
  
  

 

Computer  
Sciences  
Department  
 

  

 
 

 

 

Programming for a Capability System Via Safety Games 
 
William R. Harris 
Benjamin Farley 
Somesh Jha 
Thomas Reps 
 
Technical Report #1705 
 
November 2011 



Programming for a Capability System via Safety Games

William R. Harris
University of Wisconsin, Madison

wrharris@cs.wisc.edu

Benjamin Farley
University of Wisconsin, Madison

farleyb@cs.wisc.edu

Somesh Jha
University of Wisconsin, Madison

jha@cs.wisc.edu

Thomas Reps
University of Wisconsin, Madison

reps@cs.wisc.edu

Abstract
New operating systems with security-specific system calls, such as
the Capsicum capability system, allow programmers to write ap-
plications that satisfy strong security properties with significantly
less effort than full verification. However, the amount of effort re-
quired is still high enough that even the Capsicum developers have
reported difficulties in writing correct programs for their system.

In this work, we present an algorithm that automatically rewrites
a program for Capsicum so that it satisfies a given security policy
by finding a winning strategy to an automata-theoretic safety game.
We have implemented our algorithm as a tool, and we present
experimental results that demonstrate that our algorithm can be
applied to rewrite practical programs to satisfy practical security
properties. Capsicum, combined with our algorithm, thus repre-
sents a sweet spot in the trade-off between the strength of policies
that an operating system can enforce, and the ease of programming
for such a system.

We focus on an algorithm for rewriting programs for Capsicum.
However, our algorithm can be naturally generalized to rewrite pro-
grams for systems different from Capsicum, such as decentralized
information flow control and tagged-memory systems.

1. Introduction
Developing practical but secure programs remains a difficult, im-
portant, and open problem. Web servers and VPN clients exe-
cute untrusted code, and yet are directly exposed to potentially
malicious inputs from a network connection [36]. System utili-
ties such as Norton Antivirus scanner [28], tcpdump, the DHCP
client dhclient [34], and file utilities such as bzip2, gzip, and
tar [22, 31, 33] contain or have contained modules with well-
known vulnerabilities that allow them to be compromised if they
are exposed to an attacker. Once an attacker compromises a vul-
nerable module in any of the above programs, they can typically
perform any action allowed for the user that invoked the program,
because the program does not restrict the privileges with which its
modules execute.

[Copyright notice will appear here once ’preprint’ option is removed.]

Traditional operating systems provide to applications only weak
primitives for managing their privileges [17, 23, 34, 36]. As a result,
if a programmer is to verify that his program is secure, he typically
must first verify that the program satisfies very strong properties,
such as memory safety. Operating systems that support Mandatory
Access Control (MAC) [25, 29, 35] allow a system administrator
to specify a policy, and monitor the system calls of each program
to ensure that the program does not violate the policy. Because
MAC systems only monitor system calls, they cannot adjust the
privileges with which a process executes based on events internal to
the memory space of the process. However, many practical policies
require the privileges of a process to change in this way [18, 34].
Inline Reference Monitors [1, 18] can enforce policies defined over
internal events, but can only monitor managed code (i.e., code
instrumented to be memory-safe).

However, recent work [17, 23, 34, 36] has produced new op-
erating systems that allow programmers to develop programs that
execute unmanaged code, but satisfy stronger properties than those
that can be specified to a MAC system, and with significantly
less effort than fully verifying the program. Such systems extend
the set of system calls provided by a traditional operating system
with security-specific calls (which henceforth we will call “security
primitives”). Throughout a program’s execution, it interacts with
the system by invoking security primitives to signal key events in
its execution, which would not be observed by a MAC system. The
developers of such systems have manually rewritten applications
to invoke security primitives so that the application satisfies strong
security policies, even when the application is composed partly of
untrusted code. The application could not satisfy such policies if
the operating system did not support such calls (see [17, 23, 34, 36]
for detailed discussions of the advantages of such systems over tra-
ditional and MAC operating systems).

One example of an operating system with strong security prim-
itives is the capability operating system Capsicum [34]. Capsicum
tracks for each process (1) the set of capabilities available to the
process, where a capability is a file descriptor and an access right
for the descriptor, and (2) whether the process has the privilege to
grant to itself more capabilities. Capsicum provides to each process
a set of system calls that the process uses to limit its capabilities.
Trusted code in a program can first communicate with its environ-
ment in an unrestrained fashion, and then invoke primitives to limit
itself to have only whatever capabilities that it needs for the rest of
its execution. Untrusted code then executes with only the limited
capabilities defined by the trusted code. Thus, even if the untrusted
code is compromised, it will only be able to perform operations
allowed by the limited capabilities.
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The Capsicum primitives are sufficiently powerful that practical
programs can be rewritten to satisfy practical policies when run on
Capsicum by making only moderate changes to the program [34].
However, while rewriting a program for Capsicum is not nearly as
difficult as verifying the program for a traditional operating system,
rewriting is still significantly more difficult than directly specifying
a policy to a MAC system. In fact, even Capsicum’s own developers
have rewritten programs for Capsicum that they tentatively thought
were correct, only to discover later that the program was insecure
or non-functional, and required further rewriting [34].

This paper addresses the problem of writing programs for capa-
bility systems, like Capsicum, by presenting an algorithm that takes
from a programmer (1) a program that does not invoke Capsicum
primitives and (2) a policy, stated in higher-level terms than the
Capsicum primitives. The algorithm automatically instruments the
program to invoke Capsicum primitives, and partitions the program
to execute in multiple processes if necessary, so that it satisfies the
policy when run on Capsicum. We call the problem of finding such
an instrumentation and partitioning the Capsicum policy-weaving
problem.

The algorithm addresses three main challenges that a program-
mer faces when writing a program for Capsicum. The program-
mer’s first challenge is to clearly define secure behavior of his pro-
gram, independent of the rewritten program itself. While Capsicum
provides a powerful set of primitive operations, it does not provide
an explicit language for describing policies. Because the Capsicum
developers did not have such a language, it was impossible for them
to define correctness for their rewritten programs, much less deter-
mine if the rewritten programs were correct.

The programmer’s second challenge is to write his program to
be both secure and functional. A programmer can typically rewrite
a program for Capsicum so that it is secure by strongly limiting the
capabilities of every process. However, the rewritten program may
limit its capabilities too strongly at one point of execution, and as
a result, may not have the capabilities required to carry out core
program functionality later in the execution. The incorrect rewriting
reported by the Capsicum developers [34] is an example of this
issue.

The programmer’s third challenge is to determine when they
must partition their program as well as instrument it to invoke Cap-
sicum primitives. A programmer can potentially resolve the second
challenge by partitioning a program into multiple processes, be-
cause Capsicum maintains different capabilities for each process.
However, partitioning can itself lead to insecure behavior because
each partitioned function that executes with many capabilities ef-
fectively serves as a high-privileged library that malicious code
may be able to abuse.

We solve the above challenges by reducing the problem of
rewriting a program to finding a winning strategy for an automata-
theoretic safety game [5]. We represent a program as a language of
traces of instructions, and we represent a policy as a language of
traces of instructions paired with capabilities that are needed by the
program when it executes the instructions. We model Capsicum as
an automaton that relates instrumented executions of the program
to the resulting instruction-capability traces allowed by Capsicum.
From the program, policy, and Capsicum model, our algorithm con-
structs a game between an “attacker,” who “plays” program instruc-
tions, and a defender who plays Capsicum primitives. The attacker
wins if the sequence of plays is an instrumented program execu-
tion that causes a policy violation, and the defender wins otherwise.
The problem of simultaneously partitioning and instrumenting the
program may be reduced to finding a modular winning defender
strategy to the game [5].

We efficiently find modular winning strategies for games by a
symbolic algorithm that combines a symbolic algorithm for solv-

tcpdump(pat, netd) {
1: bpf = compile_bpf(pat);
2: config_input(netd);
3: limit_fd(dev, { RD });
4: limit_fd(stdout, { WR });
5: enter_cap_mode();
6: while(*) {
7: rpc_resolve_dns();
8: pak = read_packet(netd);
9: if match_pattern(pak, bpf)
10: write_packet(pak, stdout);

}
}

dns_resolve() {
D1: ...
D2: return;
}

Figure 1. Pseudocode of tcpdump instrumented to enforce a pol-
icy when run on the Capsicum capability system. The lines of code
from the original tcpdump program are the ones not underlined.
The underlined lines are invocations of Capsicum primitives. In line
7, the call to resolve dns is changed to rpc resolve dns.

ing reachability games [26] with an algorithm for finding modu-
lar strategies [5]. Using the symbolic algorithm, we implemented
a tool that automatically rewrites programs to correctly run on
Capsicum. We applied to the tool to six system utilities that have
demonstrated security vulnerabilities, and their policies. The tool
was able to rewrite each of the utilities in minutes.

Organization §2 uses the tcpdump system utility to describe in-
formally the Capsicum policy-weaving problem and our algorithm
to solve it. §3 formally defines the Capsicum policy-weaving prob-
lem and an algorithm for solving the problem. §4 presents an ex-
perimental evaluation of our tool. §5 discusses related work.

