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ABSTRACT
We develop a reuse distance/stack distance based analytical
modeling framework for efficient, online prediction of cache
performance for a range of cache configurations and replace-
ment policies LRU, PLRU, RANDOM, NMRU. Such a pre-
dictive framework can be extremely useful in selecting the
optimal parameters in a dynamic reconfiguration environ-
ment that performs power-shifting or resource reallocation
through cache partitioning.

Our framework unifies existing cache miss-rate prediction
techniques such as Smith’s associativity model, Poisson vari-
ants, and hardware way-counter based schemes. We also
show how to adapt way-counters to work when the number
of sets in the cache changes.

We propose a novel low-overhead hardware mechanism to
estimate reuse distance/stack distance distributions using a
combination of set-sampling and time-sampling. This can be
used even in cases where using way-counters is not possible,
e.g. RANDOM/NMRU replacement policies.

Categories and Subject Descriptors
C.0 [General]: Modeling of computer architecture

; C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance

Keywords
Cache, Stack Distance, Reuse Distance, Replacement poli-
cies, LRU, PLRU, RANDOM

1. INTRODUCTION
Processor caches are critical components of the memory

hierarchy since they significantly boost performance by ex-
ploiting locality to keep frequently-accessed data on-chip.
Large caches reduce miss-rates but are costly and burn power.

Cache performance is workload dependent and phase depen-
dent even within the same workload. A number of studies
have considered power-efficient performance by dynamically
placing caches in low-power mode [14, 3, 12] or improved
performance by better resource allocation through dynamic
partitioning [40, 31]. In this work we study the problem
of developing efficient online techniques for predicting cache
miss-rates for possible target configurations. We are particu-
larly interested in last-level caches which, being large in size,
offer a lot of good/missed opportunities for reconfiguration.

Our analysis is motivated by two foundational works: Matt-
son’s stack distance characterization [25] (also used later as
reuse distance [11, 6]) and Smith’s associativity model [35,
16] for LRU caches. We develop an alternate workload char-
acterization (Section 3) that conceptualizes traces as func-
tions and allows succinct definitions for two locality metrics:
unique reuse distance (numerically same as stack distance)
and absolute reuse distance. We then develop a general
framework that has two components: a cache-hit function
(Section 4) and average per-set locality metrics (Section 5).
Using cache-hit functions we demonstrate how our frame-
work can be used to predict cache miss-rates for four popular
replacement policies: LRU, RANDOM, NMRU, PLRU.

A hardware technique for predicting cache miss-rates for
changed associativity uses way-counters [39]. We show that
their computational efficiency is due to the number of sets
being fixed (Section 6.2). However, this is also their limita-
tion since they can predict only for changed associativities
not changed number of sets. Moreover they work only for
LRU,PLRU [17] and are not applicable to other important
policies like RANDOM,NMRU that can also be predicted
well using reuse information (Sections 7, 8).

Allowing for changes in the number of cache sets requires
re-computing per-set locality metrics. The reuse distance/stack
distance characterization of a trace is lossy (Section 3). Since,
in general, the original trace cannot be retrieved from the
distribution, we have no choice other than to convert the
existing distribution directly to one for a cache with a dif-
ferent number of sets. This holds even if an offline analysis
is considered. However, a binomial transformation can be
used to achieve the conversion provided a sufficient amount
of the tail of the distribution is available (Section 6.3).

The reuse distance/stack distance distribution is very long
tailed and truncating it can cause significant errors (Section
5). This poses problems in online estimation, as for example,
with way counters (Section 5). We overcome this problem
in our proposed hardware-based estimation technique (Sec-
tion 10) using set-sampling [15, 29, 18, 42] to reduce the



PPPPPPPsize
A

2 4 8 16 32

2MB 214 213 212 211 210

4MB 215 214 213 212 211

8MB 216 215 214 213 212

16MB 217 216 215 214 213

Table 1: Relation between number of sets (S) and
associativity (A) for different cache configurations.
Way-counters can predict for at most 3 of 19 possible
target configurations at any time.

maximum distance that needs to be tracked.
The major contributions of our work are:

1. We describe a unified framework for analytically pre-
dicting cache-miss rates using reuse distance/stack dis-
tance distributions for 4 different replacement policies.
At a high level, our framework consists of the following
steps:

(a) Measure or estimate unique reuse dis-
tance/stack distance distribution from the
access stream (Section 10).

(b) Compute per-set reuse distance distribution
(Section 5).

(c) If not LRU, compute absolute distance dis-
tribution (Section 3).

(d) Compute cache hit-functions and miss-rates
for the particular replacement policy (Sec-
tions 4,6,7,8,9).

2. We show that Smith’s associativity model [35, 16] for
LRU caches is a special instance of our framework (Sec-
tion 6).

3. We show that Cypher’s Poisson model [9, 10] for LRU
caches is a special instance of our framework and fur-
ther extend it to piecewise-linear approximations (Sec-
tion 6.1).

4. We show that the traditional hardware way-counter
based prediction [39] for varying associativity is a spe-
cial instance of our unified framework (Section 6.2).

5. We show how way-counter data may be transformed to
apply to caches with a different number of sets. (Sec-
tion 6.3)

6. We propose a novel hardware scheme for efficient on-
line estimation of reuse distance/stack distance distri-
butions that can be used even in cases where way-
counters are not applicable, such as changes in the
number of sets (Section 10).

We evaluate our analyses using address traces for com-
mercial workloads [2] obtained from a full-system simulator
built using GEMS [24]. Our simulated system has 8 cores
and a 16MB 32-way last-level cache. Address traces as seen
by the last-level cache are collected. We predict miss-rates
for a range of cache organizations spanning sizes 2MB-16MB

and 2-way to 32-way set-associativity. Table 1 shows the
studied configurations. For evaluating our miss-rate predic-
tions we run the traces through a standalone cache simulator
(that does not model timing) and compare measured against
predicted metrics.

