Computer
Sciences
Department

Secure Programming via Visibly Pushdown Safety Games
William Harris
Somesh Jha

Thomas Reps

Technical Report #1710

January 2012

WISCONSIN

\ l) UNIVERSITY OF WISCONSIN-MADISON

e

Secure Programming via
Visibly Pushdown Safety Games

William R. Harris', Somesh Jha!, and Thomas Reps'+?

! University of Wisconsin-Madison, Madison, WI, USA
{wrharris, jha, reps}@cs.wisc.edu
2 GrammaTech, Inc., Ithaca NY, USA

Abstract. Several recent operating systems provide system calls that
allow an application to explicitly manage the privileges of modules with
which the application interacts. Such privilege-aware operating systems
allow a programmer to a write a program that satisfies a strong security
policy, even when it interacts with untrusted modules. However, it is
often non-trivial to rewrite a program to correctly use the system calls
to satisfy a high-level security policy. This paper concerns the policy-
weaving problem, which is to take as input a program, a desired high-
level policy for the program, and a description of how system calls affect
privilege, and automatically rewrite the program to invoke the system
calls so that it satisfies the policy. We present an algorithm that solves
the policy-weaving problem by reducing it to finding a winning mod-
ular strategy to a visibly pushdown safety game, and applies a novel
game-solving algorithm to the resulting game. Our experiments demon-
strate that our algorithm can efficiently rewrite practical programs for a
practical privilege-aware system.

1 Introduction

Developing practical but secure programs remains a difficult, important, and
open problem. Web servers and VPN clients execute unsafe code, and yet are
directly exposed to potentially malicious inputs from a network connection [?].
System utilities such as Norton Antivirus scanner [?], tcpdump, the DHCP client
dhclient [?], and file utilities such as bzip, gzip, and tar [?,?,?] have contained
unsafe code with well-known vulnerabilities that allow them to be compromised
if an attacker can control their inputs. Once an attacker compromises any of the
above programs, they can typically perform any action allowed for the user that
invoked the program, because the program does not restrict the privileges with
which its code executes.

Traditional operating systems provide to programs only weak primitives for
managing their privileges [?,7,7,?]. As a result, if a programmer is to verify that
his program is secure, he typically must first verify that the program satisfies
very strong properties, such as memory safety. However, recent work [?,7,7,7] has
produced new operating systems that allow programmers to develop programs
that execute unsafe code but still satisfy strong properties, and to construct
such programs with significantly less effort than fully verifying the program.
Such systems map each program to a set of privileges, and extend the set of
system calls provided by a traditional operating system with security-specific

calls (which henceforth we will call security primitives) that the program invokes
to manage its privileges. We call such systems privilege-aware systems.

This paper concerns the policy-weaving problem, which is to take a program
and a security policy that defines what privileges the program must have, and
to automatically rewrite the program to correctly invoke the primitives of a
privilege-aware system so that the program satisfies the policy when run on
the system. The paper addresses two key challenges that arise in solving the
policy-weaving problem. First, a privilege-aware system cannot allow a program
to modify its privileges arbitrarily, or an untrusted module of the program could
simply give itself the privileges that it requires to carry out an attack. Instead,
the system allows a program to modify its privileges subject to system-specific
rules. In practice, these rules are subtle and difficult to master; the developers
of the Capsicum capability system reported issues in rewriting the tcpdump
network utility to use the Capsicum primitives to satisfy a security policy, while
preserving the original functionality of tcpdump [?].

Second, the notions of privilege often differ between privilege-aware systems,
and thus so too do the primitives provided by each system, along with the
rules relating privileges to primitives. The Capsicum operating system defines
privileges as capabilities [?], the Decentralized Information Flow Control (DIFC)
operating systems Asbestos, HiStar, and Flume [?,?,?] define privileges as the
right to send information, and each provide different primitives for manipulating
information-flow labels [?]. Thus, a policy-weaving algorithm for a specific system
must depend on the privileges and primitives of the system, yet it is undesirable
to manually construct a new policy-weaving algorithm for each privilege-aware
system that has been or will yet be developed.

We address the above challenges by reducing the policy-weaving problem to
finding a winning Defender strategy to a two-player safety game. Each game is
played by an Attacker, who plays program instructions, and a Defender, who
plays system primitives. The game accepts all sequences of instructions and
primitives that violate the given policy. A winning Defender strategy never allows
the Attacker to generate a play accepted by the game, and thus corresponds to
a correct instrumentation of the program, which invokes primitives so that the
policy is never violated. If the rules describing how a system’s primitives modify
privileges can be encoded as an appropriate automaton, then the game-solving
algorithm can be applied to rewrite programs for the system. We argue that
stack-based automata, in particular visibly pushdown automata (VPAs) [?], are
sufficient to model the rules of practical privilege-aware systems. Furthermore,
modular winning strategies exactly correspond to correct instrumentations of
programs for such systems.

Finding a modular winning strategy to a game defined by a VPA is NP-
complete. However, games resulting from policy-weaving problems are constructed
as products of input automata, and a game will often have a strategy whose struc-
ture closely matches one of the inputs. Inspired by this observation, we present
a novel algorithm that, given a game, finds a modular strategy with structure
similar to an additional, potentially smaller game called a scaffold. We show that
our scaffolding algorithm generalizes two know algorithms for finding modular

Filter
spin

Fig. 1. Automata models of (a) the program Filter, (b) Filter’s MiniCap monitor,
and (c) Filter’s policy for MiniCap. Notation is explained in §77.

strategies [?,?] — in particular, those algorithms result from using two (different)
“degenerate” scaffolds, and correspond to two ends of a spectrum of algorithms
that can be implemented by our algorithm. We evaluated the scaffold-based algo-
rithm on games corresponding to policy-weaving problems for six UNIX utilities
with known vulnerabilities for the Capsicum capability system, and found that
it could rewrite practical programs efficiently, and that the choice in scaffold
often significantly affected the performance of the algorithm.

Organization §77 motivates by example the policy-weaving problem and our
game-solving algorithm. §?? defines the policy-weaving problem, and reduces
the problem to solving visibly-pushdown safety games. §77 presents a novel al-
gorithm for solving visibly pushdown safety games. §77 presents an experimental
evaluation of our algorithm. §?7 discusses related work.

2 Overview

In this section, we motivate the policy-weaving problem. We sketch how the
policy-weaving problem can be reduced to finding a winning strategy to a class
of safety games, and how the structure of games constructed from policy-weaving
problems makes them amenable to our novel game-solving algorithm.

