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Abstract

We present WiFiNet— a system to detect, localize, and
quantify the interference impact of various non-WiFi in-
terference sources on WiFi traffic using commodity WiFi
hardware alone. While there are numerous specialized
solutions today that can detect the presence of non-WiFi
devices in the unlicensed spectrum, the unique aspects of
WiFiNet are four-fold: First, WiFiNet quantifies the actual
interference impact of each non-WiFi device on specific
WLAN traffic in real-time, which can vary from being
a whale — a device that currently causes a significant
reduction in WiFi throughput — to being a minnow — a
device that currently has minimal impact. WiFiNet contin-
uously monitors changes in a device’s impact that depend
on many spatio-temporal factors. Second, it can accu-
rately discern an individual device’s impact in presence of
multiple and simultaneously operating non-WiFi devices,
even if the devices are of the exact same type. Third, it
can pin-point the location of these non-WiFi interference
sources in the physical space. Finally, and most impor-
tantly, WiFiNet meets all these objectives not by using
sophisticated and high resolution spectrum sensors, but
by using emerging off-the-shelf WiFi cards that provide
coarse-grained energy samples per sub-carrier. Our de-
ployment and evaluation of WiFiNet demonstrates its high
accuracy — interference estimates are within +10% of
the ground truth and the median localization error is < 4
meters. We believe a system such as WiFiNet can empower
existing WiFi clients and APs to adapt against non-WiFi
interference in ways that have not been possible before.

1 Introduction

WiFi devices share the unlicensed spectrum with a
plethora of other devices and technologies. A few exam-
ples include Bluetooth headsets, ZigBee devices, cordless
phones, various game controllers (Xbox, Wii, etc.), and
custom wireless security camera systems. Even non-
communicating appliances such as microwave ovens,
leak energy into this spectrum. Each such device can
cause interference to WiFi communication. Since WiFi’s
constituent standard (IEEE 802.11) does not have any
explicit mechanism to recognize such non-WiFi sources of
interference, typical WiFi links have no reasonable way to
guard against such interference. In this paper, we design a
WiFiNet — a collaborative neighborhood of WiFi nodes —
to “catch” various non-WiFi transmitters causing harmful
interference to WiFi communication (Figure 1). More
specifically, through WiFiNet we can answer the following
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Figure 1: Illustration of WiFiNet’s architecture.

questions — how much interference is any non-WiFi RF
transmitter (e.g., a Bluetooth headset, an active analog
phone, or a microwave oven) causing to an existing WiFi
communication and where in the physical space is each
such non-WiFi interferer located?

Much of the prior work has employed custom hardware
to tackle non-WiFi interference. Examples include com-
mercial products such as AirMaestro [1] and Wispy [4]
that build specific signatures to detect the presence of
a device. Recent research efforts (e.g., RFDump [13],
DOF [8], TIMO [18]) have used the flexibility allowed by
software radios to develop novel signal processing tech-
niques and physical layer designs to co-exist with these
devices. The unique aspect of WiFiNet is that it is built
entirely on top of standard WiFi network interface cards
(NICs). In particular, an emerging class of WiFi NICs,
such as those based on the Atheros 9280 chipset, as part
of their WiFi frame decoding process, provide coarse-
grained energy samples per sub-carrier of a WiFi channel.
These energy samples are a few orders of magnitude lower
in resolution than available to the sophisticated spectrum
analysis tools. In our recent work Airshark [16], we have
shown that even with such a low resolution system, a reg-
ular WiFi node (either an Access Point or a client) can
individually detect the presence of non-WiFi devices.

Airshark is, however, is only the first step in the broad
space of deconstructing non-WiFi interference and quan-
tifying their impact on WiFi links. WiFiNet leverages
collaboration between multiple WiFi nodes to address
both quantification of interference impact and localization
of these interferers, as we explain below.

Quantifying non-WiFi interference impact in real-
time: The mere presence of a non-WiFi device, as detected
by Airshark, in the vicinity of a WiFi transmitter is not
always harmful. For instance, an active analog cordless
phone at a specific location, may only have a minimal
impact on a particular WiFi link. We call such a low-



impact non-WiFi device, a minnow. On the other hand, a
microwave oven radiating a significant amount of energy
in its vicinity might cause severe disruption to nearby WiFi
links. We call such an interferer, a whale.

However, the impact of interference from the same non-
WiFi device can quickly change over time. For instance,
if the microwave oven’s setting is adjusted to operate with
a low power level, this device may suddenly turn into a
minnow. On the other hand, if the cordless phone user
moves to a different location which is closer to the WiFi
link, this device might turn into a whale with respect to
this WiFi link. It is even possible that the impact of the
cordless phone on the WiFi link changes due to properties
of the WiFi link itself. For example, when the WiFi link is
operating at 54 Mbps, the disruptive impact of the cordless
phone is quite high, with the impact decreasing as a rate
adaptation algorithm reduces the WiFi link’s choice of
PHY rates. WiFiNet tracks this continuously changing
impact of non-WiFi transmitters on WiFi communication
in real-time, adjusting its interference estimates immedi-
ately as operating parameters change (e.g., the microwave
power setting is changed, or the WiFi device’s PHY rate
selection algorithm starts operating with a higher rate).

Locating non-WiFi interferers: WiFiNet also deter-
mines the physical location of such non-WiFi transmitters
immediately, so that the precise source of such interfer-
ence can be determined, and if needed, such interfering
devices can either be re-configured or disabled.

Through these new and unique capabilities, WiFiNet pro-
vides new RF management tools for WiFi environments
using off-the-shelf WiFi NICs only, obviating the need for
sophisticated wireless hardware. In fact, WiFiNet can be
easily implemented and integrated into enterprise WiFi
APs to achieve improved mitigation strategies against
non-WiFi interference for enterprise environments.

1.1 Challenges in designing WiFiNet

In designing and implementing the capabilities of WiFiNet,
we had to overcome the following set of challenges:
How to detect multiple devices of the same type? In
many wireless environments, there are multiple devices of
a given type, e.g., two different cordless phones. It is possi-
ble that among these two phones, one is a whale and causes
80% loss in throughput to a WiFi link, while the other
is a minnow and causes only 5% loss in throughput. To
differentiate between these two interferers, WiFiNet needs
to determine how many devices of each type are operating
at any given instant. To achieve this goal, WiFiNet utilizes
tight clock synchronization, and employs signal clustering
techniques operating on some device specific attributes
(when available) and signal strength observations gathered
by multiple WiFi detectors to identify the unique trans-
mission contributions from different, potentially identical,

non-WiFi devices. Our prior work, Airshark, builds signa-
tures of each device type to detect the presence of any such
device in the vicinity of the detecting WiFi node. But such
an individual WiFi node is not able to determine if there is
only one or two or three different FHSS cordless phones
in the vicinity, and hence, cannot attribute which part of
wireless transmissions belong to which such interferer.
How to estimate each device’s impact?  After
segregating each non-WiFi device’s transmissions,
WiFiNet uses specific timing analysis for estimating
the impact of each interferer — time-frequency overlaps
between the WiFi frames and non-WiFi device’s trans-
missions are analyzed and correlated with the outcomes
(frame success or loss) to discern the impact of each de-
vice. Our technique works well for both low and high duty
devices. In our design, we take into account the carrier
sensing interference, interference from WiFi sources and
multiple PHY rates of operation used by WiFi links.
How do we localize the non-WiFi device? Localiza-
tion in indoor wireless environments is a well studied
problem [5, 6, 19, 22]. Common techniques include sig-
nal strength based triangulation [22] and RF fingerprinting
approaches [5]. However, the key requirement for such
localization approaches is for multiple detectors to detect
the same transmission at different signal strengths. In the
commonly known WiFi localization techniques, this is
easy because the different detectors decode the same wire-
less frame and use the frame’s identity to ensure sameness.
In our case, the WiFi detectors cannot decode the non-
WiFi transmissions, and hence cannot immediately assign
the same identity to “pulses” received from the non-WiFi
transmitters. A core challenge that we needed to solve is
for different WiFi detectors to determine which received
pulses correspond to a single transmission from the same
non-WiFi device. The next challenge is to build a model
for localization. Propagation characteristics are similar for
both WiFi and non-WiFi transmitters since they operate on
the same frequency. WiFiNet exploits this fact and builds
the model by exchanging WiFi frames and recording signal
strength measurements. Since the transmit power of non-
WiFi devices can be arbitrarily different from that of WiFi
nodes, the model takes this into account by operating
on the difference in received signal strengths. Through
experiments, we show the feasibility of this approach for
non-WiFi device localization using WiFi-only detectors.
Summary of key contributions: Summarizing, the
key contributions of our WiFiNet system are three-fold: (i)
it detects and discerns the transmission contributions of
different non-WiFi interferers in the vicinity of the WiFi
detectors; (ii) it attributes interference impact of each such
non-WiFi device for any given WiFi link, classifying them
as whales, minnows, or anything else in between, through
collaborative observations; and (iii) it pinpoints the lo-
cation of each such non-WiFi interferer so that they can
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Figure 2: Flow of operations in WiFiNet. WiFiNet APs capture spectral samples as well as WiFi frames. Each AP runs Airshark [16] to detect
non-WiFi devices and output non-WiFi pulses (transmissions) tagged with device type. WiFi frames are used to synchronize the clocks at the
APs. Synchronized clocks at the APs are then used to consolidate the pulses across multiple APs using a heuristic (§2.1). Consolidated pulses
are then clustered using (i) RSS based clustering and (ii) device-specific clustering methods to output unique non-WiFi device instances and
their pulses (§2.2). For each non-WiFi device instance and WiFi link, the interference detection module then analyzes the impact of the device
on the link using transmission overlaps (§2.3). Model-based localization algorithms are used to localize each non-WiFi device instance (§2.4).