We assume uniformity in distribution of accesses to cache
sets. While the conventional index mapping through bit
selection may not result in uniformity, simple XOR-based
hashed functions such as those in modern processor caches
[21] can enhance this. The uniformity assumption allows
application of the Binomial model for our analysis and use
of uniform set-sampling techniques.

2. RELATED WORK
Characterizing cache behavior using stack distances (also

known as reuse distances or gap) is well known [11, 6, 35,
16, 9, 10, 23, 34, 44]. Analyses can be viewed as being in
one of 3 categories: offline, online, and mixed.

In offline algorithms, stack distances are computed offline
from an available trace. Computation time required to de-
termine the distribution can be reduced through efficient al-
gorithms [4] or by approximate analysis [44]. Shi, et al. [34]
perform single-pass stack simulation to project CMP cache
performance and to study the impact of data replication for
various L2 cache configurations. Online determination of the
stack distance distribution cannot directly reuse techniques
from offline methods due to tight constraints on computa-
tional state and complexity.

Mixed algorithms deal with efficient online trace collection
and offline processing. Tam, et al. [41] use hardware mech-
anisms for address sampling and post-processing software
for computing stack distance distributions. Since distribu-
tion estimation and hit-rate computation is offline, it cannot
react to workload changes in real time.

Online algorithms deal with all the steps of trace collec-
tion, distribution generation and hit/miss-rate computation
online. These steps may be combined together to compute
the hit/miss-rate. Agarwal, et. al [1] propose an analyti-
cal cache model that uses a binomial model and metrics for
time-average of total unique number of accesses but predict-
ing miss-rates for set-associative caches is difficult.

Suh, et al. [40], Qureshi, et al. [31] propose mechanisms
for partitioning of shared caches (L2) among competing pro-
cesses using way counters. LRU caches maintain the stack
property per-set and can be viewed as having S stacks, each
of depth A [25, 26]. Way-counters maintain a counter per
logical stack position, not per physical way. For every access
that hits in some set with physical way number a, the logical
position l corresponding to a is determined. This essentially
involves determining the position in a sorted list of length
A ordered by access time. Suh, et al. [39] show how to de-
termine the sorted position in hardware using multiplexers.
This paper also proposes set counters in LRU order, with
each set tracking accesses to a group of sets. We discuss
way counter and set counter limitations in Sections 6.2 and
5 respectively.

Cypher proposes methods [9, 10] for online estimation of
stack distances using hash tables. In that work, the effective
distance to be tracked is reduced using filter fraction met-
rics which are then applied to a Poisson prediction model.
However, computing filter fractions themselves are difficult,
require additional logic and could be subject to approxima-
tions depending on available hardware state.



We propose an additional online scheme that can be used
for efficient prediction of cache performance. Throughout
the paper we compare and contrast this new approach with
that using way counters. In contrast to Cypher’s approach,
the new scheme uses sampling of (possibly non-contiguous)
cache sets to reduce the effective distance, does not require
any complex filter logic, and uses Bloom filters [7] for com-
pact representation of sets.

The Binomial model has been successfully used to analyze
cache behavior for other applications. Stone, et al. [37],
Falsafi, et al. [13] use binomial probability models to model
cache reload transients due to context switches based on the
footprints of the competing programs and cache size. Other
models, e.g. Markov models have also been used to analyze
the behavior of context switch misses [22].

A different classification of analyses can be based on the
nature of metrics studied. Reineke, et al. [32] prove rela-
tions on best and worst-case bounds of cache performance
for a number of replacement policies. Our work, in contrast,
studies average case behavior.

3. MEASURES OF LOCALITY
A central contribution of this work is to conceptualize a

trace as a function, rather than as a sequence of addresses.
This allows succinct representations for other concepts de-
scribed here . Let B denote the domain of addresses. A
trace is a bijective function T : N 7→ B × N ∪ {0} with the
following restrictions:

1. T (i) = (x,m), T (j) = (x,m′), i < j =⇒ m < m′.

2. T (i) = (x,m),m > 0 =⇒ ∃j < i, T (j) = (x,m− 1).

Intuitively, it can be thought of as mapping natural num-
bers to tuples (x,m) where x identifies the addresses and
m identifies its repetition number. T can be constructed
from a sequence of addresses by mapping positions in the
sequence to consecutive natural numbers and addresses to
tuples. The first occurrence of address x in the sequence is
represented by (x, 0).

Let t = T−1 denote the inverse function. t(x,m) denotes
the position of the mth occurrence of address x in the trace.
We now introduce a few more definitions.

Reuse Interval: The reuse interval (RI) is defined
only when m > 0 and denotes the portion of the trace en-
closed between the mth and (m− 1)th occurrence of x. For-
mally, RI(x,m) =(

{(z,m′)|t(x,m− 1) < t(z,m′) < t(x,m)} if m > 0

undefined otherwise

Unique Reuse Distance: This denotes the total num-
ber of addresses between two occurrences of the same ad-
dress in the trace. Thus,

URD(x,m) =

(˛̨̨
{z|(z,m′) ∈ RI(x,m)}

˛̨̨
if m > 0

∞ otherwise

Numerically, this is 1 less than Mattson’s much earlier stack
distance [25]. But we prefer to use this definition as it is not
constrained by the notion of stack.

Absolute Reuse Distance: This denotes the total num-
ber of positions between two occurrences of the same address

Figure 1: Schematic diagram showing relation be-
tween dddk(t) and dddk−1(T ). Possible URDs for accesses
in each sub-interval are shown in red.

in the trace. Thus, ARD(x,m) =(˛̨̨
RI(x,m)

˛̨̨
= t(x,m)− t(x,m− 1)− 1 if m > 0

∞ otherwise

3.1 Reuse Distance Distributions
Our study is concerned with average-case behavior. So in-

stead of focusing on each individual point in T , we character-
ize it using probability vectors that reflect average/expected
distributions.