2.1 An Example Policy-Weaving Problem: Filter on MiniCap

We illustrate the policy-weaving problem using an example program Filter that
reads information from an input channel, processes and compresses the data,
and then writes the data to an output channel. Filter is inspired by the UNIX
utilities tcpdump and gzip, which have exhibited security vulnerabilities in the
past, and have previously been rewritten manually for the Capsicum privilege-
aware systems [?]. The executions of Filter are presented as the runs of the
automaton F in Fig. ?7?(a), where each transition is labeled with a program
action. Intraprocedural transitions are denoted with solid lines. Call transitions,
which place their source node on a stack (see Defn. ?7?), are denoted with dashed
lines. Return transitions, defined by the top two states of the stack, are denoted

4

with dash-dot lines, where the transition from the top state of the stack is labeled
with a 0, and the transition from the next state down on the stack is labeled
with a 1. In each figure, doubled circles denote accepting states.

Filter executes a no-op instruction (spin) until it reads data from its desig-
nated input channel (e.g., UNIX stdin) (read), processes a segment of its input
data (proc), and calls a compression function Compress (call). Compress first
opens and reads a configuration file (cnfg), compresses its input data (cmpr),
and returns the result (ret). After Compress returns, Filter writes the data
to its designated output channel (e.g., UNIX stdout) (wr), and loops to read
another segment of data (loop).

Unfortunately, in practice, much of the code executed by a practical imple-
mentation of functions like Filter and Compress (e.g., tcpdump and gzip [?])
is not memory-safe, and thus allows an attacker to violate the security policy
of a program. Suppose that the programmer wants to ensure that Filter only
interacts with communication channels by opening and reading from its desig-
nated input at read and writing to its designated output at wr, and Compress
only interacts with communication channels by reading from its configuration
files at cnfg. However, suppose also that the data-processing action proc in
Filter and the compression action cmpr in Compress perform memory-unsafe
operations when passed particular inputs. Then an attacker who can control the
inputs to Filter could craft a malicious input that injects code that opens a
communication channel (e.g., a file) and violates the policy.

However, if the programmer correctly rewrites Filter for a suitable privilege-
aware systems, then the rewritten Filter will satisfy such a policy even if it ex-
ecutes code injected by an attacker. Consider a privilege-aware system MiniCap,
which is a simplification of the Capsicum capability system now included in the
“RELEASE” branch of FreeBSD [?,?]. MiniCap maps each executing process to
a two-valued flag denoting if the process has high or low privilege. If a process
has high privilege H, then it can open communication channels, but if it has low
privilege L, then it can only read and write to its designated input and output
channels. A process on MiniCap begins executing with high privilege, but may
invoke the MiniCap primitive dropcap, which directs MiniCap to give the pro-
cess low privilege, and never give the process the high privilege again. A process
thus might invoke dropcap after executing safe code that requires high privilege,
but before executing unsafe code that requires only low privilege.

MiniCap also allows one process to communicate with another process via a
remote procedure call (RPC), in which case the called process begins execution
with high privilege, independent of the privilege of the caller. The Capsicum
capability system uses RPC in this way, while DIFC systems allow a process to
call a process with different privileges via an analogous gate call [?].

MiniCap is partially depicted in Fig. ??(b) as an automaton M that accepts
sequences of privilege-instruction pairs and primitives executed by Filter. We
call M the MiniCap monitor of Filter. M accepts a trace of privilege-instruction
pairs and primitives if when Filter executes the sequence of instructions and
primitives, MiniCap grants Filter the privilege paired with each instruction.
The call and return transitions of M are omitted for simplicity; M transitions on

5

an RPC to the high-privilege state H, and returns from an RPC to the calling
state.

Filter’s policy can be expressed directly in terms of MiniCap’s privileges
by requiring that the instructions read and cnfg execute with high privilege,
while the instructions proc and cmpr execute with low privilege. The policy is
presented as an automaton Pol in Fig. ??(c), where each transition is labeled with
a privilege-instruction pair (the label * denotes any label that does not appear
explicitly on a transition from the same source state). The traces accepted by
Pol are the sequences of instruction-privilege pairs that violate the policy.

For Filter to satisfy its policy when it is run on MiniCap, it must use the
primitives of MiniCap in a way that is only indirectly related to, and signifi-
cantly more complex than, its desired policy. (1) invoke dropcap after executing
read but before executing proc, (2) call Compress via RPC so that Compress
executes cnfg with high privilege, (3) invoke dropcap after executing cnfg but
before executing cmpr. This rewritten Filter is “modular” across calls and re-
turns, in the sense that the rewritten Filter and Compress invoke primitives
independently of the actions of each other. On practical privilege-aware systems,
a process that can be called via RPC cannot necessarily trust its caller, and thus
cannot trust information passed by its caller. Thus a practical instrumentation
must be modular.

The policy-weaving problem for Filter is to take F, its policy Pol, and Min-
iCap monitor M, and instrument Filter to use MiniCap’s primitives modularly
to satisfy Pol.

2.2 Policy-Weaving Filter via Safety Games

Each policy-weaving problem can be reduced to finding a winning strategy to a
safety game. A safety game is played by two players, an Attacker and Defender,
and is a transition system in which each state belongs to either the Attacker or
the Defender. The goal of the Attacker is to drive the state of the game to an
accepting state, while the goal of the Defender is to thwart the Attacker. The
game is played in turns: when the game enters an Attacker state, the Attacker
chooses the next transition, and when the game enters a Defender state, the
Defender chooses the next transition. A strategy for the Defender takes as input
a play of the game, and chooses the next transition for the Defender. A winning
strategy chooses Defender transitions that never allow the Attacker to drive the
state of the game to an accepting state.

From program, policy, and monitor automata, we can construct a game that
accepts all policy-violating executions of a version of the program that is instru-
mented to invoke the primitives of the monitor. The game is constructed by (1)
transforming the alphabets of the automata to a common alphabet defined by
the instructions, privileges, and primitives, (2) constructing the product of the
transformed automata, and (3) transforming the alphabet of the resulting prod-
uct game so that all Attacker transitions are labeled with program instructions,
and all Defender transitions are labeled with system primitives.

A subset of the transitions of the game G, constructed from F, Pol, and M
are shown in Fig. 7?(a). Each state of G, is either an Attacker or Defender state

Compression
module

»{T0
cnfg /
dropcap

cmpr /
noop

Fig. 2. (a) a selection of transitions of the game G, that is the product of F, Pol, and
M; (b) a strategy corresponding to a correct instrumentation of Filter.

constructed from a triple of a state of F, state of Pol, and state of M, and each
state in Fig. ??(a) is labeled with its triple. Each Attacker state and Attacker
transition is denoted with a solid circle or line, while each Defender state is de-
noted with a dotted circle or line. The play “read, noop, proc” is accepted by
Gey (i-e., is a winning play for the Attacker) because it is an execution in which
the instrumented Filter does not execute dropcap before executing proc, caus-
ing proc to execute with high-privilege, which violates the policy Pol. However,
the play “read, dropcap, proc” is not accepted by G.., because it corresponds
to an execution in which Filter invokes dropcap, causing proc to execute with
low privilege, which satisfies the policy.

