Computer
Sciences
Department

Verifying Concurrent Programs via Bounded Context-Switching
and Induction

Prathmesh Prabhu, Thomas Reps, Akash Lal, Nicholas Kidd
Technical Report #1701

October 2011

Verifying Concurrent Programs
via Bounded Context-Switching and Induction®

Prathmesh Prabhu and
Thomas Reps

Univ. of Wisconsin; Madison, WI USA
*GrammaTech, Inc.; Ithaca, NY, USA

{pprabhu,reps}@cs.wisc.edu

Abstract

This paper presents a new approach to the problem of vegifyin
safety properties of concurrent programs with shared mgsod
interleaving semantics. Our method builds on and extendtegt
bounded analysis (CBA), in which thread interleavings amesa-
ered only up taK context switches. In a K-induction argument, the
base case establishes that the property holds for the/firsteps
(first K context switches in our case); the inductive case estab-
lishes that if the property held for the previois steps (context
switches), then it will hold after one more step (contexttsh).
Our approach uses CBA directly to handle the base case, a&sd us
CBA as a subroutine when discharging the inductive case.

The account sketched out above over-simplifies; there awe ac
ally several impediments to combining CBA and K-inductidhe
paper identifies these challenges and introduces threeitpes
that, when used together, side-step the difficulties.

1.

Analysis of concurrent programs has been a topic of greatdst
in recent research. In the general case, analysis of bottuc@mt
and sequential programs is undecidable; however, evensiith
plified modeling frameworks for which the sequential vensaf
a problem is decidable, the concurrent version of the prolike
either much more expensive, or undecidable.

Because verification is so challenging, another approash ha
been to devise tools that explore only a portion of a conotirre
program'’s state space, as a means for detecting bugs. Fandes
context-bounded analysis (CBA) [4, 13, 17] analyzes alkvérs
of a concurrent program for up & context switches, but ignores
behaviors that involve more thaki context switches. While CBA
cannot prove the absence of bugs, empirical results havensthat
it is able to capture many of the interesting behaviors ofog@m
[13, 16]. If CBA cannot reveal a bug within a few context swis,
this is a strong indication that the program is correct.

This paper develops a technique for verifying safety priger
of concurrent programs (with shared memory and interlepsax
mantics) by combining methods adapted from CBA with a rule of
induction that generalizes K-induction [1, 6, 8, 9, 20]. =
sense, it can be thought of as a technique to generalize fibre in
mation learned from a CBA run to construct a proof of correstmn

Introduction

* Supported, in part, by NSF under grants C{¥810053, 0904374, by

ONR under grants N0001{09-1-0510, 10-M-025}, by ARL under grant
W911NF-09-1-0413, and by AFRL under grants FA9550-09-790and
FA8650-10-C-7088. Any opinions, findings, and conclusiongecommen-
dations expressed in this publication are those of the asittamd do not
necessarily reflect the views of the sponsoring agencies.

Akash Lal

Microsoft Research India
Bangalore, India

akashl@microsoft.com

Nicholas Kidd

Google
Madison, WI USA

nkidd@google.com

Applying K-induction to concurrent programs comes with its
own set of challenges, which force some modifications to béema
to the basic proof technique. For instance, one needs to firmy &0
have the inductive hypothesis consider only a restrictedfsstart
states for the inductive case. The paper discusses thesigpa
and develops an appropriate version of K-induction thatiisble
for use on concurrent programs, which we d&linduction with
amplification

Given a concurrent progran® and a safety propertyl, K-
induction with amplification breaks down the task of provihgt
P satisfiesA into (roughly) the following two proof obligations:
Base case: Prove that the required property holds after all execu-

tions that start at the program’s initial state and perfoprtai

K context switches.

Inductive case: Prove that, starting in an arbitrary state, the prop-
erty either (i) fails to hold aftesomeexecution that performs
up to K context switches, or (ii) holds iall executions that
perform up toK + 1 context switches.

(K-induction with amplification also has a further ingreatigvhich

allows the inductive hypothesis to consider a more restliset of

start states for the inductive case. $2and§4.)

One of the chief motivations for combining K-induction with
CBA is that although the proof obligations refer to a boundenh-
ber of context switches, a context-bounded run still corstaxecu-
tion sequences of unbounded length between context switthes
observation suggests that K-induction plus CBA should beemo
powerful than a K-induction technique that is based on itidac
over single execution steps.

The verification of safety properties for recursive conentr
Boolean programs is known to be undecidable, and thus-a
inductive proof using K-induction with amplification may tnex-
ist for some property that indeed holds fér. In keeping with
classical terminology, we say that a property that can beguto
using K-induction with amplification for some bourfd is “K-
inductive”. The paper presents a semi-decision procedased
on K-induction with amplification for recursive Boolean grams,
and identifies a class df -inductive programs for which the algo-
rithm terminates.

Contributions. The contributions of the work can be summarized
as follows:

¢ We identify the challenges involved in employig-induction
to prove safety properties of concurrent programs.

e We propose a trio of techniques that, when used together, ad-
dress the challenges. The workhorse is CBA (and some neces-
sary manipulations to allow CBA to apply in the inductive €as
of a K-induction proof). However, CBA alone is insufficient.

In particular, we employ two further techniques that, ireeff

[1] bool x = true; [10] void thread1(} [15] void thread2(}
[2] error : goto error; [11] recfun(); [16] recfun();

(3] [12] if(!x) E

[4] void recfun() { [13] goto error;

[5] if(*) [14] }

[6] rec_fun();

[7] else

[8] return;

9}

Figure 1. A program with two threads. Lines [1]-[9] are shared
declarations and functions. Function threadl() is theyeptint

of the first thread and thread2() of the second threadfueds a
recursive function that nondeterministically calls ifsal returns.
The label error (line [2]) is not reachable:is initialized totrue
and never changed; hence, the true branch of the test in1Rje [
can never be taken.

prune states from being considered as potential starisstaite
the inductive case: (i) Claessen’s method of “Improved tadu
tion” [6] (except that induction is over context switcheshex
than program steps), and (ii) abstract interpretation toore

in a C-like notation. Suppose that the goal is to prove thetgaf
property that the program labetror (line [2]) is unreachable in
any execution of the program. For this example, one can argue
thaterror is unreachable becauses initialized totrue and never
changed; consequently, the true branch of the test in liggddn
never be taken. However, our goal is to develop a generalf proo
technique, and we would hope that the technique would cax@r s

a simple example, as well.

In Fig. 1, the space of possible executions for each threahwh
run in isolation is infinite, due to recursionii@c_fun. Moreover, the
space of possible interleaved executions of the concupregiram
is not only infinite, there are now additional behaviors togider
because there can be an unbounded number of context switches
a given run, which are allowed to occur at any execution state

The need to address priori unbounded behaviors suggests
finding a way to use induction. When using induction to verify
sequential programs, the challenge is to identify invdsidimat are
inductive over the program and that imply the property oéliast.

In a K-induction proof, two “windows” ofK” steps are considered:
the base case considers a prefix of upifosteps; the inductive
case assumes that the property of interest is true for tivéopieK
steps, and attempts to establish the property for one mepe[$t

from consideration some of the states that are not reachableg g 9, 20]. When a K-induction proof fails, the need to esil

from the program’s initial state.