The unique reuse distance distribution of trace T is
a probability distribution that we denote by row vector rrr(T )
such that the kth component,
rrrk(T ) = P (URD(x,m) = k), ∀(x,m) ∈ range(T )
The expected absolute distance distribution of trace

T is a row vector that we denote by ddd(T ) such that the kth

component,
dddk(T ) = E(ARD(x,m)|URD(x,m) = k), ∀(x,m) ∈ range(T )
In later analysis it will be useful to know the average abso-
lute reuse distance if the unique reuse distance is known.

It is obvious that ARD(x,m) ≥ URD(x,m), ∀x,m. It
then follows that dddk(T ) ≥ k, ∀k such that rrrk(T ) > 0. Also,
ddd0(T ) = 0. We now show how ddd(T ) can be approximately
computed given rrr(T ).

Figure 1 shows a schematic of a trace and organization of
URDs within a reuse interval for some address x. z0, z1,...zk

denote distinct addresses. We want to emphasize that this
is just a conceptual tool to compute the estimated distance
and does not constrain the actual permutation of addresses
in a particular reuse interval. The immediate next access
after reference address x must be something other than x
(otherwise the reuse interval would immediately terminate
with k = 0). Between this first address z0 and the next
different address z1, the only possible URDs of accesses must
be 0. Between z1 and z2, the only possible URDs can be 0
and 1. Extending this reasoning till zk−1 and zk we realize
that dddk(T ) and dddk−1(T ) differ only in the last sub-sequence
which consists of a run of accesses with URDs in {0, 1, .., k−
1}. The length of this run can be estimated as the expected
number of trials to success in a geometric distribution with
success probability

P∞
i=k rrri(T ).

We thus arrive at the following recurrence:

ddd0(T ) = 0

dddk(T ) = dddk−1(T ) +
1P∞

i=k rrri(T )
(1)



Figure 2: Actual vs estimated ddd(T ) per set for oltp
with a 4MB 32-way cache. ddd(T ) depends on S but is
independent of A.

In the context of cache performance, the vectors rrr and
ddd capture information about temporal locality. They are
workload characteristics and independent of the cache con-
figuration or other properties of the hardware platform on
which the workloads are run.

Figure 2 shows actual vs estimated values for ddd(T ) using
recurrence 1 with an estimate of rrr(T ) on a per-set basis (see
Section 5).

The characterization rrr(T ) of T is lossy in the sense that
in general, T cannot be recovered from rrr(T ) even upto per-
mutation of entity identifiers. The proof is simple: consider
two traces TA and TB such that they have disjoint sets of en-
tities and different values of reuse metrics. Let TAB denote
a new trace formed from concatenating, in order, sequences
represented by TA and TB . This operation is not commuta-
tive, that is, TAB and TBA are distinct, yet have the same
values for the reuse metrics. So the reverse mapping from
rrr(T ) to T is not unique. The argument can be extended to
show that any trace characterization using position-agnostic
metrics must be lossy.

4. CACHE HIT FUNCTIONS
Traditionally, cache studies focus on the miss-rate because

of its huge impact on performance. Although our analyses
compute the hit-rate h, it can be trivially converted to the
miss-rate θ using the relation θ = 1− h.

In our study, caches are characterized by the number of
sets S, associativity A, and replacement policy. We assume
a fixed line size of 64 bytes. Table 1 shows the relation
between S, A and cache size for the configurations we study.
Given a cache organization (S,A, policy) and a trace T , our
goal is to determine a vector φφφ(rrr(T ), S, A, policy) such that
the expected hit-rate for the trace, h = rrr · φφφ. The idea
is to characterize workload traces by rrr and caches by φφφ so
that the effect on hit-rate for changes in traces or cache
configurations can be readily estimated.

We call φφφ the cache hit function. The value of the kth

component, φφφk is the conditional probability of a hit for ac-
cesses x such that URD(x,m) = k where m is the repetition
count for x at that point in the trace when the access hap-
pens. φφφk monotonically decreases with k. This is because
for the reference address not to have been evicted after ac-
cesses involving k unique elements, it must not have been
evicted after accesses involving k − 1 unique elements and
anything following that. If there are no intervening accesses
(k = 0), the access must be a hit. Accesses hitherto never

Figure 3: Representative hit-rate functions for an
8-way cache with different replacement policies but
with the same trace and number of sets.

seen (k = ∞) must miss. So,

φφφk =

8><>:
1 if k = 0

≤ φφφk−1 if k ≥ 1

0 at k = ∞
(2)

For a set-associative LRU cache with associativity A, it
is well known that all accesses with addresses re-appearing
with less than A unique intervening elements must hit and
all other accesses must miss. This leads us to the following
characterization of the LRU hit-rate function.

φφφk(rrr(T ), S, A, LRU) =

(
1 if 0 ≤ k < A

0 if k ≥ A
(3)

Cache hit functions for other replacement policies are not
so straight-forward to determine. LRU is typically not im-
plemented in real caches for A > 4 due to hardware complex-
ity. Figure 3 shows representative characteristic functions
for commonly implemented replacement policies.

Two points may be noted here: first, that φφφ may not be
independent of rrr for different replacement policies. Caches
that employ LRU replacement policies have φφφ that are in-
dependent of rrr. As we shall show later, caches employing
RANDOM replacement policy depend on ddd, while caches
employing PLRU policy may need even more information.
The goal then is to identify aspects of φφφ that are trace-
dependent so that the particular metrics can be computed
and plugged into the equations such that hit-rate predictions
can be readily made.

The second point is that while replacement policies for set-
associative caches are based on per-set behavior, the earlier
definitions of locality metrics do not make this explicit to
prevent limiting their scope of applicability. Changing the
number of sets in the cache will change the access trace each
cache set will observe and will hence change the values of lo-
cality metrics. So we extend these definitions to include the
number of sets S. rrr(T, S) denotes the unique reuse distribu-
tion of the sub-sequence of T that a single set in the cache
observes on average. ddd(T ) is adapted to ddd(T, S) similarly.

In view of these considerations we write

h(T, S,A, policy) = rrr(T, S) ·φφφ(rrr(T ), S, A, policy) (4)

Henceforth, for brevity of notation, we will omit specifying
one or more parameters when their values are clear from the
context.