One winning Defender strategy to Ge,, which corresponds to the correct in-
strumentation of Filter given in §?7?, is presented in Fig. ??(b). The strategy
is a transducer that, from its current state, reads an instruction executed by
Filter, outputs the primitive paired with the instruction on the label of a tran-
sition ¢ (Fig. ??(b) includes a primitive noop that denotes that no MiniCap
primitive is invoked), transitions on ¢, and reads the next instruction. The strat-
egy is partitioned into a Filter module that chooses what primitives are invoked
during an execution of Filter, and a Compress module that chooses primitives
are invoked during the execution of Compress. The modules are independent,
in that the primitives chosen by the Compress module are independent of the
instructions and primitives executed by Filter before the most recent call of
Compress.

Solving games constructed from policy-weaving problems efficiently is a hard
problem. The game G, is the product of F, Pol, and M, and thus has a state space
whose size is proportional to the product of the sizes of F, Pol, and M (G.,, has
128 states). Furthermore, finding modular winning Defender strategies to games
is NP-complete in the size of the game. However, in practice, games constructed
from policy-weaving problems have a winning strategy whose structure closely
matches the structure of one of the input automata. For example, the winning
strategy in Fig. ?7(b) closely matches the structure of F. Each execution of

7

Filter is in state F}, of F when the strategy is in state S,,, and in state C,, of F
when the strategy is in state T}, (see Fig. ??(a) and Fig. ??(b)). To find winning
modular strategies to games efficiently, we apply a novel algorithm that takes a
game and an additional, potentially smaller, game called a scaffold, and searches
for a winning strategy whose structure is similar to that of the scaffold. For G,
F serves as such a scaffold.

3 Policy Weaving as a Safety Game
3.1 Definition of the Policy-Weaving Problem

The policy-weaving problem is to take a program, a description of a privilege-
aware system, and a policy that describes what privileges the program must
have as it executes on the system, and to instrument the program so that it
always has the privileges required by the policy. We model a program, policy,
and privilege-aware system each as a Visibly Pushdown Automaton.

Definition 1. A deterministic visibly-pushdown automaton (VPA) for internal
actions Xy, call actions Y'¢, and return actions X'i (alternatively, a (X7, X, X'r)-
VPA) is a tuple V = (Q, ¢, QF, 74, T, 7r), where: @ is the set of states; ¢ € Q is
the initial state; Qp C Q is the set of accepting states; 7; : Q@ x X; — @ is the
internal transition function; 7. : Q x X. — @Q is the call transition function;
T Q X X X Q — Q s the return transition function.

For ¥ = Y;UXcUXR, each VPA accepts a set of traces of (i.e., sequences of
actions in) X. Let e denote the empty sequence. Let “.” denote the concatenation
of two sequences; for set X, x € X,ands € X*, z.s=[z] .sand s.z = s . [z],
where [z] € X* is the sequence containing only . For sets X and X7, let Xo- X1
be the set of all sequences zq . x1 for zg € Xo and z1 € Xj. Let 7: Q" x X — Q~
map a sequence of states s € @ (i.e., a stack) and action a € X to the stack to
which V' transitions from s on a:

7(q . s,a) = 1(q,a) . s for a € Xy
7(q . s,a) = (1c(g,a) . q . s) for a € Yo
7((q - s0 - §'),a) = (Tr(q,a,50), ") for a € Y

Let p: o (" map each trace to the stack that V' is in after reading the trace.
Formally, p(€) = ¢, and for @« € X and s € X*, p(s . a) = 7(p(s),a). A trace
te S is accepted by V if p(t) = (¢, s) with ¢ € Qp. In a trace ¢, an instance ¢
of a call action is matched by an instance r of a return action if ¢ is before r in ¢,
and each instance ¢’ of a call action in ¢ between ¢ and r is matched by a return
action r’ between ¢ and r. A trace is matched if all call and return actions in the
string are matched. Let £(V') be the set of all traces accepted by V. O

A program is a language of traces of intraprocedural instructions, calls, and
returns of the program (e.g., for Filter in §?7, spin, read, etc.). Let Instrs =
(X1, Yo, XRr), let instrs — Y1UXecUXR, and let a program P be an Instrs-VPA.

A program policy is a language of traces of program instructions paired with
privileges. A program’s privilege is a system-specific ability (e.g., for MiniCap

8

in §?7, a program may have either the high privilege H or the low privilege
L). Let Privs be a set of privileges, and let the set of privileged executions of
P be (I?s-t\rs x Privs)*. Let an (Instrs, Privs)-policy for P be a (X} x Privs, X¢ X
Privs, Xr, xPrivs)-VPA (e.g., Fig. ??(c)) that accepts all privileged executions
that constitute violations.

A privilege-aware monitor is a language of privileged executions interleaved
with primitives. The primitives of a privilege-aware system are the set of security-
specific system calls that the application can invoke to manage its privileges (e.g.,
for MiniCap, the system call dropcap). Let Prims be a set of primitives and let
the instrumented executions of P be (Prims . Instrs)*. A privilege-aware monitor
of P reads an instrumented execution of P, and decides what privilege P has as
it executes each instruction. Let an (Instrs, Privs, Prims)-privilege-aware monitor
M be a ((X7 x Privs) U Prims, Yo x Privs, X' X Privs)-VPA.

Definition 2. (Policy-Weaving Problem) Let P be a program with internal,
call, and return alphabets Instrs = (X}, X', X'r). For privileges Privs, let Pol be
an (Instrs, Privs)-policy of P. For primitives Prims, let M be an (Instrs, Privs, Prims)-
privilege-aware monitor.

Let an instrumentation function be a function I : Instrs* — Prims,
and let Iy, : Instrs® — (Prims Instrs)* map each sequence of instructions
to the instrumentation of the sequence defined by I: I (¢) = I(e), and for
s € Instrs™ and a € Instrs, It (s . a) = ILiy(s) . I(s . a) . a. Let PrivExy :
(Prims Instrs)* — (Instrs x Privs)* map each instrumented execution to the priv-
ileged execution that it induces on M: for primitives p;, instructions 4;, and
privileges 7;, PrivExm([po; o, .-, Pn,in]) = [(Po,70),---, (Pn,)] if and only if
[P0, (0,70)5 - -+ s Py (im, Tn)] € L(M).

The policy-weaving problem POLWEAVE(P, Pol, M) is to find an instrumen-
tation function I such that:

1. I instruments P to never violate the Pol: PrivExm (Ii,(L(P))) N L(Pol) = 0.

2. I chooses primitives independently of the execution before the most recent
call; i.e., I is modular. Let p°, p* € Img(I;,), (where for a relation R, Img(R)
is the image of R), and p° = p§ . c.p) .ro.p3, pt =p¢ . c.pt.r . pd,
call action ¢ is matched by 79 in p®, and is matched by 71 in p'. Let p =
ao, b9, a1,by, ... a,,0%, and let pi = ag,b},a1,b1,...,a,,b.. Then b? = b}
for each 4 in each such p® and p'. a

Defn. ?? formalizes the informal policy-weaving problem illustrated in §77.
As discussed in §77, if a policy-weaving problem has a solution I, then it has
a solution I* that may be represented as a VPA transducer T (i.e., a VPA
where each action is labeled with input and output symbols). The problem of
rewriting program P to satisfy the policy thus amounts to applying T to P, using
a standard product construction from automata theory.

