
Computer
Sciences
Department

University of Wisconsin - Madison

Uncovering CPU Load Balancing Policies with Harmony

Joe T. Meehean

Andrea C. Arpaci-Dusseau

Remzi H. Arpaci-Dusseau

Miron Livny

Technical Report #1707

December 2011

Uncovering CPU Load Balancing Policies with Harmony

Joe T. Meehean, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Miron Livny
Department of Computer Sciences, University of Wisconsin-Madison

Abstract

We introduce Harmony, a system for extracting the mul-
tiprocessor scheduling policies from commodity operat-
ing systems. Harmony can be used to unearth many as-
pects of multiprocessor scheduling policy, including the
nuanced behaviors of core scheduling mechanisms and
policies. We demonstrate the effectiveness of Harmony
by applying it to the analysis of the load-balancing be-
havior of three Linux schedulers: O(1), CFS, and BFS.
Our analysis uncovers the strengths and weaknesses of
each of these schedulers, and more generally shows how
to utilize Harmony to perform detailed analyses of com-
plex scheduling systems.

1 Introduction
The era of multicore computing is upon us [6], and with it
come new challenges for many aspects of computing sys-
tems. While there may be debate as to whether new [7]
or old [10] kernel architectures are necessitated by the
move to multicore processors, it is certain that some care
will be required to enable operating systems to run well
on this new breed of multiprocessor.

One of the most critical components of the OS in the
multicore era is the scheduler. Years of study in single-
CPU systems have led to sophisticated and highly-robust
single-CPU scheduling algorithms (e.g., the multi-level
feedback queue found in Solaris, Windows, and BSD
variants [11, 40]); although studied for years in the liter-
ature [8, 15, 21, 41, 43, 44, 47], there is little consensus
as to the best multiprocessor approach.

An excellent example of this multiprocessor confusion
is found in Linux, perhaps one of the most fecund are-
nas for the development of modern schedulers. At least
three popular choices exist: the O(1) scheduler [32], the
Completely-Fair Scheduler (CFS) [31], and BFS [27].
Each is widely used and yet little is known about their
relative strengths and weaknesses. Poor multiproces-
sor scheduler policies can (unsurprisingly) result in poor
performance or violation of user expectations [16, 29],

but without hard data, how can a user or administrator
choose which scheduler to deploy?

In this paper, we address this lack of understanding by
developingHarmony, a multiprocessor scheduling be-
havior extraction tool. The basic idea is simple: Har-
mony creates a number of controlled workloads and uses
a variety of timers and in-kernel probes to monitor the
behavior of the scheduler under observation. As we will
show, this straightforward approach is surprisingly pow-
erful, enabling us to learn intricate details of a sched-
uler’s algorithms and behaviors.

While there are many facets of scheduling one could
study, in this paper we focus on what we believe is the
most important to users:load balance. Simply put, does
the system keep all the CPUs busy, when there is suffi-
cient load to do so? How effectively? How efficiently?
What are its underlying policies and mechanisms?

We apply Harmony to the analysis of the three afore-
mentioned Linux schedulers, O(1), CFS, and BFS, and
discovered a number of interesting and previously to
our knowledge undocumented behaviors. While all
three schedulers attempt to balance load, O(1) pays the
strongest attention to affinity, and BFS the least. O(1)
uses global information to perform fewer migrations,
whereas the CFS approach is randomized and slower to
converge. Both O(1) and CFS take a long time to de-
tect imbalances unless a CPU is completely idle. Un-
der uneven loads, O(1) is most unfair, leading to notable
imbalances while maintaining affinity; CFS is more fair,
and BFS is even more so. Finally, under mixed work-
loads, O(1) does a good job with load balance, but (ac-
cidentally) migrates scheduling state across queues; CFS
continually tries new placements and thus will migrate
out of good balances; BFS and its centralized approach
is fair and does well. More generally, our results hint
at the need for a tool such as Harmony; simply read-
ing source code is not likely to uncover the nuanced be-
haviors of systems as complex as modern multiprocessor
schedulers.

1

The remainder of the paper is organized as follows.§2
provides background, and a detailed overview of Har-
mony is provided in§3. We then analyze the load-
balancing behavior of the three schedulers in§4, discuss
related work in§5, and conclude in§6.

2 Background

Before delving into the details of Harmony, we first
present some background information on scheduling ar-
chitectures. We then describe the Linux schedulers of
interest – O(1), CFS, BFS – in more detail.

2.1 Scheduling Architectures

There are two basic approaches to multiprocessor
scheduling. In the first architecture, aglobal run queue
is shared amongst all of the processors in the sys-
tem [14, 16, 19, 23]. Each processor selects a process to
run from this global queue. When a process finishes its
quantum, or is preempted, it is returned to this queue and
another is selected. This scheme is conceptually simple;
the scheduling policy is centralized allowing each pro-
cessor access to the full global state. It is also naturally
work conserving as any eligible process can be selected
by an idle processor. One drawback of this approach is
that access to the global run queue must be synchronized
amongst processors. As the number of processors in-
creases, this can result in lock and cache-line contention,
hence limiting scalability [15, 22]. Another shortcom-
ing of this scheme is that it requires a separate mech-
anism to manage processor affinity. Without processor
affinity, a process may not be rescheduled on the same
processor that ran it previously, which can degrade per-
formance [26].

The second approach to multiprocessor scheduling is
to provide each processor with its own run queue [9, 28,
30, 39]. In thisdistributed run queuescheme, each pro-
cessor executes processes only from its own run queue;
new processes are assigned to an individual processor by
a load-balancing mechanism. If processor run queues
become unbalanced, the load balancing mechanism mi-
grates processes between processors. A distributed run
queue approach requires only limited synchronization
(during migration) and simplifies managing processor
affinity. The major drawback of this scheme is that it re-
quires a load balancing mechanism and attending policy.
A poorly designed policy, or one that simply does not
match an application’s preferred policy, results in per-
formance degradation [24]. The distributed run queue
approach also requires extra effort to be work conserv-
ing; if a processor has no eligible processes in its local
run queue it may need to steal processes from another
processor.

CPU

0

CPU

1

CPU

0

CPU

1

Global Queue Distributed Queues

CPU

2

CPU

3

CPU

2

CPU

3

Figure 1: Global vs. Distributed Queues. The figure
depicts the two basic architectures employed by modern mul-
tiprocessor schedulers. On the left is the single, global queue
approach; on the right, the distributed queues approach.

2.2 Linux Schedulers

This paper uses Harmony to analyze three Linux sched-
ulers: O(1), CFS, and BFS. Linux is an ideal choice
for this evaluation because it is commonly deployed
in server environments that execute multitasking appli-
cations with multiple processors. Over 41% of web
servers [4] and 91% of “TOP 500” most powerful com-
puter systems in world [5] run Linux. Despite being
so popular, Linux has very little documentation about
its multiprocessor scheduling policy (e.g., CFS is dis-
tributed without any such documentation [31]).

The most stable is the O(1) [9] scheduler found in ker-
nel versions 2.6 through 2.6.22. This scheduler has been
distributed in Red Hat Enterprise Linux since 2005 and
is used internally by Google [17]. The O(1) scheduler is
implemented using the distribute queue technique. Peri-
odically, each processor checks to ensure that the load
is evenly balanced. If the load is imbalanced, an un-
derloaded processor migrates processes from an over-
loaded processor. The documentation states that it should
also be work conserving and that processes “should not
bounce between CPUs too frequently” [32].

The Completely Fair Scheduler (CFS) [34] is a
proportional-share scheduler currently under active de-
velopment in the Linux community. This scheduler is
found in kernel versions 2.6.23 through the present, and
has been distributed under Fedora and Ubuntu for several
years. It is also implemented using a distributed queue
architecture. Similar to O(1), each processor periodically
compares its load to the other processors. If its load is
too small, it migrates processes from a processor with a
greater load. The documentation provides no description
of its multiprocessor policy [31].