2. Overview
In this section, we discuss in more detail the problem of rewriting
programs for Capsicum, and our algorithm for rewriting programs
automatically. In particular, we illustrate the rewriting problem and
our algorithm on the tcpdump system utility. We first describe
the core functionality of tcpdump, give an informal but practical
security policy for tcpdump, and recall the Capsicum developer’s
experience rewriting tcpdump to satisfy the policy. In §2.1, we then
discuss how tcpdump, its policy, and Capsicum may be described
formally as automata. In §2.2, we sketch how our algorithm uses
the automata-based descriptions to rewrite tcpdump automatically
to satisfy its policy when run on Capsicum.

tcpdump is a popular system utility that allows a user to print
incoming network packets that match a particular pattern. Pseu-
docode of tcpdump is provided in Fig. 1; for now, ignore the un-
derlined code. tcpdump is given two inputs: a pattern pat over
packets, and a network input device netd. tcpdump first compiles
pat into a Berkeley Packet Filter (BPF) (line 1) bpf [27], and con-
figures the network device netd. tcpdump then enters a loop, in
which it performs DNS resolution (line 7), reads a packet pak from
netd (line 8), checks pak against the filter bpf, and if pak matches
bpf, writes pak to standard output.

Historically, tcpdump has served as a target for various security
attacks, because its packet-matching code is complex and brittle,
and thus prone to compromise due to an input crafted by an at-
tacker [34]. Once tcpdump is compromised on a traditional operat-
ing system, it can read packets, and write their contents to arbitrary
locations, even over the network.

Remark 1. When tcpdump executes pattern-matching code (line
9), it should only be able to access its environment (i.e., the file
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system and network) by reading data from netd, or writing data to
stdout.

To verify that tcpdump satisfies the security policy of Remark 1
when it runs on a traditional operating system, a programmer would
have to verify a strong property of tcpdump, such as the memory
safety of its complex packet-matching code.

However, the Capsicum developers rewrote tcpdump in a com-
paratively simple way to satisfy the policy when executed on Cap-
sicum. Capsicum is a UNIX-based operating system that defines
an extended set of 63 access rights, which describe how a program
may access each descriptor that it opens. Capsicum provides to a
program a standard set of UNIX system calls, and set of security-
specific system calls, which we refer to as security primitives. In
particular, it provides a primitive limit fd(d, R) that takes two
arguments: a file descriptor d, and a set of rights R. When a process
p calls limit fd(d, R), Capsicum limits the rights of p for d to R.
Capsicum also provides a primitive enter cm(); when a process
calls enter cm, it enters capability mode, at which point it can no
longer open any new file descriptors.

The underlined code in lines 3 - 5 of Fig. 1 depicts how the Cap-
sicum developers instrumented tcpdump to invoke Capsicum prim-
itives so that tcpdump satisfies the security policy of Remark 1.
After tcpdump configures netd, but before it matches packets, it
limits itself to be able to read only from netd (line 3) and to write
only to stdout (line 4), and then enters capability mode (line 5) to
ensure that it cannot open file descriptors to any other resource in
its environment. Even if the instrumented tcpdump is compromised
as it matches packets, whatever code that is injected by an attacker
will only be able to read from netd or write to stdout. The in-
strumented tcpdump thus satisfies the informal security policy of
Remark 1.

The Capsicum developers originally instrumented tcpdump as
in Fig. 1 and tentatively declared the instrumentation to be cor-
rect. However, the developers later found through testing that the
instrumented tcpdump did not behave as expected. In particular,
tcpdump invoked the libc DNS resolver (line 7), and the resolver
must access the file system and network to function correctly. How-
ever, the instrumented tcpdump calls enter cm (line 5) before call-
ing the resolver. Thus, the resolver was not able to open file descrip-
tors.

The resolver only opens files to perform DNS resolution, and
cannot be manipulated to leak packets by malicious code injected
into the process space of tcpdump. Thus, the Capsicum develop-
ers determined that it was acceptable to strengthen the policy of
Remark 1 with the requirement:

Remark 2. The DNS resolver must be able to open files.

The policies of Remark 1 and Remark 2 are consistent, in
the sense that they do not simultaneously require and disallow
tcpdump to have a particular capability at some point in its execu-
tion. However, the Capsicum developers could not rewrite tcpdump
to satisfy the policies of Remark 1 and Remark 2 solely by instru-
menting tcpdump to call Capsicum primitives. Instead, they lever-
aged the fact that Capsicum allows each process to hold a distinct
set of capabilities, and rewrote tcpdump so that the DNS resolver
executes in a separate process space with the capability to open
files. When tcpdump calls the resolver, it does so through a Re-
mote Procedure Call (RPC). The resolver then executes on behalf
of tcpdump with the capability to open files, without tcpdump it-
self holding the capability.

The Capsicum developers’ experience rewriting tcpdump for
Capsicum illustrates the general challenges in rewriting programs
for Capsicum outlined in §1. First, Capsicum only provides sys-
tem calls for enforcing policies, limit fd and enter cm. Policies
that directly state what capabilities the program may and must have

when it executes particular instructions, such as the ones in Re-
mark 1 and Remark 2, are only implicit. Second, it is fairly simple
to rewrite tcpdump so that it behaves securely, i.e., it does not leak
packets that it reads, by inserting calls to a small set of primitives.
However, it is non-trivial to instrument tcpdump so that it behaves
securely and yet still carries out its core functionality, e.g., performs
DNS resolution. Finally, to rewrite practical programs for Cap-
sicum, a programmer often must partition his program to execute in
multiple process spaces, along with instrumenting some processes
to call Capsicum primitives. Even to instrument the compression
utility gzip, the Capsicum developers had to partition gzip to ex-
ecute in multiple processes [34].

2.1 tcpdump, Policies, and Capsicum as Automata
The main contribution of our work is an algorithm that solves
the Capsicum policy-weaving problem, which is to take (1) an
unpartitioned, uninstrumented program and (2) a formal, high-
level policy that describes what capabilities the program may and
must have as it executes, and produce a program that satisfies the
policy when run on Capsicum. Our algorithm is automata-theoretic,
and operates over a program, policies, and a Capsicum model
represented as automata.

A program, such as tcpdump, may be viewed as an automaton
whose actions are program instructions [32], the set of which we
call Instrs. While we cannot in general reason precisely about the
language of sequences of instructions executed by a program, we
can over-approximate the language by abstracting the program au-
tomaton as a finite-state or visibly-pushdown automaton (VPA) [2].
In §3.5, we show that a solution for a policy-weaving problem de-
fined by an abstraction of a program is also a solution for a policy-
weaving problem defined by the exact program.

A policy can be defined naturally as a pair of automata. One
automaton, the security policy, describes what capabilities the pro-
gram may have as it executes. An action for a security-policy au-
tomaton is a program instruction in Instrs paired with a capability,
the set of which we call Caps. For the tcpdump security policy,
Caps contains (i) (netd, rd) and (stdout,wr) where rd and wr are
the Capsicum access rights to read and write to a file, respectively,
(ii) the meta-capability Env to open file descriptors to resources
in the environment, and (iii) a trivial capability Triv that the pro-
gram always holds (motivated below when we introduce function-
ality policies).

A security policy describes what capabilities a program is al-
lowed to have as it executes each instruction. A security policy
is a language over the actions Instrs × Caps that only allows
a program to execute instructions i0, i1, . . . , in with capabili-
ties c0, c1, . . . , cn at each corresponding instruction if (i0, c0),
(i1, c1), . . . , (in, cn) is in the language of the policy. A secu-
rity policy can specify that a program may have multiple capa-
bilities as it executes. For example, to specify that when a pro-
gram executes instructions i0, i1, . . . , in it may have capabilities
{c00, c10}, {c01, c11}, . . . , {c0n, c1n}, the security policy accepts the
2n strings of the form (i0, c

k0
0 ), (i1, c

k1
1 ), . . . , (in, c

kn
n ) with each

kj ∈ {0, 1} (such a policy can be encoded with an automaton of
size O(n)).

The informal security policy of Remark 1 can be represented as
a security-policy automaton. Suppose, for clarity, that we weaken
the policy of Remark 1 to require only that when tcpdump executes
match pattern, it must not be able to open file descriptors. This
requirement can be formalized with the security policy defined by
the following regular expression over the actions Instrs × Caps,
where (Instrs × Caps)\(9,Env) denotes any instruction paired
with any capability, except for the instruction at line 9 of Fig. 1
with the capability Env (in all example languages, we refer to each
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instruction in Instrs by its line number in Fig. 1):

((Instrs× Caps)\(9,Env))∗ (1)

A functionality policy is a second policy automaton defined over
the same actions as the security policy with which it is paired. How-
ever, unlike a security policy, which describes what capabilities a
program may have as it executes, the functionality policy describes
what capabilities the program must have as it executes. If a func-
tionality policy accepts the string (i0, c0), (i1, c1), . . . , (in, cn)
and the program executes the instructions i0, i1, . . . , in, then the
program must have the capabilities c0, c1, . . . , cn at each corre-
sponding instruction. A functionality policy can specify that a pro-
gram must have multiple capabilities as it executes. For example,
to specify that when a program executes instructions i0, i1, . . . , in
it must have capabilities {c00, c10}, {c01, c11}, . . . , {c0n, c1n}, the func-
tionality policy accepts the 2n strings of the form (i0, c

k0
0 ),

(i1, c
k1
1 ), . . . , (in, c

kn
n ) with each kj ∈ {0, 1}.