Privilege-aware systems are typically applied to monitor programs that could
run injected code, yet an instrumentation function is defined in Defn. 7?7 to
choose a primitive after each instruction executed by the program. However,
this is not a fundamental limitation, as if a programmer or static analysis tool

9

determines that injected code might be run at a particular point in the program,
then we can define the monitor so that no primitive other than a noop can be
invoked by the instrumentation. Conversely, it is not too restrictive to only allow
an instrumentation function to invoke a single primitive after each instruction, as
we can rewrite the program to execute a sequence of security-irrelevant instruc-
tions between which the instrumentation can invoke a sequence of primitives. In
App. 77, we present two different privilege-aware systems as VPA.

3.2 From Policy Weaving to Safety Games

Each policy-weaving problem POLWEAVE(P, Pol, M) can be reduced to a single-
entry VPA (SEVPA [?]) safety game that accepts plays corresponding to instru-
mented executions of P that violate Pol when run on M. A SEVPA safety game is
a VPA structured as a set of modules with unique entry points whose transitions
are decided in turn by an Attacker and a Defender. The states of the game are
partitioned into modules, where the system transitions to a unique module on
each call transition.

Definition 3. A SEVPA safety game for Attacker internal actions X 4, De-
fender internal actions Xp, call actions Y, and return actions X'r is a tuple
G =(Qa,Qp,Q0,t0,{(Qcste) yeese, QF, T1,4, TD, TR), Where
— Qa4 CQ is a finite set of Attacker states.
— @p C Q is a finite set of Defender states. Q 4 and QQp partition the states
of the game Q.
— Qo is the initial module.
— 19 € Qo N Qp is the initial state.
— For c € Y, Q. is the module of c. The sets {Q.}cex., and Qq are pairwise
disjoint, and partition Q.
— For c € X, 1. € Q. N Qp is the initial state of c.
— Qr € QoNQp is the set of accepting states.
— 71,4 Qa X X1 4 — Qp is the Attacker internal transition function.
— 7p : Qp X Xp — Q4 is the Defender internal transition function.
—TR:Qa X Xr x (Qa x X¢) — Qp is the return transition function.
The modules are closed under internal transitions: for x € {0}UX ¢, ¢ € Q,, and
a € X7 a, m1,4(q,a) € Qy, and for a € X'p, 7p(g,a) € Q5. A SEVPA safety game
is not defined by using an explicit call transition function, because each call on
an action ¢ pushes on the stack the calling Attacker state and calling action (we
thus call I" = Q4 x X the stack symbols of the game), and transitions to ¢.. The
modules of a SEVPA safety game are closed under matching calls and returns:
forz € {0} UXc, c € Yo, ¢ € Qu, qc € Qc, and 7 € Xg, Tr(qe, T, (¢,) € Qu-
The plays of a SEVPA are defined analogously to the traces of a VPA. Let
the configurations of G be C = Q x I'*, let the attacker configurations be Cp =
CN(Qa x I'*), and let the defender configurations be Cp = CN(Qp x I'*). Let
the Attacker actions be X4 = X1 aUXcUXR. 74 : Cq x ¥4 — Cp maps each
Attacker configuration and Attacker action to a Defender configuration:

TA((qa S)aa) = (TI,A(C]),S) for a € E[,A
TA((Q? 5),(1) - (L(:7 (q,a) . 5) for a (S EC
TA((Q) S0 - S/)7a) = (TR(QWL’ 30),8/) for a € X'

10

Because each transition on a Defender action is to an Attacker state and each
transition on an Attacker action is to a Defender state, all plays that transition
to a defined configuration are in (X'p . X4)*. Let p: (X¥p . Xa)* — Cp map
each play of alternating Defender and Attacker actions to the configuration that
the game transitions to from reading the play: p(e) = (t0,€), and p(p . a . b) =
Ta(tp(p(p),a),b). A play p € (X'p . X4)* is accepted by G if p(p) = (¢, €) with
q € Qr. Let L(G) be the set of all plays accepted by G. O

Because all accepting states of a game are in the initial module, a game
can only accept matched plays. Superscripts denote the VPA or SEVPA game to
which various components belong; e.g., Q¢ are the states of SEVPA game G.

A Defender strategy of a two-player safety game G is a function o : (X$)* —
E,GD that takes as input a sequence of Attacker actions, and outputs a Defender
action. o is a winning strategy if as long as the Defender uses it to choose his
next transition of the game, the resulting play is not accepted by G: formally,
o (X$)NL(G) = 0 (for o, as defined in Defn. ?7). Let o be modular if it satisfies
the condition analogous to a modular instrumentation function (Defn. ?7?).

Theorem 1. For each policy-weaving problem P = POLWEAVE(P, Pol, M), there
is a SEVPA safety game G = PolWeaveGame(P, Pol, M) such that each instrumen-
tation function that satisfies P defines a winning modular Defender strategy of
G, and each winning modular Defender strategy of G defines a satisfying instru-
mentation function of P.

The intuition behind the construction of G from P = POLWEAVE(P, Pol, M) is
given in §?7. From P, we construct a game Gp that accepts all instrumented
privileged instrumented executions of P. From Pol, we constructed a game Gpg
that accepts all instrumented privileged executions that violate Pol. We construct
G as the product of Gp, Gp,|, and Gy . Proofs of all theorems stated in §77 and §77
are in App. 77.

4 Solving SEVPA Safety Games with Scaffolds

In this section, we present an algorithm ScafAlgo that finds a winning modular
Defender strategy to a given SEVPA safety game. The algorithm uses an addi-
tional, potentially smaller game, which we call a scaffold. We present ScafAlgo as
a non-deterministic algorithm, and demonstrate that a symbolic implementation
builds a formula whose size is decided entirely by the size of the scaffold and
an additional, tunable independent parameter. We describe a known algorithm
for finding modular strategies [?] and a known symbolic algorithm for finding
strategies of bounded size [?] as instances of ScafAlgo.

4.1 Definition and Key Properties of Scaffolds

The key characteristic of our algorithm is that it finds a winning Defender strat-
egy to a given game using an additional game, called a scaffold, and a specified
relation between the states of the scaffold and the states of the game.

Definition 4. (Scaffolds) Let S and G be two SEVPA safety games defined for
Attacker actions Xy 4, Defender actions Xp, call actions X¢, and return actions
Yr. S is a scaffold of G under R C Q3 x QC if and only if:

11

If gs € Q% and for gc € Q°, R(gs, qc), then ¢ € QS.

For ¢ € ¥¢, R(15,18).