Figure 4: Actual vs estimated hit-rate function for
oltp with LRU replacement policy

5. ESTIMATING PER-SET REUSE METRICS
When reconfiguring caches, it is sometimes better to change

the number of sets (S) and leave associativity fixed. But
since cache replacements work on a per-set basis, changing
S changes per-set locality. As discussed in Section 4, this
was the motivation for extending rrr(T ) and ddd(T ) to rrr(T, S)
and ddd(T, S). The number of sets, S, and reuse interval, RI,
are negatively correlated. Decreasing S increases RI since
accesses that hitherto mapped to other sets now start get-
ting mapped to the reference set. Similarly, increasing S
decreases RI. Since set counters [39] can only correct for
changes in the number of accesses per set but not changes
in the locality per set, they are not expected to be useful for
workloads with large working sets.

Since the target cache configuration for which we want to
estimate the hit-rate may have a different number of sets
than the one on which the reuse metrics were measured, the
goal is to be able to estimate rrr(S′) given rrr(S) for S′ 6= S.
ddd(S′) can be estimated from rrr(S′) for any S′ (see Equation
1). Estimating the metrics for all accesses in the trace, that
is, without any filtering on the trace is analogous to the
case when S = 1. We will start with this case first in the
following analysis.

Similar to Smith’s model, we make the simplifying as-
sumption that the mapping of unique lines to cache sets
are independent of each other [35, 16]. Thus, accesses to a
given set can be modeled as successive Bernoulli trials with
the success of each trial having probability 1

S′ . Viewing this
through the lens of matrix multiplication, we recognize that
the required transformer is a generalized stochastic Binomial
Matrix [38], BBB(1− 1

S′ ,
1
S′ ). Thus,

rrr(S′) = rrr(1) ·BBB(1− 1

S′
,

1

S′
) (5)

It is trivial to show that the above transformation respectsP∞
i=0 ri(S

′) =
P∞

i=0 ri(1) = 1. Qualitatively, this transfor-
mation results in a re-distribution of mass with rrr(S′) getting
compressed as S′ is increased and dilated as S′ is decreased.

Figure 4 shows actual vs estimated values for LRU with
the estimates computed using equations 5, 3 and 4.

So far, we have tacitly avoided specifying the dimensions
of the matrices involved. The size is determined by the max-
imum unique reuse distance, n, we are required to maintain.
For error rate ε, we need the minimum n such that

nX
i=0

rrri(1) + rrr∞(1) ≥ 1− ε (6)

Good predictions for the commercial workloads we study
require n to be large, of the order of the number of lines
in the target cache. To put this in perspective, a 16MB
cache with 64B line size has 256K lines. The rrr(1) distri-
bution can be very long-tailed. Ignoring/truncating the tail
usually result in significant errors. The reason is simple:
workloads with large working sets must have accesses with
large reuse intervals and ignoring accesses with large URD
means counting them as misses when large caches can ac-
commodate them resulting in hits. Thus, estimation errors
due to tail truncation are pronounced for large caches. In
Section 10 we will discuss how the problem may be addressed
using set-sampling.

We will now show how to compute rrr(S′) from any start-
ing cache configuration S. This has no implication for the
new hardware mechanism we propose (Section 10) that is
decoupled from the current cache configuration. However
it will be useful in reasoning about way-counters (Section
6.2). It also shows how computations can be reused instead
of always needing to start from the ground configuration
(S = 1).

Binomial Matrices are invertible (when the second param-
eter is non-zero) and are closed under multiplication within
the same dimension [38]. We use these properties and asso-
ciated formulae in the following analysis.

rrr(S′) = rrr(1) ·BBB(1− 1

S′
,

1

S′
)

= rrr(S) · (BBB(1− 1

S
,
1

S
))−1 ·BBB(1− 1

S′
,

1

S′
)

= rrr(S) ·BBB(1− S, S) ·BBB(1− 1

S′
,

1

S′
)

= rrr(S) ·BBB(1− S

S′
,
S

S′
) (7)

Equation 7 is a general form of equation 5. The trans-
former depends only on the ratio of the number of the sets
in the current cache to the target cache. There are two cases
to consider depending on the value of this ratio:

Case 1, S′ ≥ S: The transformation is always safe in the
sense that the computed probabilities are valid (∈ [0, 1])
even if rrr(S) has not been computed binomially. This is just
(re-)applying the Bernoulli model with probability of success
of each trial 0 ≤ S

S′ ≤ 1.
Case 2, S′ < S: The transformation is valid if rrr(S) has

been computed binomially and the vector dimensions have
not changed. For practical reasons it may be necessary to
maintain rrr(S) only upto ns < n. ns can be computed analo-
gously to equation 6 using rrr(S) instead of rrr(1). The deriva-
tion of Equation 7 for S′ < S is basically equivalent to solv-
ing a system of equations with n unknowns but using ns,
the number of equations available is ns < n. In this case
the computed results are often not valid (6∈ [0, 1]). However,
once rrr(S) has been computed (and truncated to ns), we can
always convert to S′′ ≥ S (Case 1) and then to any S′ with
S′′ ≥ S′ ≥ S (Case 2).

6. OPTIMIZATIONS FOR LRU
A naive combination of equations 4, 3 and 5 results inPA′−1
i=0 (n− i) = nA′ − A′(A′−1)

2
multiplications with bino-

mial computations to estimate the hit-rate for a cache with
S′ sets and associativity A′. The number of multiplications
can be reduced by recognizing that due to the step-function



Figure 5: cumulative Poisson and piece-wise linear
approximations for two cache configurations.

nature of φφφ(LRU), some of the coefficients will sum to 1.
Symbolically expanding the computation and simplifying,
we get

h(S′) =

A′−1X
i=0

rrri(1)+

nX
i=A′

rrri(1) ·
A′−1X
k=0

iCk ·
„

1

S′

«k

·
„

1− 1

S′

«(i−k)

(8)
where iCk denotes the kth binomial coefficient. Equation 8
is an optimized version of Smith’s associativity model [35,
16].