be independently re-configured or disabled. All of these
capabilities are implemented using WiFi-only detectors.
The entire WiFiNet system has been implemented using
the Atheros AR 9280 based WiFi NICs, and evaluated in
detail through various experiments. Our results indicate
a typical impact determination accuracy of > 90% and a
localization error of < 4 meters in these environments.

2 WiFiNet

We start by presenting an overview of WiFiNet’s architec-
ture, followed by the details of its design and operation.

Architecture and flow of operations. WiFiNet employs
collaborative observations from multiple WiFi-only de-
tectors spread across a network to perform its non-WiFi
device interference estimation and localization operations.
Since most enterprise APs today come equipped with mul-
tiple WiFi radios, one way to deploy WiFiNet would be to
employ one of the radios as a detector. In such a setting,
WiFiNet can function as follows. All the enterprise APs
are connected to a central controller over an Ethernet back-
plane. Each AP has two radios: (i) a regular radio that
used to communicate with the clients, and (ii) a detector ra-
dio that continuously captures spectral samples as well as
WiFi frames. APs run Airshark [16] to process the spectral
samples and perform device detection. Airshark outputs a
set of “pulses” (time-frequency blocks representing non-
WiFi device transmissions), and tags these pulses with
the appropriate device type (e.g., Bluetooth, ZigBee, etc.).
Each pulse reported by Airshark consists of the start and

end timestamps, center frequency and bandwidth of the
pulse, the average received power of the pulse, and a tag
that indicates the device type. Next, the APs also process
the captured WiFi frames to create a per-client frame trans-
mission summary: frame start and end timestamps, PHY
rate, and reception status (i.e., whether the AP received
an ACK for this frame or not). The proximity between
the two radios ensures that the detector radio receives the
majority of frames transmitted by the regular radio due
to capture effect, thereby creating an accurate summary
of frame transmissions [20]. The per-client WiFi frame
transmission summaries and the captured non-WiFi pulse
traces are forwarded to controller to identify the individ-
ual non-WiFi device instances, estimate their interference
impact and localize them. Figure 2 presents the overall
control flow. We now explain each of these tasks in detail.

2.1 Identifying unique pulses

Since the same pulse can be received by multiple APs in
the WLAN, the first task for the controller is to consolidate
the traces and identify the unique pulses transmitted by
different non-WiFi devices operating in the environment.
To do this, the controller has to identify the “common”
pulses received by the APs and create a single consol-
idated pulse. However, finding common pulses is not
straightforward as WiFi APs cannot decode non-WiFi
pulses.



Pulse consolidation. WiFiNet uses a heuristic to consol-
idate the pulses: if two APs receive a pulse that has the
same device type (e.g., Bluetooth), has the same start and
end times, has the same center frequency and bandwidth,
then most likely the APs received the same pulse (transmit-
ted by a particular non-WiFi device). In practice, we allow
a certain leeway as these parameters might not exactly
match e.g., we allow the maximum difference between
the pulse start (and end) times to be FFT sampling res-
olution of the WiFi card (116us for AR9280 card) and
that between pulse center frequencies (and bandwidths)
to be resolution bandwidth of the WiFi card (312.5 kHz
or equal to 802.11 sub-carrier spacing).

To apply the heuristic, however, would require the
pulse traces at the APs to be synchronized. How do we
synchronize the pulse traces without knowing common
pulses (i.e., reference points)? WiFiNet solves this issue
by leveraging the WiFi hardware — the timestamps of
the pulses are derived from the same clock that is used
to timestamp the captured WiFi frames. WiFiNet first
synchronizes the clocks at all the APs using captured
“common” frames as reference points, and then uses the
synchronized APs to find “common” pulses. We now
explain these tasks.

Opportunistic synchronization. Synchronization can be
easily carried out if we find one reference frame that is re-
ceived by all WiFiNet APs in the WLAN. However, this is
highly unlikely in practice as the wireless signal attenuates
over distance. Therefore, WiFiNet opportunistically syn-
chronizes ‘pairs of APs’ using common received frames
(reference frames used for synchronization are typically
beacon frames or data frames without the retransmit bit
set[21, 15]), and then transitively synchronizes the sniffer
radios at all the APs using a graph based approach:

1. Instantiate a synchronization graph, syncGraph =
(S, E) where each vertex s; represents the sniffer radio
at WiFiNet AP i, and the weight w(e;;) of the edge
e;j + 8; — s; represents the clock skew between the
APs. Initially, S comprises of all vertices and has no
edges.

2. For each pair of WiFiNet APs (s;, s;), we start by finding
the set of reference frames (common received frames).
Compute difference in timestamps for each of the refer-
ence frames, and use the median value as the clock skew.
This results in instantiating an edge e;; in the syncGraph
with weight equal to skew between the APs.

3. After processing all pairs of APs, start with a reference
AP (sg), chosen randomly, and perform a breadth-first
search on the syncGraph to transitively synchronize all
the APs with respect to the reference AP.

The above synchronization procedure is repeated ev-
ery sync interval in order to account for the clock drift.
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Figure 3: (left) Illustration of graph based opportunistic synchro-
nization used in WiFiNet. Each node is an WiFiNet AP (sg is the
reference AP), weights on the edges correspond to the pair-wise AP
skews, and the numbers in the parentheses are the final synchro-
nization offsets of the APs (i.e., skews w.r.t. reference sg) (right)
CDF of synchronization error for our deployment of 8 WiFiNet APs
at different sync intervals. Error in synchronization is < 6 us for a
sync interval of 500 ms.

Figure 3 shows the synchronization error as a function of
sync interval for our deployment of 8 WiFiNet APs. We
observe that the error increases with the increase in sync
interval (e.g., an error of < 6 us for an interval of 500
ms). In WiFiNet, we use a sync interval of 100 ms which
results in tight synchronization between the APs (an error
of less than 2—4 us in most cases).

Output from consolidation. The controller applies the
appropriate synchronization offsets to each AP’s pulse
trace and then finds the common pulses among the APs
using the heuristic mentioned above. The consolidation
process can be carried out efficiently as the pulses are
sorted by time. After consolidation, the controller is left
with unique pulses transmitted by non-WiFi devices, and
for each unique pulse, we associate an RSS vector r =
[ro,...,Tn—1] that represents the received power of this
pulse at each of the N APs in the WLAN. We set r; to the
average received power of the pulse at ith AP, if the pulse
was indeed received this AP, otherwise r; = ¢.

2.2 Identifying unique device instances

After obtaining the unique pulses, the next task for the
controller is to detect the number of non-WiFi device in-
stances, segregate the pulses belonging to each instance
and establish a unique ID for it. WiFiNet first segregates
the pulses according to their device type, and employs
clustering algorithms for further segregation. The algo-
rithms determine “the number of clusters” (non-WiFi de-
vice instances), and assign each pulse to a cluster. The
combination of (device type, cluster center) is then used
as the ID for this device instance. In our current proto-
type, we implement (i) a generic, RSS based clustering
that is applicable to all non-WiFi devices and (ii) cluster-
ing based on timing properties that is specific to some
non-WiFi device types. We now explain both approaches.
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Figure 4: Heatmap of 4 FHSS cordless phone devices (2 base/hand-
set pairs) captured by a WiFiNet AP, showing the timing property.
Each base/handset pair emits two short pulses that are both at the
same center frequency and are separated by 5 ms. The pair then
jumps to a different center frequency after 10 ms and repeats the
process. WiFiNet identifies the pulses belonging to each device by
calculating their timing offsets (pulse start time modulo 10 ms).
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Figure 5: Segregating pulses in the presence of multiple, simultane-
ously operating devices of the same type, based on WiFiNet’s device
specific and generic clustering. Figure shows clusters of pulses from
(left) 2 FHSS cordless phone base/handset pairs (4 FHSS cordless
devices) using pulse start time offset (middle) 2 Microwave ovens us-
ing ON-period offset (right) 4 FHSS cordless devices using a generic,
RSS based k-means + EM-clustering technique using 3 WiFiNet APs.