Fora € EDa gs € QSD7 and qG € Q%a ifR(QS,QG), then R(TD(QS,CL), TD(qG7 a/))
Forc € Yo, ¢ € Q2,45 € QS, ¢° € @, ¢° € Q%, if R(qZ, ¢2) and R(¢>, ¢°),
then R(7r(¢%, 7, (¢, ¢)), Tr(4%, 7, (45 ©)))- 0
If so, then R is a scaffold relation from S to G.

A

Each scaffolding relation R defines an Attacker simulation [?], but there are
SEVPA related by an Attacker simulation that are not related by any scaffold
relation. However, scaffold relations and modular strategies are connected by the
following key property, which provides the foundation for our algorithm. First,
we define an (S, R, k)-strategy of a game G, which intuitively is a strategy whose
structure tightly corresponds to a scaffold S, according to a relation R from the
states of S to those of G. For a game G and Q' C Q® such that {Lc}cezg -

Q' C Q°, let the subgame G|g be the game constructed from restricting the
states and transition functions of G to the states in Q’. Each subgame G’ of G
defines a strategy og as a VPA transducer. To compute o/ (ag, @1, --.,an), 0/
uses ap, ai,...,a, as the Attacker actions for a play of G'. If G’ is in an attacker
state, then og transitions it on the next unread a;, and if G’ is in a Defender
state, then o picks a fixed Defender transition of G’ on which to transition.
og outputs the Defender action chosen by G’ after it reads all of ag,azy, ..., a,.
This construction is standard, and we leave a full definition for App. 77.

Definition 5. For sets A and B, let a relation R C A x B be k-image-bounded
if for each a € A, |{b | b € B,R(a,b)}| < k. Let G be a game, let S be a scaffold
of G under R C Q° x Q°, and let k € Z. An (S, R, k)-Defender strategy o' of G
is a Defender strategy such that for some R’ C R, R’ N (Q% x Q) is k-image-
bounded, G’ = G|img(r/), and ¢’ = o¢. O

Let game G have a winning Defender strategy, and let S be a scaffold of G
under a scaffold relation R. Then S is a scaffold of some subgame of G’ that
defines a winning strategy of G, under a finer scaffold relation than R.

Theorem 2. Let G have a winning modular Defender strategy, and let S be a
scaffold of G under R C Q° x QC. Then for some k, there is a winning modular
(S, R, k)-Defender strategy of G.

4.2 An Algorithm Parametrized on Scaffolds

To find modular winning Defender strategies to games, we can apply Thm. 77 to
search for (S, R, k)-strategies. The algorithm ScafAlgo, given in Alg. 77, takes a
game G, scaffold S, relation R C Q° x Q°, and parameter k, and searches for an
(S, R, k)-strategy by searching for an R’ C R that satisfies the condition given
in Defn. ?77.

ScafAlgo searches for such an R’ in three main steps. In the first step, ScafAlgo
non-deterministically chooses a k-image-bounded subrelation of R from the At-
tacker states of S to the Attacker states of G. Specifically, on line [??], ScafAlgo

Fora € EI,Aa qs € Q?qa and qG € Qia ifR(QSaQG)a then R(TI,A(ana)7TI,A(QG7a))'

12

Input: G: a VPA safety game.
S: a scaffold of G
R C Q% x Q%: a scaffold relation.
Output: If G has a winning (5, R, k)-strategy, then it returns a winning
(S, R, k)-strategy. Otherwise, it returns L.
/* Choose Ra: a k-image-bounded subrelation of R that defines
Attacker states of a candidate strategy. */
1 Ra := nd-bounded-subrel(R N (Q% x Q%), k);
/* Construct Rp: a relation to Defender states of the candidate
strategy defined by Ra. */
Rp.:={(2,:8) | ce K&} ;
Rp.i = {(1},a(pa,a),77 a(4a,a)) | (pa,qa) € Ra,a € IF 4} ;5
Rp,r:= {(TIS%(pA7a7 SA)vTIG%(quaatA)) | (pAqu)7 (sA7tA) € Ra,a€ ZIG%})
Rp:=Rp,,URp,:iURD, ;
/* Check if the candidate strategy defined by Ra and Rp is a
winning strategy. */
6 StrWins :=VY(pp,qp) € Rp : qp ¢ Qr AJa € Xp : (15 (pp,a),75(gp,a)) € Ra ;
7 if StrWins then return OGlimg(R 4 UR) else return L

[SAN NV V)

Algorithm 1. ScafAlgo: non-deterministic algorithm that takes a game G, scaffold S,
and relation R C Q° x Q°, and finds a winning modular Defender (S, R, k)-strategy
of G.

defines such a relation R4 C Q5% x Q§ by calling a function nd-bounded-subrel :
(Q5 x Q%) X Z — (Q5 x Q%), where nd-bounded-subrel(R N (Q3% x Q%), k) is a
k-image-bounded subrelation of Q3 x QY.

In the second step (lines [??]-[?7?]), ScafAlgo constructs a relation Rp C
Q3 x Q% such that if there is any R* C Q3, x Q% such that Glimg(r ,uR~) defines
a winning strategy of G, then the candidate strategy defined by Glimg(r ,ur) 18
a winning strategy of G. On line [??], ScafAlgo defines Rp, C Q3% x Q% that
relates each module-initial state of S to its corresponding module-initial state in
G. On line [??], ScafAlgo defines Rp; C Q3 x Q% that, for each (pa,qa) € Ra
and internal Attacker action a € Eﬁ 4, relates the a-successor of ps to the
a-successor of ga. On line [??], ScafAlgo defines Rp, C Q3% x Q% that, for
each (pa,qa), (sa,ta) € Ra and return action a € X$, relates the r-successor
of (pa,sa) to the r-successor of (ga,ta). On line [??], ScafAlgo defines Rp C
Q% X Q% as the union of R,, Rp, and Rp ;.

In the third step (lines [??] and [?7?]), ScafAlgo checks if the candidate strat-
egy defined by G|img(r,ur,) is a winning strategy of G. On line [??], ScafAlgo
defines StrWins : B, which is true if and only if for each Defender-state of the can-
didate strategy, the state is not an accepting state of the game, and there is some
action that the Defender can take to reach some Attacker-state of the candidate
strategy. On line [?7], ScafAlgo returns the strategy defined by G|imgr.urp)
if and only if Gljmg(r ,ur) is @ winning strategy. Otherwise, ScafAlgo returns
failure.

Theorem 3. Let G be a game, let S be a scaffold of G under R C Q° x QS,
and let k be a positive integer. If o = ScafAlgo(G,S, R, k), then o is a winning

13

Defender strategy for G. If G has a winning Defender strategy, then for each
scaffold S and scaffolding relation R C Q% x QC, there is some k such that
ScafAlgo(G, S, R, k) is a winning Defender strategy of G.

A deterministic implementation of ScafAlgo runs in worst-case time expo-
nential in the number of Attacker states. However, a symbolic implementation
of ScafAlgo can represent its input problem with a formula whose size depends
only on the scaffold, and the tunable parameter k. Assume that each component
of an input game G is given as interpreted symbolic functions and predicates
(i.e., states and actions are given as domains, and the transition functions are
given as interpreted functions), and that the relation R is given as an interpreted
relation. Then ScafAlgo can be implemented by reinterpreting its steps to build
a symbolic formula StrWins (line [??]) whose models correspond to values of R 4
and Rp for which G|jmg(r ,ur) defines a winning strategy.

