Computer
Sciences
Department

Uncovering CPU Load Balancing Policies with Harmony

Joe T. Meehean

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau
Miron Livny

Technical Report #1707

December 2011

University of Wisconsin - Madison

Uncovering CPU Load Balancing Policies with Harmony

Joe T. Meehean, Andrea C. Arpaci-Dusseau, Remzi H. ArpassBau, and Miron Livny
Department of Computer Sciences, University of Wiscoltidison

Abstract but without hard data, how can a user or administrator

We introduce Harmony, a system for extracting the muI-ChOOS? which scheduler to deP'Oy?)
tiprocessor scheduling policies from commodity operat- !N this paper, we address this lack of understanding by
ing systems. Harmony can be used to unearth many a§lévelopingHarmony a multiprocessor scheduling be-
pects of multiprocessor scheduling policy, including thehavior extraction tool. The basic idea is simple: Har-
nuanced behaviors of core scheduling mechanisms anffony creates a number of controlled workloads and uses
policies. We demonstrate the effectiveness of Harmony Variety of timers and in-kernel probes to monitor the
by applying it to the analysis of the load-balancing be_behawor_ of thg scheduler under obsgrvanr_l. _As we will
havior of three Linux schedulers: O(1), CFS, and BFS.Show, this straightforward approach is surprisingly pow-
Our analysis uncovers the strengths and weaknesses 8fful, €nabling us to learn intricate details of a sched-
each of these schedulers, and more generally shows hoWer's algorithms and behaviors.
to utilize Harmony to perform detailed analyses of com- While there are many facets of scheduling one could
plex scheduling systems. study, in this paper we focus on what we believe is the
. most important to usersoad balance Simply put, does
1 Introduction the system keep all the CPUs busy, when there is suffi-
The era of multicore computing is upon us [6], and with it cient load to do so? How effectively? How efficiently?
come new challenges for many aspects of computing sys&/hat are its underlying policies and mechanisms?
tems. While there may be debate as to whether new [7] We apply Harmony to the analysis of the three afore-
or old [10] kernel architectures are necessitated by thenentioned Linux schedulers, O(1), CFS, and BFS, and
move to multicore processors, it is certain that some careliscovered a number of interesting and previously to
will be required to enable operating systems to run wellour knowledge undocumented behaviors. While all
on this new breed of multiprocessor. three schedulers attempt to balance load, O(1) pays the
One of the most critical components of the OS in thestrongest attention to affinity, and BFS the least. O(1)
multicore era is the scheduler. Years of study in single-uses global information to perform fewer migrations,
CPU systems have led to sophisticated and highly-robushereas the CFS approach is randomized and slower to
single-CPU scheduling algorithms (e.g., the multi-levelconverge. Both O(1) and CFS take a long time to de-
feedback queue found in Solaris, Windows, and BSDtect imbalances unless a CPU is completely idle. Un-
variants [11, 40]); although studied for years in the liter- der uneven loads, O(1) is most unfair, leading to notable
ature [8, 15, 21, 41, 43, 44, 47], there is little consensusmbalances while maintaining affinity; CFS is more fair,
as to the best multiprocessor approach. and BFS is even more so. Finally, under mixed work-
An excellent example of this multiprocessor confusionloads, O(1) does a good job with load balance, but (ac-
is found in Linux, perhaps one of the most fecund are-cidentally) migrates scheduling state across queues; CFS
nas for the development of modern schedulers. At leastontinually tries new placements and thus will migrate
three popular choices exist: the O(1) scheduler [32], theout of good balances; BFS and its centralized approach
Completely-Fair Scheduler (CFS) [31], and BFS [27].is fair and does well. More generally, our results hint
Each is widely used and yet little is known about their at the need for a tool such as Harmony; simply read-
relative strengths and weaknesses. Poor multiprocesng source code is not likely to uncover the nuanced be-
sor scheduler policies can (unsurprisingly) result in poorhaviors of systems as complex as modern multiprocessor
performance or violation of user expectations [16, 29],schedulers.

The remainder of the paper is organized as folloyis. Global Queue Distributed Queues
provides background, and a detailed overview of Har- iiiii iaa
mony is provided in§3. We then analyze the load-

< <
balancing behavior of the three schedulerg4ndiscuss
related work in§5, and conclude ig6.

2 Background

Figure 1: Global vs. Distributed Queues. The figure

Before delving into the details of Harmony, we first depicts the two basic architectures employed by modern mul-

present some background information on scheduling ariProcessor schedulers. On the left is the single, globaugu

chitectures. We then describe the Linux schedulers O]approach; on the right, the distributed queues approach.
interest — O(1), CFS, BFS — in more detalil. _
2.2 Linux Schedulers
2.1 Scheduling Architectures This paper uses Harmony to analyze three Linux sched-
ulers: O(1), CFS, and BFS. Linux is an ideal choice

There are two basic approaches to multiprocessofor this evaluation because it is commonly deployed
scheduling. In the first architecture géobal run queue in server environments that execute multitasking appli-
is shared amongst all of the processors in the syscations with multiple processors. Over 41% of web
tem [14, 16, 19, 23]. Each processor selects a process tervers [4] and 91% of “TOP 500" most powerful com-
run from this global queue. When a process finishes itguter systems in world [5] run Linux. Despite being
quantum, or is preempted, it is returned to this queue ando popular, Linux has very little documentation about
another is selected. This scheme is conceptually simplgts multiprocessor scheduling policy (e.g., CFS is dis-
the scheduling policy is centralized allowing each pro-tributed without any such documentation [31]).
cessor access to the full global state. Itis also naturally The most stable is the O(1) [9] scheduler found in ker-
work conserving as any eligible process can be selectefle| versions 2.6 through 2.6.22. This scheduler has been
by an idle processor. One drawback of this approach igjistributed in Red Hat Enterprise Linux since 2005 and
that access to the global run queue must be synchronized ysed internally by Google [17]. The O(1) scheduler is
amongst processors. As the number of processors inmplemented using the distribute queue technique. Peri-
creases, this can result in lock and cache-line contentiomygically, each processor checks to ensure that the load
hence limiting scalability [15, 22]. Another shortcom- is evenly balanced. If the load is imbalanced, an un-
ing of this scheme is that it requires a separate mechderloaded processor migrates processes from an over-
anism to manage processor affinity. Without processofpaded processor. The documentation states that it should
affinity, a process may not be rescheduled on the samgiso be work conserving and that processes “should not
processor that ran it previously, which can degrade perpounce between CPUs too frequently” [32].
formance [26]. The Completely Fair Scheduler (CFS) [34] is a

The second approach to multiprocessor scheduling iproportional-share scheduler currently under active de-
to provide each processor with its own run queue [9, 28 velopment in the Linux community. This scheduler is
30, 39]. In thisdistributed run queuscheme, each pro- found in kernel versions 2.6.23 through the present, and
cessor executes processes only from its own run queudsas been distributed under Fedora and Ubuntu for several
new processes are assigned to an individual processor kyears. It is also implemented using a distributed queue
a load-balancing mechanism. If processor run queuegarchitecture. Similarto O(1), each processor periodycall
become unbalanced, the load balancing mechanism msompares its load to the other processors. If its load is
grates processes between processors. A distributed runo small, it migrates processes from a processor with a
queue approach requires only limited synchronizatiorgreater load. The documentation provides no description
(during migration) and simplifies managing processorof its multiprocessor policy [31].
affinity. The major drawback of this scheme is thatitre- The final scheduler is BFS, a proportional-share
quires a load balancing mechanism and attending policyscheduler. BFS is the default scheduler for the Zen-
A poorly designed policy, or one that simply does notWalk [2] and PCLinuxOS [1] distributions, as well as
match an application’s preferred policy, results in per-the CyanogenMod [3] aftermarket firmware upgrade for
formance degradation [24]. The distributed run queueAndroid. Unlike O(1) and CFS, this scheduler uses a
approach also requires extra effort to be work conservglobal queue architecture. BFS documentation provides
ing; if a processor has no eligible processes in its locabletails about its processor affinity mechanism [27]; how-
run queue it may need to steal processes from anothesver, it is unclear how these low-level details translate
processor. into a high-level policy.