The above requires nA′−A′(A′−1) multiplications which

is A′(A′−1)
2

less than earlier. But computing binomial terms
is costly and the above optimization hardly makes a dent
when n is large compared with A′. Two approaches can be
used to further reduce computational costs. The following
subsections discuss each of these approaches.

6.1 Approximations to Binomial
Cypher [9, 10] uses a Poisson approximation to binomial

for reducing computational costs.
The Poisson distribution is a discrete probability distri-

bution that expresses the probability of a number of events
occurring in a fixed period of time if these events occur with
a known average rate and independently of the time since the
last event [28]. The Poisson distribution is computationally
more efficient and approximates the Binomial distribution
when the number of trials is large and the probability of
success of any particular event is small such that the prod-
uct of these two terms is of intermediate magnitude. It is
particularly useful in modeling small global miss-rates for
large caches, such as the LLC.

The term
PA′−1

k=0
iCk ·

`
1
S′

´k ·
`
1− 1

S′

´(i−k)
is the cumu-

lative binomial sum up to A′ − 1 with parameters i and 1
S′ .

When i is large and 1
S′ is small, the binomial distribution can

be approximated by a Poisson distribution with parameter
λ = i

S′ . Thus, we have

h(S′) =

A′−1X
i=0

rrri(1)+

nX
i=A′

rrri(1) · cumulative Poisson(A′ − 1, λ)

(9)
which is easier to compute than with the binomial coeffi-
cients.

Figure 5 shows the cumulative Poisson transformer for two
very different cache organizations. Since the transformer
function is slowly-varying, we can carry Cypher’s idea for-
ward and substitute the transformer with piecewise linear

functions which are even simpler to compute. We use a
simple algorithm to automatically select a small number of
points on each curve such that the distribution can be ap-
proximated reasonably well with a linear interpolation be-
tween the chosen points. The triangles and the dashed lines
show the selected points for piece-wise linear approximation.
The approximation showed uses 7 or fewer points per trans-
former (with a common point (0,1)). The distribution is
precomputed for each chosen point and stored. At run-time,
these small number of constants are retrieved and used in the
computation for the miss-rate. Values of intermediate points
are approximated using linear interpolation. This method
provides very good approximations with reduced computa-
tional cost but a moderate storage overhead.

6.2 Way Counters and Shadow Tags
As described earlier (Section 2), way counters work by

incrementing the counter associated with the logical stack
position (ordered by access times) on every cache hit. Since
tags do not physically move about in the the cache, the
sorted position must be determined for every access. With
this arrangement, the number of hits for associativity A′ is
the sum of the counter values from 0 to A′.

Notice that the above assumes A′ ≤ A. In dynamic recon-
figuration situations this is problematic since the cache may
need to be sized up, not only sized down. To circumvent this
difficulty, shadow tags [29] (or auxiliary tag directories [31])
can be used. Shadow tags maintain a copy of the tags and
this copy is not deactivated during reconfigurations. This al-
ways maintains a stack depth to the maximum desired value
and facilitates simulating the effect of hits and misses on a
cache with associativity larger than that of the current con-
figuration. Qureshi, et al. [30] used dynamic set sampling
to reduce storage and power costs of the shadow copy.

Way-counter values, when converted to probabilities, es-
timate rrr(S) truncated to length A. The estimation is exact
in case of LRU. Way counters solve the costly multiplication
problem discussed earlier by not multiplying at all. To un-
derstand their operation, consider equation 8 but deriving
it from equation 7 instead of from 5. We have

h(S′) =

A′−1X
i=0

rrri(S)+

nsX
i=A′

rrri(S) ·
A′−1X
k=0

iCk ·
„
S

S′

«k

·
„

1− S

S′

«(i−k)

(10)
Under the assumption S′ = S equation 10 simply reduces to

h(S′) =

A′−1X
i=0

rrri(S) (11)

which is computationally extremely efficient.
But there is no free lunch. The very relation (S′ = S) that

makes it so efficient is also the reason for its most fundamen-
tal limitation: the number of sets must be fixed. As can be
observed from Table 1 only 3 of 19 configurations can be
predicted at any time; other predictions must be preceded
by (time-consuming) re-training for the changed S′.

The second limitation of way counters is that since they
are tightly coupled with the implementation of replacement
policies that track stack positions (e.g. LRU), they are un-
usable with other policies such as RANDOM that can also
be predicted remarkably well using reuse information.

Way counters work depend on the replacement policy main-



Figure 6: Transformation accuracy with information
limited by ns. Base state has S = 210, A = 32.

taining/mimicking stack operation, so they run into trouble
when the stack is absent (PLRU,RANDOM,NMRU) or re-
configured (S′ 6= S).

6.3 Transforming way-counters
As mentioned earlier, way-counters for LRU estimate rrr(S)

(upto a certain limit) exactly. This allows us to use equation
10 to transform the values when S′ 6= S. However, in accor-
dance with the discussion in Section 5, Cases 1 and 2, we
allow this conversion only when S′ ≥ S. With reference to
Table 1, maintaining shadow tags corresponding to S = 210

allows conversion of values for any S′ 6= S. Figure 6 shows
the effect of this transformation for different values of ns.
This shows that to use way counter values for a cache with
a larger number of sets, the shadow tags and counter values
must be maintained for more than A positions. These ex-
tra counters provide information required since these stack
positions will now map to positions < A.

7. PREDICTING FOR RANDOM
The RAND replacement algorithm [5] (also popularly called

RANDOM) chooses a line (uniformly) randomly from the
lines in the set for eviction on a miss.

For an A-way set-associative cache, the probability of re-
placement of a given line on a miss is 1

A
. Accounting for the

number of misses in between successive reuses of an address
is therefore needed. For expected miss rate θ, the expected
number of misses for a sequence of α accesses is α · θ. This
is why ddd is important for RANDOM whereas LRU works
independent of such information.