The final scheduler is BFS, a proportional-share
scheduler. BFS is the default scheduler for the Zen-
Walk [2] and PCLinuxOS [1] distributions, as well as
the CyanogenMod [3] aftermarket firmware upgrade for
Android. Unlike O(1) and CFS, this scheduler uses a
global queue architecture. BFS documentation provides
details about its processor affinity mechanism [27]; how-
ever, it is unclear how these low-level details translate
into a high-level policy.

2

3 Harmony
The primary goal of the Harmony project is to en-
able developers and researchers to extract multiprocessor
scheduling policies with an emphasis on load-balancing
behavior. We now describe the details of our approach.

3.1 An Empirical Approach

In building Harmony, we decided to take a black-box ap-
proach, in which we measure the behavior of the sched-
uler under controlled workloads, and analyze the out-
comes to characterize the scheduler and its policies. We
generally do not examine or refer to source code for the
“ground truth” about scheduling; rather, we believe that
the behavior of the scheduler is its best measure.

This approach has two primary advantages. First,
schedulers are highly complex and delicate; even though
they are relatively compact (less than 10k lines of code),
even the smallest change can enact large behavioral dif-
ferences. Worse, many small patches are accrued over
time, making overall behavior difficult to determine (see
[36] for a typical example); by our count, there were
roughly 323 patches to the CFS scheduler in 2010 alone.

Second, our approach is by definition portable and
thus can be applied to a wide range of schedulers. We
do require a few in-kernel probes in order to moni-
tor migrations and queue lengths (discussed further be-
low); however, many systems support such probes (e.g.,
DTrace [13] or systemtap [20]).

3.2 Using Harmony

The main goal of Harmony is to extract policies from
the scheduler under test. To help answer these questions,
Harmony provides the ability to easily construct work-
loads and monitor low-level scheduler behavior; how-
ever, the user of Harmony must still design the exact ex-
periments in order to analyze the particular properties of
the system the user is interested in.

The Harmony user-level workload controller can be
used to start, stop, and modify synthetic processes to cre-
ate the individual workload suites. This controller must
be able to introduce run queue imbalances into the sys-
tem, and these imbalances should be created instantly
rather than slowly accrued to increase precision of the
results obtained. Use of process groups and binding to
specific CPUs enables us to carefully control where and
when load is placed upon the system.

The low-level monitoring component of Harmony
records three simple aspects of multiprocessor schedul-
ing behavior: the run queue lengths for each processor,
the CPU allocation given to each Harmony process, and
the CPU selected to run each Harmony process. Our
Linux implementation of Harmony relies on the system-
tap kernel instrumentation tool [20]. Harmony’s kernel
instrumentation records each time a processor is selected

����
����
����
����

����
����
����
����

����
����
����

����
����
��������
����
����
����

����
����
����

����
����
����

CPU 1

CPU 3 CPU 4

CPU 2

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

CPU 3

CPU 1

CPU 4

����
����
����

����
����
��������
����
����
����
����
����
����
����

����
����
����

����
����
����

CPU 2

���
���
���

���
���
���

���
���
���
���

���
���
���
���

Figure 2:Single-source and Single-target. On the left,
CPU 4 is the source of processes (initial: [2, 3, 1, 10]); two
processes migrate to CPU 1, one to CPU 2, and three to CPU
3 (final: [4, 4, 4, 4]). On the right, CPU 4 is underloaded and
becomes the target ([5, 5, 5, 1]); a single process is migrated
from each CPU to CPU 4 ([4, 4, 4, 4]).

to run a Harmony process, and it also samples the run
queue lengths every millisecond. Harmony also uses the
/proc/ virtual file system to collect a variety of infor-
mation about its processes, including CPU allocations
and scheduling priorities.

3.3 Experiment Types

Although Harmony can be used to setup a variety of ex-
periments, our analysis of Linux schedulers and their
load-balancing behavior relies on a few specific exper-
iment types. The first is asingle sourceexperiment type,
in which a single processor is overloaded and the remain-
ing processors are underloaded. This overloaded proces-
sor becomes the single source of processes to migrate to
the other underloaded processors. The second is asingle
target experiment, in which the imbalance consists of a
single underloaded processor, the target; this processor
steals processes from each of the remaining overloaded
processors. See Figure 2 for an example.

For simplicity, we refer to the initial and final con-
ditions of an experiment with the following notation,
[a, b, c, d], which means the first CPU hasa processes,
the secondb, and so forth. Thus, a single-source
experiment with idle targets andm processes on the
source would have the following initial configuration:
[m, 0, 0, 0]; the starting configuration of a single-target
experiment with a busy target would instead be repre-
sented as [m, m, m, n], wherem > n.

3.4 Hardware and Software Environment

For all experiments in this paper we used a machine with
a quad-core Intel Xeon processor; we feel that this size
system is a “sweet spot” for the multicore era and thus
worthy of intense study. The specific operating systems
used in these experiments are Red Hat Enterprise Linux
5.5 (kernel version 2.6.18-194.3.1.el5), Fedora 12 (ker-
nel version 2.6.32.21-168.fc12.x8664), and Linux ker-
nel 2.6.32 patched with BFS (2.6.32-bfs.313). Each op-
erating system is configured to deliver scheduling inter-
rupts once per millisecond.

3

4 Multiprocessor Scheduling Policies
We now describe our results of using Harmony to un-
cover the scheduling policies of the O(1), CFS, and BFS
Linux schedulers.

4.1 Load balancing versus Affinity?

We begin with the most basic question for a multiproces-
sor scheduler: does it perform load balancing across pro-
cessors and contain mechanisms for maintaining affinity
between processes and processors? We begin our exam-
ination with a workload that should be straightforward
to balance: eight identical 100% CPU-bound processes
running on a single source with three idle targets (ex-
pressed as [8, 0, 0, 0]).

This basic scenario allows us to determine the trade-
offs the underlying scheduler makes between load bal-
ancing and affinity. If the multiprocessor scheduler does
not have a load balancing mechanism, then all eight pro-
cesses will remain on the single target. At the other ex-
treme, if the multiprocessor scheduler does not attempt to
maintain any affinity, then the processes will be contin-
uously migrated over the lifetime of the experiment. Fi-
nally, if the multiprocessor scheduler attempts to achieve
a compromise between load balance and affinity, then
initially the processes will be migrated across cores and
then after some period the processes will each remain on
its own core (or migrated less frequently).

Figure 3 shows the number of process migrations over
time for the three Linux schedulers. Both O(1) and CFS
have an initial burst of process migrations (6 and 30 re-
spectively) and then zero migrations afterward. This in-
dicates that O(1) and CFS perform load balancing with
processor affinity, matching their known implementation
of using a separate local queue per core. On the other
hand, BFS has a sustained rate of roughly 13 migrations
per second. This indicates that BFS does not attempt
to maintain affinity, and matches well with its known
global-queue implementation.

This basic experiment raises many questions. Given
that the O(1) and the CFS schedulers achieve the same
final balanced allocation of two processes per core, how
do the two schedulers each arrive at this allocation? Our
initial experiment illustrated that the O(1) scheduler ar-
rives at this balance with fewer total migrations than the
CFS scheduler; how does each scheduler determine the
number of processesthat should be migrated? We inves-
tigate this question in Section 4.2.

Other questions that are raised are related totime. As
an example, Figure 4 shows the behavior of the O(1)
scheduler over time for this workload; specifically, it il-
lustrates the length of the four run queues for a single ex-
periment starting with [8, 0, 0, 0]. This figure shows that
when the experiment begins at time 24.05 s, Core 1 has
a run queue containing 8 processes while the other three

Time (sec.)
0 5 10 15 20 25 30

P
ro

ce
ss

 M
ig

ra
tio

ns

0

5

10

15

20

25

30
O(1)
CFS
BFS

Figure 3: Timeline of Process Migrations for O(1),
CFS, and BFS Schedulers. The figure shows the aver-
age number of processes migrated over 25 runs with a starting
load of eight processes on 1 CPU: [8, 0, 0, 0]. Only the first
30s of the experiment is shown; the remainder is similar.