2.2.1 Generic clustering based on signal strength

WiFiNet’s generic clustering approach operates on RSS
vectors that are /V-dimensional (i.e., vector sizes grow
with the number of APs). Since the performance of clus-
tering mechanisms typically degrades with increase in
the number of dimensions, we first filter out some of the
dimensions before performing clustering.

Reducing vector dimensions. We use some optimiza-
tions to reduce the number of dimensions: (i) clustering
is performed every scan window (5 secs in our current
prototype) to keep the number of pulses low (ii) APs not
receiving any pulse in the current window are discarded
(iii) The controller uses the syncGraph (§2.1) as a proxy
for “RF neighborhood” of APs and segregates the APs
into different partitions using the following heuristic. For
each pulse, we determine the WiFiNet AP with the highest
RSS, and increment a counter for this AP. After process-
ing all the pulses, we assign the AP with the highest
counter to first partition. We then pick each AP (in the
decreasing order of the counters) and place it in one of
the existing partitions if it satisfies the RF neighborhood
constraint: in the syncGraph, the AP has to be within a
2-hop neighborhood of the AP with the highest counter for
this partition, otherwise we create a new partition for this
AP. This breaks the clustering problem into sub-problems,

each operating on one partition.

Handling missing values. After partitioning the RSS
vectors to reduce the dimensionality, another problem
remains: RSS vectors might still have missing values (i.e.,
r; = ¢) for some columns. This is because APs might
capture pulses intermittently (i) as they are far from the
device, or (ii) due to a stronger signal from other WiFi
or non-WiFi transmissions [16] that overlapped with the
pulse. While it is possible to define a distance function for
clustering that ignores missing values in the vectors, such
a function is unsuitable for many traditional clustering
algorithms as it doesn’t satisfy certain mathematical prop-
erties such as the triangle inequality [10]. This presents
us with two choices, (i) use clustering algorithms which
allow a certain degree of freedom in the formulation of a
suitable distance function or (ii) fill in the missing values
using a best-effort approach, and then use traditional
clustering algorithms. We explored both these choices.

(Method 1) Density-based clustering. We used pB-
scaN [12], a density-based clustering approach that
allowed us to formulate a distance metric that can handle
missing values. Let P and () be the set of APs receiving
the pulses p and ¢, and C be the set of common APs that
received both pulses. We define n = |C|/max(|P|, |Q|)
and compute the distance between two pulses p and ¢ as:

1 ) ()2
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The above measure only takes signal strength from
common APs into account, and any missing RSS values
do not affect the distance. Intuitively, the introduction of
parameters 7, and C,,,;,, is to account for the case when
the difference in the set of APs receiving the pulses is too
large. We comment on these parameters in §3.

otherwise

(Method 2) k-Means + EM-clustering. Another ap-
proach to handle missing values is to first perform im-
putation — missing values in a particular column are
replaced (e.g., using a median or mode of the column).
In WiFiNet, we use EM-Imputation [3], a well known im-
putation method, where the missing values are replaced
by using expectation maximization with a multi-variate
normal model. After imputation, we can use traditional
clustering mechanisms as the distance function (e.g., Eu-
clidean) can now operate on all the columns of the vectors.
We experimented with several clustering algorithms and
found that a combination of k-Means and EM-clustering
perform the best: WiFiNet controller iteratively runs the
k-Means clustering algorithm with different values of &
(1 < k < kpaz), and then picks the best solution [3].
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This is used as the initial solution to the EM-clustering
algorithm, which outputs the final non-WiFi device in-
stances and the corresponding pulses. In our experiments,
we set ke = 10 i.e., we assume that the maximum
number of simultaneously operating devices of the same
type to be 10. Figure 5 (right) shows an example result
for RSS based clustering for 4 FHSS cordless phone de-
vice instance using 3 WiFiNet APs. In §3, we compare the
performance of the above clustering algorithms.

2.2.2 Clustering based on device specific attributes

We found that some non-WiFi device types exhibit certain
specific timing properties that can be exploited to provide
better clustering performance compared to the generic
RSS based clustering approach. In WiFiNet, we imple-
mented such clustering for two non-WiFi device types:
— Pulse start time offset for FHSS cordless phones. WDCT
cordless phone sets cycle through frames of 10 ms: each
frame consists of two short pulses, one emitted by the base
at the beginning of the frame and the other by the handset,
occurring after 5 ms (both at the same center frequency).
Both base and handset then jump to a different center
frequency for the next frame. Figure 4 shows the pulses
from two cordless phone sets (i.e., 2 base/handset pairs,
a total of 4 unique cordless phone devices) captured by
WiFiNet. Figure 5 (left) shows that clustering based on
the pulse start time offsets (¢ mop 10) can segregate the
pulses belonging to each device.

— ON-period offset for microwave ovens. Microwave ovens
emissions exhibit an ON-OFF pattern, typically periodic
with a frequency of 60 Hz (frequency of the AC supply
line) i.e., a period of 16.66 ms [16]. WiFiNet computes the
offset for start times of the microwave pulses (ON periods)
as t mop 16.66 and uses this to segregate their pulses.
Figure 5 (middle) shows the result of clustering pulses
from two microwave ovens operating simultaneously.

2.3 Interference Estimation

After clustering, WiFiNet controller now has a set of
clusters, each representing a unique non-WiFi device
instance. We now explain how the controller can analyze
the interference impact of each device instance.

Intuition and Overview. For each non-WiFi interferer
instance and a WiFi link, WiFiNet controller performs
interference analysis by correlating the the link’s frame
transmission with the non-WiFi device’s pulse transmis-
sions and observing the reception status of the frames.
It measures the impact of a non-WiFi device on a WiFi
link by computing the probability of a frame loss when
the frame overlaps with a simultaneous transmission from
the non-WiFi device. Intuitively, the extent of interfer-
ence is directly proportional to the probability of losing
overlapping frames. This allows WiFiNet to maintain a
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Figure 6: Illustration of interference estimation in WiFiNet.

continuous interference model, where the extent of inter-
ference can be any value between 0 and 1. For instance, in
Figure 6, the controller observes that frames transmitted
on a link are unsuccessful whenever a non-WiFi device’s
pulse overlaps with the frame in time (and frequency) i.e.,
frames F; and F3 overlap with non-WiFi device pulses T}
and 75, and are lost. It can therefore infer that the device
strongly interferes with the link. Such fine-grained timing
analysis is possible because APs are tightly synchronized
(§2.1) and they use the same clock to timestamp both
pulses and the frames. We now explain our interference
estimation metrics.

Metrics for interference estimation. Formally, the in-
terference estimation metrics used in WiFiNet can be ex-
plained as follows. Let I be the event that interference
from a particular non-WiFi device causes a frame trans-
mission to be unsuccessful. Let L be the event of an
unsuccessful transmission due to background losses (e.g.,
due to weak signal) and O denote the event of an over-
lap between the frame transmission and a simultaneous
transmission (e.g., a pulse) from the non-WiFi interferer.
— (Metric 1) Impact given overlap. Conditional probability,
p[I|O] is used to measure the impact given overlap i.e.,
probability that a frame is unsuccessful given an overlap
with a simultaneous transmission from a non-WiFi device.
— (Metric 2) Overall impact. WiFiNet also maintains p[I],
the overall impact of a non-WiFi device. Here, p[I] is
equal to p[I|O]-p[O] (when there is no overlap, p[I|-0]
is simply 0). That is, p[I] is probability of frame loss due
to the overall activity from the non-WiFi device.

We note that p[I], the overall impact of the interferer,
depends on the probability of overlap p[O], which varies
based on the link and interferer transmission patterns.
Whereas, p[I|O] is not affected by these transmission
patterns i.e., p[|O] indicates the worst case impact of the
interferer on the link, which is observed when p[O]=1
(i.e., when the transmissions of link and the interferer
always happen to overlap). Next, we explain how these
probabilities are estimated by WiFiNet in real-time.