We call this collection of techniquek-induction with am-
plification. As will be discussed ir$2, the advantages of K-
induction with amplification stem from three effects:

strengthen the current invariant can sometimes be avoidedlyn
by increasingK. That is, with K-induction, the need to synthesize
stronger invariants for the inductive step is alleviatesdme extent
by the window of K steps: one way to strengthen the invariant

* it summarizes paths through execution contexts so that ar-js' merely to increase the size of the window. Of course, the tw

bitrarily long sequences of program actions count asfust
against the bound ok

= instead of considering all states during the inductive,dtep
prunes states whose shortest execution-context pathaio err
is smaller than the current window

approaches—explicit invariant strengthening and inénga& —
are independent, and can be used together.

However, several technical challenges arise when tryingséo
K-induction to verify a concurrent program. In particuldue possi-
bility that a context switch can occur at each executiorestaikes

* some of the states that are unreachable in any executionthe yse of K-induction challenging in this domain.

from the beginning of the program are pruned.

e We report on an implementation of the method using the model CHALLENGE 1 (Effect of context switches on K-induction proofs).

checker Moped [19].

Related Work. K-induction [1, 6, 20] has been studied in the hard-
ware model-checking community for analysis of circuitswasl

as in the software-verification community for analysis ofieen-
tial programs [9].

The first work to use K-induction to analyze concurrent soft-
ware was by de Moura et al. [8]. They combined K-induction
with bounded model checking (BMC) [2]. BMC is a state-space-
exploration method that is based on under-approximatingoa p
gram’s semantics (i.e., it may fail to explore some behaviafr
the program). In contrast, our work combines K-inductiorthwi
context-bounded analysis (CBA) [13, 17], which is an alétitre
to BMC for under-approximating a program’s semantics. Bath
work and that of de Moura et al. share the goal of using K-itidnc
to augment a core under-approximating method to make iilgess
to verify properties. At the technical level, the two methaate
quite different; a more complete comparison is givefin

Organization. §2 uses a small example to illustrate some of the
challenges that arise, as well as the main elements of our sol
tion. §3 formalizes K-induction with amplification§4 presents

a program-sequentialization technique that can be usedKn a
induction proof. §5 discusses limitations of the approacdit
presents experimental resul§g. discusses related work.

2. Overview

This section uses the program shown in Fig. 1 to illustrate th
challenges that arise when one attempts to apply K-indudto
verify safety properties of concurrent programs, as wellthes
principles that we use to overcome them. The program isemritt

Because a context switch can occur at each execution state, i
is not obvious how to push through a K-induction argument. In
particular, multiple context switches can occur at an exiecu
state without the program making forward progress—i.egreh
can be unbounded stuttering [15].

Even in the absence of stuttering, the classical definitioid-o
induction is hampered by the fact that for concurrent progsathe
least value ofK for which a proof is possible can be the length of
a very long trace of program steps.

To develop a feasible K-induction technique for verifyirane
current programs, we found that it was necessary to make thre
adjustments to the K-induction proof rule. These adjustsane
based on the two principles introduced below.

PRINCIPLE1 (Sequences of steps)reat sequences of program
steps as a single group that collectively count as juagainst the
bound ofK.

The main result ir§3 shows that techniques adapted from CBA
[13, 17] can be combined with K-induction to address Prilecip
An execution contexs a sequence of program steps executed by a
single thread between consecutive context switches. Bed@aBA
focuses on execution contexts, rather than the individezdnam
stepsper se it addresses the second of the two issues raised in
Challenge 1—namely, the need to reason about long traces of
program steps. Because CBA does not impose any bound on the
length of an execution context, a summary transformatientifled
for a single execution context can describe the effect ofrg lo
trace of program steps that would otherwise involve a laajaes
of K. For example, & = 1 proof can be found for the case of

sequential Boolean programs. This is expected becauserséju
reachability for Boolean programs is decidable. The faat the

Consequently, the following execution schedule, whereetfgec-
tive threads have the indicated program-counter values (dre

bound K" has changed from steps to context switches highlights values of the respective stacks are irrelevant) is a valttedale
how the use ofK-induction in this paper focuses on a parameter with 3 context switches:

related to concurrency, and summarizes arbitrarily lorggisatial
execution traces.

When K-induction is combined with CBA, the proof obligatfon
break down into a base case involviig context switches and an
inductive case involvind((and K + 1) context switches for some
chosen value of< !

EXAMPLE 2.1. Let us choosé(to be3 for the program shown in
Fig. 1. The proof obligations are then to show that

(t2,[15]) ~ (1, [13]) ~ (¢2,[15]) ~ (¢1,[13]).

Indeed, it is now possible for threadto jump to error without
performing a context switch, and so the inductive case.fails

For the induction proof to go through, the least we would need
to hope for is to add an artificial assumption about detestimi
progress for each thread in every context switch. Howelirpiro-
posal suggests a second reason why K-induction over the eumb

Base case: error is not reached in any execution that starts withthe of context switches runs into difficulties: even in the alageof

program in its initial state and uses up 3ccontext switches.

Inductive case: starting from an arbitrary program state, if a run
does not reach error using up t® context switches, then it
can not reach error by continuing the run and allowing one
additional context switch.

stuttering, in the worst case, each thread can yield coaftet ex-
ecuting just a single program step.

ExAMPLE 2.3. Assume that threatl is executing in redun() and
that its stack holds a pending activation of procedure thfga
from a call to recfun() at line [11]. The following execution sched-

The intuition behind why one can hope to prove safety proper- ule has3 execution contexts (indicated by), 3 context switches

ties of concurrent programs via inductive proofs with lodues of
K—whereK is the number context switches, not program steps—
is based on the folklore that most bugs in concurrent progrean

be found within a few context switches.

(~), and no stuttering:
(t2,[15]) — (t2,[16]) ~

(t1,[8]) = (t1, [13])
~ (2, [16]) = (t2,[4]) ~ (t1,[13)).

There are a number of other reasons why induction over the Once again, thread can now jump to error in one program step

number of context switches should be beneficial.

(without making an additional context switch), and the ictile

e It enables us to reduce the problem to one of reachability in case fails.

a sequential execution of individual threads, along theslin
of the sequentialization transformation used for CBA [18].
particular, CBA straight out of the box handles the base.case

¢ A sequentialization reduction can be implemented as a seurc
to-source transformation, which opens up the possibifigmm
plying essentially any sequential model checker to thelprob
of verifying concurrent programs.

e In some cases, it enables us to specify a class of programs

for which the problem is decidable (because the underlying

sequential reachability problem is decidable).

Let us now try to prove the obligations from Ex. 2.1. As we
will see, some challenges remain for the inductive caseuseck-
induction over the number of context switches alone is usfsat
tory. It is necessary to introduce some other ingredienthamge
the problem into a form in which CBA can be applied to the irduc
tive case. However, to understand what needs to be amended, i
instructive to understand what goes wrong with K-inductiower
the number of context switches alone, and in particular, ivfayls
to get a handle on long traces of program steps.

ExAMPLE 2.2. The first proof obligation requires us to prove that
error is unreachable within a bounded number of contextcveis.
We can use the sequentialization-based technique dewkliope
[13] to discharge the proof obligation.