Time(s)
24.05 24.1 24.15 24.2 24.25 24.3 24.35

R
un

 Q
ue

ue
 L

en
gt

h

0
1
2
3
4
5
6
7
8 Core 1

Core 2
Core 3
Core 4

Figure 4:Timeline of Run Queues for O(1). The figure
shows the length of each of the four run queues over time for
a single experiment initially configured as [8, 0, 0, 0]. At time
24.05, Cores 2, 3, 4 are able to start migrating processes away
from Core 1; eventually, at time 24.3, all four cores have two
processes each.

CPUs each have zero processes. As time progresses, the
load on Core 1 drops in distinct increments from 8 pro-
cesses to 2, while the load on the other cores increases
from 0 to 2. In this case, it takes 250 ms for each CPU
to have exactly two processes; furthermore, migrations
occur at different points in time on each CPU. We would
like to know how long it takes each scheduler to react to
load imbalance. Do schedulers react more rapidly when
a CPU is idle, when there is a large imbalance, or when
there has been an imbalance recently? These questions
are addressed in Section 4.3.

The final set of questions are related towhich pro-
cesses are migrated by the scheduler. As another exam-
ple, the three graphs in Figure 5 show the percentage of
CPU given to each of the eight identical processes for the
O(1), CFS, and BFS schedulers. The figure illustrates
that O(1) and BFS allocate a fair percentage of the CPU
to every process: each of the eight processes obtains half
of a CPU. However, CFS does not always allocate a fair

4

O
(1

)
C

P
U

 %

0
20
40
60
80

100
C

F
S

C
P

U
 %

0
20
40
60
80

100

Sorted Processes
1 2 3 4 5 6 7 8

B
F

S
C

P
U

 %

0
20
40
60
80

100

Figure 5: CPU allocations. The 3 graphs show the per-
centage of CPU given to eight processes running on four CPUs
using O(1), CFS, and BFS; the initial allocation is [8, 0, 0, 0].
In the figure, the processes are sorted by allocation and each
point is an allocation from one of 25 runs; the dashed line is
the expected allocation for a perfect balance.

share to every process: in some runs of this workload,
some of the processes receive less and some correspond-
ingly more than their fair share. If this inequity occurs
for the simplest of workloads, what does this imply for
more complex workloads? Thus, we would like to know
how each scheduler picks a particular process for migra-
tion. Specifically, which processes share a CPU when
the workload cannot be divided evenly across processes?
Which processes share CPUs when some have different
CPU requirements or priorities? We address these ques-
tions in Sections 4.4 through 4.6.

4.2 How Many Processes are Migrated?

Our motivational experiments in the previous section
lead us to next determine the number of processes each
scheduler migrates in order to transform an imbalanced
load into a balanced one. We focus on the O(1) and CFS
schedulers since they explicitly move processes from one
queue associate with one core to another; in contrast,
BFS contains a single queue with no default affinity.

Balancing load across multiple processors is challeng-
ing because the scheduler is attempting to achieve a prop-
erty for the system as a whole (e.g., the number of pro-
cesses on each CPU is identical) with a migration be-
tween pairs of CPUs (e.g., migrating process A from
CPU 1 to 2). Thus, the scheduler contains a policy for
using a series of pairwise migrations to achieve balance.

We hypothesize that there are two straight-forward
policies for achieving a global balance. In the first, the
scheduler performs a series ofpairwisebalances while

ensuring that the final number of processes is evenly di-
vided between the one pair of CPUs. For example, on
a four core system with [30, 30, 30, 10], a pairwise bal-
ance migrates 10 processes from CPU 1 to CPU 4 so that
both have 20; then 5 processes are migrated from CPU
2 to CPU 4 so that both have 25; then, 2 processes are
migrated from CPU 3 to CPU 4 to leave the system with
the load [20, 25, 28, 27]. Pairwise balances must then be
repeated again until the system converges. Pairwise bal-
ances are simple, but potentially require many cycles of
migrations to to achieve a system-wide load balance.

In the second policy, the scheduler performs apoly-
balanceby calculating the number of processes each pro-
cessor should have when the system is finally balanced
(e.g., the number of processes divided by the number of
processors). When migrating processes, a poly-balance
moves only a source processor’s excess processes (those
that exceed the system average) to the target. Using the
example load of [30, 30, 30, 10], the desired final balance
is 25 processes per processor; thus, the poly-balance mi-
grates 5 processes from each of the first three CPUs to the
fourth CPU. A poly-balance balances the system quickly,
but requires information sharing between processors to
calculate the total number of processes.

To determine whether a scheduler uses a pairwise or
poly-balance, we measure the number of processes mi-
grated between the first source processor and the target.
We examine workloads in which a single target must mi-
grate processes from multiple sources; each source pro-
cessor has from 20 to 90 more processes than the tar-
get and each workload is repeated 10 times. Figure 6
shows the number of migrations performed between the
first two CPUs to perform a balance; the graphs on the
left and right show the results for the O(1) and the CFS
schedulers, respectively.

The graph on the left illustrates that the O(1) sched-
uler appears to be performing a poly-balance. In most
cases, the first migration performed by O(1) matches the
number that is exactly needed for a fair global balance;
these results hold even as the imbalance (and the result-
ing number of processes that must be migrated) is varied.
In a few cases, significantly greater or fewer numbers of
processes are migrated, but these anomalies occur at un-
predictable points. We infer that the O(1) scheduler must
be using global information across all processors to de-
termine the correct number of processes to migrate.

The graph on the right illustrates that CFS migrates
a wide, unpredictable range of processes, usually more
than are required for a poly-balance. Thus, the first mi-
gration is usually too large and leaves the first source pro-
cessor with too small of a load; the underloaded source
processor must then migrate processes from other pro-
cessors to complete the global balance. This result cor-
roborates our initial result shown earlier in Figure 3 in

5

O(1): 1st CPU Migration

Imbalance
20 30 40 50 60 70 80 90

P
ro

ce
ss

es
 M

ig
ra

te
d

0

5

10

15

20

25

30
Actual
Poly−balance
Pair−wise

CFS: 1st CPU Migration

Imbalance
20 30 40 50 60 70 80 90

P
ro

ce
ss

es
 M

ig
ra

te
d

0

5

10

15

20

25

30

35

Actual Mean Poly−balance Pair−wise

Figure 6:First Migration: O(1) and CFS. The first graph shows the O(1) scheduler and the second the CFSscheduler. Each
graph shows the number of processes migrated between the first source and the target processor. The imbalance between thethree
loaded sources and the single target is varied along the x-axis; that is, [10 + x, 10 + x, 10 + x, 10].

which CFS performed 30 total migrations compared to
6 by the O(1) scheduler. Thus, we conclude that CFS is
not performing a correct poly-balance.

4.3 Time to Resolve and Detect?

Our next questions revolve around how long it takes a
scheduler to detect and respond to a load imbalance. We
start with a macro experiment that measures how long
the scheduler takes to completely resolve an imbalance
and move to micro experiments that measure how long
the scheduler takes to detect an imbalance.

The setup for our macro experiment is identical to
those in the previous section in which we vary the
amount of imbalance between multiple sources and sin-
gle target. We now measure how long it takes the sched-
uler to create a balance that is within 15% of optimal. For
example, given an ideal balance of [25, 25, 25, 25], the
balance [28, 22, 28, 22] is acceptable because the length
of each run queue is within 15% of optimal. From the
previous results, we expect O(1) will quickly find a bal-
ance using a poly-balance and CFS will likely take longer
using pairwise balances.