The size (i.e., the number of literals in) of StrWins is determined by S and k.
The universal quantification on line [??] is bounded, and can thus be encoded as
a finite conjunction; the nested existential quantification can then be Skolemized.
To check the membership (73 (pp,a), 75(gp,a)) € Ra, we can apply the fact
that R4 is a k-bounded-image relation to represent the membership check with
k disjuncts. From these observations, the size of the StrWins formula can be
bounded by O(|Q%|2k?).

Two known algorithms for finding modular strategies can be defined as
ScafAlgo applied to degenerate scaffolds. A naive implementation of the orig-
inal algorithm presented for finding modular strategies [?] can be defined as
ScafAlgo applied to the game itself as a scaffold. A symbolic algorithm for find-
ing strategies of bounded size [?], generalized to VPA games, can be defined
as ScafAlgo applied to a scaffold with a single Attacker and Defender state for
each module. The known algorithms are thus ScafAlgo applied to scaffolds that
have complete and no information about their games, respectively. However, any
game defined as a product of “factor” games, such as games constructed from
the policy-weaving reduction, is scaffolded by its factors under a relation that
relates each factor state to the product states for which it is a component. See
App. ?7? for a further discussion of known algorithms as instances of ScafAlgo.

5 Experiments

In this section, we discuss experiments that evaluate the reduction from policy-
weaving problems to safety games presented in §77, and the scaffold-based game-
solving algorithm presented in §?7. The experiments were designed to answer
two questions. First, by reducing policy-weaving problems to solving games, can
we efficiently instrument practical programs for a real privilege-aware system so
that they satisfy practical high-level policies? Second, which scaffolds allow our
scaffolding game-solving algorithm to most efficiently solve games constructed
by our policy-weaving algorithm?

To answer these questions, we instantiated our policy-weaving algorithm to
a policy weaver for the Capsicum [?] capability operating system. We collected
a set of six UNIX utilties, given in Tab. 7?7 that have exhibited critical security

14

Name LoC | Pol. Scaffolds
States| Triv. |[|Prog.-Pol.||{Prog.-Pol.-Mon.
k|Time k| Time k| Time

bzip2-1.0.6 8,399 12(12 -1 0:04|1 0:09
fetchmail-6.3.19| 49,370 12| 7 -1 1:13|(1 1:39
gzip-1.2.4 9,076 9|12 (|1 1:47|(1 -
tar-1.25 108,723 12| 3| 3:47||1 1:20(|1 -
tcpdump-4.1.1 | 87,593 12|15 -1 0:30(|1 0:45
wget-1.12 64,443 21| 7| 0:43||1 0:25(|11 18:59

Table 1. Performance of the Capsicum policy weaver. Column “LoC” contains lines
of C source code (not including blank lines and comments), “Pol. States” contains the
number of states in the policy, k contains the simulation bound, and “Times” contains
the times used to find a strategy using the complete, trivial, and factor scaffolds. “-”
denotes a time-out of 20 minutes.

vulnerabilities [?,7,7,?]. For each utility, we defined a policy that describes the
capabilities that the program must have as it executes. The policies were defined
by working with the Capsicum developers, or using general knowledge of the
utility. Detailed descriptions of the policies for each utility are given in [?].

We applied our Capsicum policy-weaver to each utility and its policy, each
scaffold defined as a product of some subset of the program, policy, and monitor.
The data from all scaffolds is given in App. ?7; Tab. ?? presents data for several
illustrative scaffolds: the trivial scaffold “Triv.” defined in §?7?, the product of
the program and policy “Prog.-Pol”, and the product of all program, policy,
and monitor “Prog.-Pol.-Mon.” For each scaffold, we measured how long it took
our weaver to find a strategy, and with what minimum simulation bound (i.e.,
value of k from §?7?) it either found a strategy or timed out. The results for each
scaffold are in the subcolumns of “Scaffolds” in Tab. 7?7, with each simulation
bound in subcolumn “k,” and each time in subcolumn “Time.”

The results indicate that while many scaffolds give similar results for some
practical problems, an intermediate scaffold constructed as a product of some but
not all of the inputs, e.g. Prog.-Pol., leads to the best performance. The difference
in performance could be due to fact that a scaffold with little information about
the structure of its game (e.g., “Triv.”) generates a formula that allows many
transitions between a small set of states in a candidate strategy, while a scaffold
with total information (e.g., Prog.-Pol.-Mon.) generates a formula that allows few
transitions between a large set of states in a candidate strategy. An intermediate
scaffold strikes a balance between the two, generating a formula that allows a
moderate number of transitions between a moderate set of states. We further
discuss the experimental results in App. 77.

6 Related Work

Privilege-aware operating systems: Decentralized Information Flow Control (DIFC)
operating systems such as Asbestos [?], HiStar [?], and Flume [?] manage privi-
leges describing how information may flow through a system, and provide prim-
itives that allow an application to direct flows by managing the labels of each

15

object in the system. Tagged memory systems such as Wedge [?] enforce similar
policies per byte of memory by providing primitives for managing memory tags.
Capability operating systems such as Capsicum [?] track the capabilities of each
process, where a capability is a file descriptor paired with an access right, and
provide primitives that allow an application to manage its capabilities.

Our work complements privilege-aware operating systems by allowing a pro-
grammer to give an explicit, high-level policy, and automatically rewriting the
program to satisfy the policy when run on the system. Prior work in aiding
programming for systems with security primitives automatically verifies that a
program instrumented to use the Flume primitives enforces a high-level pol-
icy [?], automatically instruments programs to use the primitives of the HiStar
to satisfy a policy [?], and automatically instruments programs [?] to use the
primitives of the Flume OS. However, the languages of policies used in the ap-
proaches presented in [?,?] are not temporal and cannot clearly be applied to
other systems with security primitives, and the proofs of the correctness of the
instrumentation algorithms are ad hoc. The work in [?] describes the approach in
this paper instantiated to a policy weaving for Capsicum. This paper describes
how the work in [?] may be generalized to arbitrary privilege aware systems, and
describes the novel game-solving algorithm applied in [?].

Inlined Reference Monitors: An Inlined Reference Monitor (IRM) [?,?] is code
that executes in the same memory space as a program, observes the security-
sensitive events of the program, and halts the program immediately before it
violates a policy. IRMs have shortcomings that prohibit them from monitoring
many practical programs and policies. Because an IRM executes in the same
process space as the program it monitors, it cannot enforce policies throughout
the system. Furthermore, an IRM must be able to monitor security-sensitive
events of a program throughout the program’s execution, but there are known
techniques to subvert an IRM [?]. Privilege-aware operating systems address
the shortcomings of IRM by monitoring policies in the operating system, and
providing a set of primitives that an application invokes to direct the operating
system. The primitives are distinct from the security-sensitive events of interest.