The second proof obligation is more challenging, and is the
subject of most of the discussion in the remainder of thit@ec
There are several difficulties:

e Because the proof obligation for the inductive case saysrt's

ing from an arbitrary program state, . . " itis necessary torc

sider execution states in which threadtarts at line [13].

e As mentioned in Challenge 1, a thread can make a context
switch without making any progress, i.e., without exeguéiny
program statements. This phenomenon is cadteittering[15].

1As will be explained in§3, induction will actually be based on groups
of program steps that consist wiultiple execution contexts, callegbochs
However, for the purposes of this section, it is sufficienthimk of the
induction as being over context switches.

What is important to note about Ex. 2.3 is that although the
induction principle was worded in terms of the numbeicontext
switches the specific context switches that occurred in the run
effectively caused thd{ elements of the window to degenerate
to individual program stepsin other words, for an improved rule
to have a chance of using induction over context switchessto i
advantage, it must address the following challenge—iniqaar,
by following the second of our two principles (see below):

CHALLENGE 2 (Reduction to individual program stepgn
induction technique for verifying concurrent programs gllo
guard against the inductive case degenerating to inductieer
individual program steps. The induction technique musb dle
able to handle stuttering caused by repeated context sesttat
fail to make forward progress.

PRINCIPLE2 (Prune start states from the inductive case).
Eliminate as many states as possible from being considesed a
potential start states for the inductive case.

We employ two techniques that fall under the rubric of PpieR:
1. We adopt Claessen’s method of “Improved Induction” [6frDe

2.3], except that, following Principle 1, the induction igeo
context switches rather than program steps. Thus, givem-a co
current programP and a safety propertyl, our modified rule

of induction breaks down the task of proving thasatisfiesA

into the following two proof obligations:

Base case: Prove that the required property holds after all ex-
ecutions that start at the program’s initial state and parfo
up to K context switches.

Inductive case: Prove that, starting in an arbitrary state, the
property either (i) fails to hold aftesomeexecution that
performs up toK context switches, or (ii) holds imll
executions that perform up t& 4 1 context switches.

In effect, this revised rule of induction eliminates mangtes

from being considered as potential start states for thecindu

tive case: instead of considering all states during the dndu
tive step (as with K-induction), “Improved Induction” pres

states whose shortest path to error is smaller than therturre To finesse this issue, we can restate the proof obligaticering
window. In particular, the formerly problematic start statlis- of (i) backwards reachability frorarror, and (ii) set subtraction
cussed in Exs. 2.2 and 2.3 are both pruned because both can .

BY(([2,%) U (% [2])) = B (([2], %) U (%, [2])) = 0, @)

reach(t1, [2]) in fewer than3 context switches(¢2, [15]) ~»
where “*” stands for any program point, ad® captures back-

(t1,[13]) — (t1,]2]), in the case of Ex. 2.2, and2, [15]) —
(t2,[16]) ~ (t1,[8]) — (t1,[2]), in the case of Ex. 2.3. wards reachability in the concurrent program wittincontext
. We employ abstract interpretation to remove from comatiten switches§4.2 describes an approach to checking Eqgn. (1) by reach-

some of the states that are not reachable from the program’s apjlity analysis on a pair of sequential programs obtaimethfthe
initial state. _) o concurrent program. The first program in the pair simulatesna

A proof may fail because it ends up considering states that of the concurrent program fok + 1 context switches from an
can never be reached in any execution from the beginning of arpitrary stater; the second program simulates the programéor
the program. We postpone a detailed discussion of this phe- context switches. For each case, we find the set of tilait reached

nomenon untik4.2, but note that the issue is another example error, and see if there are members of the first Bet(1) that are

of Principle 2: we need a method that safely prunes some of the not in the secondK).

starting states considered during the inductive step. Tde a

To sum up, the three techniques used in K-induction with am-

rithm in §4.2 addresses this issue by using a simple abstract in- pjification have the following benefits:

terpretation that identifies an over-approximatibof the states

reachable from the start of the program; all states not ran

be pruned from consideration.
All three techniques—(i) induction over context switch@s prun-
ing a la Claessen'’s “Improved Induction”, and (iii) prugivia ab-
stract interpretation—must be used together to side-s$tepif-
ficulties encountered in applying K-induction to concutreno-
grams. We call the combinatid¢-induction with amplification

An important point of comparison between K-induction with
amplification and “Improved Induction” relates to guardagainst
stuttering and, more generally, considering cyclic patgycle
automatically defeats an inductive argument because it “ep’
the entireK bound; consequently, others [6, 8, 20] have introduced
techniques that, in effect, usbortest path$o error to short-circuit
longer paths, as well as cyclic paths. In contrast, K-inidunctvith
amplification amplifies shortest pathsgbortest execution-context
paths which are constructed out of unboundedly long execution-
context segments.

EXAMPLE 2.4. Returning to the program from Fig. 1, the inductive
case satisfies the conditions3fnduction with amplification:

For each program state, if it is impossible to reach error on
any execution with a maximum of 3 context switches, then it
is also impossible to reach error from the same startingestat
in anyexecution that has a maximum of 4 context switches.

The hypothesis in the inductive case of K-induction with &mp
fication is stronger than that of the inductive case of K-oithn
because the former asserts that the error state is unrdadbaall
executions sequences that start in a given state and havesat m
K context switches. In contrast, ordinary K-induction aks#rat
the error state is unreachable foparticular execution sequence
that has at mosk' context switches, and it is itself that is then
extendedo include one more context switch.

The proof obligation for the inductive case of K-inductioittw
amplification is harder to satisfy than K-induction. To seatt
let us rewrite the proof obligation of Exs. 2.1-2.4 in redagl
notation. (Again, the stacks of the two threads are irrelet@the
point we wish to make, so that portion of the state will be igrb)
The set of possible starting states for the inductive case is

S[pel, pe2] {12, ..., [14]} x {[2],-.-,[9], [15], [16], [17]}

In the inductive case, we are required to prove

VseS. 3p.(2],p) € R*(s) V (p,[2]) € R*(s) [Ind. case (i)]
vp.([2],p) € R*(s) A (p,[2]) & R*(s) [Ind. case (i)]

where R* (s) is the set of states reachable frenwithin & con-

text switches and2] denoteserror. Thus, the formula involves a
quantifier alternation.

e Paths through execution contexts are summarized so that arb
trarily long sequences of program actions count asljasfainst
the bound of.

¢ Instead of considering all start states during the indecsiep,
states whose shortest execution-context path to erroraiem
than the current window are pruned.

e Similarly, some of the states that are unreachable in anguexe
tion from the beginning of the program are pruned.

3. K-induction

In this section, we formalize the aspects that were intredwand
discussed informally i§2.

3.1

We begin with the traditional definition d&-induction for transi-
tion systems, and then present a stronger formulation gitinei-
ple due to Claessen [6].

Improved K-induction

DEFINITION 3.1. A transition system is a 4-tupléS, —, I, E)
where S is the set of states; is a binary relation on the sef,
and I and E are subsets of. The elements of s&t are called
the states— the transition relation, and elements inand E the
initial and error states, respectively.