Figure 7 reports the amount of time the O(1) and CFS
schedulers take to find acceptable balances given a range
of initial imbalances. As expected, O(1) finds a balance
within seconds, even for very large imbalances. In com-
parison, CFS is quite slow to find a stable balance, requir-
ing nearly 9 s on average and 26 s for some workloads.

The large difference in time for O(1) versus CFS to
find a stable balance leads us to ask if the difference is
due to a better balancing policy or to faster imbalance
detection in O(1). Therefore, our next set of experiments
investigate how long it takes each scheduler to detect that
an imbalance exists and to begin reacting.

Our first micro experiment is designed to determine
whether a scheduler is work-conserving: is a processor
idle only if there are no eligible processes in the sys-
tem? In a work-conserving system, a newly-idle proces-
sor should immediately steal processes from busy CPUs.

To determine if the scheduler is work conserving, we

Imbalance
20 30 40 50 60 70 80 90

B
al

an
ce

 T
im

e(
se

c.
)

0

5

10

15

20

25

30
O(1)
CFS

Figure 7: Time to Resolve Imbalance. An imbalance
is considered resolved when each run queue is within 15% of
optimal. The imbalance between the three loaded sources and
the single target is varied along the x-axis; that is, [10+x, 10+

x, 10 + x, 10]

construct a workload with heavily loaded sources and
a single target ([40, 40, 40, 0]); the target becomes idle
after a uniformly random interval. This experiment is
repeated 25 times, each time measuring the interval be-
fore the target processor steals its first process. A work-
conserving policy will immediately migrate processes
and non-work conserving schedulers will not.

Harmony shows that, for the O(1) scheduler, the idle
target processor begins migrating processes after a single
millisecond of idle time; for CFS, migration always be-
gins in less than 1 ms. From these results we infer that
both CFS and O(1) are work conserving.

Our next experiment examines how long the system
takes to respond when one processor becomes relatively
underloaded, but not idle. Underloaded processors ef-
fectively reduce the performance of all the processes that
are assigned to more heavily loaded processors. A mul-
tiprocessor scheduler detects that a processor is under-
loaded by performing abalance checkbetween two pro-
cessors. Because each balance check incurs some cost,
schedulers are likely to need some heuristic about when
to perform this operation. We specifically want to know
the frequency of balance checks.

6

Time(s)
32.1 32.2 32.3 32.4 32.5 32.6

R
un

 Q
ue

ue
 L

en
gt

h

10

20

30

40

2nd

3rd
1st

Core 1
Core 2
Core 3
Core 4

O(1) Median(Max) Predictable
1st Interval 248 (11458) No
2nd Interval 64 Yes
3rd Interval 64 Yes
CFS Median(Max) Predictable
1st Interval 210.5 (9419) No
2nd Interval 256 Yes
3rd Interval 64 Yes

Figure 8: Imbalance Detection. The figure illustrates
the definition of the three detection intervals: interval 1 occurs
between when an imbalance is introduced and when the first
migration occurs; interval 2 is time between the first migration
and the second; interval 3 is between the second migration and
the third. The table reports those intervals (in milliseconds) for
O(1) and CFS.

The setup of this experiment is identical to the
previous one, except the load on the target pro-
cessor is reduced instead of completely eliminated
([40, 40, 40, 10]). Because the target processor is imbal-
anced with respect to each of the three source proces-
sors, it must migrate processes from all three and there
are three corresponding balance checks. The definition
of these intervals is illustrated in Figure 8.

We measure all three intervals to infer the detection
policy. If the balance check is based on an event related
to process activity (e.g., the check is performed whenever
a process exits the run queue), then we expect the first in-
terval to a be a small, fixed amount. On the other hand,
if the balance check is performed at some periodic, fixed
interval (e.g., the check is performed every 5 seconds),
then we expect the measured first interval to appear ran-
dom, since the load is decreased at a random point in
time. The longest recorded first interval should be close
to the period of the balance checks.

Figure 8 shows the median and maximum duration of
the first interval for the O(1) and CFS schedulers. These
results show that, for both schedulers, the first interval
is not fixed relative to the time at which the processor
became underloaded; thus, we infer that both schedulers
perform a balance check relative to some external timer.
The maximum duration we observed for this interval for
O(1) and CFS were 11 and 9 seconds, respectively.

The results for the second and third intervals are
shown in Figure 8 as well. For O(1), the second and third
intervals are fixed at 64 ms; for CFS, the second interval

usually follows after 256 ms and the third after 64 ms.
The implication of these results is that each scheduler
performs a periodic balance check, where the period is
effected by the likelihood of the imbalance. For a pol-
icy like this, the first interval is not predictable, but the
second and third intervals (measured from the last migra-
tion) are. The policy in CFS appears to be slightly more
sophisticated in that the period continues to shorten as
more imbalances are detected.

In summary, both O(1) and CFS are work-conserving
and perform a periodic balance check. In both, idle pro-
cessors are assigned eligible processes in about a mil-
lisecond. Imbalances that do not involve newly-idle pro-
cessors may not be detected for long periods of time
(roughly 10s); however, once an imbalance is detected,
both systems check the next processor relatively quickly
(in 64 or 256 ms). We find that O(1) often resolves
imbalances within seconds, whereas CFS takes much
longer (nearly 9 seconds on average). Because CFS and
O(1) have similar detection latencies, we attribute CFS’s
longer balance time to its process migration strategy.

4.4 Resolution of Intrinsic Imbalances?

Our next questions revolve around how load balancing
interacts with the general processor scheduling policy.
For example, a proportional-share scheduler should pro-
vide the same CPU allocation to each process with the
same scheduling weight; unfortunately, this can be dif-
ficult to achieve when there exists anintrinsic imbal-
ance(i.e., when the number of processes does not divide
evenly by the number of processors).

We begin by using Harmony to examine how O(1),
CFS, and BFS resolve intrinsic imbalances. One way
to achieve afair balance, or an even division of re-
sources across processes, is to frequently migrate pro-
cesses. However, fair balancing conflicts with providing
processor affinity, since frequent migrations mean fewer
consecutive process executions on the same processor.

To stress the decisions of each of the three schedulers
given workloads with intrinsic imbalances, we introduce
five identical processes for four processors; the experi-
ment is started with the load of [5, 0, 0, 0]. Thus, if each
process is allocated 80% of a processor, the policy is fair.

Figure 9 shows the average allocation each process re-
ceives over a 60 second interval for each of the three dif-
ferent schedulers. Figure 10 reports the corresponding
rate of migrations over time. The two figures show that
the three different schedulers behave significantly differ-
ent given intrinsic imbalances.

The O(1) scheduler gives a strong preference to affin-
ity over fairness. As shown in the top graph of Figure 9,
three processes are allocated an entire processor and the
remaining two are each allocated half a processor. Fig-
ure 10 supports the observation that few migrations are

7

O
(1

)
C

P
U

 %

50
60
70
80
90

100
C

F
S

C
P

U
 %

50
60
70
80
90

100

Sorted Processes
1 2 3 4 5

B
F

S
C

P
U

 %

50
60
70
80
90

100

Figure 9:Allocations with Intrinsic Imbalances. The
three graphs report the percentage of CPU allocated by O(1),
CFS, and BFS to each of five processes running on four proces-
sors. Each point represents a process’s average CPU alloca-
tion over one of the 25 runs of this experiment. The dashed line
represents the expected allocation given a perfect fair balance.

Time (sec.)
0 5 10 15 20 25 30

P
ro

ce
ss

 M
ig

ra
tio

ns

0
20
40
60
80

100
120
140
160

O(1)
CFS
BFS

Figure 10: Migration Timeline with Intrinsic Imbal-
ances. The graph shows the average number of processes
migrated per second over the lifetime of the experiment for the
O(1), CFS, and BFS schedulers.

performed after finding this acceptable balance.
The BFS scheduler strongly ranks fairness above pro-

cessor affinity. As shown in the bottom graph of Figure 9,
in all 25 runs of this experiment, each process receives
within 1% of the exact same allocation. This perfect fair
balance comes at the cost of 163 migrations per second.