The informal functionality policy of Remark 2 may be rep-
resented as a functionality-policy automaton. Suppose, for clar-
ity, that we weaken the policy of Remark 2 to require that after
tcpdump calls resolve dns (line 7) but before it returns from
resolve dns (line 8), it must be able to open file descriptors. This
requirement can be formalized with the functionality policy defined
by the following regular expression over the actions Instrs× Caps
(where ((Instrs\{8})×Caps) denotes any instruction but 8, paired
with any capability):

((Instrs× Triv)∗(7,Triv)((Instrs\{8})× Caps))∗ (2)

By pairing some instructions with Triv in (2), we place no require-
ments on what privileges tcpdump has when it executes such in-
structions.

We have described Capsicum as an operating system that moni-
tors a sequence of instructions and calls to Capsicum primitives ex-
ecuted by a program, and decides what capabilities the program has
as it executes each instruction. We can model how Capsicum mon-
itors a program as a formal language, accepted by an automaton.
We may view Capsicum as defining a set of primitive operations
Prims, that represent primitive operations that can be called by an
instrumented program. For tcpdump, Prims contains a primitive
limit fd(d, R) for every descriptor d opened by tcpdump and
every subset R of access rights that Capsicum defines, and a prim-
itive enter cm, both of which were informally described above.
Prims also contains a primitive rpc, described below, that causes a
call to be treated as an RPC, and a primitive noop, which does not
affect the capabilities of the program. The Capsicum model defines
a language over the actions (Instrs×Caps)×Prims, where a string
((i0, c0), p0), ((i1, c1), p1), . . . , ((in, cn), pn) is in the language if
and only if Capsicum allows the program to execute each instruc-
tion ij with capability cj and then immediately invoke primitive pj .
For example, the language of the model of the Capsicum monitor
for tcpdump accepts the string

((1,Env), noop), ((2,Env), noop), ((6,Env), noop)

but does not accept the string

((1,Env), noop), ((2,Env), enter cm), ((6,Env), noop);

after tcpdump calls enter cm, it cannot hold the capability Env.
The language of the Capsicum model also formalizes how Cap-

sicum responds to RPCs. For example, recall that if tcpdump in-
vokes enter cm, and then calls dns resolve through a normal
function call, then dns resolve is not able to open file descrip-
tors (i.e., it does not hold the capability Env). But if tcpdump calls
dns resolve through an RPC, then dns resolve is able to open
file descriptors. The language of the Capsicum model encodes this

behavior. For example, the string

((1,Env), noop), ((2,Env), enter cm), ((6,Triv), noop),

((7,Triv), noop), ((D1,Env), noop)

is not in the language of the Capsicum model, because Capsicum
models the action ((7,Triv), noop) as a normal function call to
dns resolve (line 7 in Fig. 1), and thus does not accept the last
action ((D1,Env), noop). However, the string

((1,Env), noop), ((2,Env), enter cm), ((6,Triv), noop),

((7,Triv), rpc), ((D1,Env), noop)

is in the language of Capsicum, because Capsicum models the
action ((7,Triv), rpc) as an RPC to dns resolve, and thus accepts
the action ((D1,Env), noop).

The Capsicum model is represented as a VPA, which uses a
stack to model Capsicum’s responses to RPC calls and returns. We
give a detailed description of Capsicum as a VPA in §3.2.

2.2 Instrumenting tcpdump via a Safety Game
We have now given an intuitive explanation of how all components
of the Capsicum policy-weaving problem can be represented as au-
tomata that define languages over various sets of actions: a pro-
gram defines a language over Instrs, policies define languages over
Instrs × Caps, and Capsicum defines a language over (Instrs ×
Caps)× Prims. Our weaving algorithm takes such automata as in-
puts and instruments and partitions the program to satisfy the pol-
icy.

The algorithm proceeds in two steps. First, from the input au-
tomata, it constructs a safety game automaton G that accepts all
instrumented executions in which the program violates one of its
policies. G defines a game between the program, represented by
the attacking player, and its instrumentation, represented by the de-
fending player. Each state of G is either an attacker state or a de-
fender state. If the game is in an attacker state, then the attacker
chooses a program instruction on which the game transitions, and
if the game is in a defender state, then the defender chooses a Cap-
sicum primitive on which the game transitions. The attacker wins
if the game enters an accepting state of G, and otherwise the de-
fender wins. A strategy for the defender is a function that reads the
actions chosen so far by the attacker and chooses the next action
for the defender to play. A winning defender strategy is a strategy
that the defender can always follow to win. By the definition of G,
a winning defender strategy thus directly corresponds to an instru-
mentation that ensures that the program never violates a policy.

Fig. 2 gives the game constructed from an automaton model
of tcpdump based on its control-flow graph, security policy (1),
functionality policy (2), and our automaton model of Capsicum.
To simplify the presentation, the game in Fig. 2 has been slightly
simplified from the true game for tcpdump and policies (1) and
(2). In particular, transitions for some instruction sequences have
been collapsed into a single transition (e.g., the transition labeled
with instructions “1, 2”), unnecessary defender transitions have
been removed (e.g., there is no defender transition after “8, 9”),
and only the primitives enter cm (abbreviated as ecm) and noop
are considered, because these are the only primitives relevant to
policies (1) and (2).

In §3, we describe how our algorithm takes the program, pol-
icy, and Capsicum automata and constructs the game in Fig. 2. For
now, it is enough to observe that strings that cause the game to
transition to an accepting state correspond to instrumented execu-
tions that cause the program to violate a policy. For example, the
string 1, 2, 6, 7, noop, D1, D2, 8, 9 corresponds to an execution in
which tcpdump executes 9: match pattern without ever calling
enter cm, and thus violates security policy (1). As another exam-
ple, the string 1, 2, ecm, 6, 7, noop, D1 corresponds to an execution
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6, 7

ecm

D1

6, 7

rpc
D2

1, 2 

D1

noop

noop, 
rpc

D2

noop

D1

8, 9

10 

10 

8, 9

D2

Figure 2. Safety game in which all winning plays for the attacker
are instrumentations of tcpdump that violate policy (1) or (2).
Attacker (program) choices are represented as solid edges labeled
with instruction line numbers from Fig. 1; defender choices are
represented as dashed edges labeled with Capsicum primitives; and
accepting states are represented as double circles. The primitive
enter cm is abbreviated as ecm.

in which tcpdump calls enter cm and then executes a non-RPC
call to the DNS resolver, and thus executes the DNS resolver with-
out the ability to open files, violating the functionality policy (2).

In the algorithm’s second step, it determines if there is a winning
defender strategy to the game. For the game in Fig. 2, one winning
defender strategy is one in which the defender responds to instruc-
tion 1, 2 by calling enter cm, and always responds to the call to
resolve dns by requiring the call to be an RPC. Guided by this
strategy, we can rewrite tcpdump to satisfy polices (1) and (2) by
instrumenting tcpdump to call enter cm after it program executes
line 2, and rewriting dns resolve to execute in a separate process
space, invoked via RPC. This corresponds to the instrumentation in
lines 3 and 7 of Fig. 1. If we strengthen the security policy in (1)
to exactly describe the informal security policy given in Remark 1,
then our algorithm produces a game analogous to, but more com-
plex than, the one in Fig. 1. One winning defender strategy for such
a game corresponds to the full instrumentation shown in Fig. 1.

3. Policy Weaving for Capsicum
In §2, we sketched how the problem of rewriting tcpdump to satisfy
simple policies on Capsicum may be reduced to finding a winning
strategy for a safety game. In this section, we describe our reduc-
tion in detail. In §3.1 we review visibly pushdown automata, and
safety games defined by them. Such games are the target of our re-
duction. In §3.2, we define the Capsicum policy-weaving problem
in automata-theoretic terms. In §3.3, we present a symbolic algo-
rithm for solving the automata-theoretic weaving problem. In §3.4,
we discuss practical aspects of the algorithm, and its general impli-
cations.

3.1 Preliminaries
Visibly pushdown automata (VPA) [2] are a class of a stack-based
machines that can use their stack to store unbounded information,
but are restricted in how they can use their stack to transition.

Definition 1. A deterministic visibly pushdown automaton V =
(S, ι, A,Γ,Σi,Σc,Σr, τi, τc, τr) is a tuple of:

• A finite set of states S.
• An initial state ι ∈ S.

• A set of accepting states A ⊆ S.
• A finite stack alphabet Γ.
• A finite set of internal actions Σi.
• A finite set of call actions Σc.
• A finite set of return actions Σr .
• A internal transition function τi : S × Σi → S.
• A call transition function τc : S × Σc → S × Γ.
• A return transition function τr : S × Γ× Σr → S.

A VPA defines a language of strings over the actions Σ̃ =
Σi ∪ Σc ∪ Σr , similar to how a pushdown automaton defines a
language over its actions. A configuration of a VPA is a state in S
paired with a stack of symbols in Γ. A VPA reads a string in Σ̃∗

by starting in an initial configuration of ι paired with the empty
stack. When the VPA reads an internal action a ∈ Σi from state q,
it updates its state to the τi(q, a), and leaves its stack unchanged.
When the VPA reads a call action c ∈ Σc from state q, and
τc(q, c) = (q′, γ), it updates its state to q′, and pushes γ on the
top of its stack. When the VPA reads a return action r ∈ Σr from
state q with stack symbol γ on the stop of its stack, it pops γ from
its stack and updates its state to τr(q, γ, r). The VPA accepts a
string if and only if after reading the string, it has transitioned to a
state in A.