Given a transition systedi, the problem is either to prove that the
states in& are not reachable from the starting statesr to provide

a witness path from some statefirto one inE. The problem is
undecidable for infinite-state transition systems. Induncprovides

a sound but incomplete technique to attempt the proof. Weskits
up some terminology helpful in presenting the proof techag
Let —* be the reflexive transitive closure of, and—* and—~

(k > 0), the relations that capture reachability in exadtlyand

< k steps, respectively:

a—kp det Jai,az,...ak—1 : (a = a1)
A (a1 = a2) A...(ag—1 —b)
a—=bb 3 <=k A(a—LD)

For a states, R(s) denotes the set of states reachable fram
R(s) = {r € S|s =" r}, andR(X) denotes the set of reachable
states from a sefX, defined as the union of the sets of states
reachable from the elements &f R(X) = |,y R(s). R’;(X)

andRE (X) are defined similarly.

THEOREM3.1 (K-induction [6]).Given a transition syster§ =
(S,—,I,E), E is unreachable fron?, i.e., R(I) N E = 0 if
3k € N such that both of the following hold:

RE(DNE=0 2)

Figure 2. (a) K-induction (' = 3): with ao as the starting state.
The induction step assumes that the hollow nodes ompéltie of
length 3 are non-error states and assertg E. (b) ImprovedK-
induction (K" = 3): with the same starting state, the induction step
assumes that the hollow nodes in thexe of depth 3 are non-error
states (states within the dashed polygon) and asselsE.

®)

A (ﬁaer/\...ﬁak GE) = —ak41 €F

Yaoai ...apt1 € S: (ao = ar) A...(ax = ak+1)

Obligation (2) states thaE is unreachable inK steps fromlI.
Obligation (3) states a property over all paths in the ttéosi
system: starting from an arbitrary state, if a path does eath
Ein K steps, then it does not reaéhat the X' + 1% step either.

The modified version of{-induction, called “Improved Induc-
tion” in [6], changes the second proof obligation slighfiye hy-
pothesis is strengthened to assume that no path of length &p t
from the arbitrarily chosen point.{) reaches error. Then, the par-
ticular path starting ato (which, by the hypothesis, itself did not
reach error ink steps) does not readh at the K + 1% step.

THEOREM3.2 (improved K-induction [6])Given a transi-
tion systemg = (S,—,I,E), E is unreachable from/, i.e.,
R(I) N E = 0 if 3k € N such that both of the following hold:

RE(HDNE=0 4)

Vao € S : (RE(ao) NE #0) V (RE (@) NE=0) (5)

Sketch of ProofWe sketch a proof via contradiction. Assume that
both obligations (4) and (5) are satisfied, uis reachable from
I. Then there is a path of minimal length from a state I to
a statee € FE. Let the length of this path be. Obligation (4)
impliesn > K. The proof proceeds by progressively tiling the
steps on the path—* e with trees of depthk disjoint from E and
using obligation (5) to infer that the next step of the patteeging
out from a leaf at deptti of the tree is not ink. Because a path
consists of a finite number of transitions, we tile ovaventually,
provinge ¢ E, a contradiction™

The difference in the second proof obligations of the twa ver
sions of induction is brought out in Fig. 2(a) and (b). The fegu
show a part of the transition graph including an arbitrargdewa,
considered in obligation (3) and obligation (5) for a proathw
K = 3. Inordinary K-induction (Fig. 2), a path of length 3 fram
is assumed to be error free to show that the ngdeg is not an error
node. On the other hand, in improved induction (Fig. 2(Ing,ttee
of depth 3 rooted at, (marked by a dashed polygon) is assumed
to be error-free. The stronger induction hypothesis in oapd K -
induction makes it more expressive. Improved K-inductian of-
ten prove a property with a lower bound than ordinary K-irtchre
Moreover, some properties that are #étinductive with ordinary
K-induction can be proved using improved K-induction.

Figure 3. (a) K-induction:e is an error state. The induction obli-
gation vacuously holds along the path — a1 — e because: is
reached within 2 steps fromy. For the same stai@),, K > 4 is
needed along the patly — a2 — as — a4 — e. Along the path
a0 — as —" e, no value of K will work if there are paths of un-
bounded length. The minimuii§ needed for the obligation to hold
for all paths fromao is the maximum of the< for all paths. (b)
Improved K-induction: In the same graph, the induction gidition
holds froma, for K = 2 because € F lies in a tree of depth 2
rooted atap. The induction proof works even if there are paths of
unbounded length of the formy — a5 —* e.

This difference in strength can be explained in terms oftlesig
of paths from a state to an error state. Fig. 3(a) and (b) show
a subgraph containingo and an error state. In ordinary K-
induction (Fig. 3(a)), proof obligation (3) fails fak = 1 on the
pathao ~ a1 ~ e because we hav@, — a1 Aa1 — e Aao &

E Nar ¢ E bute € E. The minimum value ofK for which

the proof works is 2, for which the implication in obligati¢B)

is vacuously satisfied because the antecedent is falselaBymni
obligation (3) holds on the patty, — a2 — as — as — e

for K > 4 and so forth for different paths fromo to e. The
minimum value ofK" needed to prove obligation (3) from to e is

the larges# needed along any path between them. More generally,
the minimum value of<’ needed to prove the second obligation for
ordinary K-induction on a transition system is equal to thegth

of the longest path from a non-error state to an error state.

On the other hand, obligation (5) succeeds framvith K = 2.
The pathay — a1 — e of length 2 falsifies the hypothesis
that there is no error state in a tree of depth 2 rooted,atand
vacuously proves the obligation (Fig. 3(b)). Longer pathetror
from the node do not forc& higher because the shortest path to
some error state always lies inside a tree of depth larger tia
path length. This property of improved induction of shartaiting
longer paths to error by the shortest path is extremely itapor
in the context of concurrent verification. In particulare tpath
ao — as —* e may be of unbounded length, meaning that a
counter-example can be found for the second proof obligatio
ordinary K-induction for anyK. On the other hand, it does not
affect the improved K-induction proof anl = 2 still suffices to
prove obligation (5) frona.

LEMMA 3.1 (K-bound).LetGF be the subgraph aff backwards
reachable from the error sek, and let/ N G¥ = (. Then the
property thatE is not reachable fronf holds inG, and the smallest
values ofK” which a K -induction proof exists, for the two varieties
of K-induction, are

e Ordinary K-induction: The length of the longest pathGt¥ .

e Improved K-induction:

max

length of the shortest path fromto e.
a€GENecE

3.2 K-induction with amplification

We work with the following notion of a concurrent program: A
concurrent program consists of threads,7; through T,,. For
each thread, the local state consists of its execution-staek the
values of the local variables in each stack frame—and a dlsémee
S. We assume that the program contains a special error ¢ahel
and the safety property to be proved is that is unreachable in
any execution of the program. A general safety propértyan be
converted to this form by modifying the program to chetkefore
exit and perform a jump terr if the property fails. The semantics
of a concurrent program will be modeled formally as a tramsit
system.

We show in this section that K-induction can be modified to in-
clude multiple (and possibly an unbounded number of) ttems
in each of thei (respectivelyK + 1) steps in the proof obligations
of the inductive argument. The modification involves a splegipe
of transition system that faithfully models the runtime &eior of
the programs.