Interference estimation. The controller measures the to-
tal number of frames transmitted (n) on the WiFi link of
interest, the number of frames that overlapped with the



non-WiFi device’s transmissions (n,) and nlo, the num-
ber of overlapped frames that were unsuccessful. It then
computes p[O], the probability of transmission overlap
as n,/n. Next, the controller computes p[(/UL)|O] =
n! /n, i.e., the probability of an unsuccessful frame trans-
mission due to either background losses or interference
from the non-WiFi device, given an overlap in transmis-
sions. It also computes the probability of frame loss when
there is no overlap from the interferer, p[L] as n!,, /1,,.
Here, n,,, = n—n, is the number of frames without over-
lap and n!, _ is the number of n,,, transmissions lost. Since
L isindependent of O, we have p[L|O] = p[L|-0] = p[L].
Also, I and L are independent events, and so we have
pl(IUL)|O] = plI|O] + plL] — plI|O] -p|L]. That s,

(pl(zun)[O] - pIL])
(1= pIZ])

Using p[(IUL)|O] and p(L), WiFiNet controller esti-
mates p[I|O]. Following this, the controller also computes
the overall interference p[I] as p[I|O]-p[O].

pMENet — pi110] = )

Handling overlaps from multiple non-WiFi interfer-
ers. In general, a frame transmission may overlap with
multiple simultaneous transmissions from potential non-
WiFi interferers. In this case, WiFiNet controller attributes
the frame transmission success or loss to each overlapping
non-WiFi interferer. We observed that diversity in the
frame transmission times [20] as well as the diversity in
transmission times of different non-WiFi devices allows
WiFiNet to distinguish the true non-WiFi interferer from
the other false non-WiFi interferers (i.e., devices that hap-
pened to transmit at the same time as the true interferers).
In particular, such a diversity allows WiFiNet to observe
further transmissions from false non-WiFi interferers that
overlap with the frames but do not lead to a frame loss.
In our experience, such a transmission diversity arises
due to (i) distinct transmission characteristics of different
non-WiFi devices (e.g., frequency hopping devices typi-
cally emit short pulses at different center frequencies) and
(ii) diversity in the usage times of non-WiFi devices [16],
where in a typical enterprise not more than 3—4 devices
were found to be simultaneously active.

2.3.1 Enhancements to the basic technique

Handling high duty devices operating with other de-
vices. Transmissions from multiple devices that al-
ways happen to overlap in time can lead to cases where
WiFiNet can make incorrect estimates. For example,
WiFiNet may identify a false interferer as a true inter-
ferer if the transmissions from the false interferer always
happen to overlap with that of a true interferer. In our
experiments, we found that such a scenario is unlikely
when using pulsed transmitters (e.g., ZigBee devices) or

frequency hopping devices (e.g., Bluetooth or FHSS cord-
less phones) that typically emit short pulses. However,
operating high duty devices (e.g., analog cordless phones)
that continuously emit energy alongside other non-WiFi
devices will cause their transmissions to always overlap
that can lead to incorrect estimates (§3.1.4).

We use two refinements to the basic approach to cor-
rectly identify interference impact of a non-WiFi interferer
W operating alongside a high duty device H: (i) when
computing p[Iy|Op] for a high duty device, we only con-
sider the frames that do not overlap with a transmission
from any other non-WiFi device. Here, p[Op] = 1 and
p[Ig|On] = p[Iy] and (i) we modify Equation 1 to
compute the estimate p[Iyy |Ow] of a non-WiFi device W
when it operates alongside a high duty device H as

(p[(IH U Iy U L)|Ow] — plIg U L])

p[IW‘OW} = (1 B p[IH g L})

)

Here, p[(Iy U Iy U L)|Ow] can be computed by
measuring the losses that happen when the frames overlap
with transmissions from non-WiFi device W (as well
as those from the high duty device H). Now, knowing
p(Ig) and p(L), we can compute p[Iy |Ow]. While
such an approach can handle most cases, it cannot han-
dle pathological cases where two high duty devices are
activated at the exact same time — since both the devices
continuously emit energy, nothing useful can be said
about the impact of each device (§3.4.4). If however,
the interference impact of one of the devices is known,
then that of the other can be computed using the above
formulation. As we show later in §3, typically, diversity
in transmission times of non-WiFi devices, coupled with
the above refinements allows WiFiNet to correctly identify
the true non-WiFi interferer in realistic wireless settings.

Quantifying impact at different 802.11 rates. The im-
pact of a non-WiFi interferer on a WiFi link also depends
on the PHY rate being used by the WiFi transmitter. To
account for this, WiFiNet controller records the overlaps
and losses separately for each different PHY rate, and
computes a separate interference estimate for each rate.
This helps quickly the estimate interference impact at
each PHY rate when using dynamic bit rate adaptation
as opposed to high-overhead bandwidth tests that require
controlled experiments at each PHY rate to estimate the
same [20].

Handling sender-side interference. Similar to the proce-
dure used for interference analysis, WiFiNet controller can
infer whether a WiFi transmitter is deferring to a non-WiFi
device by correlating the WiFi frame transmissions with
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Figure 7: Illustration of carrier sensing estimation in WiFiNet.

the non-WiFi pulse transmissions. Figure 7 shows two
cases of interest. Case(a) when the WiFi transmitter is not
deferring to the non-WiFi device, WiFiNet controller will
observe several instances where the frame transmission
starts while the pulse transmission is in progress. Case(b)
When the WiFi transmitter is indeed deferring to the non-
WiFi device, WiFiNet controller will not observe instances
where frame transmission starts while the pulse transmis-
sion is in progress. However, this condition alone is not
enough to infer that the WiFi transmitter is deferring to
the non-WiFi device, as it may happen that the WiFi trans-
mitter did not have any packets to send while the pulse
transmission was in progress i.e., the WiFi transmitter
did not contend for the medium. To identify the deferral
instances, we use a heuristic similar to the prior work on
carrier sense estimation between WiFi links [15, 20]: the
controller identifies the deferring frames as those where
the difference between the pulse transmission end time
and the frame transmission start time is within a certain
threshold §,,. Here, §,, is the maximum time spent by the
WiFi transmitter performing back-off and is set to 284320
us (DIFS + Max back-off period for 8§02.11g).

The controller can now compute the fraction A, =
ﬁ where n,,4 is the number of Case (a) instances
that indicate non-deferral behavior and n4 is the number
of Case (b) instances that indicate deferral behavior. If
the transmitter is indeed deferring, A.s would be close to
1. Whereas, if the transmitter is not deferring to the non-
WiFi device, the difference in the pulse and frame start
transmission times would be uniformly distributed in the
interval [0, 6, + d,,], where ¢, is the duration of the pulse.
That is, we expect A s ~ 6p(:3:5w' Typically, 6, > dy.,
therefore A, is low for cases of non-deferral (e.g., for
5p for microwave ovens, cordless phones, and Bluetooth
devices is 8 ms, 1.25 ms, and 625 ps respectively). In our
experiments, using a threshold of A.; > 0.8 was able to
correctly identify deferring WiFi transmitters (§3.4.2).

Extensions to handle WiFi interference. In general,
WiFi links can also experience interference from other
WiFi links. We extend our basic approach to measure
the overlaps between frame transmissions on a particular
WiFi link and the frame transmissions on other WiFi links
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Figure 8: (left) Path loss model created by a WiFiNet APs using WiFi
transmissions (right) PDF of actual RSSIs observed at a sample lo-
cation and the model created using a normal distribution.

to compute the probability of frame loss due to hidden
interference [20]. In §3.1.5, we experiment with non-WiFi
interferers operating alongside hidden terminals and show
that WiFiNet is correctly able to identify the true interferer.

Interactions with external interference. External inter-
ference can be caused by non-WiFi devices that are not a
part of the enterprise or by other non-enterprise wireless
traffic (e.g., traffic from nearby WiFi networks). In both
these cases, interference estimation can proceed as is if at
least one of the APs is able to capture the pulse (or frame)
transmissions from the interference source. However, if
the transmissions from the non-WiFi device (or the exter-
nal WiFi transmitter) are not captured by any WiFiNet AP,
then WiFiNet controller would not be able to identify the
source of interference.

2.4 Localizing a non-WiFi device instance
WiFiNet uses a computationally efficient, real-time local-
ization scheme that imposes zero profiling overhead, and
physically locates the non-WiFi device instance of un-
known transmit power using a modeling based approach.
Below, we explain our localization models.