CPU 1

3 Harmony L1000

The primary goal of the Harmony project is to en-
able developers and researchers to extract multiprocessor ™
scheduling policies with an emphasis on load-balancing ;| |
behavior. We now describe the details of our approach.

¢

!

3.1 An Empirical Approach .':.'. T T T T

CPU 3 CPU4 CPU3 CPU 4

In building Harmony, we decided to take a black-box ap- _ _
proach, in which we measure the behavior of the schedFigure 2:Single-source and Single-target. On the left,
uler under controlled workloads, and analyze the out-CPU 4 is the source of processes (initial2, B, 1, 10]); two

comes to characterize the scheduler and its policies. WBrocesses migrate to CPU 1, one to CPU 2, and three to CPU

generally do not examine or refer to source code for the> (final: [4, 4,4, 4]). On the right, CPU 4 is underloaded and
ebecomes the targetq[5, 5, 1]); a single process is migrated

ground trgth about schedullr_]gg rather, we believe thatfrorn each CPU to CPU 4 {f 4. 4, 4]).
the behavior of the scheduler is its best measure.

This approach has two primary advantages. FIrstys run a Harmony process, and it also samples the run

schedulers are highly complex and delicate; even thougly e e |engths every millisecond. Harmony also uses the
they are relatively compact (less than 10k lines of code) ' ¢/ virtual file system to collect a variety of infor-

even the smallest change can enact large behavioral difs,5i0n ahout its processes, including CPU allocations
ferences. Worse, many small patches are accrued ovel g scheduling priorities

time, making overall behavior difficult to determine (see _
[36] for a typical example); by our count, there were 3-3 Experiment Types

rOUghly 323 patCheS to the CFS schedulerin 2010 alon%hhough Harmony can be used to Setup a Variety of ex-

Second, our approach is by definition portable andperiments, our analysis of Linux schedulers and their
thus can be applied to a wide range of schedulers. Wgpad-balancing behavior relies on a few specific exper-
do require a few in-kernel probes in order to moni- iment types. The first is single sourceexperiment type,
tor migrations and queue lengths (discussed further bein which a single processor is overloaded and the remain-
low); however, many systems support such probes (e.ging processors are underloaded. This overloaded proces-
DTrace [13] or systemtap [20]). sor becomes the single source of processes to migrate to
3.2 Using Harmony the other unglerload_ed processors. The secondi'@@e

) _ - target experiment, in which the imbalance consists of a

The main goal of Harmony is to extract policies from gjngle underloaded processor, the target; this processor

the scheduler under test. To help answer these questiongiea|s processes from each of the remaining overloaded

loads and monitor low-level scheduler behavior; how- Eor simplicity, we refer to the initial and final con-

ever, the user of Harmony must still design the exact eXyitions of an experiment with the following notation,
periments in order tq apalyze the_particular properties of[a7 b, ¢, d], which means the first CPU hasprocesses,
the system the user is interested in. the secondb, and so forth. Thus, a single-source
The Harmony user-level workload controller can be experiment with idle targets anch processes on the
used to start, stop, and modify synthetic processes to crespurce would have the following initial configuration:
ate the individual workload suites. This controller must [, o, 0, 0]; the starting configuration of a single-target
be able to introduce run queue imbalances into the sysaxperiment with a busy target would instead be repre-
tem, and these imbalances should be created instantiyented asify, m, m, n], wherem > n.
rather than slowly accrued to increase precision of the _
results obtained. Use of process groups and binding t3-4 Hardware and Software Environment
specific CPUs enables us to carefully control where and-or all experiments in this paper we used a machine with
when load is placed upon the system. a quad-core Intel Xeon processor; we feel that this size
The low-level monitoring component of Harmony system is a “sweet spot” for the multicore era and thus
records three simple aspects of multiprocessor schedulvorthy of intense study. The specific operating systems
ing behavior: the run queue lengths for each processoysed in these experiments are Red Hat Enterprise Linux
the CPU allocation given to each Harmony process, an®.5 (kernel version 2.6.18-194.3.1.el5), Fedora 12 (ker-
the CPU selected to run each Harmony process. Ounel version 2.6.32.21-168.fc12.x88), and Linux ker-
Linux implementation of Harmony relies on the system-nel 2.6.32 patched with BFS (2.6.32-bfs.313). Each op-
tap kernel instrumentation tool [20]. Harmony'’s kernel erating system is configured to deliver scheduling inter-
instrumentation records each time a processor is selectadipts once per millisecond.

4 Multiprocessor Scheduling Policies

30

We now describe our results of using Harmony to un- 2o . 8(:18)
cover the scheduling policies of the O(1), CFS,andBFS & ¢ . BES
Linux schedulers. gZO d
4.1 Load balancing versus Affinity? =15 RS RN A gy

(,) : ’a AR .l . 4
We begin with the most basic question for a multiproces- 810 :
sor scheduler: does it perform load balancing across pro- g 5\
cessors and contain mechanisms for maintaining affinity 0 X

between processes and processors? We begin our exam- ¢ 5 10 15 20 25 30

ination with a workload that should be straightforward Time (sec.)

to balance: eight identical 100% CPU-bound processes

running on a single source with three idle targets (ex-Figure 3: Timeline of Process Migrations for O(1),

pressed assf 0, 0, 0]). CFS, and BFS Schedulers. The figure shows the aver-
This basic scenario allows us to determine the trade29e number of processes migrated over 25 runs with a starting

offs the underlying scheduler makes between load ball0ad of eight processes on 1 CPE,D,0,0]. Only the first

ancing and affinity. If the multiprocessor scheduler doessos of the experiment is shown; the remainder is similar.

not have a load balancing mechanism, then all eight pro-

cesses will remain on the single target. At the other ex- — Core 1
treme, if the multiprocessor scheduler does not attempt to o gg:g g
maintain any affinity, then the processes will be contin- — Core 4

uously migrated over the lifetime of the experiment. Fi-
nally, if the multiprocessor scheduler attempts to achieve
a compromise between load balance and affinity, then
initially the processes will be migrated across cores and
then after some period the processes will each remain on , , , , ,
its own core (or migrated less frequently). 24.05 24.1 2415 242 2425 243 2435

Figure 3 shows the number of process migrations over Time(s)
time for the three Linux schedulers. Both O(1) and CFS
have an initial burst of process migrations (6 and 30 re-Figure 4:Timeline of Run Queues for O(1). The figure
spectively) and then zero migrations afterward. This in_shqws the Iength of _egc_:h of the_four run queues over time for
dicates that O(1) and CFS perform load balancing with2 Single éxperiment initially configured a8, D, 0, 0]. Attime
processor affinity, matching their known implementation 202 €0res 2, 3, 4 are able to start migrating processesyawa

. ' from Core 1; eventually, at time 24.3, all four cores have two

of using a separate local queue per core. On the otheigrocesses each.
hand, BFS has a sustained rate of roughly 13 migrations
per second. This indicates that BFS does not attempEPUs each have zero processes. As time progresses, the
to maintain affinity, and matches well with its known load on Core 1 drops in distinct increments from 8 pro-
global-queue implementation. cesses to 2, while the load on the other cores increases