If when a reading a string s, a VPA begins reading a substring s′

from a configuration with a stack T , finishes reading s′ in another
configuration with stack T , and the stack of the VPA has been
an extension of T throughout, then we say that s′ is a matched
substring of s.

VPA can be extended to define turn-based safety games between
two players: an attacker, and a defender.

Definition 2. A VPA turn-based safety game is a tuple (Sa, Sd, ι,
A, Γ,Σai ,Σ

d
i ,Σ

a
c ,Σ

d
c ,Σ

a
r ,Σ

d
r , τ

a
i , τ

d
i , τ

a
c , τ

d
c , τ

a
r , τ

d
r ), where

• The set of attacker states Sa and defender states Sd are non-
overlapping.

• The initial state is ι ∈ Sa.
• The set of accepting states are A ⊆ Sa.
• The attacker internal transition function is τa : Sa×Σai → Sd.
• The attacker call transition function is τac : Sa×Σai → Sd×Γ.
• The attacker return transition function is τar : Sa × Γ×Σar →
Sd.

The defender transition functions τdi , τ
d
c , and τdr are defined anal-

ogously to the attacker transition functions, with each mapping a
defender pre-state and defender action to an attacker post-state.

The attacker and defender play the game in turn, with each
choosing on their turn an action on which the game transitions. The
attacker wins if the string of all choices is a string accepted by the
game automaton, and the defender wins otherwise.

Definition 3. A defender strategy σ : (Σ̃a)∗ → Σ̃d takes a
string of attacker actions, and chooses a defender action. A win-
ning defender strategy is a strategy such that if the defender
always chooses actions according to the strategy, the result-
ing string will never be a winning string for the attacker. For-
mally, σ is a winning defender strategy for the game G if and
only if for each finite string a0, a1, . . . , an ∈ Σ̃a∗, the string
a0, σ([a0]), a1, σ([a0, a1]), . . . , an, σ([a0, a1, . . . , an]) is not ac-
cepted by G.

3.2 The Capsicum Policy-Weaving Problem
In this section, we define the problem of weaving programs for
Capsicum in automata-theoretic terms.
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3.2.1 Capsicum as a Visibly Pushdown Automaton
We can model the Capsicum monitor of a given program as a VPA.
Let a program P = (V,Descs) be:

• A VPA V = (S, ι, A,Γ, Intras,Calls,Rets, τi, τc, τr) whose
internal actions Intras are programs intra-procedural instruc-
tions, call actions Calls are function calls Calls, and return ac-
tions Rets are function returns. Let the set of all program in-
structions by Instrs = Intras ∪ Calls ∪ Rets.

• A finite set Descs of resource descriptors.

We model the Capsicum monitor of P as a VPA CP whose lan-
guage describes what capabilities Capsicum allows P to have as
it executes (all components of CP are defined with respect to P ,
and thus we omit an explicit P subscript for the rest of this sec-
tion). Here, we model a monitor only for a program that executes
sequentially, only communicating with another process via a block-
ing RPC. However, the monitor model can naturally be generalized
for programs that execute over multiple processes in parallel.

The actions of C are constructed from the following domains.
Let Rights be a fixed set of access rights defined by Capsicum,
and let Env be the meta-capability to open files. Then the space
of all capabilities of P is Caps = (Descs × Rights) ∪ {Env}.
Let the space of primitives that may be invoked by P be Prims =
{enter cm, noop, rpc} ∪ {limit fd(d,R)| desc ∈ Descs, R ⊆
Rights} (see §2 for intuitive definitions of the primitives).

The language of the Capsicum model, L(C) ⊆ ((Instrs ×
Caps)×Prims) is such that a string ((a0, c0), p0), . . . , ((an, cn), pn) ∈
L(C) if and only if when P executes each ai followed immedi-
ately by each pi, then it holds capability ci when it executes ai.
CP = (Ŝ, ι̂, Â, Γ̂, Σ̂i, Σ̂c, Σ̂r, τ̂i, τ̂c, τ̂r), with

• Ŝ: each state is a map from each descriptor in Descs to the set
of rights held by the program, paired with a Boolean flag that
denotes whether the program is in capability mode (see §2), or
the stuck state: S = ((Descs→ Rights)× B) ∪ {CapStuck}.

• ι̂: in the initial state, the program has all rights for every de-
scriptor, and is not in capability mode.

• Â: all states but the stuck state are accepting states: Â =
S\{CapStuck}.

• Γ̂ = S ∪ {intracall}. See τ̂c and τ̂r .

• Σ̂i: each internal action of C is a program intra-procedural
instruction paired with a capability, paired with one of the
primitives: Σ̂i = (Intras× Caps)× Prims.

• Σ̂c: each call action of C is a call action of P paired with
a capability, paired with the noop or rpc primitive: Σ̂c =
(Calls× Caps)× {noop, rpc}.

• Σ̂r: each return action of C is a return action of P paired with
a capability, paired with the noop primitive: Σ̂r = (Rets ×
Caps) × {noop} (we limit instrumentations to respond to re-
turns only with noop only for simplicity).

• τ̂i(q, ((ins, cap), p)): if cap = Env and P is not in capa-
bility mode, then Capsicum transitions to CapStuck. Other-
wise, if p = enter cm, then C transitions to a state with
the same rights, but which is in capability mode. If p =
limit fd(desc, R), then C transitions to a state in which the
rights of desc are limited to R. Otherwise, p = noop, and C
transitions to q.

• τ̂c(q, ((call, cap), p)): if the call is not an RPC call, then
the Capsicum-state does not change; otherwise, C initializes
the called process with all capabilities, and stores the state

of the calling process on its stack. In other words, τ̂c(q,
((call, cap), noop)) = (q, intracall), and τ̂c(q, (call, cap),
rpc) = (ι̂, q).

• τ̂r: if the program returns from an intra-process call, then the
Capsicum-state does not change, but if the return is from an
RPC, then Capsicum reverts to its state before the match-
ing RPC was made. In other words, if γ = intracall, then
τ̂r(q, γ, ret) = q, otherwise τ̂r(q, γ, ret) = γ.

Let (Instrs × Prims)∗, the set of program actions paired with
primitives, be the set of instrumented executions, and let (Instrs ×
Caps)∗, the set of program actions paired with capabilities, be the
set of capability-traces. C defines a relation from each instrumented
execution of P to the set of capability traces that it induces. Let
this relation be CapTracesP ⊆ (Instrs × Prims)∗ × (Instrs ×
Caps)∗, where ((ins0, p0), . . . , (insn, pn)), ((ins0, cap0), . . . ,
(insn, capn)) ∈ CapTraces if and only if ((ins0, cap0), p0), . . . ,
((insn, capn), pn) ∈ C.

3.2.2 The Automata-Theoretic Weaving Problem
Using the VPA model of Capsicum defined in §3.2.1, we de-
fine the Capsicum policy-weaving problem as follows. Let pro-
gram P be a VPA defined over actions Instrs, and let S and F
be a security and functionality policy, both represented as VPAs
over the actions Instrs × Caps. Let an instrumentation func-
tion be some function I : Instrs∗ → (Instrs × Prims)∗ such
that for each sequence of program instructions ins0, . . . , insn,
I([ins0, . . . , insn]) = [(ins0, p0), . . . , (ins1, pn)] for some Cap-
sicum primitives p0, . . . , pn. The Capsicum policy-weaving prob-
lem Prob(P, S, F ) is to find an instrumentation function I that
satisfies the following conditions.

Secure: P instrumented by I has only the capabilities allowed
by S in each execution. For a policy Pol ⊆ (Instrs × Caps)∗, let
Pol|P be all strings (ins0, cap0), . . . , (insn, capn) in Pol such that
ins0, . . . , insn ∈ P . Then

CapTraces(I(P )) ⊆ S|P
Functional: P instrumented by I has all of the capabilities re-
quired by F for executions of P :

F |P ⊆ CapTraces(I(P ))

RPC-modular: A function invoked via an RPC may be invoked
by arbitrary, injected code. As a result, each RPC function cannot
trust any information supposedly passed by the instrmentation of
the caller. Thus, I must be modular, in the sense that it chooses
primitives after an RPC independently of instructions and primi-
tives chosen before the RPC [5].

Definition 4. For L ⊆ (Instrs × Prims)∗, L is (a, p)-modular if
and only if the following holds. Let s ∈ L contain as a subsequence
a matched string (a, p), (a0, p

0
0), (a1, p

0
1), . . . , (r, p0n), and let s′ ∈

L contain a matched a string whose actions are constructed from
identical Instrs-components: (a, p), (a0, p

1
0), (a1, p

1
1), . . . , (r, p1n).

Then the corresponding Prims-component of each action must be
identical: for each i, p0i = p1i .

For each call ∈ Calls, the range of I must be (call, rpc)-
modular.