We make the simplifying assumption that miss occur-
rences (not specific addresses) are not correlated and hence
amenable to be modeled as a Bernoulli process. While this
may not be accurate, it allows us to make reasonably good
predictions without tracking additional state.

Let dddk = α. The probability of i misses is estimated by
αCi · θi · (1− θ)(α−i). The probability that a specific line is

not replaced after i misses is
`
1− 1

A

´i
. We thus have

h(RANDOM) = rrr ·φφφ(RANDOM)

φφφk(RANDOM) =

α|dddk=αX
i=0

αCi · θi · (1− θ)(α−i) ·
„

1− 1

A

«i

θ = 1− h(RANDOM) (12)

To simplify the computation, we use the earlier trick of
approximating Binomial(α,θ) by Poisson(λ = α · θ). Let
q =

`
1− 1

A

´
. This gives

φφφk(RANDOM) =

α|dddk=αX
i=0

αCi · θi · (1− θ)(α−i) · qi

=

∞X
i=0

αCi · θi · (1− θ)(α−i) · qi

≈
∞X

i=0

e−λ · λ
i

i!
· qi

= e−λ(1−q)
∞X

i=0

e−λq · (λq)i

i!

= e
−αθ

A (13)

The system of equations in 12 can now be approximated
by the following system.

h(RANDOM) = rrr ·φφφ(RANDOM)

φφφk(RANDOM) = e
−dddkθ

A

θ = 1− h(RANDOM) (14)

ddd is estimated using equation 1.

7.1 Iterative solution and convergence
We solve the system of equations in 14 with the initial

value h = rrr0. Usually 5 or fewer iterations suffice to reach
reasonably close to a fix-point. But why do the iterations
converge to a fix-point?

First note that if a fix-point exists, the solution satisfies
the general conditions of φφφ (equation 2). This is because
ddd0 = 0 (equation 1) and from equation 14,

φφφk

φφφk−1
= e

−(dddk−dddk−1)θ

A = e
−

„
θ/AP∞

i=k
rrri(T )

«

≤ 1 (15)

Let H denote a fix-point and h0, h1, h2, ... denote succes-
sive approximations. By re-arranging the system of equa-
tions in 14 we have

hj+1 = rrr0 +

nX
i=0

rrrie
dddi(−1+hj)

A (16)

Since the exponential function is monotonic, H must be
unique. Since 0 ≤ rrri ≤ 1, ∀i, rrr0 ≤ H ≤ 1.

Also, it is easy to show that hj ≤ hj−1 =⇒ hj+1 ≤ hj .
Thus, successive iterations produce a chain of values rrr0 =
h0 ≤ h1 ≤ h2....

We will now prove that hj ≤ H, ∀j. This is certainly true
at j = 0. For induction, let hj = H − ε with ε ≥ 0. Then,

hj+1 = rrr0 +

nX
i=0

rrrie
dddi(−1+hj)

A

= rrr0 +

nX
i=0

rrrie
dddi(−1+H)

A · e−
dddiε
A

≤ rrr0 +

nX
i=0

rrrie
dddi(−1+H)

A = H (17)

This shows a convergence chain rrr0 = h0 ≤ h1 ≤ h2... ≤ H.



Figure 7: Actual vs estimated hit-rate function for
oltp with RANDOM replacement policy. LRU esti-
mates are shown as reference.

7.2 Optimization
A better approximation for A = 2 can be obtained by

using the fact that for the reference element not to be evicted
at URD ≥ 2, the previous element must be evicted (since
the set can hold only 2 elements). The probability of the
previous element to be evicted is 1 − φφφ1. For the reference
element to hit at URD = k, it must hit at URD = k − 1
and the above condition must hold. This leads us to the
following approximation.

φφφk = φφφk−1 · (1−φφφ1), k ≥ 2 (18)

This approximation is possible at A = 2 since the model
can exactly determine the set contents for URD >= 2. For
higher associativities exact determination of set contents is
difficult.

Figure 7 shows actual vs estimated values of hit-rates for
RANDOM with the estimates computed using equations 5,
14, 18 and 4.

8. PREDICTING FOR NMRU
The NMRU (or non-MRU) replacement algorithm differ-

entiates the most recently accessed (MRU) line from other
lines in the set [36]. On a miss, a line is chosen (uniformly)
randomly from among the A− 1 non-MRU lines.

At A = 2, φφφ(NMRU) = φφφ(LRU). For the rest of the
cases, the framework is similar to that of RANDOM except
that accesses at URD ≤ 1 are guaranteed to hit. More-
over, the replacement logic has A− 1 possible choices for an
eviction in case of a miss. This leads to a few simple mod-
ifications to the system of equations in 14. The modified
system is shown below:

φφφ1(NMRU) = 1

h(NMRU) = rrr ·φφφ(NMRU)

φφφk(NMRU) = e
−(dddk−ddd1)θ

A−1

θ = 1− h(NMRU) (19)

Figure 8 shows actual vs estimated values of hit-rates for
NMRU with the estimates computed using equations 5, 19
and 4.

9. PREDICTING FOR PLRU
Partitioned LRU [36] (also popularly called pseudo-LRU)

maintains a balanced binary tree that, at each level of the

Figure 8: Actual vs estimated hit-rate function for
oltp with NMRU replacement policy. LRU esti-
mates are shown as reference.

Figure 9: Schematic of an 8-way PLRU tree. The
tree bits are in a plausible setting immediately after
the reference element (striped) is accessed.

tree, differentiates between the two sub-trees based on access
recency. Every internal node is represented by a single bit
whose value decides which of the two subtrees was accessed
more recently. The cache lines are represented by the leaves
of the tree. Whenever a line is accessed, the nodes on the
path from the root to the leaf flip their bit values, thus
pointing to the other subtree at each level. On a miss, the
subtree pointed to is chosen, recursively starting from the
root. The line corresponding to the leaf reached in this way
is chosen for eviction. The bit-values along this path are
then flipped.