2.4.1 Model-based localization

Let # = [fo,...,7n—1] be the mean RSS vector of all the
pulses present in the cluster assigned to a non-WiFi device
instance. For localization, we only consider the APs with
valid received powers (i.e., 7; # ¢). We divide the entire
region into grids of size 0.25 x 0.25 meters. Let 7 denote
the grid location of AP;. Let d;; denote the distance
between grids ¢ and j. Let P(I|f) denote the probability
of the non-WiFi device being at location /, given that the
received power vector is . We wish to determine the grid
location [ such that P(I|f) is maximized i.e., we want
argmax; P(I|[f). Using Bayes’ theorem, P(l|f*) can be
written as P(¢|l).P(l)/P(¥). Assuming all locations are
equi-probable, and since P () is constant for all [, we have
argmax; P(I|#) = argmax; P(#|l), which can be calculated
as argmax; Hf\;l P(7;|1) (assuming independence [22]).
Put another way, the grid location [ where the non-WiFi

device is most likely present can be computed using,
N-1

argmax; Z logP(7;|1) 3)

i=1
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Case of known transmit power (Model-TP). If the non-
WiFi device instance is at a grid [, then the expected re-
ceived power at AP; (located at grid 7) can be modeled as
a normal distribution A/ (j1;;, 02), where o is the shadow-
ing variable, and p;; is the expected mean of the received
power that can be modeled as p; = R° — 10vlogiod;;.
Here, vy is the pathloss exponent and R° is the power
received from the non-WiFi device when placed at a dis-
tance of 1 meter from an AP (referred to as transmit
power). How can we estimate «y for the non-WiFi de-
vice? WiFiNet APs derive v using WiFi frames i.e., each
WiFiNet AP uses the data packets or beacons transmitted
by neighboring WiFiNet APs to model the propagation loss
characteristics (Figure 8) — since both WiFi devices and
non-WiFi devices operate on the frequency, the propaga-
tion loss characteristics of their transmissions are similar.
WiFiNet APs also compute o2, by measuring the variance
in the received power values (Figure 8 (right)). Knowing
i, o and 7;, the controller can compute P(7;|l) using,

1 e—(ﬂ—/m)z/202 )

Intuitively, each AP; propagates a probability that is

maximum around a circle with center at grid ¢ and radius
equal to p;;. If the transmit power R° of the device is
known, plugging in P(7;|l) in Equation 3 and iterating
over all the grids and APs, we can compute the grid [ with
the maximum probability of finding the device.
Case of unknown transmit power (Model-UTP). If R°
is not known, we can factor it out by considering each
pair of APs: if the non-WiFi device is at a grid [, the
expected difference in the mean received powers at AP;
and AP; can be modeled as A(%,5,1) = py — pj =
107vl0g10(dji/dir), and expected difference in the pow-
ers follows a normal distribution with twice the variance:
N(A(4,4,1),20%) [6]. Now, knowing (7; — 7';), we can
compute P((7; — 7;)|l) as

1 e_('f'i_7:j_)‘(ivjvl))2/40'2 (5)

20\/%

and we can localize the non-WiFi device by finding

P, 7l) =

argmax, » _logP((r; — )|l) (6)
,J
i.e., each AP pair propagates a probability P((7; — r;)|{)
on every grid . The probabilities are high for the grids
where the difference in received powers (¥; —;) is close
to (g5 —p41). After processing all AP pairs, the algorithm
outputs the grid [ with the maximum probability.
— Example. Figure 9 (top, left) shows a deployment of
8 APs along with the location of an FHSS cordless phone
(shown using a star). The rest of the figures show how
the grid probabilities indicating the location of the phone
change after processing 1, 6 and all possible AP pairs.

2.4.2 Alternative localization methods

We also implemented several other localization schemes
ranging from simple methods such as (i) Strongest-AP,
picking the AP with the strongest received power as the
device’s location, and (ii) Centroid, picking the centroid
of three APs with the strongest received powers, to more
sophisticated approaches like (iii) an Iterative approach
that performs an exhaustive search over all parameters
(7,0, R°, 1) to find the grid [ with the maximum probabil-
ity, and (iv) a Fingerprinting approach where we profile
the environment using WiFi transmissions — we transmit-
ted WiFi packets using a laptop placed at several locations,
and at each location WiFiNet APs measured the signal
strength to derive the RSS vector. We then normalize the
vectors to nullify the effect of a the transmit power of the
laptop and derive a location’s fingerprint. Localization is
performed by measuring the RSS vector (after normaliza-
tion) of a non-WiFi device and finding the fingerprint that
is the closest match. In §3, we compare our model based
localization algorithms to all the above methods.

3 Experimental Results

The goal of our evaluation is to systematically bench-
mark WiFiNet’s performance in diverse scenarios, and
demonstrate its utility in realistic network settings. We
break our evaluation into four parts: First, we demonstrate
WiFiNet’s ability in accurately characterizing the impact
of different non-WiFi devices in a variety of scenarios.
Second, we evaluate WiFiNet’s accuracy in physically
locating the non-WiFi interferers. Third, we emulate a
non-WiFi interference prone enterprise WLAN scenario
and show WiFiNet’s utility in such a setting. Fourth, we
benchmark different components of WiFiNet and highlight
cases where WiFiNet’s performance could degrade. We



start by presenting the details of our implementation.

Implementation. We implemented WiFiNet using com-
modity WiFi APs equipped with Atheros AR9280 wireless
cards that are connected to a central controller (Linux
PC with 3.33 GHz dual core Pentium 1V, 4 GB DRAM)
over the Ethernet. Our implementation consists of few
hundred lines of C code and 9800 lines of Python scripts
that implement non-WiFi device detection functionality
at the APs [16], perform synchronization across multiple
APs, and implement clustering algorithms, interference
analysis and device localization methods at the controller.

Evaluation set up. We experiment with devices in 2.4
GHz spectrum, and our current prototype has been tested
with 5 different non-WiFi devices types : (i) high duty
devices (analog cordless phones), (ii) fixed-frequency
pulsed transmitters (ZigBee devices), (iii, iv) two types
of frequency hopping devices (FHSS cordless phones,
Bluetooth devices), and (v) broadband interferers (mi-
crowave ovens). We run our experiments on two different
deployments: (i) Deployment 1 used 8 APs (Figure 9) and
(ii) Deployment 2 used 4 APs (Figure 20). We experiment
with different non-WiFi device locations, 802.11 rates,
channel conditions and traffic patterns: (i) UDP with
saturated traffic as well as reduced traffic loads, and (ii)
replay of real HTTP/TCP wireless traces (§3.1.6). Unless
otherwise stated, we run WiFi links on 802.11 rate to 6
Mbps and use backlogged UDP traffic with a packet size
of 1400B.

Ground truth. The conventional approach for measur-
ing interference between WiFi links is to use bandwidth
tests [20, 11] to determine the ground truth about the
impact of a WiFi interferer on a WiFi link. We follow
a similar approach to determine the impact of a non-
WiFi interferer on a WiFi link: we perform controlled
experiments where we send backlogged traffic on the
WiFi link and (i) measure p[L], the loss rate when the
interferer is inactive, and (ii) measure p[IUL], the loss
rate when the interferer is active. However, unlike WiFi
bandwidth tests wherein both the interferer and the link
are using backlogged traffic and are active for the entire
duration, a non-WiFi interferer may not be active all the
time, leading to the case where p[O] may be less than 1.
For example, while high duty devices like analog cordless
phones have p[O] = 1, other devices like FHSS cordless
phones may only hop onto the WiFi channel of interest for
a particular duration (when the WiFi link is backlogged, it
turns out that p[O] = 0.28 for an FHSS cordless phone),
or devices like microwave ovens have a characteristic duty
cycle of 50% (i.e., p[O] = 0.5). Therefore, impact given
overlap, p[I|O] has to computed as follows. p[l U L]
can be expressed as p[(IUL)|O] - p[O] + p[(IUL)|-0] -
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p[—0]. Now, p[(IUL)|-0)] is equal to p[L], and expand-
ing p[(IUL)|0] in terms of p[I|O] and p[L], followed by
a bit of algebra gives us

(plzuL] - plL])
(@ = plz)-plo])

Using controlled experiments, we measure p[L] (loss
under isolation) and p[I/UL] (loss when the non-WiFi de-
vice is active). Now, knowing p[O], we can measure
p[I]O] and subsequently compute the overall impact, p[I].
For experiments involving multiple devices, we measure
the ground truth by activating only one device at a time
and measuring its impact on the link. We note that the
same ground truth (p[I|O]) is valid when multiple devices
are activated simultaneously (the overall impact p[I] may
change, but p[I|O] remains the same). WiFiNet, however,
computes p[I|O] estimates in presence of multiple, simul-
taneously active devices and WiFi links using any traffic
load.