Safety Games: Automata-theoretic games formalize problems in synthesizing re-
active programs and control mechanisms [?]. Alur et. al. give an algorithm that
takes a single-entry recursive state machine and searches for a strategy that is
modular, as defined in §??, and show that this problem is NP-complete [?]. Re-
cursive state machines are directly analogous to SEVPA [?]. Madusudan et. al.
give a set of symbolic algorithms that find a winning strategy for a given game
whose transition relation is represented symbolically [?]. The practical contri-
bution of our work is that we express the emerging, important, and practical
problem of rewriting programs for privilege-aware operating systems in terms
of such games. We also give an algorithm for finding modular strategies that
can be instantiated to a symbolic implementation of the algorithm of [?], to the
“bounded-witness” algorithm of [?].

16

A Practical Privilege-Aware Systems as Automata

Practical privilege-aware systems can often be modeled as privilege-aware mon-
itors as presented in §77. In this section, we informally model two apparently
different privilege-aware systems, the Capsiscum capability system [?] and the
HiStar decentralized information-flow control (DIFC) system [?].

A.1 Capsicum as a VPA

The Capsicum capability system is the inspiration for the MiniCap system pre-
sented in §77, but is a robust, practical system included in the “RELEASE”
version of FreeBSD 9.0 [?]. The full implementation of Capsicum extends the
standard UNIX file descriptor to a capability, which is a descriptor paired with
a set of access rights, which denote the ability of a process to read, write, seek,
etc. a file. Capsicum defines 63 rights, significantly enriching the standard set of
rights provided by UNIX. As each process executes, Capsicum maps the process
to its set of capabilities, and only allows a process to access a file in a particular
way (e.g., to read it) if the process has a sufficient set of capabilities. When a pro-
cess begins to execute, it may open descriptors to any files available to the user,
allowing the process to grant itself coarse sets of capabilities. As a process exe-
cutes, it may invoke a primitive that restricts its capabilities for a file descriptor,
and it may invoke another primitive to enter “capability mode”, which causes
Capsicum to disallow it from opening additional descriptors. The primitives were
designed for a programmer to rewrite their program to execute trusted code with
high privilege, then restrict its capabilities by invoking the primitives, and then
execute untrusted code with capabilities that are sufficiently reduced such that
even a malicious or compromised module invoked by the program cannot violate
a particular security policy.

Capsicum may be modeled as a privilege-aware system monitor as defined in
§77?. The privileges of the monitor are sets of capabilities. The primitives of the
monitor are the system calls that a program invokes to restrict its capabilities or
enter capability mode. The state of the monitor is the set of capabilities held by
the program, and a Boolean that decides whether the program is in capability
mode. A full description of Capsicum as a VPA monitor is given in [?].

A.2 HiStar as a VPA

The HiStar DIFC system [?] maps every process to a label, interposes on each
time that one process attempts to send data to a receiving process, and allows
the data to be sent if and only if the labels of the sending and receiving process
satisfy a particular condition. A label is a finite set of named categories, which
each may have a value in the range 0 — 3, or the special value . Intuitively,
each category corresponds to a source of information, and a process with a
higher numeric value for a category has read more sensitive information from
the source. If a process has the x value for a category ¢, then it has the ability to
declassify information corresponding c¢. The names of the categories in the label
of each process are the same, and HiStar allows a process p to send information
to process ¢ if and only if for each category c, the value of ¢ in the label of p is

17

a numeric value less than or equal to the numeric value of ¢ in p, or the value of
p or g for ¢ is *.

HiStar provides system calls that each process may invoke to manipulate la-
bels, subject to particular rules. A process may invoke one primitive to introduce
a new category c, giving itself x for ¢ and assigning a default value of ¢ for every
other process. A process may also invoke a primitive to raise the numeric value
of its label for any category.

HiStar may be modeled as a privilege-aware system monitor as defined in
§77. The privileges of HiStar are the flows that it allows, and the primitives are
the system calls that allow each process to manipulate its label. Each state of
the HiStar VPA is a map from each process to its label.

B Proofs of Theorems
In this section, we sketch informal proofs of the theorems stated in §?7 and §77.

Proof. (Thm. ??) First, assume that the languages accepted by the program
automaton P, policy Pol, and monitor M only contain matched words. Then
from each automaton, we construct a (non-game) SEVPA that accepts the lan-
guage of the automaton [?]. We then construct a pair of games whose Attacker
actions are program instructions, and whose Defender actions are monitor prim-
itives. Let Gp be a SEVPA game that accepts all instrumented executions of P:
L(Gp) = {[po,i0,---:Pn,in) | [f0,---,9n] € L(P),p; € Prims}. Let Gpoi.m be a
SEVPA game that accepts all instrumented executions for M that violate Pol:
L(Gporm) = {[po,i0,---+Pn,in] | Iry € Privs : [po, (i0,70); - - - s Pns (in,)] €
LM) A [(G0,70), .-+ (in,Tn)] € L(Pol)}. Let G be such that £(G) = L(Gp) N
L(Gpol,m), and let PolWeaveGame(P, Pol, M) = G. It is straightforward to show
that the instrumentation functions of POLWEAVE(P, Pol,M) are exactly the
modular winning Defender strategies of PolWeaveGame(P, Pol, M).

The direct construction of Gpom may allow Gpgm to be non-deterministic. To
avoid this in practice, we require that the M in fact be a transducer function from
instrumented executions to privileges. Using this assumption, one can directly
construct a deterministic Gpojm from deterministic Pol and M without requiring
an explicit determinization.

To prove Thm. 7?7, we first recall a well-known construction of strategies,
stated informally in §??7. For a SEVPA safety game G with subgame G’, de-
fine the strategy og as follows. For each Defender state g € Q%’7 fix a De-
fender action §(q) such that 7p(q,d(q)) € QY. Let o : (X9 — C% map
each trace of Attacker actions to the configuration of G’ that the actions inter-
leaved with fixed Defender actions drive G': vg/(€) = (1o,€), and g/ (s . a) =
Ta(TD (76 (8), 0(St(ye(s))), a), where St(c) is the state of configuration c¢. Then
oe(s) = 0(St(ve (5)))-

If a SEVPA game has a modular winning Defender strategy, then it has a mod-
ular winning strategy og for some subgame G’ of G. This follows immediately
from results for finding modular strategies to recursive game graphs [?].

Proof. (Thm. ??) Let G have a modular winning Defender strategy og«, where
G* is a subgame of G. Let R’ = RN (Q° x Q%"). For G’ = Glimg(r'); 0 is a

18

modular winning Defender strategy, by a straightforward argument. Thus for
k= max,cqs Hd'|R (¢,4')}, G’ is an (S, R, k) strategy, where R’ satisfies the
condition for R’ given in Defn. ?7.