3.3 From a Weaving Problem to a Safety Game
We now give an algorithm that solves a Capsicum policy weav-
ing problem P . From P = Prob(P, S, F ), the algorithm first con-
structs a VPA VioP that accepts all instrumented executions of P
that violate S or F (§3.3.1). From VioP , the algorithm constructs
a VPA safety game GP for which a winning defender strategy cor-
responds to a solution to P (§3.3.2). The algorithm finds a winning
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Figure 3. Outline of reduction presented in §3.3.1.

defender strategy to GP by reducing the search for a strategy to
finding a model of a Satisfiability Modulo Theories (SMT) formula
ϕP , and applying an SMT solver (§3.3.3). In other words, the algo-
rithm performs a reduction P ⇒ VioP ⇒ GP ⇒ ϕP . Fig. 3 gives
a visual summary of the reduction.

3.3.1 From Weaving Problem to Violating Executions
For P = Prob(P, S, F ) the algorithm constructs VioP as the in-
tersection of two languages. The first is the language of all possi-
ble instrumented executions of the P . Let this language be P ′ ⊆
(Instrs × Prims)∗, the set of all strings (ins0, p0), . . . , (insn, pn)
such that ins0, . . . , insn ∈ P .

The second language is the language of all instrumented ex-
ecutions that violate S or F . To define this language, we first
define operators that allow us to translate languages between
different actions. For a policy Pol ⊆ (Instrs × Caps)∗, let
lift(Pol) ⊆ ((Instrs × Caps) × Prims)∗ be the set of all strings
((ins0, cap0), p0), . . . , ((insn, capn), pn) such that (ins0, cap0),
. . . , (insn, capn) ∈ Pol, for some primitives p0, . . . , pn. For a
language L ⊆ ((Instrs × Caps) × Prims)∗, let the projection
π(L) ⊆ (Instrs × Prims)∗ be the language of all instrumented
executions (ins0, p0), . . . , (insn, pn) such that ((ins0, cap0), p0),
. . . , ((insn, capn), pn) ∈ L for some cap0, . . . , capn.

For CP the Capsicum monitor of P defined in §3.2.1, π(CP ∩
lift(S)) is the language of all instrumented executions that induce
Capsicum to allow a capability trace not allowed by S. π(CP ∩
lift(F )) is the language of all instrumented executions that induce
Capsicum to disallow a capability trace accepted by F . Thus the
language of all instrumented executions of P that violate S or F is:

LP = P ′ ∩ (π(CP ∩ lift(S)) ∪ π(CP ∩ lift(F ))) (3)

Lemma 1. Let P = Prob(P, S, F ) be a weaving problem, and let
LP be defined as in (3). An instrumentation function I : Instrs∗ →
(Instrs × Prims)∗ is secure and functional if and only if for each
execution s ∈ P , I(s) /∈ LP .

Proof. First, suppose that I is not secure. This holds if and only
if there is some program execution r = ins0, . . . , insn ∈ P for
which CapTraces(I(r)) = (ins0, cap0), . . . , (insn, capn) 6∈ S|P .
Let I(r) = (ins0, p0), . . . , (insn, pn). Let s = ((ins0, cap0), p0),
. . . , ((insn, capn), pn). By the definition of P ′, I(r) ∈ P ′. By
the definition of CapTraces and CP , s ∈ CP . By the definition
of CapTraces and lift(S), s ∈ lift(S). Thus by the definition
of π, I(r) = π(s) ∈ π(CP ∩ (liftS). Thus I is not secure if
and only if there is some program execution r for which I(r) ∈
P ′ ∩ π(CP ∩ lift(S).

Now suppose that I is not functional. This holds if and only
if there is some program execution r = ins0, . . . , insn ∈ P
and capability trace s = (ins0, cap0), . . . , (insn, capn) ∈ P
for which s ∈ F |P and s 6∈ CapTraces(I(r)). Let I(r) =
(ins0, p0), . . . , (insn, pn). I(r) ∈ P ′, by the definition of P ′.
Let t = ((ins0, cap0), p0), . . . , ((insn, capn), pn). Then t 6∈
CP , for otherwise, s ∈ CapTraces(I(r)) by the definition of
CapTraces. t ∈ lift(F ) by the definition of lift(F ). Thus t ∈

(CapTraces(I(r)) ∩ lift(F )), which holds if and only if I(s) =
π(t) ∈ π(CP ∩ lift(F )). Thus I is not functional if and only if
there is some program execution r for which I(r) ∈ P ′ ∩ π(CP ∩
lift(F )).

Thus an instrumentation is not secure or not functional if and
only if it there is some program execution r such that

I(r) ∈ (P ′ ∩ π(CP ∩ lift(S))) ∪ (P ′ ∩ π(CP ∩ lift(F )))

= P ∩ (π(CP ∩ lift(S)) ∪ π(CP ∩ lift(F )))

= LP

From the VPA representations ofP , S,F , and CP , we can apply
(3) to construct a VPA VioP that accepts LP , because VPAs are
closed under intersection, complement, lift, and π.

3.3.2 From Violating Executions to a Safety Game
From VioP = (S, ι, A,Γ, Intras × Prims,Calls × Prims,Rets ×
Prims, τi, τc, τr), the algorithm constructs a VPA safety game
GP = (Ŝa, Ŝd, ι̂, Â, Γ̂, Σ̂ai , Σ̂di , Σ̂ac , Σ̂rc ,, Σ̂ar ,, Σ̂dr , τ̂

a
i , τ̂

d
i ,

τ̂ac , τ̂dc , τ̂ar , τ̂dr ) such that the winning plays of the attacker for
GP directly correspond to the instrumented executions accepted
by VioP . Intuitively, GP is constructed by serializing each internal
transition τi(q, (ins, p)) = q′ of VioP into an attacker transition
τai (q, ins) = q0 and subsequent defender transition τdi (q0, p) = q′

in GP for some defender state q0. Call and return transitions of
VioP are serialized analogously.

GP is constructed from VioP as follows:

• The attacker states are the states of VioP : Ŝa = S.
• Each defender state stores the last attacker state, and the last

internal, call, or return action chosen by the attacker: Ŝd =
S × (Σi ∪ Σc ∪ (Γ× Σr))

• The initial state is the initial state of VioP : ι̂ = ι

• The accepting states are the accepting states of VioP : Â = A.
• The stack alphabet is the stack alphabet of VioP along with

“placeholder” state µ: Γ̂ = Γ ∪ {µ}.
• The attacker internal actions are intraprocedural program in-

structions: Σ̂ai = Intras.

• The defender internal actions are Capsicum primitives: Σ̂di =
Prims.

• The attacker call actions are program calls: Σ̂ac = Calls.
• The defender call actions are to select a call as RPC or leave it

as an intraprocess call: Σ̂dc = {rpc, noop}.
• The attacker return actions are program returns: Σ̂ar = Rets.
• The defender return actions are Capsicum primitives are noop:

Σ̂dr = {noop}.
• When the attacker chooses an intra-process instruction, the

game transitions to a state that stores the choice: τ̂ai (q, a) =
(q, a).

• When the defender chooses a Capsicum primitive p, the game
transitions to a state of VioP reached by p with the last intra-
process instruction chosen by the attacker: τ̂di ((q, a), p) =
τi(q, (i, p))

• The attacker and defender call and transition functions are de-
fined analogously to the internal transition functions:
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The strings accepted by VioP correspond to the winning at-
tacker plays of GP .

Lemma 2. (ins0, p0), . . . , (insn, pn) ∈ VioP if and only if
ins0, p0, . . . , insn, pn is a winning attacker play of GP .

Proof. Follows directly from the definitions of τ̂ai , τ̂ac , τ̂ar , τ̂di , τ̂dc ,
and τ̂dr .

3.3.3 Finding a Winning Defender Strategy Symbolically
From Lem. 1 and Lem. 2, it holds that if σ : Instrs∗ → Prims
is a winning defender strategy to GP , then from σ we can con-
struct an instrumentation function that is secure and functional. In
particular, from σ, we can construct the instrumentation function
Iσ : Instrs∗ → (Instrs×Prims)∗ where for the empty string ε and
concatenation operator “.”, Iσ(ε) = ε, and for each s ∈ Instrs∗ and
a ∈ Instrs, I(s.a) = I(s).(s, σ(s.a)).

However, finding a winning defender strategy σ such that Iσ
is modular (i.e., a modular strategy) is exactly as hard as find-
ing a modular strategy for a recursive game graph, which is NP-
complete [5]. To cope with this high worst-case complexity, we
reduce the problem of finding a modular winning defender strat-
egy for GP to finding a model of a Satisfiability Modulo Theo-
ries (SMT) formula. Modern SMT solvers can often efficiently find
models for large formulas [14, 15]. Such solvers can find models in
minutes for formulas derived from practical programs and policies
(see §4).

From GP , the algorithm constructs an SMT formula ϕP such
that a model of ϕP corresponds to a winning modular defender
strategy to GP . A model m of ϕP defines a strategy as a restriction
Gm of GP to a particular set of states and transitions. When Gm
reads an action chosen by an attacker, it transitions to one of its
defender states according to its transition function. By construction,
each defender state of Gm is assigned a unique defender action.
Gm outputs the defender action assigned to its current defender
state, transitions from the state accordingly, and then reads the next
action chosen by the attacker. Let the strategy defined in this way
from a modelm be Sm. The approach is analogous to the one given
in [26] for symbolically searching for winning attacker strategies.