We further note that controlled experiments such as
bandwidth tests require high overhead to compute the
interference estimates for all links in the network. In
operational networks, doing so may not be possible as
such an approach requires network downtime where all
the other WiFi links (and non-WiFi interferers) have to be
silenced [20]. WiFiNet, on the other hand does not place
any such requirements (e.g., backlogged traffic on links
or network downtime), and can compute the estimates
in real-time by passively accumulating frame and pulse
transmission information.

pAeal — pi110] = @)

Metrics used. For interference estimation, we compare
WiFiNet’s real-time, passive interference estimate of “im-
pact given overlap” (p[I|O]) with that obtained using con-
trolled experiments wherein the device is activated in iso-
lation (ground truth). For localization, we report the dif-
ference in the actual and the predicted location of the
non-WiFi device (i.e., localization error) in meters.

3.1 Validating Interference Estimates

We start by validating WiFiNet’s interference estimates
across a variety of scenarios.

3.1.1 Single interferer scenarios

Method. We experiment with a total of 165 link-interferer
scenarios comprising 4 non-WiFi devices — a microwave
oven, an analog cordless phone, an FHSS cordless phone
and a ZigBee transmitter. We activate each device in turn,
and place it at different distances to vary the interference
on the monitored WiFi link. We compute the ground truth
(actual p[I]O]) using controlled experiments that measure
the link loss rate when the device is active and that when
the device is inactive. Next, we randomly activate and
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Figure 11: Accurately identifying impact of each interferer in the
presence of multiple non-WiFi devices. (left) example scenario
showing WiFiNet is able to identify the strong interferers (ana-
log cordless phone, FHSS phone) and weak interferers (ZigBee and
Bluetooth devices) accurately. (right) CDF of error in inteference
estimates in the presence of multiple interferers.

de-activate the non-WiFi device while the WiFi link is
active and measure WiFiNet’s real-time estimate.
Results. Figure 10 (left) shows that WiFiNet correctly
estimates a non-WiFi device’s impact — across all device
types and different amounts of interference (ranging from
weak to strong), WiFiNet’s estimates lie close to the ground
truth (the points lie close to y = x). Figure 10 (right)
shows that the overall error in WiFiNet’s estimate is within
+0.1 for more than 95% of the cases for all 4 devices.

3.1.2 Multiple interferers of different types

Method. In each run, we choose upto 4 random devices
of different types, place them at random locations, ran-
domly activate and de-activate them, creating scenarios
when these devices are simultaneously active and mea-
sure WiFiNet’s interference estimate for each device. For
ground truth, we activate only one device at a time and
perform controlled measurements. We repeat the experi-
ments for different combinations of devices and locations.
Results. Figure 11 (left) shows a particular run which
comprised two strong interferers (analog phone and FHSS
cordless phone) and two weak interferers (ZigBee and
Bluetooth devices). We find that WiFiNet is not only able
to accurately identify the strong and weak inteferers, but
is also able to discern the exact impact of each of these
devices in spite of them being active simultaneously. Fig-
ure 11 (right) shows the CDF of error in interference es-
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Figure 13: (left) Switching on and off 2 high duty devices (analog
phones) at the exact same time causes WiFiNet to incorrectly identify
the interferers. (right) Allowing diversity resolves the issue.

timates for combinations of 2, 3 and 4 devices across 60
runs. While the overall error slightly increases with in-
crease in the number of devices, the error is within £0.15
for more than 85% of the cases even when operating 4 de-
vices. The slight increase in error is due to increased over-
lap in the transmissions from multiple devices. We bench-
mark the effect of overlapping transmissions in §3.4.4.

3.1.3 Multiple interferers of the same type

Method. We now evaluate WiFiNet’s performance when
simultaneously operating multiple devices of the same
type. We use 4 FHSS cordless phone devices — one
base/handset pair is placed close to the WiFi link (to cre-
ate strong interference), whereas the other pair is placed
farther away (to create weak interference).

Results. Figure 12 shows that WiFiNet is able to (i) accu-
rately identify all 4 FHSS cordless phone devices using
clustering mechanisms (benchmarked in §3.4.3) and (ii)
accurately identify strong interferers (base/handset pair
placed close to the link) and weak interferers (base/handset
pair placed farther away from the link).

3.1.4 Case of multiple high duty devices

Method. We place an analog phone near the WiFi link
(strong interferer) and another analog phone (operating
at a frequency different from the first one), farther away
from the WiFi link (weak interferer). We show results for
two cases: (i) we switch activate and de-activate both the
phones at the exact same time, and (ii) we activate the
second phone 5 seconds after the first phone.

Results. Figure 13 (left) conveys that while WiFiNet is
able to identify two different phones (by virtue of their
different center frequencies), it incorrectly tags both the
phones as strong interferers. Since both the analog phones
are switched on and off at the same time, and they are high
duty devices that are always-on (i.e., they continuously
emit energy), WiFiNet cannot distinguish between the in-
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Figure 15: WiFiNet’s ability to track the changing interference pat-
terns for a client that is moving away from a ZigBee interferer. (left)
instantaneous throughput at the client (right) delivery in isolation
(i.e., in absence of overlap), impact given overlap (p[/|O]) and actual
impact (p[I]) are shown.

terference impact of the two devices. Figurel3 (right)
shows a more practical scenario where introducing a little
diversity (i.e., a lag of 5 secs in the device start times)
allows WiFiNet to correctly estimate the interference.

3.1.5 Mix of WiFi and non-WiFi interference
Method. We evaluate WiFiNet’s accuracy when simulta-
neously operating a WiFi interferer (hidden terminal) and
a non-WiFi interferer (ZigBee device). The interferers are
placed at different distances from the monitored WiFi link
to create two scenarios: (i) strong WiFi interferer with a
weak non-WiFi interferer (ii) weak WiFi interferer with
a strong non-WiFi interferer. The WiFi interferer’s traf-
fic follows an http on-off model for with sleep and active
times derived from a wireless trace [17], whereas the Zig-
Bee device used a constant bit rate. As before, to measure
ground truth, we operate the devices in isolation.
Results. Figure 14 shows the results. In case (i),
WiFiNet finds that losses are more likely to happen when
the monitored link’s frames overlap with WiFi interferer’s
frames, whereas in case (ii), the losses show a high corre-
lation when frames overlap with non-WiFi device’s trans-
missions, resulting in accurate estimates for both cases.

3.1.6 Dynamic interference settings

Handling WiFi client mobility. We now evaluate
WiFiNet’s ability in updating the interference estimates
that reflect the changing impact of a non-WiFi interferer
due to client mobility. We use the set up shown in Fig-
ure 15 (top) where in a WiFi client is moving away from
a ZigBee interferer. In the figure, plot on the left shows
the instantaneous throughput at the client increases as
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Figure 16: (i) Impact of PHY rate and (ii) packet size on p[I|O] in
presence of a ZigBee interferer. For (i), packet size is fixed at 1400
bytes, and for (ii), rate is fixed at 12 Mbps. p[I|O] rises sharply with
rate, the change in p[I|O] with packet size is less pronounced.
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Figure 17: WiFi links replay real HTTP/TCP wireless traces (heavy,
medium, and light profiles) in presence of strong, medium and weak
interferers. WiFiNet’s estimates closely match the ground truth in
each case. The slight mismatch is due to the variability in packet
sizes as the ground truth was measured using 1400 byte packets,
whereas the traces comprised packets of different sizes.

it moves away from the interferer. The plot on the right
shows WiFiNet’s ability to track (i) delivery in isolation
(i.e., in the absence of overlap) that shows a slight increase,
(i) the impact given overlap p[I|O], which rapidly drops
down from 0.98 to 0.2 as the client moves farther away
and (iii) the actual impact p[/], owing to the probabil-
ity of overlap, drops from 0.3 to 0.12. The decrease in
the actual impact closely matches with the increase in
throughput confirming WiFiNet’s utility in understanding
client performance in dynamic wireless environments.
Variable 802.11 rates and packet sizes. We evaluate
WiFiNet’s ability to dynamically track the changing inter-
ference estimates due to changes in (i) PHY rates and (ii)
packet sizes used by the links. For ground truth, we per-
form controlled experiments at each PHY rate, whereas
for WiFiNet we enable dynamic rate adaptation using Sam-
pleRate and capture the estimates in real-time. Figure 16
(left) shows that WiFiNet’s estimates derived from rate
adaptation closely match the ground truth. Since higher
rates require higher SINR to decode a frame successfully,
impact of the interferer increases with the increase in rate.
Next, we fix the PHY rate (to 12 Mbps) and repeat our
experiments for different packet sizes. Figure 16 (right)
shows that WiFiNet is correctly able to track the slight
increase in the interferer’s impact at larger packet sizes.
Replay of wireless traces. We evaluate WiFiNet’s per-
formance using publicly available Sigcomm 2004 traffic
traces [17]. We partitioned the trace into heavy, medium,
and light periods corresponding to periods with airtime
utilization of more than 50%, between 20 — 50%, and
less than 20% respectively, at different times of the con-
ference [20]. The HTTP/TCP sessions are then replayed
on WiFi links (using the mechanism described in [7]) in
the presence of strong, medium and weak ZigBee interfer-