Finally, the behavior of the CFS scheduler falls be-
tween that of the O(1) and BFS schedulers. As shown in
the middle graph of Figure 9, CFS allocates each process
between 65 to 100% of a CPU; as shown in Figure 10,
processes are migrated at a rate of approximately 23 mi-
grations per second.

We now delve deeper into the cause of these alloca-

Time

R
un

 Q
ue

ue
 L

en
gt

h

0

1

2

3

4

5
Core 1
Core 2
Core 3
Core 4

Time

R
un

 Q
ue

ue
 L

en
gt

h

0

1

2

3

4

5
Core 1 Core 2 Core 3 Core 4

Figure 11: Run Queue Timelines for Mixed CPU
Workloads. Each graph shows the run queue length for
each of the four cores given a workload with four heavy and
four light processes. The top graph illustrates the case where
the processes are statically balanced; the bottom graph illus-
trates a case with dynamic balancing.

tions by CFS. Figure 12 reports the amount of CPU al-
located to five processes on four CPUs in one particu-
lar run. The figure shows that processes E and D are
each allocated their own CPU for a long period of time
(between 35 and 65 seconds) while processes A, B, C
share the two other CPUs; then after 65 seconds, CFS
migrates process D, at which point processes A and E
are each allocated their own CPU. Across many runs, we
have found that CFS allocates, for long periods of time,
two CPUs to two processes and divides the remaining
two CPUs between three processes. In general, CFS is
more likely to migrate processes that have recently been
migrated. While this technique provides a nice compro-
mise between processor affinity and fair balancing, some
processes are migrated quite often: once a process begins
migrating it may continue for tens of seconds. These oft-
migrated processes suffer both in lost processor affinity
and in reduced allocations.

To summarize, given intrinsic imbalances, the O(1)
policy strongly favors processor affinity over fairness.
BFS has the exact opposite policy: intrinsic imbalances
are resolved by performing a process migration every
6ms on average. CFS’s policy falls somewhere in the
middle: it attempts to resolve intrinsic imbalances while
honoring processor affinity. This policy results in 85%
less migrations than BFS, but unfairly divides processors
amongst processes.

8

Time (sec.)
0 10 20 30 40 50 60

A

0
25
50
75

100

B

0
25
50
75

100

C

0
25
50
75

100

D

0
25
50
75

100

E

0
25
50
75

100

Figure 12:Allocation Timeline for CFS with Intrinsic
Imbalances. The five graphs report the amount of CPU
given over time to each of 5 processes, lettered A-E, running
on 4 CPUs with CFS. The y-axis is the percent of a CPU each
process is allocated. The dashed line is the expected allocation
for a perfect fair balance.

4.5 Resolution of Mixed CPU Workloads?

All of our previous experiments have examined homo-
geneous workloads in which every process had identical
characteristics and properties. For the remainder of this
paper, we turn our attention to understanding how O(1),
CFS, and BFS balance heterogeneous workloads. Load
balancing is more difficult with heterogeneous processes
because processes are no longer interchangeable. For ex-
ample, placing two CPU-bound processes on the same
processor is not the same as assigning two IO-bound pro-
cesses.

In this section, we first use Harmony to extract a
scheduler’s policy for balancing processes with different
CPU requirements. We then determine how this policy is
implemented by each scheduler. Finally, we examine the
effect of these policies on performance.

Given a workload with a mix of heavy and light CPU
processes, our first goal is to determine how each sched-
uler balances those heavy and light CPU processes across
processors. In an idealweighted balance, the aggregate
CPU demand is the same on each processor. To sim-
plify the task of identifying the ideal weighted balance,
we construct workloads such that a balance can only be
created by placing a single heavy and a single light pro-
cess on each processor. We use workloads of four heavy
processes (100% CPU-bound) and four light processes
(CPU requirements varying from 5 to 100%).

To determine how closely the dynamic balance chosen
by each scheduler matches the ideal weighted balance,

Concurrent Heavy Processes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Li
gh

t P
ro

ce
ss

 B
on

us

0
1
2
3
4
5
6
7
8
9

10

With
Without

Figure 14:Sticky Priority Bonuses in O(1). A single
light process (85% CPU) is run against a variable number of
heavy processes; the y-axis show the magnitude of the bonus
given to the light process. The line marked “Without” startsthe
experiment on a cold system. The line marked “With” starts the
experiment after warming the system by temporarily runninga
heavy lead of 16 processes.

we compare the run queues lengths for the two cases.
The first case is represented by the ideal: a run with the
processes statically balanced such that there is one heavy
and one light process per CPU. Even with the ideal bal-
ance, there exists variation in the run queue lengths at
each CPU over time. This variation is due both to the
light process sleeping at random intervals and how each
scheduler decides to allocate the CPU between the light
and heavy processes; capturing these non-subtle varia-
tions in run queue length is the point of constructing this
ideal static balance. For intuition, the top graph in Fig-
ure 11 shows the run queue lengths over 100ms for a
statically balanced heavy/light workload; each run queue
length varies between one and two.

The second case is the behavior of the scheduler when
it performs dynamic balancing. The bottom graph in Fig-
ure 11 shows an example of the run queue lengths when
the loads are dynamically balanced; in this case, each
run queue length varies between 0 and 4. To measure
how close the dynamic balance is to the ideal static bal-
ance, we compare the variance across the run queues.
The difference in the variance recorded during the static
and dynamic balanced experiments is normalized using
symmetric absolute percent error such that the worst pos-
sible match is represented by 100% and a perfect match
is assigned 0%.

The two graphs in Figure 13 show how well the O(1)
and CFS schedulers match the ideal weighted balance
for a variety of heterogeneous workloads. We begin by
focusing on the first graph, which shows the balance
achieved in the long term; in this case, each workload
is first run for 30 s to give the scheduler time to distribute
processes and then the run queue variance is measured
and reported for the next 30s.

The results in the first graph indicate that in the long
term both CFS and O(1) usually place processes such
that run queue variance is within 25% of the ideal place-
ment. We now discuss these two schedulers in detail.

9

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

R
un

 Q
ue

ue
 M

is
m

at
ch

0
10
20
30
40
50
60
70
80
90

100 O(1)
CFS

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

R
un

 Q
ue

ue
 M

is
m

at
ch

0
10
20
30
40
50
60
70
80
90

100

O(1)

CFS

Figure 13: Run Queue Match. Both graphs report the symmetric mean absolute percent error of the variance of the four run
queues using a dynamic balance performed by the O(1) or CFS scheduler, as compared to an ideal static balance. The first graph
examines the long-term results (30 seconds after a 30 secondwarm-up); the second graph examines the short-term results(one
second after a one second warm-up). In all cases, four heavy and four light processes are started on a single CPU; the amount of
CPU used by the light process is varied along the x-axis.

Time (sec.)
0 10 20 30 40 50 60

R
un

 Q
ue

ue
 M

is
m

at
ch

0

20

40

60

80

100

Figure 15: Losing Balance in CFS. This timeline illus-
trates that CFS finds the ideal weighted balance (between time
11 and 33), but then migrates processes and losses the balance.
The vertical lines indicate process migrations.

While the O(1) scheduler places some heterogeneous
workloads very fairly, it does not match the ideal place-
ment well for two regimes of workloads: for a light pro-
cess using 5-10% of the CPU or one using 65-90% of the
CPU. We have examined these cases in more detail and
found the following. In the low range(5-10%), we ob-
serve that heavy processes are divided across processors
evenly, but light processes are clustered in pairs. An ex-
tra light process per CPU results in an extra CPU demand
of 10% in the worst case and the O(1) scheduler appears
to view this an acceptable imbalance.