To construct ϕP , we assume that GP is represented symboli-
cally. In other words, the stack alphabet and attacker and defender
state sets, internal actions, call actions, and return actions are all
represented as domains in an SMT theory. The formula A(x) has
one free variable x, and is true exactly when x is an accepting state
of GP . The attacker and defender internal, call, and transition func-
tions are represented as interpreted functions.
ϕP is defined as the conjunction of two formulas ϕwP and ϕRP .

Any model of ϕwP corresponds to a winning defender strategy. ϕwP
is defined as follows. First, let there be a fixed set of constants
{qai }i and {qdj }j . The initial state of the game must be a state of
the strategy: ∨

x

qax = i

Each attacker state of the strategy is not an accepting state of the
game (by the definition of a game, no defender state is an accepting
state): ∧

x

¬A(qax)

From each attacker state of the strategy, each internal action that
the attacker chooses causes the game to transition to some defender
state of the strategy: ∧

x,y

∨
z

τai (qax, insy) = qdz

From each defender state of the strategy, the defender chooses
a defender internal action on which the game transitions to an
attacker state of the strategy. For a δi : Sd → Σdi a function that
maps each defender state to the internal action that the defender
chooses when in the state:∧

x

∨
y

τdi (qdx, δi(q
d
x)) = qay

For each attacker state of the strategy, each call that the attacker
chooses causes the game to transition to some defender state of the
strategy: ∧

x,y

∨
z

τai (qax, c
a
y) = qdz

For each defender state of the strategy, the defender chooses a
defender call action on which the game transitions to an attacker
state of the strategy. For δc : Sd → Σdc a function that maps each
defender state to the call action that the defender chooses when in
the state: ∧

x

∨
y

τdc (qdx, δc(q
d
x)) = qay

We introduce analogous constraints to ensure that strategy states
always transition on return actions to strategy states.

Any model of ϕRP corresponds to a modular strategy. ϕRP is
defined using bisimulation relation over attacker states ∼=a⊆ Sa ×
Sa, and a bisimulation relation over defender states∼=d⊆ Sd×Sd.
If two states defender states are in∼=, then the defender must choose
the same defender action from each state. We require that any two
states that are the destination of the same RPC call must be in the
bisimulation relation to ensure that a strategy is modular for every
RPC call.

The bisimulation relations are defined as follows. If two attacker
states are the destination of a transition on the defender call action
rpc, then they must be bisimilar:∧

x,y

τdr (qax, rpc) ∼=a τ
d
r (qay , rpc)

Intuitively, we must constrain that bisimilar states transition on the
same actions to bisimilar states. Each attacker state is bisimilar to
itself. ∧

x

qai ∼=a q
a
x

Each defender state is also bisimilar to itself.∧
x

qdx ∼=d q
d
x

If two attacker states are bisimilar, then on each attacker internal
action, the states transition to states that are bisimilar. For each
attacker internal action k:∧

x,y

(qax ∼=a q
a
y =⇒ τai (qax, k) ∼=d τ

a
i (qay , k))

If two defender states are bisimilar, then on each internal defender
action, they transition to states that are bisimilar. For each defender
internal action k:∧

x,y

(qdx ∼=a q
d
y =⇒ τdi (qdx, k) ∼=d τ

d
i (qdy , k))

If two attacker states are bisimilar, then on each attacker call action,
the states transition to states that are bisimilar. For each attacker call
action k: ∧

x,y

(qax ∼=a q
a
y =⇒ τac (qax, k) ∼=d τ

a
c (qay , k))

If two defender states are bisimilar, then the defender call actions
for each must be equal, and the defender states must transition on
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the call action to bisimilar states.∧
x,y

(qdx ∼=d q
d
y =⇒ τdc (qdx, δc(q

d
x)) ∼=a τ

d
c (qdy , δc(q

d
y)))

Bisimilarity is constrained analogously for return transitions.

Lemma 3. For a policy-weaving problem P , let m be a model of
ϕP , as defined above. Let Gm be GP restricted to all attacker states
that are values in m of some constant qai , defender states that are
values of some constant qdj , defender internal actions in the range
of δi, defender call actions in the range of δc, and defender return
actions in the range of δr , in the model σ. Let Sm be the strategy
constructed from Gm as described above. Then Sm is a winning,
modular defender strategy for GP .

Proof. Follows directly from the correctness proofs given in [5,
26].

Theorem 1. For a policy-weaving problem P , let m be a model of
ϕP , let S be the strategy defined by m. Then IS solves P .

Proof. Follows directly from Lem. 1, Lem. 2, and Lem. 3.

3.4 Discussion
Completeness: The reduction of §3.3 is complete for finding
modular strategies. We have found that practical weaving prob-
lems can be solved by searching only for such strategies (see §4).
However, in principle, there may be weaving problems for which
the corresponding safety game has no modular winning defender
strategy. Such problems fall into one of two cases.

First, some problems may have a winning attacker strategy,
which defeats any defender strategy. We can search for a winning
attacker strategy in parallel to searching for a winning defender
strategy, and if one is found, provide it to the programmer. How-
ever, the problem of finding any global (i.e., not necessarily modu-
lar) attacker strategy is EXPTIME-complete [9].

Second, some problems may have a winning global defender
strategy, but not have a modular winning defender strategy. We
cannot use such a strategy to instrument a program, as an instru-
mentation function defined by it is not modular.

In both cases, while a given VPA abstraction of the program
may be too coarse to allow for a winning modular defender strat-
egy, there might be some more precise, yet sound, abstraction of the
program that has a winning modular winning defender strategy. It
may be possible to automatically refine a VPA abstraction of a pro-
gram from a failed search for a winning modular defender strategy,
perhaps by extending CEGAR-style automatic refinement [6, 11].
We leave this as future work.

Injected code: The reduction of §3.3 searches for an instrumenta-
tion that invokes a Capsicum primitive after each program instruc-
tion. However, if a program is compromised, then it may execute
arbitrary code that is not instrumented with Capsicum primitives.
The reduction can be extended to model this threat by allowing the
attacker to execute a special “injected code” instruction at states
of the game that correspond to vulnerable points of the program.
After the attacker executes the injected-code instruction, they can
execute any instruction or invoke any Capsicum primitive, while
the defender can only invoke the noop primitive.

Primitives per instruction: The reduction of §3.3 only searches
for an instrumentation that invokes exactly one primitive after each
instruction. This does not fundamentally limit the number of prim-
itives that the instrumentation can invoke, as we can either (1) re-
define the space of primitives Prims to be all sequences of k Cap-
sicum primitives for some fixed integer k, or (2) inject a block of
“noop” program instructions that have no effect on the state of poli-
cies, and allow a primitive to be invoked after each.

Runtime overhead: We do not address the problem of finding
instrumentations that minimize runtime overhead. The runtime
overhead of Capsicum primitives has been previously studied in-
depth [34] by the Capsicum developers. The developers found that
each invocation of the primitives enter cm and limit fd induces
only a small overhead, on the order of microseconds or nanosec-
onds [34]. However, partitioning a program to execute in multiple
processes can induce overheads on the order of milliseconds, which
is observed when executing the rewritten gzip on some workloads.

We can extend our algorithm in various ways to minimize
runtime overhead. Some redundant or inefficient invocations of
enter cm and limit fd, can be removed post-hoc by a simple
peephole optimizer. We may be able to search for instrumentations
that optimize a performance metric by extending the constraint-
solving problem defined in §3.3 to a constraint-optimization prob-
lem. We leave this as future work.

Weaving for other operating systems: We have presented an al-
gorithm that takes a program, and policies defined over the ca-
pabilities provided by Capsicum, and instruments the program to
correctly invoke the primitives provided by Capsicum. However,
the algorithm can be generalized naturally to instrument programs
for other operating systems that provide security primitives, such
as decentralized information flow control (DIFC) [17, 23, 36] and
tagged-memory systems [7]. Intuitively, all such systems are simi-
lar in that they decide the privileges with which a program executes
(e.g., capabilites) by monitoring a separate set of primitives that the
program invokes (e.g., enter cm). Moreover, all such systems are
similar in that the relationship that they define between privileges
and primitives can be modeled as a VPA, similar to the Capsicum
VPA introduced in §3.2.1. Given such a model of the system, we
can automatically define a weaving algorithm for the system that
reduces the problem of instrumenting a program to solving a safety
game.

The Capsicum weaving algorithm of §3.3 may be generalized to
weaving algorithms for other systems by replacing the Capsicum
model introduced §3.2.1 with a VPA model of the target system.
The language of the Capsicum model relates an execution of the
program instrumented with invocations to limit fd and enter cm
to the capability traces induced by the instrumented execution,
where a capability trace is a trace of program instructions paired
with capabilities. In general, an operating system model relates an
execution of the program instrumented with system primitives to
the privilege traces induced by the instrumented execution, where
a privilege trace is a trace of program instructions paired with
privileges defined by the system. For DIFC operating systems, the
system primitives manage the labels of each process. The privileges
are the ability of one process to send and receive information to
another. For tagged memory systems, the system primitives manage
the labels of memory objects. The privileges are the ability of one
process to read from or write to memory. Given a VPA model of an
operating system, we can apply the reduction of §3.3 as a weaving
algorithm for the system.