This basic experiment raises many questions. Giverirom 0 to 2. In this case, it takes 250 ms for each CPU
that the O(1) and the CFS schedulers achieve the sante have exactly two processes; furthermore, migrations
final balanced allocation of two processes per core, howpccur at different points in time on each CPU. We would
do the two schedulers each arrive at this allocation? Oulike to know how long it takes each scheduler to react to
initial experiment illustrated that the O(1) scheduler ar-load imbalance. Do schedulers react more rapidly when
rives at this balance with fewer total migrations than thea CPU is idle, when there is a large imbalance, or when
CFS scheduler; how does each scheduler determine tibere has been an imbalance recently? These questions
number of processehat should be migrated? We inves- are addressed in Section 4.3.
tigate this question in Section 4.2. The final set of questions are related wdich pro-

Other questions that are raised are relatetih@ As cesses are migrated by the scheduler. As another exam-
an example, Figure 4 shows the behavior of the O(1)le, the three graphs in Figure 5 show the percentage of
scheduler over time for this workload; specifically, it il- CPU given to each of the eight identical processes for the
lustrates the length of the four run queues for a single exO(1), CFS, and BFS schedulers. The figure illustrates
periment starting withd, 0, 0, 0]. This figure shows that that O(1) and BFS allocate a fair percentage of the CPU
when the experiment begins at time 24.05 s, Core 1 hat every process: each of the eight processes obtains half
a run queue containing 8 processes while the other threef a CPU. However, CFS does not always allocate a fair

Run Queue Length
O FRP N WHMOULO N

ensuring that the final number of processes is evenly di-

0128. vided between the one pair of CPUs. For example, on
(-T°\ 60 a four core system with3p, 30, 30, 10], a pairwise bal-
SR 40 == o - o= — = ance migrates 10 processes from CPU 1 to CPU 4 so that

© 2] both have 20; then 5 processes are migrated from CPU

108 - - - - - - - 2 to CPU 4 so that both have 25; then, 2 processes are
80 migrated from CPU 3 to CPU 4 to leave the system with
0 X 60] o the load R0, 25, 28, 27]. Pairwise balances must then be
LLI3 E 40] T B P o= wm omm mo D repeated again until the system converges. Pairwise bal-
O 501 ances are simple, but potentially require many cycles of
0 migrations to to achieve a system-wide load balance.
100 In the second policy, the scheduler performpaly-
o 801 .
0 60 balanceby calculating the number of processes each pro-
L 2 g | — — — — - c— - — — cessor should have when the system is finally balanced
O 5] (e.g., the number of processes divided by the number of
0l— processors). When migrating processes, a poly-balance
1 3 4 5 6 7 8 moves only a source processor’s excess processes (those
Sorted Processes

that exceed the system average) to the target. Using the
example load ofj0, 30, 30, 10], the desired final balance

is 25 processes per processor; thus, the poly-balance mi-
sgrates 5 processes from each of the first three CPUs to the

In the figure, the processes are sorted by allocation and eacﬁourth CPU' A poly-balance bglances the system quickly,
point is an allocation from one of 25 runs; the dashed line is but requires information sharing between processors to

the expected allocation for a perfect balance. calculate the total number of processes.

. . To determine whether a scheduler uses a pairwise or
share to every process: in some runs of this workload P

some of the processes receive less and some corresp0|'ﬁﬁ|¥'zaéa?ce’ W?hm?_asture the number of pr(zjcﬁf S?S m|£
ingly more than their fair share. If this inequity occurs grated between the Trst Source processorand the target.

for the simplest of workloads, what does this imply for We examine workloads in which a single target must mi-

more complex workloads? Thus, we would like to knOWgrate processes from multiple sources; each source pro-

how each scheduler picks a particular process for migraS®>>%" has from 20 to 90 more processes than the tar-
et and each workload is repeated 10 times. Figure 6

tion. Specifically, which processes share a CPU wher?

the workload cannot be divided evenly across process S;pows the number of migrations performed between the
e

. . t two CPUs to perform a balance; the graphs on the
Which processes share CPUs when some have differ >)
CPU requirements or priorities? We address these queé(—eft and right show the results for the O(1) and the CFS

tions in Sections 4.4 through 4.6. schedulers, respectwely..
The graph on the left illustrates that the O(1) sched-

4.2 How Many Processes are Migrated? uler appears to be performing a poly-balance. In most
Our motivational experiments in the previous sectioncases, the first migration performed by O(1) matches the
lead us to next determine the number of processes eadtumber that is exactly needed for a fair global balance,
scheduler migrates in order to transform an imbalancedhese results hold even as the imbalance (and the result-
load into a balanced one. We focus on the O(1) and CF$1g number of processes that must be migrated) is varied.
schedulers since they explicitly move processes from onén a few cases, significantly greater or fewer numbers of
gueue associate with one core to another; in contrasprocesses are migrated, but these anomalies occur at un-
BFS contains a single queue with no default affinity. predictable points. We infer that the O(1) scheduler must
Balancing load across multiple processors is challengbe using global information across all processors to de-
ing because the scheduler is attempting to achieve a projgermine the correct number of processes to migrate.
erty for the system as a whole (e.g., the number of pro- The graph on the right illustrates that CFS migrates
cesses on each CPU is identical) with a migration be-a wide, unpredictable range of processes, usually more
tween pairs of CPUs (e.g., migrating process A fromthan are required for a poly-balance. Thus, the first mi-
CPU 1 to 2). Thus, the scheduler contains a policy forgration is usually too large and leaves the first source pro-
using a series of pairwise migrations to achieve balancecessor with too small of a load; the underloaded source
We hypothesize that there are two straight-forwardprocessor must then migrate processes from other pro-
policies for achieving a global balance. In the first, thecessors to complete the global balance. This result cor-
scheduler performs a series péirwise balances while roborates our initial result shown earlier in Figure 3 in

Figure 5: CPU allocations. The 3 graphs show the per-
centage of CPU given to eight processes running on four CPU
using O(1), CFS, and BFS; the initial allocation i8,[0, 0, 0].

O(1): 1st CPU Migration CFS: 1st CPU Migration

w
o
w
(9]

8 O Actual ‘,x' g

® 25 1= Poly-balance ",-" o ° T 301

S on 7" Pair-wise R o 25 1

220 B

s : = 201

3 157 8 15

& 107 & 10

(8] (8]

S 51 2 51

o o O Actual ==== Mean — Poly-balance =*=*~ Pair-wise
O T T T T T T T T 0 T T T T T T T T

20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
Imbalance Imbalance

Figure 6:First Migration: O(1) and CFS. The first graph shows the O(1) scheduler and the second thesG@&Sluler. Each
graph shows the number of processes migrated between thedfinge and the target processor. The imbalance betweethibe
loaded sources and the single target is varied along theig:#xat is, [10 4+ =, 10 + 2, 10 + «, 10].

which CFS performed 30 total migrations compared to
6 by the O(1) scheduler. Thus, we conclude that CFS is ~ — 0(1)
not performing a correct poly-balance. 9257 N === CFS

(2]
4.3 Time to Resolve and Detect? g 201 K ’

Our next questions revolve around how long it takes a : 159 ".‘ :
scheduler to detect and respond to a load imbalance. We £ 10 3 \ 5 .
start with a macro experiment that measures how long % 51 Vi g
the scheduler takes to completely resolve an imbalance @ TN
and move to micro experiments _that measure how long 0 2'0 3'0 4'0 5'0 6'0 7'0 8'0 9'0
the scheduler takes to detect an imbalance. Imbalance