Delay Min.  25th %ile. median 75th %ile Max. 1 - edel P 1
Convergence time 319 ms 549 ms 972 ms 1.7sec  3.6sec ode -\T‘P_; - Model-TR,
0.8 0.8 Model-UTP
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Algorithm Min. error 25th %ile. median 75th %ile Max error
Iterative 0.3m 0.8m 2.1m 4m 10m
Model-TP 0.3m 0.3m 1.3m 3m 8m
Model-UTP 0.3m 0.8m 1.3m 4m 11m

Table 2: Overall localization error for an analog cordless phone and
an FHSS phone when placed at random locations in deployment 2.

ers. Each client emulated the behavior of one real client
from the trace, faithfully imitating its HTTP transactions.
Figure 17 shows that that WiFiNet’s interference estimates
are close to that of the ground truth across different traffic
profiles and interfering scenarios. The slight differences
between the estimates are due to the variability in packet
sizes in the real traces, compared to the ground truth that
was measured using 1400 byte packets. We also show the
CDF of time taken by WiFiNet to converge to the right
p[I]O] estimates in Table 1 (median < 1 sec). We bench-
marks the factors affecting convergence time in §3.4.1.

3.2 Accuracy of Localization
We now evaluate our localization algorithms.

3.2.1 Accuracy across different classes of devices

Figure 18 shows CDF of localization error for two non-
WiFi device types: (i) frequency-hopping cordless phone
and (ii) high duty, analog cordless phone, when using de-
ployment 1 with 8 APs shown in Figure 9. Devices were
placed at random locations and for each location, we com-
pute the difference in the predicted and actual location for
5 different localization schemes (§2.4). We find that all
algorithms perform well, resulting in a median error of
1—3 meters for the FHSS phone, and 1.7—4 meters for the
analog phone. Here, WiFiNet’s modeling based localiza-
tion approaches perform similar to the Iterative approach
that employs an exhaustive search, and is better than Fin-
gerprinting (§2.4.2) that incurs a profiling overhead. Ac-
curacy of Fingerprinting, however, can be improved by
increasing the density of fingerprints (0.05/sq.meter in
this case) at the cost of a higher profiling overhead.

3.2.2 Effect of AP density

In each run, we randomly chose a subset of 4 APs (out of
the 8 APs in deployment 1) and compute the localization
error. We repeat the experiment for 25 runs and report the
average error in Figure 19 (left). We observe that when the
density of the AP deployment is sparse, the performance
of Centroid algorithm worsens (median error of 8 meters)
compared to the other algorithms (median error of 2.5 to
4.8 meters). Figure 19 (right) shows the degradation in
the performance of Model-UTP, when the number of APs
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Figure 18: Accuracy of localization for (left) FHSS cordless phone
and (right) analog cordless phone for deployment 1 (Figure. 9).
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Figure 19: Localization accuracy for FHSS cordless phone (left) for
subsets of 4 APs from deployment 1 (right) using Model-UTP when
the number of APs was decreased from 8 to 3.

is reduced from 8 to 3. The median error only increases
from 1 meter to 4 meters indicating the better performance
of modeling based approaches in sparse deployments.

3.2.3 Improvements with fine-grained modeling

To understand the benefits from using a per-AP path loss
exponent, we compare the performance of our modeling-
based localization approaches when a uniform path loss
exponent is used. Table 3 shows that when switching to a
uniform path-loss exponent, the median error increased
from 1.7 to 3.6 meters, and the maximum error increased
from 6.7 meters to 12 meters. Using a per-AP path loss im-
proves the WiFiNet’s localization accuracy as it takes into
account the differences in the environments surrounding
the APs (e.g., walls and other obstacles).

3.2.4 Location insensitivity

We repeated our experiments to benchmark the perfor-
mance of our algorithms in a different topology and envi-
ronment (deployment 2 with 4 APs, Figure 20). Table 2
shows the overall error for the modeling-based and Itera-
tive approaches. We find that the algorithms perform well
with a median error of 1.3—2.1 meters.

3.2.5 Impact of transmit power

Our experiments with localizing Bluetooth devices re-
sulted in an increased median error (2—6.7 meters) — ow-
ing to its low transmit power, only one of the APs could
detect the Bluetooth device. In this case, the WiFiNet re-
sorts to the Strongest AP approach for localization (§2.4).
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Figure 20: Emulating an enterprise WLAN with 4 APs and 6 clients. A total of 9 non-WiFi devices are placed to interfere with the clients:
2 analog phones, 4 FHSS cordless phone devices, a Bluetooth device, a ZigBee device and a microwave oven. WiFiNet is able to accurately
characterize the interference impact (p[I|O]) of all devices (even those of the same type) on each of the clients.

Scheme Min. error 25th %ile. median 75th %ile Max error
Uniform ~ 0.2m 1.9m 3.6m 7m 12m
per-AP ~ 0.2m 2.0m 1.7m 2.3m 6.7m

Table 3: Overall localization error for the Model-TP algorithm with
(i) uniform and (ii) per-AP path loss exponents (deployment 1).

3.3 Emulating an Enterprise WLAN

We now try to emulate the structure of our in-building
WLAN by placing a WiFiNet AP near each production
AP and distribute clients into offices (Figure 20). Our
topology consists of 4 APs and 6 clients. We use a total
of 9 non-WiFi interferers: 2 analog phones (high duty de-
vices), 4 FHSS cordless phone devices, a Bluetooth device
(frequency hopping devices), a ZigBee device (fixed fre-
quency, pulsed transmitter) and a microwave oven (broad-
band interferer). WiFi links are assigned channels (shown
in Figure 20) so as to create a scenario where each non-
WiFi device affects at least one link. Each WiFi link fol-
lows an HTTP traffic model, with on-off times derived
from a wireless trace [17]. We activate and de-activate
the non-WiFi devices randomly, creating scenarios when
devices are simultaneously active. As before, for ground
truth measurements, we activate only one device at a time.

Figure 20 shows the interference impact of each inter-
ferer on the WiFi links — depending on the channel of
operation, location of the client, and overlap probability
(based on the actual WiFi traffic and non-WiFi device
activity), WiFi links experience different amount of inter-
ference from each non-WiFi device. Further, WiFiNet’s
estimate closely matches the ground truth for each case.
We find that all 4 FHSS cordless phone devices affect all
the WiFi links (p[I|O] varied from 0.45 to 0.8 due to their
high transmit power of —20 dBm). The overall impact
p[I], however, only varied from 0.1 to 0.31 owing to their
frequency hopping nature. Peak emissions of microwave
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Figure 21: (left) Number of frame overlaps are required to converge
for 10 ZigBee interferer scenarios including strong, medium and
weak interference (middle) CDF of the number packet overlaps re-
quired for p[I|O] to converge (right) Convergence time as a function
of the traffic load for an FHSS cordless phone.

ovens are typically in 2.45 to 2.47 GHz, and so the oven
severely affected the client C'1 which operated on channel
11. It is interesting to note that C'3 (operating on channel
6) was also affected by the oven (p[I|O]=0.36) as it was
close to the device, whereas C'2 (channel 6, farther from
the device) and C'5 (channel 1, closer to the device) were
not affected. Bluetooth device, due to its low power and
adaptive frequency hopping nature did not significantly
affect any of the links. On the other hand, high powered
and high duty device like analog phones (A1 and A2) af-
fected the clients on channel 1 (C4, C5, C6) much more
than the ZigBee device that had a lower transmit power.

3.4 Microbenchmarks and Other results

We now benchmark convergence time, clustering algo-
rithms, highlight cases where WiFiNet can under perform,
and present results on estimating sender-side interference.
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Figure 22: WiFiNet’s estimates of deferral probability close match
the ground truth. Here, a WiFi transmitter is moving toward a Zig-
Bee interferer leading to increase in the deferral probability.