The idea is formalized in terms of the notion ofaund-robin
schedule. Henceforth, we assume that thread scheduliogiisl ¥
robin, and call one sweep of the scheduler across all threads
epoch Any execution of the: threads witharbitrary interleaving
can be modeled by a different execution with round-robireslcif
ing, provided the threads are allowed to stutter (yield autimak-
ing progress). Because of the fixed order in which threadslare
lowed to run during each epoch, it is possible that a largetter
of context switches are required to simulate an executiavhich
there is an arbitrary interleaving of the threads. (In jgaitr, under
the round-robin schedule many execution contexts woultbpar
no work before yielding.) However, a round-robin schedtiat t
consists of K’ epochs is guaranteed to contain all schedules with
K or fewer context switches (as well as some schedules witb up t
nK context switches).

The method of K-induction with amplification developed il th
following sections allows us to carry out induction on thenfer
of epochs rather than the number of program steps.

Transition system that corresponds to a concurrent program

For each thread}, let T’ be the local state space and $ebe the
set of states of the shared store. Define the gépborresponding

to thread j asG’ (Nes, 25). Here, N; = TV x S and

G—]>g TY xS — TV x S captures the effect of one step of thread j on
the state space when runin isolation. To allow the threadtutter,

we also add the transitiofgr?, s) <5 (77,s) | 7 € T, s € S}.
Using the individual transition graphs for the thre&ds . . 7.,
we define the execution graph for the concurrent progfarithe
Single Context Graph for thregid denoted bySCG, captures the
semantics of executing thregavithout executing a context switch.

Keleli

DEFINITION 3.2. SCG = (Ngcg, ———) with
def i .
Nscgj = (HZT) X S X {J}
. J n .\ de
(7'11,7'12 C T 81, 7) LN (7'21,7'22 C T, 82,7) ::f

VG #4) ¢ (7 =7) A (], 51) <5 (7, 52))

Using the individualSCGs, we define the Single Epoch Graph
for the k™ epoch, denoted bBEF, as follows; CS edges are
denoted by)

k
DEFINITION 3.3. SEG' = (Nggg, —os)

Nega ‘2 ([T, T%) x S x {1,2,...,n} x {k}
1 SEG* 1.2

. def
(7-177-12‘--7-1n7817]17k)—>(7—27T2 =

. ey T, 82,72, k) 1=
[((7-1177—12 .. 7—{7’7 817j1) u (7—217 7-22 e 7_2117 827j2))
AJr=j2)] Vv
(Vi (ri=m))A(s1=s52)A(i <nAj2=5+1)] (1)
Finally, the execution grapty is obtained by putting together an
unbounded number of Round Robin sweeps. In the definiEsh,
edges are denoted by (*).

DEFINITION 3.4. G = (N, —)
N‘;k:f(]‘[i'ﬂ‘i) xSx{1,2...n} xN

. . def
(7117T12...T{L,817j1,k1) — (7’21,7'22...,...7’27L,82,j2,k2) e
. SEGF1 .
((rd, 7 ... 51,01, k1) ——— (12,75 ... 75, 82, j2, k1))
/\(lﬁ :kg)]) .
Vo [(Vi: (] =73)) A (51 = s2)A

(Gr=nAj2=1Ak2 =k +1] ()

This graph, together with = [T, I* x I° x {1} x {1}, where
I* andI® are the possible initial states of the threads and the store,
is the transition system that captures all possible exaecsitdf the
program P. Let us now assume that we also have a set of er@s,sta
E, C ([, TY) x S. ExtendE, to E’ = E, x {1,2,...n} x N.
Then, £’ is precisely the set of states @ that corresponds to
program P reaching an error statefip.

We first present a lemma restrictidgf to a smaller sef.

LEmMMA 3.2.1f a stategy = (', 72,..

reachable fronY, then so igj. = (7177-2, ..

T, 8,5,k) € E'is
T s, 1Lk +1).

As a consequence of Lem. 3.2, we only need to show that the set
E = E, x {1} x Nis unreachable froni.

DEFINITION 3.5. Define—=* as an extension of> in G with the
property that it contains no more thanepoch-switch edges:

SEG \x ES

((_>) _>) SEG \x

<k_)

- <k(
With the previous lemma and definition in place, we now stage t
main theorem.

THEOREM3.3. Given an execution graph as defined above,
—(I —* E) holds if both of the following hold:

—(I =" E) (6)

Vs e T x ... T"xS x {1} x {1} : (7)

(s =P E) V(s =M B)

Proof omitted.

The statement of Thm. 3.3 is similar to Thm. 3.2 frgf1 in
that it breaks down the task of proving tHais unreachable from
into two proof obligations. The proof obligations in Thm33liffer
in that both the base case and the induction case are exgpriesse

The edges of the execution graph can be divided into three terms of an unbounded number of steB&Gedges) in the execu-

types:SCGedges &) correspond to steps taken by individual
threads; Context Switch edgesc—f—>) model context switches; and

Epoch Switch edges—F(i) model the step in an epoch in which the
last thread in the epoch executes a context switch. We nowedefi
the execution graph in terms of these sets of edges.

tion graph. The base case asserts that there is no pathringtai

or fewerESedges from a state if to a state inE. This encom-
passes paths with any number@EGedges between consecutive
ESedges. In the same spirit, the induction case refers to untbou
edly deep trees consisting of paths with respectivélgnd KX + 1

ES edges. The concept of induction over epochs is illustrated i

;i

,.:n,::’::::.;,:m,m;: 2

Figure 4. K-induction with amplification: Execution tree for a
two-thread program for two epoch steps. Filled circles &ag¢es
with thread 1 as the active thread and hollow circles arestatth
thread 2 active. Bold arrows are transitions where a costgitth

happensCSor ESedges). These edges are labeled with the number

of context switches since the initial point. Squiggles esgint an
unbounded number of intra-thread stepEGedges). One epoch
consists of both threads being scheduled once, hence twehepo
steps correspond to four context switches. Notice tHdt=a 2 tree

in the execution graph is of unbounded depth due to the presen
of an unbounded number &EGexecuted by the active thread in

betweerCSESedges. Each polygon encloses a fragment of the tree

covered by one epoch step.

Fig. 4. It shows a part of the execution graph for two threadsin-
able from a state within two epoch-steps. Each epoch consists
of some number cBEGedges, corresponding to program steps ex-
ecuted by the two threads, with an intervenid§edge when the
first thread yields control to the second thread. The epodéris
minated by arESedge. There is no bound on the numbeS&G
edges in a sequence BEGedges in between twGSES edges.
Thus, performing induction with respect ESedges allows us to
treat sequences of program steps as a single group thattolg
count as just 1 against the boundZgf

Obligation (7) in Thm. 3.3 embodies our response to the two
challenges posed §2.

1. Along with obligation (6), it constitutes a proof that aggaths
that consist of many more thak individual program steps by
folding longer paths into single epochs.

2. It also effectively guards against reducing to a proofr dnei-
vidual program steps due to the short-circuiting propergnm
tioned in§3.1. An execution from a stateto an error state
with an ES edge after every» SEGedges can only serve as
a counter-example to the proof constructed from K-indurctio
with amplification if there is no other path fromto e with
fewer ESedges. Hence, an execution trace consisting of 1
epochs with a context switch after every program point is a
counter-example trace only if it is not possible to get fromo
e without executing a context switch after every program step
If there were another execution trace fromo e with fewer
epoch stepss would be removed from consideration because
the first clause in obligation (7) would be satisfied. Lem. 3.1
guarantees that the minimuii needed for the proof depends
on the execution traces that reach an error state with the min
mum possible number &Sedges; additional traces with more
ESedges do not pusK higher.