The setup for our macro experiment is identical to
those in the previous section in which we vary thefrigure 7: Time to Resolve Imbalance. An imbalance
amount of imbalance between multiple sources and sinis considered resolved when each run queue is within 15% of
gle target. We now measure how long it takes the schedeptimal. The imbalance between the three loaded sources and
uler to create a balance that is within 15% of optimal. Forthe single target is varied along the x-axis; that is) fi-x, 10+

example, given an ideal balance @b[25,25,25], the %,10 + z,10]

balance 28,22, 28, 22] is acceptable because the length construct a workload with heavily loaded sources and

of each run queue is within 15% of optimal. From the 5 single target 0, 40, 40, 0]); the target becomes idle

previous results, we expect O(1) will quickly find a bal- after a uniformly random interval. This experiment is

ance using a poly-balance and CFS will likely take longerepeated 25 times, each time measuring the interval be-

using pairwise balances. fore the target processor steals its first process. A work-
Figure 7 reports the amount of time the O(1) and CFSconserving policy will immediately migrate processes

schedulers take to find acceptable balances given a ranggd non-work conserving schedulers will not.

of initial imbalances. As expected, O(1) finds a balance Harmony shows that, for the O(1) scheduler, the idle

within seconds, even for very large imbalances. In com+arget processor begins migrating processes after a single

parison, CFS is quite slow to find a stable balance, requirmjllisecond of idle time: for CFS, migration always be-

ing nearly 9 s on average and 26 s for some workloads. gins in less than 1 ms. From these results we infer that
The large difference in time for O(1) versus CFS to hoth CFS and O(1) are work conserving.

find a stable balance leads us to ask if the difference is Our next experiment examines how |Ong the System

due to a better balancing policy or to faster imbalancetakes to respond when one processor becomes relatively
detection in O(1). Therefore, our next set of experimentsunderloaded, but not idle. Underloaded processors ef-
investigate how long it takes each scheduler to detect thakctively reduce the performance of all the processes that
an imbalance exists and to begin reacting. are assigned to more heavily loaded processors. A mul-
Our first micro experiment is designed to determinetiprocessor scheduler detects that a processor is under-
whether a scheduler is work-conserving: is a processoloaded by performing dalance checketween two pro-
idle only if there are no eligible processes in the sys-cessors. Because each balance check incurs some cost,
tem? In a work-conserving system, a newly-idle proces-schedulers are likely to need some heuristic about when
sor should immediately steal processes from busy CPUso perform this operation. We specifically want to know
To determine if the scheduler is work conserving, wethe frequency of balance checks.

usually follows after 256 ms and the third after 64 ms.

£ 40

% The implication of these results is that each scheduler

§ % performs a periodic balance check, where the period is

(“:; 20 effected by the likelihood of the imbalance. For a pol-

£ 10 icy like this, the first interval is not predictable, but the

* , , , , | second and third intervals (measured from the last migra-

821 sz 323 &4 S w26 tion) are. The policy in CFS appears to be slightly more

o) Median(Max)| Predictable sophi_sticated in that the period continues to shorten as
1st Interval 248 (11458)] No more imbalances are detected.
ond Interval 64 | Yes In summary, both O(1) and CFS are work-conserving
3rd Interval 64 | Yes and perform a periodic balance check. In both, idle pro-
CES Median(Max) | Predictable cessors are assigned eligible processes in about a mil-
Istinterval | 210.5 (9419)| No lisecond. Imbalances that do not involve newly-idle pro-
2nd Interval 256 | Yes cessors may not be detected for long periods of time
3rd Interval 64 | Yes (roughly 10s); however, once an imbalance is detected,

both systems check the next processor relatively quickly

Figure 8: Imbalance Detection. The figure illustrates _('anﬁ or 256_?_5)' we gnd tt:}at O(1) often resolves
the definition of the three detection intervals: intervalctors imbalances within seconds, whereas CFS takes much

between when an imbalance is introduced and when the firstonger (nearly 9 seconds on average). Because CFS and
migration occurs; interval 2 is time between the first migrat ~ O(1) have similar detection latencies, we attribute CFS’s
and the second; interval 3 is between the second migration an longer balance time to its process migration strategy.

the third. The table reports those intervals (in millisedshpfor

0O(1) and CFS. 4.4 Resolution of Intrinsic Imbalances?
Our next questions revolve around how load balancing
The setup of this experiment is identical to the interacts with the general processor scheduling policy.
previous one, except the load on the target proforexample, a proportional-share scheduler should pro-
cessor is reduced instead of completely eliminatedvide the same CPU allocation to each process with the
(140, 40, 40, 10]). Because the target processor is imbal-same scheduling weight; unfortunately, this can be dif-
anced with respect to each of the three source procedicult to achieve when there exists antrinsic imbal-
sors, it must migrate processes from all three and ther&ncei.e., when the number of processes does not divide
are three corresponding balance checks. The definitiogvenly by the number of processors).
of these intervals is illustrated in Figure 8. We begin by using Harmony to examine how O(1),
We measure all three intervals to infer the detectionCFS, and BFS resolve intrinsic imbalances. One way
policy. If the balance check is based on an event relateto achieve afair balance or an even division of re-
to process activity (e.g., the check is performed whenevegources across processes, is to frequently migrate pro-
a process exits the run queue), then we expect the first ircesses. However, fair balancing conflicts with providing
terval to a be a small, fixed amount. On the other handprocessor affinity, since frequent migrations mean fewer
if the balance check is performed at some periodic, fixedconsecutive process executions on the same processor.
interval (e.g., the check is performed every 5 seconds), To stress the decisions of each of the three schedulers
then we expect the measured first interval to appear rangiven workloads with intrinsic imbalances, we introduce
dom, since the load is decreased at a random point ifive identical processes for four processors; the experi-
time. The longest recorded first interval should be closement is started with the load 03[0, 0, 0]. Thus, if each
to the period of the balance checks. process is allocated 80% of a processor, the policy is fair.
Figure 8 shows the median and maximum duration of Figure 9 shows the average allocation each process re-
the first interval for the O(1) and CFS schedulers. These&eives over a 60 second interval for each of the three dif-
results show that, for both schedulers, the first intervafferent schedulers. Figure 10 reports the corresponding
is not fixed relative to the time at which the processorrate of migrations over time. The two figures show that
became underloaded; thus, we infer that both scheduletthie three different schedulers behave significantly differ
perform a balance check relative to some external timerent given intrinsic imbalances.
The maximum duration we observed for this interval for The O(1) scheduler gives a strong preference to affin-
O(1) and CFS were 11 and 9 seconds, respectively. ity over fairness. As shown in the top graph of Figure 9,
The results for the second and third intervals arethree processes are allocated an entire processor and the
shown in Figure 8 as well. For O(1), the second and thirdremaining two are each allocated half a processor. Fig-
intervals are fixed at 64 ms; for CFS, the second intervalire 10 supports the observation that few migrations are

100 L 4 w L 5
901
BO fmmmm e

O(1)
PU %

O 601
501 _®= L]

100

901 E g
U] SETITRRRRRRREFOREROORS! SEERRRY ERRCROOESURN
701 { i !

O 604
50 — Core 1 =~ Core 2 —— Core 3 — Core 4
1001
90 1
801--emw------ - - - ----- - - - - - - - -
701
O 60

Run Queue Length

CFS
PU %

Time

BFS
PU %

Run Queue Length

2 3 4
Sorted Processes Time

Figure 9:Allocations with Intrinsic Imbalances. The Figure 11: Run Queue Timelines for Mixed CPU
three graphs report the percentage of CPU allocated by O(1),Workloads. Each graph shows the run queue length for
CFS, and BFS to each of five processes running on four processach of the four cores given a workload with four heavy and
sors. Each point represents a process’s average CPU allocafour light processes. The top graph illustrates the caseravhe

tion over one of the 25 runs of this experiment. The dashed lin the processes are statically balanced; the bottom grapts.ill
represents the expected allocation given a perfect faiae. trates a case with dynamic balancing.