In the PLRU scheme, the most recently accessed element
is always known but the least recently accessed one is not.
In contrast to the LRU scheme, that maintains a total ac-
cess order between the lines, PLRU maintains only a partial
order. Since there is no difference between partial and to-
tal orders involving 2 elements, PLRU is LRU when A = 2.
In contrast to LRU that guarantees exactly A − 1 unique
accesses before eviction, PLRU guarantees at least log2(A)
(=number of tree levels) unique accesses before the reference
address is evicted.

On a miss, the reference line will be evicted if and only
if the immediately preceding sequence of accesses follows a
particular pattern. These patterns can be described using
regular expressions (see Appendix A). In contrast to RAN-
DOM, not only the number of misses in the reuse interval,
but also the pattern of accesses determines eviction proba-
bility. In theory, it may be possible to estimate φφφ(PLRU)
by computing probabilities of the above regular expressions.
But there are several difficulties: the distance to misses
within the reuse interval is unknown and the ways occupied
by the intervening elements are also not known. Instead, we
use a different approach.

First, we compute φφφ(A = 4, PLRU) then compute φφφ(A =
8, PLRU) by dividing traffic using a binomial distribution
and applying φφφ(A = 4, PLRU) on the divided traffic. Refer-



Figure 10: Representative φφφ(A = 4, PLRU), actual
and estimated.

ring to Figure 9 we claim that an 8-way tree can be viewed
as a composition of two 4-way trees with the top-node di-
viding traffic between the two subtrees. Similar observations
hold between 8-way and 16-way trees and so on. This helps
us to estimate φφφ(PLRU) for successively higher associativi-
ties. For ease of computation we assume that the top node
divides traffic evenly between its two constituent sub-trees.

9.1 Base case: A = 4

Since log2(4) = 2, φφφk is 1 when k ≤ 2. When k ≥ 4, there
are 3 elements in the set other than the reference element,
but 2 of those cannot be replaced as they have less than
2 intervening elements for themselves. The only eviction
candidate other than the reference element is the 3rd element
with URD 3. Thus, φφφk = φφφk−1 · (1 − φφφ3). Figure 10 shows
a sharp fall at k = 4. This happens since φφφ4 = φφφ3 · (1−φφφ3).
The length of the discontinuity is thus φφφ3 −φφφ4 = φφφ2

3.
The only case that remains is when k = 3. Consider the

kth element. There are two subcases here:

1. It maps to the other subtree on either being present
there (hit) or being allocated there on a miss. If it is
present in the tree, it may occupy either subtree with
probability (almost) 1

2
. If it is not present, it will be al-

located to the subtree depending on how the top node
switched on the last access. Since we assumed that
the top node switches evenly between the two subtrees,
this element will be allocated to the other subtree with
probability 1

2
. Putting both subcases together, we es-

timate the probability that the kth element will not be
in the same subtree as the reference element as 1

2
. In

this case φφφk = φφφk−1 = 1.

2. It maps to the same subtree as the reference element.
The reference element will be evicted only if the kth

element is not present (miss) and PLRU estimates the
wrong stack. But in 4-way PLRU, there are only 3
admissible total orders of which 2 share the same last
element. So the probability of a correct selection is
2
3
. The kth element has URD> 2. Using h(LRU) as

an approximation, the probability of a miss for the
kth element is

P3
i=0 rrri −

P2
i=0 rrri = rrr3. So the hit-

probability for the reference element in this case is 2
3
·

(1− rrr3).

Putting everything together,

Figure 11: Actual vs estimated hit-rate function for
oltp with PLRU replacement policy. LRU estimates
are shown as reference.

φφφk =

8>><>>:
1 if 0 ≤ k ≤ 2

1

2
+

(1− rrr3)
3

if k = 3

φφφk−1 · (1−φφφ3) if k ≥ 4

(20)

9.2 Recurrence: A ≥ 8

Let L = log2(A) and ψψψ = φφφ(A/2). For the first case, when
k ≤ L, φφφk must be 1. For k > L, consider the kth element.
There are two subcases here:

1. It maps to the other subtree. The argument is the
same as given earlier and φφφk = φφφk−1.

2. It maps to the same subtree as the reference element.
If k ≤ A

2
+ 1, the A

2
other elements can all occupy the

other subtree. So, the binomial sum starts with ψψψ1+i.
If k ≥ A

2
+2, there must be at least one other element in

the reference subtree apart from the reference element
and the kth element. So, the binomial sum starts with
ψψψ2+i.

Putting everything together,

φφφk =

8>>>>>>><>>>>>>>:

1 if 0 ≤ k ≤ L

φφφk−1

2
+

1

2

k−2X
i=0

k−2Ci

„
1

2

«(k−2)

·ψψψ1+i if L+ 1 ≤ k ≤ A

2
+ 1

φφφk−1

2
+

1

2

k−3X
i=0

k−3Ci

„
1

2

«(k−3)

·ψψψ2+i if k ≥ A

2
+ 2

(21)
Figure 11 shows actual vs estimated values of hit-rates for

PLRU with the estimates computed using equations 5, 20,
21 and 4.

9.3 Way-counters for PLRU
In PLRU, the MRU line is known with certainty but the

rest of the logical ordering is not precisely known. This
prevents direct construction of way counters. Kedzierski,
et al. proposed a heuristic for approximating logical stack
positions for PLRU caches to enable way-counter based pre-
diction [17]. Let waynum be the way number of the ac-
cessed line and pathbits denote the bit-values of the tree
nodes along the path from the root to the leaf with root bit
in MSB position. Let the function reverse(b) reverse bit
positions in the binary representation of b. The following
heuristic is used to approximate URD(x,m):



Figure 12: Sampling Control

ˆURD(x,m) = A− 1− (reverse(waynum)⊕ pathbits)
This approach aims to compute rrr · φφφ(LRU) with rrr approx-
imately measured using the above mechanism. The ap-
proximation for rrr is quite good (data not shown). How-
ever, apart from suffering from the traditional limitations
of way counters (Section 6.2), it also ignores the fact that
φφφ(PLRU) 6= φφφ(LRU) (see Figure 11, 3). In contrast, our
framework overcomes both limitations.