4. Proving properties using K-induction with am-
plification

Thm. 3.3 provides us a technique to prove safety propertes f
concurrent programs: given a concurrent program with aarerr

[1
[2
[3
[4

void thread1(X [5] void thread2(){
lock(); [6] unlock();

} 71}

e

rror: goto error;

Figure 5. A program with two threads. Function threadl() is the
entry point of the first thread and thread2() of the seconeith().
The labelerror is obviously not reachable because there is no jump
to error from either of the threads.

labelerror, to prove thaerror is not reachable from the initial state,

show that

1. error is not reachable from the initial state withi epochs.

2. For every state, of the program, iferror can not be reached
within K epochs then it cannot be reacheddint+ 1 epochs.
Item 1 is the classical problem of Context Bounded Analysis o

the given concurrent program with a context bouidTechniques

developed in [4, 13, 17, 18] address this problem. We use iéasim

sequentialization to reduce item 2 (or equivalently, cddiign (7)

of Thm. 3.3) to another reachability problem over sequéptia-

grams, but it remains a much harder problem because it Esqug
to establish a property about all paths starting from anytrarly
state in the execution space of the concurrent program.

As noted in§2, we find that an attempt to prove obligation (7)
fails if the set from whicha is chosen is left unconstrained.
Thm. 3.3 already begins by restricting the starting statesidered
for the obligation to those in the first epoch with the firstetl
active.

The set of initial states needs to be restricted further &hpu
through a proof of the induction step because interactietsden
the threads can generate a counter-example to obligatjon (7

EXAMPLE 4.1. Consider the example from Fig. 5. lock() is an
atomic function used to acquire a lock. A call to lock() when
the lock has already been acquired before it is releasedgusin
unlock() causes a thread to be blocked. The label error isaatsly
unreachable because no thread makes a jump to error. Honaaver
attempt to prove obligation (7) witkl = 1 fails for the program
state with the stack configurations (t1, [2][2][4]) (with [4the
error label at the bottom of the stack) and (t2, [6]). The doling
execution schedule with 2 epochs is a counter-example.gfahes
are represented by the active thread along with its stack. third
element in each tuple is the current status of the léclenotes that
the lock has been acquired, whiledenotes that it is free.)

(1, [21(2][4], w) = (¢1, [2][4], 1) ~ (£2,[6], 1) = (£2,[], u) ~
(1, [2][4], w) = (£1,[4],1)

Without the context switches, it is impossible to reach refnam
the state(t1, [2][2][4], u) wheret2 holds the stack [6]: an epoch
is needed to pair up the calls to lock() and unlock() to popttudf
top of the call stack for both threads. Indeed, the initidl stacks
for the two threads can be extended to arbitrary height talpce
counter-examples for any value &f.

We address this problem by pruning out troublesome initial
states while proving obligation (7) by only consideringtstabe-
longing to an over-approximation of the program states #nat
reachable from the start of the program. To obtain this over-
approximation to the reachable state space, we use abistiact
pretation to compute the set of all reachable stack configus
for each thread if it were allowed to run in isolation and a#ifiches
were explored. The values of local variables in the stackésand
the shared store are left unconstrained.

Thread 1
initial
stack

Concurrent program !
with arbitrary initial
state :

Shared Variables !
gl '
g2

Thread 2
initial
stack

Simulate
initial
configuration

Thread 2
Initialization

Thread 1
Initialization’

Shared
*l8ly|8ly) ..
: gzl 322 -

ariables
g1y
82

= =

L2:4
L2:3
L2:2
L2:1

Figure 6. Initialization phase: The first phase synthesizes an arbi-
trary state of the concurrent program by simulating the etiec

of each thread running in isolation for some number of stapd,
concatenates the stacks obtained at the end of such (inetahpl
executions. Shared variables from the concurrent programep-
resented by copies in the simulation—one copy for every epoch.
Both local variables in the stack and shared variables aigraed
random values.

4.1 The general sequentialization technique

This section sketches an approach that uses a sequeitigaliza
transformation to convert the original concurrent prograno
two slightly different sequential versions. We then usehadility
queries on the sequential programs to convert obligatipm{@ a
language-containment query; that s, proving obligatiné¢duces
to answering the language-containment query. This gerigeal
yields a source-to-source transformation, describeg4i?, that
is applicable to any concurrent progragd.2 also provides an al-
gorithm to answer the language-containment question foldzm
programs, but leaves open the question for more generatgmsgy

The basic idea is to simulat& -context-bounded executions
of the concurrent program starting from an over-approxingat
envelope of the reachable states, as described above. e si
lation involves two phases: dnitialization phase and aimula-
tion phase. First, thénitialization phase runs code that can non-
deterministically generate any one of the states in the lepge
of reachable states. The code for the initialization phaselates
each thread in isolation; it assigns random values to adllleari-
ables, and ignores all branch conditions. It then concéesrthe
stacks that were obtained for each thread to obtain a sitab#,s
which serves as the starting stack for the sequential progiat
runs during thesimulationphase (Fig. 6).

During the simulation phase, each shared variable from the

original program is represented By copies, one for each epoch.
The initial value of the™ copy represents a guess about the value
of the variable at the start of th& epoch. The initial values of the
variables are assigned at the end of the initialization @hakere
the final step is to assign a random value to all of the copideof
shared variables.

The simulation of K-context-bounded executions of the pro-
gram involves implementing the possibility of context sis

Thread 1 Thread 2
_QEEpoch 1] EEpoch 1]
S [Ehreahd ; ['Il;hreahd f
poc poc [hread 1] [Thread 2}
|9 Thread 1 Thread 2 pOCh 2 Epoch 2
Epoch 2 Epoch 2 >
|9£Thread 1 [Thread 2 [Thread 1] [Thread 2]
|_> Thread 1 Thread 2
Epoch K Epoch K Thread 1 Thread 2
Epoch K Epoch K

Round-Robin schedule

Simulating all epochs
of length K

for a thread together

Figure 7. Simulation phase: A round-robin schedule for two
threads is simulated by executing all epochs for a threaeltheg
[13]. During thei"™ epoch, thei" copy of the shared variables is
accessed.

during the execution of the threads. When a thread yield&@ion
its local state must be remembered while other threads &xecu
in order for the thread to continue execution from the stdeoed
cal state. Due to the presence of a stack, there are an urgmbund
number of local states to remember. This problem is sidepsi
by executing all epochs for a thread together (Fig. 7). Tresthac-
cesses thé" copy of the shared variables in it§ epoch. Wherk
epochs have been simulated for all threads;theopy of a shared
variable represents the value of the shared variable atrideok
that epoch in the concurrent program. It remains to chedktiis
value matches the guessed initial value forthe1"" epoch.

The simulation phase described above is the same as the se-
quentialization described in [13] with one minor differencipon
finishing the simulation of all epochs for a thread, we popaofy
residual stack for that thread, which uncovers the initeatk (com-
puted during the initialization phase) for the next thread.