160
2140- — 0@) tions by CFS. Figure 12 reports the amount of CPU al-
©1201 ggg located to five processes on four CPUs in one particu-
-‘22100' lar run. The figure shows that processes E and D are
-, 807 each allocated their own CPU for a long period of time
§ 601 (between 35 and 65 seconds) while processes A, B, C
) i share the two other CPUs; then after 65 seconds, CFS
el S migrates process D, at which point processes A and E

0 0 5 10 15 20 o5 30 are each allocated their own CPU. Across many runs, we
Time (sec.) have found that CFS allocates, for long periods of time,
two CPUs to two processes and divides the remaining

Figure 10: Migration Timeline with Intrinsic Imbal- two CPUs between three processes. In general, CFS is

ances. The graph shows the average number of processesnore likely to migrate processes that have recently been
migrated per second over the lifetime of the experimenttfer t migrated. While this technique provides a nice compro-

O(1), CFS, and BFS schedulers. mise between processor affinity and fair balancing, some
o _ processes are migrated quite often: once a process begins
performed after finding this acceptable balance. migrating it may continue for tens of seconds. These oft-

The BFS scheduler strongly ranks fairness above promigrated processes suffer both in lost processor affinity
cessor affinity. As shown in the bottom graph of Figure 9,and in reduced allocations.
in all 25 runs of this experiment, each process receives
within 1% of the exact same allocation. This perfect fair To summarize, given intrinsic imbalances, the O(1)
balance comes at the cost of 163 migrations per secondpolicy strongly favors processor affinity over fairness.
Finally, the behavior of the CFS scheduler falls be-BFS has the exact opposite policy: intrinsic imbalances
tween that of the O(1) and BFS schedulers. As shown irare resolved by performing a process migration every
the middle graph of Figure 9, CFS allocates each proces8ms on average. CFS's policy falls somewhere in the
between 65 to 100% of a CPU; as shown in Figure 10middle: it attempts to resolve intrinsic imbalances while
processes are migrated at a rate of approximately 23 mikonoring processor affinity. This policy results in 85%
grations per second. less migrations than BFS, but unfairly divides processors
We now delve deeper into the cause of these allocaamongst processes.

=y

OFRNWAUTIONWOOO

=== With
— Without

vvvvvvvvvvvvvv

0123456 78 9101112131415
Concurrent Heavy Processes

Light Process Bonus

Figure 14:Sticky Priority Bonuses in O(1). A single

light process (85% CPU) is run against a variable number of
heavy processes; the y-axis show the magnitude of the bonus
given to the light process. The line marked “Without” statte
experiment on a cold system. The line marked “With” starés th
experiment after warming the system by temporarily run@ing
heavy lead of 16 processes.

40 50 60

0 10 20

.30
Time (sec.) we compare the run queues lengths for the two cases.

) . o) o The first case is represented by the ideal: a run with the
Figure 12:Allocation Timeline for CFS with Intrinsic processes statically balanced such that there is one heavy
Imbalances. The five graphs report the amount of CPU 44 one light process per CPU. Even with the ideal bal-

given over time to each of 5 processes, lettered A-E, runnin . . .
on 4 CPUs with CFS. The y-axis is the percent of a CPU eacr?ancﬁ’égede eXISI§ Vanitrl](.m in f[hte.) ”".“ qdueuE Itehn(:[:]thtsh at
process is allocated. The dashed line is the expected gidorta eac over ime. IS variation Is due both 1o the

for a perfect fair balance. light process sleeping at random intervals and how each
scheduler decides to allocate the CPU between the light
and heavy processes; capturing these non-subtle varia-

4.5 Resolution of Mixed CPU Workloads? tions in run queue length is the point of constructing this

All of our previous experiments have examined homo-ideal static balance. For intuition, the top graph in Fig-
geneous workloads in which every process had identicai'® 11 shows the run queue lengths over 100ms for a
characteristics and properties. For the remainder of thistatically balanced heavy/light workload; each run queue
paper, we turn our attention to understanding how O(1)/ength varies between one and two.
CFS, and BFS balance heterogeneous workloads. Load The second case is the behavior of the scheduler when
balancing is more difficult with heterogeneous processe# performs dynamic balancing. The bottom graph in Fig-
because processes are no longer interchangeable. For g€ 11 shows an example of the run queue lengths when
ample, placing two CPU-bound processes on the sam#e loads are dynamically balanced; in this case, each
processor is not the same as assigning two 10-bound prgun queue length varies between 0 and 4. To measure
cesses. how close the dynamic balance is to the ideal static bal-
In this section, we first use Harmony to extract aance, we compare the variance across the run queues.
scheduler’s policy for balancing processes with differentThe difference in the variance recorded during the static
CPU requirements. We then determine how this policy isand dynamic balanced experiments is normalized using
implemented by each scheduler. Finally, we examine th@ymmetric absolute percent error such that the worst pos-
effect of these policies on performance. sible match is represented by 100% and a perfect match
Given a workload with a mix of heavy and light CPU is assigned 0%.
processes, our first goal is to determine how each sched- The two graphs in Figure 13 show how well the O(1)
uler balances those heavy and light CPU processes acrogsd CFS schedulers match the ideal weighted balance
processors. In an idealeighted balancethe aggregate for a variety of heterogeneous workloads. We begin by
CPU demand is the same on each processor. To sinfocusing on the first graph, which shows the balance
plify the task of identifying the ideal weighted balance, achieved in the long term; in this case, each workload
we construct workloads such that a balance can only bés first run for 30 s to give the scheduler time to distribute
created by placing a single heavy and a single light proprocesses and then the run queue variance is measured
cess on each processor. We use workloads of four heavgnd reported for the next 30s.
processes (100% CPU-bound) and four light processes The results in the first graph indicate that in the long
(CPU requirements varying from 5 to 100%). term both CFS and O(1) usually place processes such
To determine how closely the dynamic balance choseithat run queue variance is within 25% of the ideal place-
by each scheduler matches the ideal weighted balancepent. We now discuss these two schedulers in detail.

<100 1 — 0(1) <1001 -----..
(&} (8] hEEN
T 90] ----CFs| © 9907 N
£ 801 £ 801
L 70 v 70
= 601 = 60
g 20] g 20]
& 301 & 30
% 201 .t % 20
) 18- . . = 18-
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Light CPU % Light CPU %

Figure 13: Run Queue Match. Both graphs report the symmetric mean absolute percent efrthe variance of the four run
gueues using a dynamic balance performed by the O(1) or Cir&later, as compared to an ideal static balance. The firsplgra
examines the long-term results (30 seconds after a 30 sewamu-up); the second graph examines the short-term reoitts
second after a one second warm-up). In all cases, four heashf@ur light processes are started on a single CPU; the arhotin
CPU used by the light process is varied along the x-axis.

M ized, O(1) gives it more of the CPU in the present. These

sticky bonuses, and not the load balancing policy, cause
the mismatch between the run queues. Further analysis
confirms that the O(1) scheduler achieves weighted bal-

I ances in the 65-90% light CPU range.

To better illuminate the behavior of sticky bonuses,
5 60 Figure 14 illustrates two different experiments: one in
which bonuses are sticky and one in which they are not.