10. ONLINE ESTIMATION
We now propose an efficient hardware technique that can

be used for online estimation of rrr. We make two key obser-
vations:

1. The definition of URD (Section 3) depends only on
the cardinality of the reuse interval (RI) and not on
the contents of the set. This suggests applicability of
hardware signatures, such as Bloom filters [7], that
can be used to construct compact representations of
sets. Whereas shadow tags store entire tag addresses,
a Bloom filter uses only one bit to represent each ad-
dress.

2. Although, rrr is a long-tailed distribution, the limit to
which rrr need to be tracked decreases with the size of
the cache. This suggests applicability of set-sampling
techniques [15, 29, 18, 42] to conceptually reduce the
size of the cache considered in the sample.

Our proposed hardware makes use of these two insights. It
uses a Bloom filter (to represent RI), a counter to determine
|RI|, and set-sampling logic. A schematic diagram of the
hardware support is shown in Figure 13. We employ a 512-
bit parallel Bloom filter [33] with two H3 hash functions [8]
to determine |RI| between access to the reference line being
sampled.

When a set-sample is chosen, only accesses with addresses
mapping to those sets are considered. Once a set-sample is

Figure 13: Schematic of Hardware support

fixed, not every access needs to be considered to compute the
distribution. We employ time-sampling [20, 19, 18, 42] to
prune this set. The state machine for the sampling control
is shown in Figure 12. In effect, our proposed hardware
estimates rrr(1), but limited in length for a (conceptually)
smaller cache.

Figure 14 shows estimates computed using a simulated
model of the hardware compared to actual values. We show
average estimates with 1, 2 and 4 copies of the hardware in
parallel. Having parallel copies shortens the length of the
run required to get good approximations and the estimated
curves asymptotically approach the actual curves. Increas-
ing the sample length is equivalent to having parallel hard-
ware. The errors between estimated and actual values can
be reduced by using other efficient hashing techniques, e.g.
PBX hashing [43], and/or by correcting for aliasing errors.

This analysis suggests that way counters and our proposed
hardware have complimentary strengths. Way counters have
more parallelism and hence shorter reaction times, but re-
quire retraining if S changes. They are more suitable for
operating conditions where reconfiguration cost is not very
high, such as data-preserving cache optimizations [14, 3].
Our new scheme would be more useful where reconfiguration
is costly, for example, power-gating optimizations that lose
data [27], where non-optimal decisions must be avoided and
which inherently provide longer training intervals to amor-
tize reconfiguration cost.

11. CONCLUSIONS
The central theme of this paper is an unified modeling

framework to analyze cache performance at runtime for a
wide range of organizations and replacement policies. It uses
the concept of stack distances and transformations of prob-
ability vectors with Binomial matrices. The framework uni-
fies previous analytical models such as Smith’s associativity
model, Cypher’s Poisson model, and hardware techniques
such as way counters. We have discussed limitations of set
and way counters, given a method to convert way counter
values for caches with a different number of sets and shown
that this requires maintaining shadow tags for more than the
maximum associativity. We have also proposed an alternate
scheme that is decoupled from the cache configuration, uses
hardware signatures for compact representation of reuse in-
tervals and can be used as an alternative to way counters.

Although we have demonstrated how several popular re-
placement algorithms can be modeled, we have not discussed
what cannot be modeled with our framework. We hypothe-
size that replacement policies based on access frequency may
not be analyzable within this framework or may need addi-
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Figure 14: Actual vs estimated miss-rates for LRU with rrr computed using the proposed hardware. k-parallel
indicates k units used in parallel. Each set-sample is 1/1024 of the cache. Sampling estimates shown are
means over all set-samples.

tional information. Formulating membership criteria and
modeling other replacement policies remain the focus of our
future work.
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APPENDIX
A. PLRU REGULAR EXPRESSIONS

Since the PLRU tree is symmetric, we can fix any way
as reference without loss of generality. Let the immediate
neighbor be denoted by Q0, the next two neighbors be col-
lectively denoted by Q1 and so on with the most distant
group of A/2 neighbors denoted by Qlog2(A)−1.

To calculate the probability that the reference line will
be evicted on a particular miss we need to consider the im-
mediate past sequence of accesses to that set. A necessary
and sufficient condition for the reference line to be evicted
is for the suffix of the trace to match the particular regular
expression described below.

A = 2 : Q+
0

A = 4 : Q0Q
+
1

A = 8 : Q0(Q1 +Q2)
∗Q1Q

+
2

A = 16 : Q0(Q1 +Q2 +Q3)
∗Q1(Q2 +Q3)

∗Q2Q
+
3

A = 32 : Q0(Q1 +Q2 +Q3 +Q4)
∗Q1(Q2 +Q3 +Q4)

∗

Q2(Q3 +Q4)
∗Q3Q

+
4

B. MODEL ESTIMATES
Figures 15, 16 and 17 show actual vs estimated miss-rates

for the other commercial workloads: jbb, apache and zeus.
While h(LRU) may be used to approximate h(PLRU) for
these workloads, it cannot be used for h(RANDOM) or
h(NMRU) without incurring significant errors.

(a) LRU (b) RANDOM, with LRU estimates shown as reference

(c) NMRU, with LRU estimates shown as reference (d) PLRU, with LRU estimates shown as reference

Figure 15: Actual vs estimated miss-rates for jbb



(a) LRU (b) RANDOM, with LRU estimates shown as reference

(c) NMRU, with LRU estimates shown as reference (d) PLRU, with LRU estimates shown as reference

Figure 16: Actual vs estimated miss-rates for apache

(a) LRU (b) RANDOM, with LRU estimates shown as reference

(c) NMRU, with LRU estimates shown as reference (d) PLRU, with LRU estimates shown as reference

Figure 17: Actual vs estimated miss-rates for zeus
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