In the high range with a light process using 65 to 90%
of the CPU, we discovered that the light processes re-
ceive a much larger allocation than expected, once it has
been assigned to a particular CPU. To improve interac-
tivity, the O(1) scheduler gives priority-bonuses to pro-
cesses that are not CPU-bound; this causes light pro-
cesses to wait less in the run queue and alters the run
queue variance. We discovered that the priority-bonus
given to jobs that have been recently migrated is higher
due to a phenomena we refer to assticky bonuses. Specif-
ically, because the light process received too little of the
CPU in the past when the experiment was being initial-

ized, O(1) gives it more of the CPU in the present. These
sticky bonuses, and not the load balancing policy, cause
the mismatch between the run queues. Further analysis
confirms that the O(1) scheduler achieves weighted bal-
ances in the 65-90% light CPU range.

To better illuminate the behavior of sticky bonuses,
Figure 14 illustrates two different experiments: one in
which bonuses are sticky and one in which they are not.
In both experiments, a single light process (85% CPU)
is run against a variable number of heavy processes and
the magnitude of the bonus given to the light process is
reported. The line marked “Without” shows the base
case in which the experiment is started on a cold sys-
tem; in this case, the magnitude of the bonus increases
as the light process competes against more heavy pro-
cesses. The line marked “With” shows what occurs when
processes have a past history: in this experiment, the
system is warmed by having the light process compete
with a constant heavy lead of 16 processes; after these
16 heavy processes are stopped, the previous experi-
ment is repeated. The “With” line illustrates that priority
bonuses remain even after the load is reduced; thus, pro-
cesses maintain bonuses even after the conditions that
created the bonus cease to exist. Further experiments
(not shown) indicate that O(1) maintains bonuses after
migration as well.

In contrast to O(1), CFS consistently misses a
weighted balance by a more constant amount. Fur-
ther analysis reveals that CFS actively searches for a
weighted balance by continuously migrating processes
at a rate of 4.5 per second on average. When CFS finds
a weighed balance, it stops migrating processes for sev-
eral seconds. After this brief pause, it resumes migrating
processes again. This effect is illustrated in Figure 15,
which shows that the run queue variance exactly matches
that of the ideal case for periods of time (e.g., between 11

10

O(1)

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

H
ea

vy
 C

P
U

 A
llo

ca
tio

n

0
10
20
30
40
50
60
70
80
90

100

Long−term
Short−term

CFS

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

H
ea

vy
 C

P
U

 A
llo

ca
tio

n

0
10
20
30
40
50
60
70
80
90

100

Long−term
Short−term

BFS

Light CPU %
0 10 20 30 40 50 60 70 80 90 100

H
ea

vy
 C

P
U

 A
llo

ca
tio

n

0
10
20
30
40
50
60
70
80
90

100

Figure 16:CPU Allocations for Heavy Processes with O(1), CFS, and BFS.Each graph shows the percentage of CPU
given to the heavy processes; the allocations are normalized to that received in the ideal static balance. Results for both the short
and long-term balances are shown.

and 33 seconds in this run) and then differs significantly.
Therefore, CFS’s run queues alternate between being in
a weighted balance and being in flux, causing a roughly
25% mismatch on average.

We infer from these results that O(1) and CFS strive
for a weighted balance. O(1) allows some minor imbal-
ances for light processes. CFS also continues to search
for better balances even when it has found the best one.

4.5.1 Which Process to Migrate?

We next examine how O(1) and CFS find weighted bal-
ances. Specifically, we are interested in how these sched-
ulers pick a particular process to migrate.

Using the same experiment from the previous section,
we analyze the initial balance instead of the long-term
balance achieved. This analysis gives the scheduler one
second to find a balance, and then analyzes the run queue
variance of the following second. We then compare the
dynamically-balanced run queue variance with its ideal
static counterpart, as in the previous section.

We expect to see two possible implementations of a
weighted balance policy. In the first, the scheduler uses
its knowledge of the past behavior of each process to se-
lect one for migration. We call this implementationin-
formed selection. For example in our mixed CPU ex-
periment, informed selection would enable each target
processor to select a single heavy and a single light pro-
cess for migration. Informed selection should result in a
scheduler quickly finding a weighted balance and there-
fore the short and long-term balances should be roughly
the same.

A blind selection implementation ignores process
characteristics when selecting processes to migrate.
Blind selection schedulers are likely to perform several
rounds of trial-and-error migration before finding their
desired balance. The initial and long-term balances of
these schedulers would often be very different; this re-
sults in run queue graphs that are not similar.

The two graphs side-by-side in Figure 13 enable us to
compare the long-term and short-term results for the two
schedulers. For the O(1) scheduler, the short-term re-
sults match closely with the long-term results; therefore,

we infer that O(1) uses informed selection. However,
CFS’s short-term and long-term balances do not match
at all. Performing further analysis, we discovered that
CFS does not select the correct processes for migration
initially. Target processors often take two heavy or two
light processes instead of one of each. These proces-
sors occasionally take too many processes as well. From
these results we hypothesis that CFS uses a blind selec-
tion implementation.

4.5.2 Impact on CPU Performance?

Finally, we examine the performance implications of the
O(1), CFS, and BFS policies for handling mixed CPU
workloads. Using the previous workloads of four heavy
and four light processes, we report the relative CPU allo-
cation that the heavy processes receive with each sched-
uler relative to the ideal static layout; we focus on the
heavy processes because they suffer the most from load
imbalances. The three graphs in Figure 16 report the rel-
ative slowdowns given the three different schedulers.

The first graph in Figure 16 reports the slowdown for
heavy processes in both the short and long term with the
O(1) scheduler. This graph illustrates that when a heavy
process competes against a light process consuming less
than 60% of the CPU, the O(1) scheduler delivers nearly
identical performance to the heavy process as the ideal
static layout; however, heavy processes incur a signifi-
cant slowdown when competing against a process using
between 60 and 90% of the CPU. This degradation is
directly a result of the sticky bonuses described earlier:
even though the heavy and light processes are balanced
correctly, the O(1) scheduler gives a boost to the light
processes to account for the time in which they were
competing with many other processes on a single pro-
cessor. As expected, the impact of the sticky bonuses
wears off over the longer time period for some of the
workloads.

The second graph in Figure 16 reports results for CFS;
in the long term, CFS’s continuous migration policy
causes approximately a 10% reduction in performance
for the heavy processes. In the short term, CFS performs
slightly worse: its blind selection policy causes a 20%

11

performance degradation for heavy processes.
The third graph shows the relative slowdown for heavy

processes using BFS compared to an ideal static balance.
Because BFS does not have per-processor run queues,
this is the first metric we have shown for how BFS han-
dles heterogeneous workloads. These results show that
BFS balances processes such that they receive alloca-
tions very similar to those they would achieve with an
ideal static balance: within 4%. This balance is achieved
by performing an average of 375 migrations every sec-
ond; this disregard for processor affinity may have seri-
ous performance implications for some workloads.

To summarize, all three schedulers have a weighted
balance policy. O(1) uses informed selection to find a
weighted balance or a close proximity, but O(1)’s per
CPU policy of providing sticky bonuses results in severe
performance degradation for CPU-bound processes even
after migration. CFS continually searches for better bal-
ances even after it has found the most appropriate alloca-
tion; because weighted balances are discarded, it is un-
surprising that CFS uses blind selection when picking a
process to migrate. The performance cost of CFS’s con-
tinuous migration on heavy processes is relatively low (<

10%) since this policy ensures that CFS never spends too
long in the best or worst balance. Finally, BFS achieves
a near perfect weighted balance (within 4%) by aggres-
sively migrating processes.

4.6 Resolution of Priority Classes?

In our final set of experiments, we examine policies for
scheduling heterogeneous workloads with mixed prior-
ity classes. Like the previous heterogeneous workload,
these workloads are difficult to balance because pro-
cesses are no longer interchangeable. We are again inter-
ested in discovering how these processes are distributed
amongst processors, how this distribution takes place,
and the performance cost of these policies.