Figure 15: Losing Balance in CFS. This timeline illus- _In both ex_periment;, a single light process (85% CPU)
trates that CFS finds the ideal weighted balance (between tim!S run againsta variable number of heavy processes and

11 and 33), but then migrates processes and losses the lsalancth® magnitude of the bonus given to the light process is
The vertical lines indicate process migrations. reported. The line marked “Without” shows the base

case in which the experiment is started on a cold sys-

While the O(1) scheduler places some heterogeneouem; in this case, the magnitude of the bonus increases
workloads very fairly, it does not match the ideal place-as the light process competes against more heavy pro-
ment well for two regimes of workloads: for a light pro- cesses. The line marked “With” shows what occurs when
cess using 5-10% of the CPU or one using 65-90% of th@orocesses have a past history: in this experiment, the
CPU. We have examined these cases in more detail argl/stem is warmed by having the light process compete
found the following. In the low range(5-10%), we ob- with a constant heavy lead of 16 processes; after these
serve that heavy processes are divided across processdi8 heavy processes are stopped, the previous experi-
evenly, but light processes are clustered in pairs. An exment is repeated. The “With” line illustrates that priority
tra light process per CPU results in an extra CPU demantbonuses remain even after the load is reduced; thus, pro-
of 10% in the worst case and the O(1) scheduler appeamsesses maintain bonuses even after the conditions that
to view this an acceptable imbalance. created the bonus cease to exist. Further experiments

In the high range with a light process using 65 to 90%(n_ot shown) indicate that O(1) maintains bonuses after
of the CPU, we discovered that the light processes refmigration as well.
ceive a much larger allocation than expected, once it has In contrast to O(1), CFS consistently misses a
been assigned to a particular CPU. To improve interacweighted balance by a more constant amount. Fur-
tivity, the O(1) scheduler gives priority-bonuses to pro-ther analysis reveals that CFS actively searches for a
cesses that are not CPU-bound; this causes light proveighted balance by continuously migrating processes
cesses to wait less in the run queue and alters the ruat a rate of 4.5 per second on average. When CFS finds
gueue variance. We discovered that the priority-bonus weighed balance, it stops migrating processes for sev-
given to jobs that have been recently migrated is higheeral seconds. After this brief pause, it resumes migrating
due to a phenomenawe refer tastisky bonusesSpecif- processes again. This effect is illustrated in Figure 15,
ically, because the light process received too little of thewhich shows that the run queue variance exactly matches
CPU in the past when the experiment was being initial-that of the ideal case for periods of time (e.g., between 11

=
A O @ o
o o o o

Run Queue Mismatch
N
o

o

20_. 30 40
Time (sec.)

10

A 0(1) a CFS a BFS

— OO & 20{—

Long-term Sk « Long-term
---- Short-term . g ---- Short-term
0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100
Light CPU % Light CPU % Light CPU %

Figure 16:CPU Allocations for Heavy Processes with O(1), CFS, and BFS=ach graph shows the percentage of CPU
given to the heavy processes; the allocations are nornthliaehat received in the ideal static balance. Results fahlibe short
and long-term balances are shown.

and 33 seconds in this run) and then differs significantlywe infer that O(1) uses informed selection. However,
Therefore, CFS’s run queues alternate between being i€FS’s short-term and long-term balances do not match
a weighted balance and being in flux, causing a roughhat all. Performing further analysis, we discovered that
25% mismatch on average. CFS does not select the correct processes for migration
We infer from these results that O(1) and CFS striveinitially. Target processors often take two heavy or two
for a weighted balance. O(1) allows some minor imbal-light processes instead of one of each. These proces-
ances for light processes. CFS also continues to searc$ors occasionally take too many processes as well. From
for better balances even when it has found the best onethese results we hypothesis that CFS uses a blind selec-

: . tion implementation.
4.5.1 Which Process to Migrate? P
4.5.2 Impact on CPU Performance?

We next examine how O(1) and CFS find weighted bal-
ances. Specifically, we are interested in how these schedrinally, we examine the performance implications of the
ulers pick a particular process to migrate. 0(1), CFS, and BFS policies for handling mixed CPU

Using the same experiment from the previous sectionworkloads. Using the previous workloads of four heavy
we analyze the initial balance instead of the long-termand four light processes, we report the relative CPU allo-
balance achieved. This analysis gives the scheduler ongation that the heavy processes receive with each sched-
second to find a balance, and then analyzes the run queuder relative to the ideal static layout; we focus on the
variance of the following second. We then compare theheavy processes because they suffer the most from load
dynamically-balanced run queue variance with its idealimbalances. The three graphs in Figure 16 report the rel-
static counterpart, as in the previous section. ative slowdowns given the three different schedulers.

We expect to see two possible implementations of a The first graph in Figure 16 reports the slowdown for
weighted balance policy. In the first, the scheduler use$ieavy processes in both the short and long term with the
its knowledge of the past behavior of each process to se9(1) scheduler. This graph illustrates that when a heavy
lect one for migration. We call this implementation ~ process competes against a light process consuming less
formed selection For example in our mixed CPU ex- than 60% of the CPU, the O(1) scheduler delivers nearly
periment, informed selection would enable each targeidentical performance to the heavy process as the ideal
processor to select a single heavy and a single light prostatic layout; however, heavy processes incur a signifi-
cess for migration. Informed selection should result in acant slowdown when competing against a process using
scheduler quickly finding a weighted balance and therebetween 60 and 90% of the CPU. This degradation is
fore the short and long-term balances should be roughlylirectly a result of the sticky bonuses described earlier:
the same. even though the heavy and light processes are balanced

A blind selectionimplementation ignores process correctly, the O(1) scheduler gives a boost to the light
characteristics when selecting processes to migratgrocesses to account for the time in which they were
Blind selection schedulers are likely to perform severalcompeting with many other processes on a single pro-
rounds of trial-and-error migration before finding their cessor. As expected, the impact of the sticky bonuses
desired balance. The initial and long-term balances ofvears off over the longer time period for some of the
these schedulers would often be very different; this re-workloads.
sults in run queue graphs that are not similar. The second graph in Figure 16 reports results for CFS;

The two graphs side-by-side in Figure 13 enable us tan the long term, CFS’s continuous migration policy
compare the long-term and short-term results for the twacauses approximately a 10% reduction in performance
schedulers. For the O(1) scheduler, the short-term refor the heavy processes. In the short term, CFS performs
sults match closely with the long-term results; therefore slightly worse: its blind selection policy causes a 20%

11

performance degradation for heavy processes.

45 . —
The third graph shows the relative slowdown forheavy 40, — High Priority,
processes using BFS compared to an ideal static balance.§5 35 N @ Low Priority

Because BFS does not have per-processor run queues;s 30
this is the first metric we have shown for how BFS han- @ 251
dles heterogeneous workloads. These results show that= 20 w
BFS balances processes such that they receive alloca-E ol
tions very similar to those they would achieve with an 2 10:
ideal static balance: within 4%. This balance is achieved 0
by performing an average of 375 migrations every sec- 0
ond; this disregard for processor affinity may have seri-
ous performance implications for some workloads.

To summarize, all three schedulers have a weightedrigure 17:Migrations for Mixed Priorities with BFS.
balance policy. O(1) uses informed selection to find aThe graph shows t_he number of norma_lizgd migrations per sec-
weighted balance or a close proximity, but O(1)'s perond for the four high and four low priority processes in the

CPU policy of broviding stickv bonuses results in seVereworkload. The difference in priority between the two classe
policy ot p 9 Y varied along the x-axis. To fairly compare high and low pri-

performance degradation for CPU-bound processes eveli, nrocesses, migrations are normalized by dividingreng
after migration. CFS continually searches for better bal-count by their CPU allocation (in seconds).

ances even after it has found the most appropriate alloca-

tion; because weighted balances are discarded, it is un- CFS divides low priority processes evenly amongst
surprising that CFS uses blind selection when picking aProcessors, provided the priority difference is small. As
process to migrate. The performance cost of CES'’s conPriority differences increase, the low priority processes
tinuous migration on heavy processes s relatively lew (tend to be clustered together on a few processors. Simi-
10%) since this policy ensures that CFS never spends to@' to its policy for handling processes with mixed CPU
long in the best or worst balance. Finally, BFS achievedequirements, CFS continuously migrates processes and
a near perfect weighted balance (within 4%) by aggresPauses migration briefly when it finds an acceptable bal-

0 15 20 25 30 35 40
Priority Difference

sively migrating processes. ance. CFS’s blind selection causes up to a 75% perfor-
. o mance drop for high priority processes in the short term,
4.6 Resolution of Priority Classes? but less than 4% in the long term.