Proof. (Thm. ??) Soundness: Let G’ = G|img(r sur)s for R4 and Rp as defined
in Alg. 77, it is straightforward to show that og/ is a winning strategy using the
defintion of StrWins. The modularity of og/ follows from the fact that it is a
subgame of a SEVPA.

Completeness: If G has a winning strategy, then by Thm. ??, it has an (S, R, k)
winning modular strategy for some k. Let this (S,R,k) be og+ for a G* =
Glimg(r’), where R € R, and let Ry = R' N (Q% x QF). Let ScafAlgo non-
deterministically guess R4 on Alg. ?? line [??], and then construct Rp on
line [?7]. Tt follows that Img(Rp) € Q%, and thus that Img(Rp) N QS = 0
and each state in Img(Rp) transitions on some Defender action to some state
in Img(R4). It then follows that for G’ = G|img(r 4)Uimg(Rp)> OG’ is a winning
modular strategy of G.

C Known Game Algorithms as Scaffolds

Various algorithms have been presented for finding modular winning strategies
to games. We now show that a naive version of a known algorithm for finding
modular strategies for recursive game graphs [?] and a known symbolic algorithm
for finding strategies of bounded size for symbolic games [?] are analogous to
instances of ScafAlgo.

Symbolic Implementation of the Standard Algorithm Alur et. al. gave
an explicit algorithm for finding modular Attacker strategies to recursive game
graphs [?], and proved that the problem of finding modular strategies is NP-
complete. Thus the algorithm may run in time exponential in the size of the
game. The algorithm given in [?] can be adopted to find modular Defender
strategies to SEVPA games, and we call the adopted algorithm Standard. Standard
finds, for each state ¢, a set of states X, such that some modular strategy can
ensure that if the game reaches g, then it always stays within X,, and X, does
not contain an accepting state. Standard then picks a set of Defender transitions
that ensure that the game stays in X,.

To compute X, for each state s, Standard computes a set of sets of candidate
Xy, and as a result, Standard may run in time exponential in the size of an
input game G. ScafAlgo can analogously compute the sets X, using the input
game itself as a scaffold. Let =ge be the equality relation over the states of G.
If we apply ScafAlgo(G, G, =¢s, 1), then ScafAlgo non-deterministically guesses
whether each state in G is in a candidate winning strategy, and then checks
if a winning strategy can be constructed from the guessed Attacker states. A
symbolic implementation of Standard using ScafAlgo constructs formulas of size
O(1QS2).

The algorithm presented in [?] is defined over recursive game graphs, in which
the internal states of each game module are disjoint from entry and exit states.
The algorithm executes in time exponential only in the number of exit states, not

19

Performance data of scaffolds

Name LoC | Pol. Scaffolds
States| Triv. || Prog. || Mon. Pol.

k|Time k|Time k|Time k|Time
bzip2-1.0.6 8,399 12]12 -(|4] 1:26(|15 -(|7]17:22
fetchmail-6.3.19| 49,370 12| 7 -(|1] 0:16|| 2 -|2] 1:54
gzip-1.2.4 9,076 9|12 -1 -1 -8 -
tar-1.25 108,723 12} 3] 3:47|[1 -1 -(|3] 5:17
tcpdump-4.1.1 | 87,593 12{15 -(|4] 1:13||23 -||6 -
wget-1.12 64,443 21| 7| 0:43]|1| 0:15]| 1 -|2] 0:42

Performance data (cont.)

Name Scaffolds
Prog.-Mon.||Prog.-Pol.||Mon.-Pol. |Prog.-Mon.-Pol.
k| Time k| Time k| Time k| Time

bzip2-1.0.6 15 -1 0:04(|8 -1 0:09
fetchmail-6.3.19| 1 1:13||1 1:13||1 -1 1:39
gzip-1.2.4 1 -1 1:47|1 -1 -
tar-1.25 1 -1 1:20(|1 -1 -
tcpdump-4.1.1 |18 -1 0:30(|9 -1 0:45
wget-1.12 1 -1 0:25(|1 (|1 18:59

Table 2. Performance of the Capsicum policy weaver. Column “LoC” contains lines
of C source code (not including blank lines and comments), “Pol. States” contains the
number of states in the policy, k contains the simulation bound, and “Times” contains
the times used to find a strategy using the complete, trivial, and factor scaffolds. “-”
denotes a time-out of 20 minutes.

the number of all states. In this work, we use SEVPA’s to define games, which are
analogous to recursive game graphs [?], but do not have disjoint sets of internal,
entry, and exit states, and thus are not amenable to deriving such bounds.

Symbolic Search for Bounded Witness Sets The algorithm of [?] computes
information for each state in a given game. However, many games have state
spaces too large to enumerate explicitly. Madhusudan et. al. [?] describe how to
construct, from a game G and bound & on the number of states that may be in
a strategy, a constraint (G, k) whose models correspond to winning strategies
with at most k states. Each strategy is constructed from a bounded witness set
of states of the game [?], and thus we call the algorithm BoundedWS. The states
in a witness set are derived from a model of (G, k).

We can construct 8(G, k) by applying ScafAlgo. For a game G, define a “triv-
ial” scaffold S with a module for each call in X’& that contains a single Defender
and Attacker state. Let R relate the Defender state of each module @S for ¢ € X&
of St to each Defender state in module Q¢, and relate the Attacker state of
module @3 to each Attacker state in module Q¢. Then the StrWins formula con-
structed by a symbolic implementation of ScafAlgo for ScafAlgo(G,S, R, k) has
models that directly correspond to the models of 3(G, k). The size of the formula
constructed by ScafAlgo(G,S, R, k) is O(k?).

20

D Complete Experimental Data

In §77, we described a set of experiments in which we implemented a policy
weaver for the Capsicum operating system, and applied it to a set of UNIX
utilities and the policies, using a variety of scaffolds to search for a winning
strategy. In §7?7, we presented results for the two extreme scaffolds Triv. and
Prog.-Pol.-Mon., and the intermediate scaffold Prog.-Pol. The tables in Table 2
present the results of applying all scaffolds constructed as subsets of products
of the program, policy, and monitor automata. Each scaffold is labeled by the
automata of which it is a product.

While many scaffolds provide performance comparable to the Prog.-Pol. scaf-
fold on particular benchmarks, Prog.-Pol consistently finds strategies in minutes,
whereas each other scaffold times out on at least two benchmarks. Prog.-Pol.’s
consistency likely results from the fact that it always finds a winning strategy
with a simulation bound of 1, whereas if ScafAlgo is applied to the other scaf-
folds, it often must use a higher simulation bound. Thus, apparently all of the
practical policy-weaving problems that we found can be solved by assigning a
single monitor state to each program-policy state pair, such that the strategy
ensures that when an execution reaches the program and policy states, it will
be in the assigned monitor state. In comparison, the scaffold Prog. sometimes
requires a simulation bound of 4, indicating that some policy problems require
finding up to 4 monitor-policy states for each program state.

	TechReportCover1710
	1710