The experiments we use are similar to the mixed CPU
requirements experiments except we replace the heavy
and light processes with high and low priority processes,
varying the differences in priority from 2-38. Due to
space constraints, we include only a summary of the re-
sults from these experiments. We find that O(1), CFS,
and BFS all divide the four high priority processes evenly
across the four processors. However, each scheduler han-
dles the low priority processes differently.

The O(1) scheduler clusters low priority processes to-
gether on a few processors. When a large priority differ-
ence exists between processes, the O(1) scheduler con-
tinuously migrates groups of low priority processes (1.5
migrations per second). The performance impact of the
O(1) policy is most evident for small differences in pri-
ority, in which case the performance of the high priority
process may be degraded by up to 20%.

Priority Difference
0 5 10 15 20 25 30 35 40

N
or

m
. M

ig
ra

tio
ns

0
5

10
15
20
25
30
35
40
45

High Priority
Low Priority

Figure 17:Migrations for Mixed Priorities with BFS.
The graph shows the number of normalized migrations per sec-
ond for the four high and four low priority processes in the
workload. The difference in priority between the two classes is
varied along the x-axis. To fairly compare high and low pri-
ority processes, migrations are normalized by dividing theraw
count by their CPU allocation (in seconds).

CFS divides low priority processes evenly amongst
processors, provided the priority difference is small. As
priority differences increase, the low priority processes
tend to be clustered together on a few processors. Simi-
lar to its policy for handling processes with mixed CPU
requirements, CFS continuously migrates processes and
pauses migration briefly when it finds an acceptable bal-
ance. CFS’s blind selection causes up to a 75% perfor-
mance drop for high priority processes in the short term,
but less than 4% in the long term.

In contrast to previous experiments, BFS provides
some targeted processor affinity for mixed priority work-
loads. When the priority difference between processes
is small (2 to 6), BFS compensates for the small alloca-
tions given to low priority processes by migrating them
less and providing more processor affinity (Figure 17).
In this range, low priority processes are about 1.9 times
more likely to execute on the same processor than the
high priority processes. In contrast, when the priority
difference is large (16 to 38), low priority processes are
roughly 2.3 times more likely to run on a different pro-
cessor when compared to high priority processes. These
results strongly suggest that BFS provides differentiated
processor affinity based on process priorities. BFS’s pol-
icy of clustering low priority processes can result in peri-
odic reductions of CPU allocations for high priority pro-
cess of up to 12%.

5 Related Work

Several studies have applied policy extraction techniques
to CPU schedulers [12, 38, 39]. Hourglass is a tool
that runs synthetic, instrumented workloads to detect
context switch times, timer resolutions, and low-level
kernel noise [38]. This tool deals strictly with per-
processor scheduling policy, whereas Harmony specifi-

12

Does the scheduler perform load balancing across processors? (§4.1)
For all three, yes.

Does it contain mechanisms for maintaining affinity?(§4.1)
O(1) pays the strongest attention to affinity; BFS is the weakest; CFS is in-between.

How does the scheduler determine how many processes to migrate? (§4.2)
O(1) uses global information and performs a minimal number of migrations; CFS uses a randomized pairwise
strategy, hence performing more migrations. BFS has a centralized queue and constantly migrates processes.

How long does the scheduler take to get to a stable balance?(§4.3)
O(1) is relatively quick (due to its minimal migrations); CFS takes an order of magnitude longer.

How long before the scheduler detects an imbalance?(§4.3)
If idle, immediately; all schedulers are work-conserving and thus steal work when idle. If non-idle, O(1) and CFS
use a periodic check to detect imbalances, which increases in frequency when some imbalance has been detected.

When there is an intrinsic imbalance, how does the schedulerreact?(§4.4)
O(1) is most unfair, and thus can lead to notable imbalances across processes while maintaining affinity; CFS
moves processes somewhat frequently and is more fair, at thecost of affinity. BFS is most fair,
constantly moving processes across all CPUs, also at the cost of affinity.

With heterogeneous workload (heavy vs. light CPU), how are processes migrated?(§4.5)
O(1) does a good job of balancing heavy and light processes, but some scheduling state is maintained across
migrations (perhaps inadvertently). CFS continually tries new placements, and thus will migrate out of good
situations (even though unnecessary). BFS and its central queue once again is fair and does well.

With heterogenous workloads (high vs. low priorities), howare processes migrated?(§4.6)
All schedulers do well with high-priority processes, dividing them evenly amongst processors. BFS seems to
provide targeted processor affinity to mixed-priority workloads.

Table 1:The Load-balancing Policies Extracted by Harmony.

cally addresses multiprocessor scheduling.

During the development of FreeBSD’s ULE CPU
scheduler, the developers also created a synthetic work-
load simulation tool called Late [39]. Developers used
Late’s synthetic workloads to measure timer resolutions,
fairness, interactivity, and basic performance. Late does
not include measurements of run queue lengths or pro-
cessor selection, limiting its scope of analysis.

The LinSched tool runs the CFS scheduler in a
userspace simulator [12]. Researchers and kernel devel-
opers can use this tool to observe the behavior of CFS
and evaluate new scheduling policies. The goals of Har-
mony are quite similar to those of LinSched; only the ap-
proach differs. Harmony is designed to be generally ap-
plicable to a variety of operating systems, whereas Lin-
Sched is primarily focused on CFS.

Other systems have also been the focus of policy
extraction. Semantic block-level analysis is a tech-
nique designed to analyze the behavior of journaling
file systems [37]. Shear is a tool that measures the
characteristics of RAIDs [18]; by generating controlled
I/O request patterns and measuring the latency, Shear
can detect a broad range of storage properties. Sim-
ilar microbenchmarking techniques have been applied
to SCSI disks [45], memory hierarchies [46], and TCP
stacks [35].

Application and microbenchmark-driven workloads
have been used to analyze system-call behavior [25, 33,
42]. These analyses are used to enable accurate simula-

tions, debug problems, and optimize performance.

6 Conclusion
Multicore systems are now commonplace, but multipro-
cessor scheduling is still under active development. In
this paper, we presented Harmony, a system that enables
detailed analysis of scheduling behavior. Our specific re-
sults are summarized in Table 1; our more general result
is that a tool such as Harmony is a necessary and impor-
tant piece in the scheduling developer’s toolkit.

References
[1] PCLinuxOS 2010 Edition is now available for download.

http://www.pclinuxos.com/?p=579.

[2] ZenWalk 6.4 is Ready. http://www.zenwalk.org/-
modules/news/article.php?storyid=107.

[3] CyanogenMod Android Rom. http://www.cyanogenmod.com/-
home/4-1-6-is-here-with-100-more-jet-fuel/comment-page-1,
2009.

[4] Operating system share by groups for sites in all locations.
https://ssl.netcraft.com/ssl-sample-report//CMatch/osdv all, Jan-
uary 2009.

[5] Top500 operating system family share.
http://top500.org/stats/list/36/osfam, November 2010.

[6] A SANOVIC, K., BODIK , R., CATANZARO , B., GEBIS, J. J.,
HUSBANDS, P., KEUTZER, K., PATTERSON, D. A., PLISHKER,
W. L., SHALF, J., WILLIAMS , S. W.,AND YELICK , K. A. The
Landscape of Parallel Computing Research: A View from Berke-
ley. Tech. Rep. UCB/EECS-2006-183, University of California,
Berkeley, Dec 2006.

[7] BAUMANN , A., BARHAM , P., DAGAND , P.-E., HARRIS, T.,
ISAACS, R., PETER, S., ROSCOE, T., SCHUPBACH, A., AND
SINGHANIA , A. The Multikernel: A New OS Architecture for

13

Scalable Multicore Systems. InSOSP ’09(Big Sky, MT, October
2009).

[8] BLAGODUROV, S., ZHURAVLEV, S.,AND FEDOROVA, A. Con-
tention Aware Scheduling on Multicore Systems.ACM Transac-
tions on Computer Systems 28, 4 (December 2010).