In our final set of experiments, we examine policies for In contrast to previous experiments, BFS provides
scheduling heterogeneous workloads with mixed prior-some targeted processor affinity for mixed priority work-
ity classes. Like the previous heterogeneous workloadloads. When the priority difference between processes
these workloads are difficult to balance because prois small (2 to 6), BFS compensates for the small alloca-
cesses are no longer interchangeable. We are again intdions given to low priority processes by migrating them
ested in discovering how these processes are distributd@ss and providing more processor affinity (Figure 17).
amongst processors, how this distribution takes placeln this range, low priority processes are about 1.9 times
and the performance cost of these policies. more likely to execute on the same processor than the

The experiments we use are similar to the mixed CPUNIgh priority processes. In contrast, when the priority
requirements experiments except we replace the heawjifference is large (16 to 38), low priority processes are
and light processes with high and low priority processesfoughly 2.3 times more likely to run on a different pro-
varying the differences in priority from 2-38. Due to Ce€ssor when compared to high priority processes. These
space constraints, we include only a summary of the refesults strongly suggest that BFS provides differentiated
sults from these experiments. We find that O(1), CFS Processor affinity based on process priorities. BFS's pol-
and BFS all divide the four high priority processes evenlyICY Of clustering low priority processes can result in peri-
across the four processors. However, each scheduler hafdic reductions of CPU allocations for high priority pro-
dles the low priority processes differently. cess of up to 12%.

The O(1) scheduler clusters low priority processes to-5 Related Work
gether on a few processors. When a large priority differ-
ence exists between processes, the O(1) scheduler coBeveral studies have applied policy extraction techniques
tinuously migrates groups of low priority processes (1.5to0 CPU schedulers [12, 38, 39]. Hourglass is a tool
migrations per second). The performance impact of thehat runs synthetic, instrumented workloads to detect
O(1) policy is most evident for small differences in pri- context switch times, timer resolutions, and low-level
ority, in which case the performance of the high priority kernel noise [38]. This tool deals strictly with per-
process may be degraded by up to 20%. processor scheduling policy, whereas Harmony specifi-

12

Does the scheduler perform load balancing across proce84gd.1)
For all three, yes.
Does it contain mechanisms for maintaining affinify2.1)
0O(1) pays the strongest attention to affinity; BFS is the vesgkCFS is in-between.
How does the scheduler determine how many processes totetigd.2)
0O(1) uses global information and performs a minimal numbenigrations; CFS uses a randomized pairwise
strategy, hence performing more migrations. BFS has aaérdd queue and constantly migrates processes.
How long does the scheduler take to get to a stable bala($€3)
O(1) is relatively quick (due to its minimal migrations); SFakes an order of magnitude longer.
How long before the scheduler detects an imbalangd?3)
If idle, immediately; all schedulers are work-conservimglahus steal work when idle. If non-idle, O(1) and CFS
use a periodic check to detect imbalances, which increadesguency when some imbalance has been detected.
When there is an intrinsic imbalance, how does the schededat? (§4.4)
0O(1) is most unfair, and thus can lead to notable imbalancessa processes while maintaining affinity; CFS
moves processes somewhat frequently and is more fair, absteof affinity. BFS is most fair,
constantly moving processes across all CPUs, also at thetafinity.
With heterogeneous workload (heavy vs. light CPU), how evegsses migrated®4.5)
0O(1) does a good job of balancing heavy and light processgsodme scheduling state is maintained across
migrations (perhaps inadvertently). CFS continuallysmew placements, and thus will migrate out of good
situations (even though unnecessary). BFS and its centealgjonce again is fair and does well.
With heterogenous workloads (high vs. low priorities), ke processes migrated®4.6)
All schedulers do well with high-priority processes, divig them evenly amongst processors. BFS seems to
provide targeted processor affinity to mixed-priority winds.

Table 1:The Load-balancing Policies Extracted by Harmony.

cally addresses multiprocessor scheduling. tions, debug problems, and optimize performance.

During the development of FreeBSD's ULE _CPU 6 Conclusion
scheduler, the developers also created a synthetic work- _
load simulation tool called Late [39]. Developers usedMulticore systems are now commonplace, but multipro-
Late’s synthetic workloads to measure timer resolutionsC€SSOr scheduling is still under active development. In
fairness, interactivity, and basic performance. Late doediS Paper, we presented Harmony, a system that enables
not include measurements of run queue lengths or prOdetaﬂed analysis pf scheduhng behavior. Our specific re-
cessor selection, limiting its scope of analysis. _sults are summarized in Table 1 our more general_result
The LinSched tool runs the CES scheduler in a's that a tool such as Harmony is a necessary and impor-

userspace simulator [12]. Researchers and kernel devetl"Elnt piece in the scheduling developer's toolkit

opers can use this tool to observe the behavior of CFReferences

and evaluate_ new S_chedulmg pollc!es. The goals of Har'[1] PCLinuxOS 2010 Edition is now available for download.
mony are quite similar to those of LinSched; only the ap- http://www.pclinuxos.com/?p=579.

prloach differs. Harmony is de_signed to be generally ap-[2] zenwak 6.4 is Ready. http:/Awww. zenwalk.org/-
plicable to a variety of operating systems, whereas Lin- ~ modules/news/article.php?storyid=107.

Sched is prlmarlly focused on CFS. [3] CyanogenMod Android Rom. http:/Awww.cyanogenmod.éom
Other systems have also been the focus of policy — home/4-1-6-is-here-with-100-more-jet-fuelcommeage-1,
extraction. Semantic block-level analysis is a tech- o - hare b o sites in all loca
: : : : : 4] Operating system share by groups for sites in all locetio
mque deS|gned to analyze_‘ the behavior of Joumalmg https://ssl.netcraft.com/ssl-sample-report/CMaistx all, Jan-
file systems [37]. Shear is a tool that measures the uary 2009.
characteristics of RAIDs [18]; by generat|ng controlled (5] Top500 operating system family share.
I/O request patterns and measuring the latency, Shear ~ http://top500.org/stats/list/36/osfam, November 2010.
can d_etect a broad range of §torage properties. S.Im-e AsANOVIC, K.. BODIK, R.. CATANZARO, B., Gesls, J. J..
ilar microbenchmarking techniques have been applied \I?VUiBASNDS, P.i]KEVloITZER, K.,gA‘{/‘\I}ERSOI\\I,(D.A., P|I<_ISAI—|K_II_EI’I]?,

H H H . L., SHALF, J., LLIAMS , S. W.,AND Y ELICK, K. A. e
to SCSI disks [45]’ memory hierarchies [46]1 and TCP Landscape of Parallel Computing Research: A View from Berke
stacks [35]. ley. Tech. Rep. UCB/EECS-2006-183, University of Califern

.. . . Berkeley, Dec 2006.
Application and microbenchmark-driven workloads
have been used to analyze system-call behavior [25, 33[7] BAUMANN, A, BARHAM, P., DAGAND, P.-E., HARRIS, T.,

) IsAAcs, R., FETER, S., ROSCOE T., SCHUPBACH, A., AND
42]. These analyses are used to enable accurate simula- SingHANIA, A. The Multikernel: A New OS Architecture for

13

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Scalable Multicore Systems. BOSP '09Big Sky, MT, October
2009).

BLAGODUROV, S., ZHURAVLEV, S.,AND FEDOROVA, A. Con-
tention Aware Scheduling on Multicore Syster#¢€CM Transac-
tions on Computer Systems, 28(December 2010).