Let L and L= ! be sequential programs constructed as above
to simulate the given concurrent program férand K + 1 epochs,
respectively. Note that the initialization phasesidf and L+!
are identical. LeEnvelopedenote the set of states with stack con-
figurations belonging to the restricted set of initial coofafions
mentioned above.

Let BX (error) be the set of states that are backwards reachable
from error acrossK epochs in the concurrent program. Proof obli-
gation (7) can be restated as the following language-comiznt
query:

BE ™ (error) — BZ (error) = 0. (8)
The drawback of using operations that work purely backwards
as in Eqn. (8), is that they can consider states that nevee ari
any forwards execution. As demonstrated by Ex. 4.1, sudkssta
can generate a counter-example to obligation (7). We caretterb
than Eqn. (8), and in many cases overcome problems like the on
discussed in Ex. 4.1, by intersecting each term \Eitlrelope

(Envelopen BE* (error)) — (Envelopen BE (error)) = 0. (9)

This is where the initialization phase comes to the resclle: a
states generated at the end of the initialization phasenbeio
Envelope Hence, the simulation phase ¥ (LX*+!) simulates

the concurrent program only from relevant initial states fo

(K + 1) epochs; Egn. (9) holds iff the set of states at the end of
the initialization phase that are backwards-reachable feoror

in L¥*! is no greater than the set of states at the same point
backwards reachable froetror in L. Thus, obligation (7) can be
established by showing that the difference of the set oéstat the

Simulation functions: func(. .) Ts{stmt}

[1] stmttag: 7, {stmt,epg

func(. ..) func(. ..) [2% while(*)
= [3] ep=ep+1;
stmt 75 {stmt} [4]ifep > K)
c [5] if(is-functionnmain)
6] ep=1
[7] return;

Figure 8. Transformation of program statements for the simula-
tion phase: All program statements are modified to refer twesh
variables for the current epoch,(in the figure); a possible context
switch (lines [2]-[3]) and epoch switch (lines [4]-[7]) imple-
mented immediately thereafter.

Main Function : main()
[1] initialize = true

Base Function : base()
[7]for(i =1;i < K; ++i)

]
[2] lastthreadmairinit() [8] forall(g € Globals)
[B] for(i =1;i < K; ++i) 9] glil=*
[4] assume(gpld(i+1) == g(i)) [10] g-old[i] = g[i];
[5] if(required property fails) [11]ep=1;
[6] goto error; BASE:

[12] initialize = false;

Figure 9. Additional functions in the transformatiomainis the
entry point of the sequential prograbaseis switching point from
theinitialization to thesimulationphase.

end of the initialization phase ib* ** and L* that are backwards
reachable fronerror is empty.

4.2 The source-to-source transformation

The simulation described above can be realized in the fora of
source-to-source transformation of the concurrent pragréhe
transformed program has two copies of the procedures inuhe ¢
rent program: one each for tliwtialization phase and thsimula-
tion phase. The execution of the transformed program buildseip th
initial stacks for the threads using the initialization ¢tions. The
program then switches to simulation mode to simuldteontext-
bounded runs of the concurrent program. The simulationtions
are used during the simulating run.

The technique for simulating context-bounded executians i
similar to [13]. Fig. 8 shows how the program statements areim
fied in the functions from the concurrent program to obtainua-
tion functions. A special variablep stores the current epoch being
simulated. All accesses to the shared variables are motiifieder
to the copy of the variable for the current epoch. (See thieocal
operationr, {stmt,eg in line [1] of Fig. 8.) The program point cor-
responding to this modified program statement is given augnliar
bel. Variableepis incremented non-deterministically to simulate a
context switch (lines [2]—[3]). Wheapcrosses the context-bound,
the current thread has been simulated for all epochs, saitiotidn
performs an epoch switch by returning immediately (linds{[4).

In fact, whenep > K, all the pending calls for this thread also
return without performing any additional actions, whictcavers
the initial stack of the next thread. For function calls, veswame
that returned values are modeled using a special globalhlaret
for each thread. This assumption simplifies the transfdonat

Two additional functions in the sequential program tie thie i
tialization and simulation phases together. The functamesshown
in Fig. 9. The functiormainis the entry point of the program. It
begins the initialization phase by setting a special végiatitial-
izeto true and calls the initialization copy of the last thresaatain
function. Control returns toainonly at the end of the simulation
phase. It then performs the check to ensure that the guessed! i
values of the shared variables for different epochs wersistamt.

Initialization functions: func(. .) 7o {Stmt}

[1] forall(stmt in statemenlist)

func(. . .) func.nit(. . .) [2] if(ep > K) return;
o = If(initialize) [3] if(initialize && *)
stmt forall(l € Locals) [4] if(first_thread) base();
I=* [5] else prevthreadmairinit(. . .);
. [6] if(linitialize)
To {Stmt} [71 goto stmttag;
. [8] 7;{stmt}

Figure 10. The initialization functions: Each function from the
concurrent program has an initialization copy. These fonst
build up the stack for the starting state of the simulationriby
the simulation phase, control is transferred to the sinandaunc-
tions.7; represents the reinterpreted program statement.

For valid runs, it then checks the property of interest. Turetion
baseis executed between the two phases. It assigns random val-
ues to all copies of the globals and ends the initializatioase by
settinginitialize to false. Functiobasecontains the labeBASE

The initialization functions mimic an incomplete run of bac
thread from its entry point, ignoring data, to build up théiah
stack for the simulation. The transformation is shown in. Hi@.
All local variables are assigned random values in the heatler
the function. Data is ignored during initialization by regrpreting
the program statements via the operatigfstmt (line [8] in
Fig. 10). InT;{stmt}, assignment statements are replacedkg
conditionals are replaced by a non-deterministic jump;fandtion
calls are replaced by calls to the initialization copy of filmections.
maincalls the initialization copy of the last thread’s main ftion.
The initialization functions for the last thread build ugethitial
stack for that thread and then call the initialization copythe
previous thread’s main and so on (line [5]), eventuallyinglbase
(line [4]).

The challenge in getting the initialization and simulatprases
to work together lies in being able to transfer control to $hrau-
lation functions at the right program point during the siatidn
phase—qgiven that the stacks are initialized with pendirtgrne
points in thenitialization code. Line [2] and lines [6]-[7] in Fig. 10
implement the switch from the initialization copy of the @tion to
the simulation copy. Whenever a stack frame from an int#&ilon
function is uncovered during the simulation phase, depgndn
the value ofep, the function either returns (line [2]), or jumps to the
corresponding program point in the simulation functionds [6]
and [7]). Thus, the initial stack constructed for each ttreathe
concurrent program in the sequential program consists tbfaac
tion records for the initialization functions. During thiensilation
phase, as these stack frames are uncovered, a jump to tiee corr
sponding point in the simulation function continues thecesi®n
via the simulation functions.