[9] BOVET, D., AND CESATI, M. Understanding the Linux Kernel,
Third Edition, 3rd ed. O’Reilly Media, Inc., 2005.

[10] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y.,
PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZEL-
DOVICH, N. An Analysis of Linux Scalability to Many Cores. In
OSDI ’10(Vancouver, BC, December 2010).

[11] BRUNING, M. A Comparison of Solaris, Linux, and
FreeBSD Schedulers. http://www.opensolaris.org/os/article/
2005-10-14a comparisonof solaris linux and freebsdkernels/,
or just use Google to search for the title, October 2005.

[12] CALANDRINO , J., BAUMBERGER, D., TONG L I , J. Y., , AND
HAHN , S. Linsched: The linux scheduler simulator. InPDCCS
’08 (Sept 2008), pp. 171–176.

[13] CANTRILL , B., SHAPIRO, M. W., AND LEVENTHAL , A. H.
Dynamic Instrumentation of Production Systems. InUSENIX ’04
(Boston, MA, June 2004), pp. 15–28.

[14] CAPRITA, B., CHAN , W. C., NIEH, J., STEIN, C., AND
ZHENG, H. Group ratio round-robin: O(1) proportional share
scheduling for uniprocessor and multiprocessor systems. In
USENIX ’05(2005), pp. 337–352.

[15] CAPRITA, B., NIEH, J., AND STEIN, C. Grouped distributed
queues: distributed queue, proportional share multiprocessor
scheduling. InPODC ’06(2006), pp. 72–81.

[16] CHANDRA , A., ADLER, M., GOYAL , P.,AND SHENOY, P. Sur-
plus fair scheduling: a proportional-share cpu schedulingalgo-
rithm for symmetric multiprocessors. InOSDI’00(2000).

[17] CORBET, J. Ks2009: How google uses linux.LWN.net(Oct
2009).

[18] DENEHY, T. E., BENT, J., POPOVICI, F. I., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Deconstructing Stor-
age Arrays. InArchitectural Support for Programming Lan-
guages and Operating Systems (ASPLOS XI)(Boston, MA, Oc-
tober 2004), pp. 59–71.

[19] DUDA , K. J., AND CHERITON, D. R. Borrowed-virtual-
time (bvt) scheduling: supporting latency-sensitive threads in a
general-purpose scheduler. InSOSP ’99(1999), pp. 261–276.

[20] EIGLER, F. C., PRASAD, V., COHEN, W., NGUYEN,
H., HUNT, M., KENISTON, J., AND CHEN, B. Ar-
chitecture of systemtap: a Linux trace/probe tool.
http://sourceware.org/systemtap/archpaper.pdf, July 2005.

[21] FEDOROVA, A., SELTZER, M., SMALL , C., AND NUSSBAUM,
D. Performance of Multithreaded Chip Multiprocessors And Im-
plications For Operating System Design. InUSENIX ’05(Ana-
heim, CA, April 2005).

[22] GOUGH, C., SIDDHA , S., AND CHEN, K. Kernel Scalability –
Expanding the horizon beyond fine grain locks. InLinux Sympo-
sium(2007), vol. 1, pp. 153–166.

[23] GOYAL , P., GUO, X., AND V IN , H. M. A hierarchial cpu
scheduler for multimedia operating systems. InOSDI ’96(1996),
pp. 107–121.

[24] HOFMEYR, S., IANCU, C.,AND BLAGOJEVIĆ, F. Load balanc-
ing on speed. InPPoPP ’10(2010), pp. 147–158.

[25] JOUKOV, N., TRAEGER, A., IYER, R., WRIGHT, C. P.,AND
ZADOK , E. Operating system profiling via latency analysis. In
OSDI ’06 (2006), pp. 89–102.

[26] KAZEMPOUR, V., FEDOROVA, A., AND ALAGHEBAND , P. Per-
formance implications of cache affinity on multicore processors.
In Euro-Par ’08(2008), pp. 151–161.

[27] KOLIVAS , C. BFS – The Brain F*** Scheduler.
http://ck.kolivas.org/patches/bfs/sched-BFS.txt.

[28] KUMAR , A. Multiprocessing with the completely fair scheduler.
IBM developerWorks(Jan 2008).

[29] L I , T., BAUMBERGER, D., AND HAHN , S. Efficient and scalable
multiprocessor fair scheduling using distributed weighted round-
robin. InPPoPP ’09(2009), pp. 65–74.

[30] MCDOUGALL , R., AND MAURO, J. Solaris Internals: Solaris
10 and OpenSolaris Kernel Architecture, 2nd ed. Sun Microsys-
tems Press, 2007.

[31] MOLINAR , I. CFS Scheduler.
Linux 2.6.36/Documentation/scheduler/sched-design-CFS.txt.

[32] MOLINAR , I. Goals, Design and Implemen-
tation of the new ultra-scalable O(1) scheduler.
Linux 2.6.18/Documentation/sched-design.txt.

[33] NARAYANASAMY , S., PEREIRA, C., PATIL , H., COHN, R.,
AND CALDER, B. Automatic logging of operating system effects
to guide application-level architecture simulation. InProceedings
of the joint international conference on Measurement and model-
ing of computer systems(2006), SIGMETRICS ’06/Performance
’06, pp. 216–227.

[34] PABLA , C. S. Completely fair scheduler.Linux Journal(Aug
2009).

[35] PADHYE , J., AND FLOYD , S. Identifying the TCP Behavior of
Web Servers. InSIGCOMM ’01(San Diego, CA, August 2001).

[36] PIGGIN, N. Less Affine Wakeups.
http://lwn.net/Articles/124982/, Feb. 2005.

[37] PRABHAKARAN , V., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Analysis and Evolution of Journaling File Sys-
tems. InUSENIX ’05(Anaheim, CA, April 2005), pp. 105–120.

[38] REGEHR, J. Inferring Scheduling Behavior with Hourglass. In
FREENIX ’02(Monterey, CA, June 2002).

[39] ROBERSON, J. Ule: a modern scheduler for freebsd. In2nd
USENIX Conference on BSD(2003).

[40] SOLOMON, D. A. Inside Windows NT, 2nd ed. Microsoft Pro-
gramming Series. Microsoft Press, May 1998.

[41] TORRELLAS, J., TUCKER, A., AND GUPTA, A. Evaluating the
Performance of Cache-Affinity Scheduling in Shared-Memory
Multiprocessors.Journal of Parallel and Distributed Computing
24 (1995), 139–151.

[42] TRAEGER, A., DERAS, I., AND ZADOK , E. Darc: dynamic
analysis of root causes of latency distributions. InSIGMETRICS
’08 (2008), pp. 277–288.

[43] TUCKER, A., GUPTA, A., AND URUSHIBARA, S. The Impact
of Operating System Scheduling Policies and Synchronization
Methods on the Performance of Parallel Applications. InSIG-
METRICS ’91(San Diego, CA, May 1991).

[44] VASWANI , R., AND ZAHORJAN, J. The Implications of Cache
Affinity on Processor Scheduling for Multiprogrammed, Shared
Memory Multiprocessors. InSOSP ’91(Pacific Grove, CA, Oc-
tober 1991).

[45] WORTHINGTON, B. L., GANGER, G. R., PATT, Y. N., AND
WILKES, J. On-line extraction of scsi disk drive parameters. In
SIGMETRICS ’95/PERFORMANCE ’95(1995), pp. 146–156.

[46] YOTOV, K., PINGALI , K., AND STODGHILL , P. Automatic mea-
surement of memory hierarchy parameters. InSIGMETRICS ’05
(2005), pp. 181–192.

[47] ZAHORJAN, J., LAZOWSKA, E.,AND EAGER, D. The Effect of
Scheduling Discipline on Spin Overhead in Shared Memory Par-
allel Processors.IEEE Transactions on Parallel and Distributed
System 2, 2 (April 1991), 180–198.

14

	TechReportCover1707
	1707