BovVET, D., AND CESATI, M. Understanding the Linux Kernel,
Third Edition 3rd ed. O’Reilly Media, Inc., 2005.

BoyD-WICKIZER, S., QEMENTS, A. T., Mao, Y.,
PESTEREV A., KAASHOEK, M. F., MORRIS, R., AND ZEL-
DoVvICH, N. An Analysis of Linux Scalability to Many Cores. In
OSDI '10(Vancouver, BC, December 2010).

BRUNING, M. A Comparison of Solaris, Linux, and
FreeBSD Schedulers. http://www.opensolaris.org/daslart
2005-10-14a comparisonof_solaris _linux__and freebsdkernels/,
or just use Google to search for the title, October 2005.

CALANDRINO, J., BAUMBERGER, D., TONG LI, J. Y., ,AND
HAHN, S. Linsched: The linux scheduler simulator. RDCCS
'08 (Sept 2008), pp. 171-176.

CANTRILL, B., SHAPIRO, M. W., AND LEVENTHAL, A. H.
Dynamic Instrumentation of Production SystemsUBENIX '04
(Boston, MA, June 2004), pp. 15-28.

CAPRITA, B., CHAN, W. C., NIEH, J., STEIN, C., AND
ZHENG, H. Group ratio round-robin: O(1) proportional share
scheduling for uniprocessor and multiprocessor systemsa. |
USENIX '05(2005), pp. 337-352.

CAPRITA, B., NIEH, J.,AND STEIN, C. Grouped distributed
queues: distributed queue, proportional share multizsme
scheduling. IiPODC '06(2006), pp. 72-81.

CHANDRA, A., ADLER, M., GOYAL, P.,AND SHENOY, P. Sur-
plus fair scheduling: a proportional-share cpu schedudifgp-
rithm for symmetric multiprocessors. @SDI'00(2000).

CORBET, J. Ks2009: How google uses linuxX.WN.net(Oct
2009).

DENEHY, T. E., BeENT, J., Porpovicl, F. I., ARPACI-DUSSEAL,
A. C., AND ARPACI-DUSSEAU, R. H. Deconstructing Stor-
age Arrays. InArchitectural Support for Programming Lan-
guages and Operating Systems (ASPLOSBdston, MA, Oc-
tober 2004), pp. 59-71.

Duba, K. J., AND CHERITON, D. R. Borrowed-virtual-
time (bvt) scheduling: supporting latency-sensitive da® in a
general-purpose scheduler. 3OSP '991999), pp. 261-276.

EIGLER, F. C., RRAsAD, V., COHEN, W., NGUYEN,
H., HuNT, M., KENISTON, J., AND CHEN, B. Ar-
chitecture of systemtap: a Linux trace/probe tool.

http://sourceware.org/systemtap/archpaper.pdf, J0052

FEDOROVA, A., SELTZER, M., SMALL, C., AND NUSSBAUM,

D. Performance of Multithreaded Chip Multiprocessors And |
plications For Operating System Design. WSENIX '05(Ana-

heim, CA, April 2005).

GOUGH, C., SDDHA, S.,AND CHEN, K. Kernel Scalability —
Expanding the horizon beyond fine grain locks.Linux Sympo-
sium(2007), vol. 1, pp. 153-166.

GoYAL, P., Quo, X., AND VIN, H. M. A hierarchial cpu
scheduler for multimedia operating systemsOI&DI '96 (1996),
pp. 107-121.

HOFMEYR, S., IANCU, C., AND BLAGOJEVIC, F. Load balanc-
ing on speed. IPPoPP '10(2010), pp. 147-158.

Joukov, N., TRAEGER A., IYER, R., WRIGHT, C. P.,AND
ZADOK, E. Operating system profiling via latency analysis. In
OSDI '06 (2006), pp. 89-102.

KAZEMPOUR, V., FEDOROVA, A., AND ALAGHEBAND, P. Per-

formance implications of cache affinity on multicore prams.
In Euro-Par '08(2008), pp. 151-161.

14

[27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

Frxx

KoLivas, C. — The Brain Scheduler.

http://ck. kolivas. org/patches/bfs/sched BFS.txt.

KUMAR, A. Multiprocessing with the completely fair scheduler.
IBM developerWork¢Jan 2008).

L1, T., BAUMBERGER, D.,AND HAHN, S. Efficient and scalable
multiprocessor fair scheduling using distributed weighteund-
robin. InPPoPP '09(2009), pp. 65-74.

MCDOUGALL, R., AND MAURO, J. Solaris Internals: Solaris
10 and OpenSolaris Kernel Architectyiznd ed. Sun Microsys-
tems Press, 2007.

MOLINAR, l. CFS Scheduler.
Linux_2.6.36/Documentation/scheduler/sched- -design-CFES.txt
MOLINAR, |. Goals, Design and Implemen-
taton of the new ultra-scalable O(1) scheduler.

Linux_2.6.18/Documentation/sched-design.txt.

NARAYANASAMY, S., REREIRA, C., RTIL, H., CoHN, R.,
AND CALDER, B. Automatic logging of operating system effects
to guide application-level architecture simulation Piroceedings
of the joint international conference on Measurement andefo
ing of computer systenf2006), SIGMETRICS '06/Performance
‘06, pp. 216-227.

PaBLA, C. S. Completely fair schedulelLinux Journal (Aug
2009).

PADHYE, J.,AND FLOYD, S. Identifying the TCP Behavior of
Web Servers. II8IGCOMM '01(San Diego, CA, August 2001).

PIGGIN, N. Less Affine
http: /. net/Articles/124982/, Feb. 2005.

Wakeups.

PRABHAKARAN, V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DusskeAuy, R. H. Analysis and Evolution of Journaling File Sys-
tems. INUSENIX '05(Anaheim, CA, April 2005), pp. 105-120.

REGEHR, J. Inferring Scheduling Behavior with Hourglass. In
FREENIX '02(Monterey, CA, June 2002).

RoOBERSON J. Ule: a modern scheduler for freebsd. 2nd
USENIX Conference on BSR003).

SOLOMON, D. A. Inside Windows NT2nd ed. Microsoft Pro-
gramming Series. Microsoft Press, May 1998.

TORRELLAS, J., TUCKER, A., AND GUPTA, A. Evaluating the
Performance of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors.Journal of Parallel and Distributed Computing
24(1995), 139-151.

TRAEGER, A., DERAS, |., AND ZADOK, E. Darc: dynamic
analysis of root causes of latency distributions SIBMETRICS
'08 (2008), pp. 277—-288.

TUCKER, A., GUPTA, A., AND URUSHIBARA, S. The Impact
of Operating System Scheduling Policies and Synchrowizati
Methods on the Performance of Parallel Applications. SIs-
METRICS '91(San Diego, CA, May 1991).

VASWANI, R., AND ZAHORJAN, J. The Implications of Cache
Affinity on Processor Scheduling for Multiprogrammed, Sithr
Memory Multiprocessors. II8OSP '91(Pacific Grove, CA, Oc-
tober 1991).

WORTHINGTON, B. L., GANGER, G. R., RATT, Y. N., AND
WILKES, J. On-line extraction of scsi disk drive parameters In
SIGMETRICS '95/PERFORMANCE '5995), pp. 146-156.

Yotov, K., PINGALI, K., AND STODGHILL, P. Automatic mea-
surement of memory hierarchy parametersSIGMETRICS '05
(2005), pp. 181-192.

ZAHORJAN, J., LAZOWSKA, E.,AND EAGER, D. The Effect of
Scheduling Discipline on Spin Overhead in Shared Memory Par
allel ProcessorslEEE Transactions on Parallel and Distributed
System 22 (April 1991), 180-198.

	TechReportCover1707
	1707