3.5 Weaving over Abstractions of Programs
When defining our weaving algorithm in §3.2, we assumed that
the set of executions of a program is represented as a VPA. But in
general, the executions of a program cannot be described exactly
by a VPA. However, the executions of every program can be over-
approximated by a VPA. For a given program, several natural over-
approximating VPA’s can be defined which model the control flow
of the program, along with a finite set of facts about its data.

To verify that a program satisfies a given safety property, it suf-
fices to verify that an over-approximation of the program satisfies
the property. A similar result holds in policy weaving. In particu-
lar, a correct instrumentation for a policy-weaving problem defined
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by an over-approximation of a program P is a correct instrumenta-
tion for the policy-weaving problem defined over P and the same
policies.

Lemma 4. For a set of instructions Instrs, set of Capsicum primi-
tives Prims, and capabilities Caps, let L(P ) ⊆ L(P#) ⊆ Instrs∗,
let S ⊆ (Instrs × Caps)∗, and let F ⊆ (Instrs × Caps)∗. If
I# : Instrs∗ → (Instrs × Prims)∗ is a correct instrumentation
for P# = Prob(P#, S, F ), then I# is a correct instrumentation
for P = Prob(P, S, F ).

Proof. We show that I# is a solution for P by showing that I# is
secure, functional, and modular, as defined in §3.2.2.

Secure and Functional: Suppose, for a proof by contradiction,
that I# is not secure or not functional for P . Then by Lem. 1, there
is some sequence s ∈ (Instrs×Prims)∗ inLP (Eqn. (3)). Let sInstrs
be the Instrs-components of s. By the definition of LP , sInstrs ∈ P ,
and thus sInstrs ∈ P#. Thus s ∈ LP# , and ins is not secure or not
functional for P#. But this contradicts the assumption that I is a
solution of P#.

Modular: This is immediate, as the definition of “Modular” in
§3.2.2 does not depend on the P#.

3.6 Hardness of Capsicum Policy Weaving
In §3.3.3, we defined, for a given policy weaving problem P , a set
of constraints ϕP such that from a model to ϕP , we can construct
a solution to P in polynomial time. The size of ϕP is polynomial
in the size of P , and ϕP is a formula for a theory whose decision
problem is in NP. Thus the Capsicum policy-weaving problem is in
NP.

We now show that the Capsicum policy-weaving problem is
NP-hard by reduction from 3-SAT. Combined with the fact that
Capsicum policy-weaving is in NP, this shows that the policy-
weaving problem is NP-complete.

Lemma 5. For a set of instructions Instrs, Capsicum primitives
Prims, and capabilities Caps, let P ⊆ Instrs, S ⊆ (Instrs ×
Caps)∗, F ⊆ (Instrs × Caps)∗, and P = Prob(P, S, F ). Solving
P is NP-hard in the size of the transition functions of P , S, and F .

Proof. We will show that the Capsicum-policy-weaving problem
is NP-hard by reduction from 3-SAT, similar to a hardness proof
given in [5]. For an instance of 3-SAT ϕ, we construct a weaving
problem Pϕ such that a solution to Pϕ corresponds to a solution to
ϕ. For each variable x that occurs in ϕ, we introduce an instruction
in Instrs that executes with capability Env iff x is true. For each
conjunct in ϕ, we allow the program P to choose a corresponding
instruction in Instrs, and for each disjunct in the conjunct chosen
by the program, we allow the instrumentation to choose whether
some instruction must or must not execute with capability Env.

We construct ϕP as follows. Let ϕ be a 3-SAT formula in
conjunctive normal form (CNF), and let Vars(ϕ) be the propo-
sitional variables that occur in ϕ. Let the set of program inter-
nal actions Intras include: two “initial” instructions ins0m, ins

1
m;

for each x ∈ Vars(ϕ), instructions ins0x and ins1x; and for each
conjunct c in ϕ, instructions ins0c and ins1c . Let the set of pro-
gram call actions Calls include for each x ∈ Vars(ϕ) a call
callx, and let the set of return actions Rets include a return ac-
tions retx. Let the set of program descriptors include a single de-
scriptor desc. Assume that Capsicum defines exactly three rights,
r0, r1, and r2. Thus, the set of capabilities for P is Caps =
{Triv,Env, (desc, r0), (desc, r1), (desc, r2)}.

Let the program P be as follows. From the initial state of P ,
let it execute ins0m followed by ins1m, and then choose to execute

ins0c , ins
1
c , callx, ins

0
x, ins

1
xretx for exactly one conjunct c and vari-

able x ∈ Vars(c).
Let the security policy S ⊆ (Instrs× Caps)∗ accept all strings

except for the following:

• Any string that contains (ins1m,Env).
• If ¬x is the jth disjunct of conjunct c, any string that contains

(ins1c , (desc, rj)) followed eventually by (ins1x,Env).

Let the functionality policy F ⊆ (Instrs × Caps)∗ accept
exactly the strings:

πjc =(ins0m,Triv), (ins1m,Triv), (ins0c ,Triv), (ins1c , (desc, rj)),

(callx,Triv), (ins0x,Env)

for conjunction c whose jth disjunct l ≡ ¬x for some x ∈
Vars(ϕ), along with the strings

πjc .(ins
1
x,Env)

for conjunction c whose jth disjunct l ≡ x for some propositional
variable x.

Let Pϕ = Prob(P, S, F ). Suppose that Pϕ has a solution
instrumentation I . From I , we can efficiently construct a satisfying
assignment σI for ϕ. For each x ∈ Vars(ϕ), let s ∈ Instrs∗ be any
execution of P that contains callx, ins0x. Let σI(x) = True if and
only if in (ins0x, enter cm) ∈ I(s).
σI is a satisfying assignment of ϕ. To see this, c be an arbitrary

conjunct of ϕ. Let l be the jth disjunct of c. Let s ∈ P , and
let I limit the program to have only capability (desc, rj) when it
executes ins1c in s.

Remark 3. For x ∈ Vars(ϕ), the program has capability Env
when it executes ins1x in some capability trace induced by I(s) if
and only if (ins0x, enter cm) 6∈ I(s). To see this, first suppose that
l ≡ x. Then some capability trace induced by I(s) must contain
(ins1x,Env) by the definition F . Thus (ins0x, enter cm) 6∈ I . If
l ≡ ¬x for some variable x, then no trace induced by I(s) contains
(insx,Env), by the definition of S. But by the definition of F , it must
be that (callx, rpc) ∈ I(s). Thus (ins0x, enter cm) ∈ I(s).

We now show that σI(l) = True. If l ≡ x for some variable
x, then by the definition of F and Remark 3, I must not invoke
enter cm in response to ins0x. Then by the definition of σI , σI(l) =
σI(x) = True. If l ≡ ¬x for some variable x, then by the definition
of S and Remark 3, I must invoke enter cm in response to ins0x.
Then by the definition of σI , σI(l) = σI(¬x) = True. In either
case, l is satisfied under σI .

We have shown that for each conjunct c, there is some literal
that is true under σI . Thus, σI is a satisfying assignment of ϕ.

Conversely, if ϕ has a satisfying assignment, then P has a so-
lution. Then from a satisfying assignment for ϕ, we can efficiently
construct a solution toPϕ, and vice versa. To see this, first, suppose
that ϕ has a satisfying assignment σ. Let Iσ be an instrumentation
that does the following:

• When the program executes ins0m, it invokes enter cm.
• When the program executes insc, it chooses some disjunct j of

conjunct c that is true under σ, and responds to insc by limiting
the capabilities of the program to only (desc, rj). Because σ is
a satisfying assignment of ϕ, there is always some disjunct j
for each conjunct c.

• When the program executes callx, responds with rpc.
• When the program executes ins0x, responds by invoking enter cm

if and only if σ(x) is false.

Iσ satisfies Pϕ. To see this, first, let s be an execution of P that
contains the instruction insc for the ith conjunct of ϕ. We first show
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Name LoC S F RPC Time
bzip2-1.0.6 8,399 4 3 2 2 676 0m 03s
fetchmail-6.3.19 49,370 3 4 1 1 3,468 1m 05s
gzip-1.2.4 9,076 3 3 2 1 543 0m 23s
tar-1.25 108,723 3 4 0 0 5,135 2m 51s
tcpdump-4.1.1 87,593 4 3 2 1 10,075 0m 28s
wget-1.12 64,443 3 7 3 0 4,329 1m 00s

Table 1. Performance data for the policy-weaving tool. Column
“LoC” contains lines of C source code (including blank lines and
comments), “S” contains the number of states in the security policy,
“F” contains the number of states in the functionality policy, “RPC”
contains the number of calls marked for RPC vs. the number that
appear to be needed, and “Time” contains the time taken to find an
instrumentation, in minutes and seconds.

that Iσ is secure. By the definition of S, Iσ(s) can only violate S if
one of the following:

1. The program executes ins1m with capability Env. But Iσ does
not allow such an execution, as it responds to ins0m with
enter cm.

2. l ≡ ¬x, and the program executes ins1x with capability Env.
But Iσ invokes enter cm before the program executes insx.

Thus Iσ is secure.
We now show that Iσ is functional. By the definition of F ,

for s ∈ P , Iσ(s) can only violate F if l ≡ x and the program
executes insx without capability Env. But (callx, rpc) ∈ Iσ(s),
and (ins0x, enter cm) 6∈ Iσ(s), by the definition of Iσ . Thus Iσ is
functional.

