Perform a line-search along conjugate directions	Converges in N line-searches.	Typically excellent performance	One of the best among 1 st order
2 nd Order	Newton	Generate next point using Hessian and gradient	Converges in 1 step.	May converge to maxima or saddle point or Need line- search to hit minima.	Expensive to compute $\left(\nabla^2 f(\overline{x})\right)^{-1}$
	BFGS Quasi-Newton	Generate next point using approximate Hessian and gradient	Cubic convergence	Excellent performance.	Most popular