3.4.1 Convergence time

We define the convergence time as the time taken by
WiFiNet to gather sufficient samples (i.e., overlaps between
WiFi frames and non-WiFi transmissions) to compute an
accurate p[I|O)] estimate (within £0.1 of the ground truth).
Figure 21 (left) shows 9 different scenarios where a ZigBee
interferer causing strong, medium or weak interference is
activated along with a WiFi link. Across all scenarios, we
find that < 100 overlaps between WiFi frames and ZigBee
transmissions are enough for p[|O] to converge (conver-
gence points shown with black circles). Across different
non-WiFi interferers and links < 150 overlaps are enough
to converge to the ground truth (CDF shown in Figure 21
(middle)). The time for convergence depends on the WiFi
link’s traffic load, and the activity of the non-WiFi device.
Figure 21 (right) shows that although the convergence time
increases with lesser traffic, it is less than 4 seconds across
a variety of traffic loads when using an FHSS cordless
phone as an interferer. For devices like microwave ovens
and analog cordless phones, convergence time was much
lesser owing to increased overlaps.

3.4.2 Estimating sender-side interference

We also benchmarked WiFiNet’s ability to correctly es-
timate the carrier sensing interference across a number
of non-WiFi devices and links. Here, we move a WiFi
transmitter toward a ZigBee device (periodically transmits
4 ms pulses) and measure its deferral probability (§2.3).
For ground truth, we measure the transmitter’s sending
rate when the device is active and that when the device
is inactive. WiFiNet estimates the deferral probability in
real-time — we observe that A, i.e., the fraction of Case
(2) instances (§2.3) increases as we move the transmit-
ter away, indicating increased deferral. Further, A, also
closesly matches the ground truth deferral probability.

3.4.3 Performance of clustering

Clustering is straightforward in many cases e.g., when
the devices are of different types, or in the case of fixed-
frequency devices (of the same type) using different center
frequencies. We benchmarked our RSS and timing based
clustering algorithms (§2.2) for the harder cases of (i)
fixed-frequency devices using the same center frequency
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. . Clustering performance
Algorithm Attribute % Correct % Over-cluster % Under-cluster
DBSCAN Timing 92.7% 5% 2.3%
DBSCAN RSS 88.7% 5.2% 6.1%
k-Means + EM  Timing 97.6% 1.3% 1.1%
k-Means + EM RSS 91.4% 6.5% 2.1%

Table 4: Performance of clustering mechansisms used in WiFiNet.
Results for two clustering algorithms (pBscaN and k-means+EM)
using (i) start time offset and (ii) RSS attributes are shown. Up to
non-WiFi devices of the same type were placed at random locations.
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Figure 23: (left) Ability of WiFiNet to correctly identify interfer-
ers when transmissions from two non-WiFi devices overlap. p[I|O]
measured by WiFiNet for both strong (p[I|O] = 0.88) and weak
(p[I|O] = 0.22) interferers as a function of their overlap in trans-
mission times. If the overlap is less than 45%, WiFiNet can distin-
guish the strong and weak interferers accurately. (right) Ability of
WiFiNet to correctly estimate p[I|O] of an interferer as function of
percentage of pulses lost (i.e., not captured) by an WiFiNet AP.

and (ii) frequency hopping devices. Table 4 shows the
overall summary (when operating up to 4 devices of the
same type). We find that clustering algorithms perform
reasonably well with > 88% accuracy in detecting the
number of device instances. In case of over-clustering,
the number of pulses in the extra clusters were relatively
low, allowing us to discard the false positives. Under-
clustering, however, can lead to error in estimates that can
happen if the devices are close to each other (§3.4.4). Us-
ing timing attributes (when available) results in increased
accuracy, compared to RSS based clustering, as timing
attributes are not sensitive to the distance between de-
vices (§3.4.4). Also, k-means+EM clustering has higher
accuracy compared to density based clustering (DBSCAN).

3.4.4 Sources of error

We now highlight some of the scenarios where WiFiNet’s
performance can degrade.

Overlapping transmissions. We now benchmark the ef-
fect of transmission overlaps between multiple interferers.
Figure 23 (left) shows WiFiNet’s interference estimates in
the presence of a strong and a weak non-WiFi interferer, as
a function of the overlap between their transmission times.
In the unlikely case when the transmissions from both
non-WiFi devices overlap 100% of the time, WiFiNet is
unable to distinguish between the two. However, as the
percentage of overlap decreases, WiFiNet is able to dis-
cern the impact of the weak interferer. In practice, we
expect diversity in device transmission times [16] to allow
WiFiNet to output accurate interference estimates.
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Figure 24: Performance of clustering for 2 FHSS cordless phone
devices as a function of the distance between them. Clustering us-
ing (i) timing properties is unaffected by the distance, whereas that
using (ii) RSS performs incorrect clustering when the devices are
placed < 5 meters apart (L1, L2). For L0, devices were 10 m apart.

Coverage. WiFiNet’s ability to derive an accurate interfer-
ence estimate depends on how well the non-WiFi device’s
transmission are captured. In particular, p[I|O] and p[L]
estimates will differ from the ground truth when none
of the WiFiNet APs capture the device’s transmissions.
Figure 23 (right) shows the impact of losing transmis-
sions from non-WiFi interferers — the error in estimates
increase with decrease in the percentage of captured trans-
missions. In a typical enterprise deployment with multiple
APs, this might not be a concern as we can expect at least
one AP to capture the device’s transmissions.

Proximity between devices. We now present a case when
clustering mechanisms can under perform. We experiment
with 2 FHSS cordless phone devices and place them at
different distances. Figure 24 shows that timing based
clustering is unaffected by the distance between the de-
vices, but RSS based clustering is not. When the devices
are placed < 5 meters apart (at L1, L2), RSS based clus-
tering cannot distinguish them as their RSS vectors look
similar. This results in under-clustering (pulses of both
devices are put into one cluster) or incorrect clustering
(each cluster has a mixture of pulses from both devices).

4 Related Work

We now present the related work in the areas of non-WiFi
device interference estimation and localization.

Device detection and interference estimation. Com-
mercial solutions such as Wispy [4], Cisco Spectrum Ex-
pert [2] and Bandspeed AirMaestro [1] use custom hard-
ware (signal analyzer ICs) to detect RF devices operating
in the medium. However, these solutions do not provide
the capability to estimate the interference caused by the
non-WiFi devices to the the WiFi links. Recent research
work such as DOF [8], RFDump [13], TIMO [18] can
also detect the presence of non-WiFi device activity us-
ing specialized hardware such as channel sounders and
software-defined radios. Such platforms enable TIMO and
DOF to go beyond detection and employ signal processing
techniques to mitigate interference and develop mecha-
nisms to co-exist with non-WiFi devices. WiFiNet takes
a step towards empowering APs and clients with such
functionality, by providing non-WiFi interference estima-
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tion capability under the constraints of commodity WiFi
hardware. In [14], the authors use a single WiFi card to
infer interference from Bluetooth and microwave ovens
by analyzing the timing of WiFi packet errors. However,
their technique does not generalize to detect inteference
other non-WiFi devices that don’t exhibit timing proper-
ties (e.g., ZigBee) and cannot distinguish between devices
of same type. In comparison, WiFiNet can also estimate
the interference from multiple, simultaneously operating
devices and pin-point their location in the physical space.
Device localization. There has been limited prior work
on designing a generic system to localize the various non-
WiFi devices on the top of commodity WiFi hardware.
Existing literature has looked at localizing specific device
types (e.g., Bluetooth [19], Zigbee [9]) by using sensors
of the same type. Amongst commercial solutions, Wi-Spy
device finder [4] uses a directional antenna and requires a
user to walk and manually search for the location of the
transmitter. Cisco CleanAir [2] finds the location of RF
transmitter sources by using specialized hardware in the
access points. WiFiNet uses only commodity WiFi cards
to not only detect the location of non-WiFi devices, but
also estimate their interference impact.

5 Conclusion

We presented WiFiNet, a system to estimate the interfer-
ence experienced by WiFi links in presence of non-WiFi
devices using only WiFi hardware. WiFiNet can correctly
estimate the impact of each non-WiFi device, in presence
of multiple other interferers, even if they are of the same
type. Italso correctly tracks changes due to client mobility,
dynamic traffic loads, and varying channel conditions. Fur-
ther, WiFiNet also identifies the physical locations of non-
WiFi devices. We believe a system such as WiFiNet can
help WLAN administrators use commodity WiFi APs
to better understand and manage non-WiFi interference,
especially in environments such as enterprise WLANS.
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