To see that Iσ is modular, observe that the primitives that I
invokes after each call callx depend only on σ(x), not on any of
the instructions chosen by the program before callx. Iσ is secure,
functional, and modular, and thus is a solution of Pϕ.

4. Experiments
We experimentally evaluated the policy-weaving algorithm pre-
sented in §3. In particular, we designed a set of experiments to
answer the following questions: (1) Can policies for practical pro-
grams be expressed naturally as policy automata? and (2) Can the
weaving algorithm efficiently instrument programs to satisfy their
policies?

To answer these questions, we collected a set of real-world sys-
tem programs with known past security vulnerabilities, and infor-
mal policies for each program. Some of the programs were found
through interaction with the Capsicum developers [12], while oth-
ers were chosen as popular system utilities with well-known vulner-
abilities [22, 31]. We specified a policy for each program as security
and functionality policy automata. We implemented the algorithm
described in §3 as a tool, and applied to the tool to each program
and its policies to rewrite the program.

The experiments indicate that our policy-weaving algorithm is
practical. We were able to express desired policies for each of the
programs as automata, and the tool found an instrumentation for
each program and policies in minutes.

We now discuss the program and policies used, and discuss the
results of applying our tool to the programs and policies.

4.1 Programs and Polices
tcpdump We described the structure of tcpdump and its required
security and functionality policies in §2.

gzip, bzip2, tar The gzip compression tool has exhibited
vulnerabilities in the past, due to its complicated compression and

decompression code [33]. gzip was previously rewritten manually
by the Capsicum developers to execute securely on Capsicum [34].

gzip mainly executes in a loop. In each iteration of the loop,
gzip processes command-line arguments, configures files, and in-
vokes compression and decompression routines to read input from
and write output to the configured files [34]. While the code that
processes arguments and configures files is simple and trusted, the
compression and decompression routines are complex, and have
exhibited vulnerabilties.

Guided by the policy given informally by the Capsicum devel-
opers [34], we constructed policy automata that allow gzip to ac-
cess its environment when executing the main loop, but only allow
gzip to read from an input file and write to an output file when ex-
ecuting the compression and decompression functions, which we
assumed could inject arbitrary code.

We applied our tool to gzip and these policies. The tool instru-
mented gzip to execute each of compress and decompress as a
separate process. Each such process has capabilities only to read
from a specific input file, and write to a specific output file. The
tool correctly determined that the compression and decompression
functions needed to execute in a separate process so that after they
return, gzip would again have full permission to access its envi-
ronment to open new files.

Like gzip, the bzip2 compression utility and tar archiving
utility have demonstrated security vulnerabilties [22, 31]. We de-
fined policies for bzip2 and tar analogous to the policy described
above for gzip.

fetchmail fetchmail downloads mail from a list of servers. In
a typical execution, fetchmail reads a list of mail servers, and
then iteratively downloads mail from each one. As fetchmail
executes, it thus handles data read from a network connection
that may be untrusted. A desirable policy for fetchmail is that
it should be able to open connections to the network and should
always be able to write to a designated output file and log file, but
once it reads data from the network, it may not access any other
resources in its environment.

wget In a typical execution, wget first opens and configures
output and logging files. It then iterates through a given list of
URL’s. For each URL, it opens a network connection to the URL,
and downloads data from the URL. As wget executes, it thus
handles data read from a network connection that may be untrusted.
A desirable policy for fetchmail is that it should be able to open
connections to each URL, and should always be able to write to its
designated output and log files. However, once it reads data from
the URL resource, it should not access any other resource in its
environment.

4.2 Results and Analysis
We applied our tool to rewrite each of the above programs to satisfy
their policies. Data about the performance of the tool is in Tab. 1.
Lines of code (“LoC”) are the number of lines of C source code
of the program (library code is not included). Each time is the
average of three runs on a machine with 16 processors and 32 GB
of memory, measured by the UNIX utility time. Each processor
has four cores and a 12 MB cache. However, our tool does not
explicitly exploit parallelism.

The data supports several claims about the effectiveness of
the weaving algorithm. The security and functionality policies are
small, all with less than ten states, as they are defined over only
a small handful of important program actions. In our experience,
they are much easier to define and understand than the primitives
inserted into their programs, which contain tens of thousands of
lines of code. The performance times indicate that the tool can
rewrite programs efficiently enough that a developer could feasibly
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integrate it into a system that periodically secures a program under
development, or perhaps into a compiler toolchain. Note that the
performance times are not strongly correlated with the size of the
original program. Because each of the policies only concern a
small handful of program instructions, our tool can aggressively
minimize the full model of a given program to a much smaller
model that, intuitively, behaves “equivalently” over instructions
relevant to the policies. Thus, the performance of the tool tends
to be correlated much more strongly with the location of policy-
relevant instructions, in particular if they are located in complex
control structures, or frequently-called functions.

As we discussed in §3.4, the only appreciable runtime overhead
incurred in rewriting a program for Capsicum is typically due
to RPCs. The “RPC” column of Tab. 1 contains the number of
RPCs added by our instrumentation vs. the number that we believe
are required from a manual inspection, and the total number of
callsites in the program. Although our algorithm is not guaranteed
to minimize the number of RPCs, the number of RPCs added
is extremely low compared to the number of all callsites in the
program. This is partly because adding too many RPCs would
cause the program to violate its security policy, and partly because
our optimizations rule out the vast majority of program callsites as
irrelevant to the policy. However, even though the number of RPCs
is small, each can add considerable overhead, and so we consider
the problem of minimizing them to be an important issue.

5. Related Work
Security monitors: This paper describes an algorithm and a tool
that automatically rewrite programs for Capsicum, an operating
system that provides a set of capability-specific primitives [34].
Operating systems that provide security system calls as primi-
tives allow one to define program-specific policies. In compari-
son, Mandatory Access Control (MAC) operating systems such as
SELinux [25, 29, 35] only support system-wide policies described
in terms of standard system calls. Such policies cannot refer to im-
portant events in the execution of a particular program, but many
practical policies can only be defined in terms of such events [18].
UNIX can monitor programs to ensure that they satisfy policies if
the program correctly uses the setuid system call, but in general
this approach suffers the same shortcomings as MAC systems. In
comparison, systems with security primitives allow an application
to signal key events in its execution to the operating system.

An Inline Reference Monitor (IRM) rewriter takes a policy
expressed as an automaton and instruments a target program with
an IRM, which executes in the same memory space as the program,
and halts the program if it attempts to perform some sequence of
actions that would violate the policy [1, 18]. Edit automata [24]
generalize IRMs by also supressing or adding security-sensitive
events to ensure that the program satisfies a policy. Because an
IRM (or edit automaton) executes in the same memory space as
the program that it monitors, it can enforce policies defined over
arbitrary events in the execution of the program. However, for the
same reason, an IRM can only monitor the execution of managed
code. In comparison, systems with security primitives can safely
and efficiently monitor programs composed largely of unmanaged
code [34, 36].

Writing programs for security monitors: Prior work in aiding
programming for systems with security primitives automatically
verifies that a program instrumented to use the Flume OS [23] prim-
itives enforces a high-level policy [20], automatically instruments
programs to use the primitives of the HiStar OS [36] to satisfy a
policy [16], and automatically instruments programs [20] to use
the primitives of the Flume OS [23]. However, the languages of
policies used in the approaches presented in [16, 21] are not tem-

poral and cannot clearly be applied to other systems with security
primitives, and the proofs of the correctness of the instrumentation
algorithms are ad hoc. The instrumentation algorithm presented in
this paper is one instance of a general, automata-theoretic algo-
rithm. As a result, the algorithm can be instantiated to generate
instrumentation algorithms for a variety of systems with security
primitives, including HiStar and Flume, and the tagged memory
system Wedge [7].

Previous work [8, 10] automatically partitions programs so that
high and low confidentiality data are processed by separate pro-
cesses, or on separate hosts. We automatically partition programs
so that each process of the partitioned program can correctly invoke
operating system primitves to satisfy a policy, when a single mono-
lithic may not be able to invoke primitives to satisfy the policy.

Skalka and Smith [30] present an algorithm that takes a Java
program instrumented with capability security checks, and attempts
to show statically that some checks are always satisfied. Hamlen
et al. [19] verify that programs rewritten by an IRM rewriter are
correct. Thus, the work in both of those papers concerns analyzing
checks of the capabilities in managed programs, whereas our work
concerns correctly applying primitives to restrict the capabilities of
unmanaged programs.

Safety games: Safety games have been studied as a framework
for synthesizing reactive programs and control mechanisms [3, 4,
13, 26]. Previous work describes algorithms that take a safety game
represented symbolically, determine which player may always win
the game, and sometimes synthesize a winning strategy for the
player [13, 26]. One contribution of our work is connecting these
game-theoretic problems to the problem of rewriting a program for
a capability system. In particular, we extend the known problem
of finding modular winning strategies [5] to a game problem that
models the problem of instrumenting programs that execute in
multiple process spaces. Our algorithm to find winning defender
strategies for such games, is a variation on a known symbolic
algorithm that searches for winning attacker strategies of a bounded
size [26].
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