The final transformed problem. We now describe how Eqn. (9)
relates to the program transformation presented above.ppy a
the transformation twice t@ to obtain the sequential programs
L and LE*!, which simulateP for K and K + 1 epochs, re-
spectively.(Envelopen B (error)) represents the set of states at
the label BASE (line [12] in Fig. 9) ir.® that are forwards reach-
able from the program entry and backwards reachable &oor.
Similarly, (Envelopen BX ™! (error)) represents the set of states
at BASE in LE*! that are forwards reachable from the program
entry and backwards reachable framor. It remains to compute
these sets and take their differedcEhus, the proof obligation of
the inductive case leaves us with the following alterngpir@blem:

2Technically, LX and LX+1 must have identical state spaces. This issue
is handled by declaring an extra unused copy of the globals'in

e Given the two sequential programi€’ and L%+ with identi-
cal state spaces, and special poaner and BASE in both pro-
grams, check whether there is a program state in the forwards
reachable set at BASE that is backwards-reachable &wor
in L¥*1, but not backwards-reachable fraror in L.
The program transformation defined above reduces the phbief o
gation of the inductive case from a reachability problem @omx
current program to this reachability problem on a pair olsetjial
programs. For general programs, we do not know of a solution t
the reformulated problem. For the case of recursive Boopgan
grams, the question can be addressed via reachabilityeguen
pushdown systems.

DEFINITION 4.1. A pushdown systen{fPDS) is a triple? =
(P,T,A) whereP is a set of stated] is a set of stack symbols,
andA C P xI' x P x I'" is afinite set of rules. Elements from
the setP x I'* are called configurations of the PDS. A PDS rule is
written as(p,vy) < (q,u) wherep,q € P,y € I"andu € T'".
The rules define a transition relatios- on configurations of: If
(p,7y) < (g, u) thenVu’' € T*(p,yu') = (p,uu’). The reflexive
transitive closure ofs-, denoted by=-", is the reachability relation
defined by the runs of the PDS over the configuration space.

A PDS can be used to model the control flow of a program.
The PDS has a single stateand stack symbols corresponding
to the program points. An intraprocedural edgev) is modeled
by the PDS rule(p,u) — (p,v); a call to a function with entry
e, from the call-sitec, and with a return to-, is modeled by the
rule (p,c¢) — (p,er); and a return statement from program point
r is modeled by the rulép,r) — (p,¢). Data in the Boolean
program is encoded by expandititjto be the set of global states
and expanding the stack symbols to store the values of tla loc
variables. The PDS rules are also updated to reflect thet effére
program steps on the values of the global and local variables

Given a Boolean program to verify, applying the source-to-
source transformation explained above yields the two jaimgim-
ulations for K and K + 1 epochs. Abusing notation, we ugé
and L " to refer to the PDS models of the two sequential pro-
grams obtained. Because the procedomse()had no local vari-
ables in the source-to-source transformation, the stacksis for
the procedure correspond one-to-one with the program gdilie

the set represented by automat@riff @ acceptsu starting from
the start state. The answer is returned in the form of a similar
automaton.

Item 1 above can be calculated as

M" = post[L™]* (1) N AP*F pre[L¥]* (ATRR).

Here AP*SEis an FSA that accepts configuratiof@, BASEu) |
p € PX Au € (T5)*}; AFRRis an FSA that accepts con-
figurations {(p,ERRu) | p € P¥ Au € (I¥)*}; and I
is the set of initial configurations of the PDB. Note that the
subtermpost[L%]*(I) N AP*Eintersects an automaton that ac-
cepts all configurations forwards reachable from the infi@int
(post[L*]*(I)) with an automaton that accepts configurations with
BASE at the top of the stack4®*SH, and hence corresponds to
Envelopen Eqgn. (9).

The check performed in item 2 is standard regular-language
containment.

Algorithm 1 Semi-decision procedure for Boolean programs.

1: /I AB”SEjs an automaton that acceBASET™
2: Il AFRRis an automaton that acce#&RI"™*
3: for K = 1;true; K = K + 1do

4: if CBA (P) returns reachabtben

5: /I Error is reachable: bug found

6: EXIT

7. /I Compute the set of states that reach errokiepochs M %
8: synthesizel X from P

9: M =postiLX1*(1) N APASEN pre[L K 1* (AFRR)

10: // Compute the set of states that reach erraKin+ 1 epochs, MS + 1
11: synthesizeL %+ from P

12: MEFL =postL X1 (1) N ABASE pre[L K +11* (AERR)
13: it MEFT - MK = (then

14: /I Both obligations passed: program proved correct
15: EXIT

The semi-decision procedureAlg. 1 states a semi-decision pro-
cedure for recursive concurrent Boolean programs baseden t
ideas discussed above. The algorithm starts vith= 1 and
tries to push through a proof using K-induction with ampéfion.
The base case is checked by applying CBA [13] with the context
bound K. The inductive step is checked via sequentialization and

use BASE to denote the stack symbol corresponding to the pro- the language-containment operation described above. ¥ E&t
gram label with the same name. Similarly, let ERR be a special be reached in a run of the concurrent program withinepoch

stack symbol corresponding to the error pointriain() (line [6] of
Fig. 9).

switches, CBA returns a trace for the run. The algorithmsexith
the error trace: a bug has been fodréithe program passes both

There are two main operations needed to verify the induction CBA and the containment check, ERR is unreachable and a K-

step usingLX and LE*!. Given the two PDS model&® =

(PK FK AK) andLK+1 _ (PK+1 FK+1 AK+1)

1. CalculateM X the set of configurations that arise in the runs
of the PDSLX with BASE at the top of the stack, that are

backwards reachable from the configurations with ERR on top

of the stack. Similarly, calculatd/%+1.
2. Check language containmert{ A/ 1) C” L(M*)
K-induction with amplification for a giveri is tractable for

Boolean programs because both items 1 and 2 are computable. F

a regular set of configuration@ in the configuration space of a

PDS, the set of configurations reachable in the runs of the PDS

starting from configurations i) is also a regular set. There are
algorithmspost™ andpre™ [3] that compute the forwards (respec-
tively, backwards) reachable set of configurations frongala set
of configurations.

post’[P)(Q) ={veT" |FueQ u=pu}
pre*PlQ) = {v €T |FueQ v=pu}

Bothpost™ andpre™ answer queries about an input set given in the
form of a finite state automaton (FSA). A configuratignw) is in

induction with amplification proof has been found for the bdu
K. If the program passes CBA, but the containment check fAils,
is incremented and the loop repeats.

For the class of non-recursive, concurrent Boolean program
Alg. 1 is a decision procedure. If the program has a bug, tiests
an error trace within a finite number of epocks and CBA fails
for that context bound. If the program has no bug, there isesom
K for which both checks in Alg. 1 will succeed: non-recursive,
concurrent Boolean programs have a finite number of statek, a
Alg. 1 does not explore cyclic paths (paths with repeatetesya
which implies that it will eventually terminate.

In addition to non-recursive, concurrent Boolean progranes
identified a few classes of recursive, concurrent Booleagnams
for which Alg. 1 is a decision procedure. One class consists-0
cursive Boolean programs in which all reads of the sharedvigs
occur only when the stack is no deeper than some fixed bound.

3|f the Boolean program is an abstraction of some concretgran, and
we wish to use Alg. 1 inside an abstraction-refinement ldap,5 is where
the counter-example would be checked to see whether it isosfsy and if
so, a refined Boolean program would be generated.

[1] bool x; [10] void thread2(}
[2] bool y; [11] if(*)
[3]error: goto error; [12] thread2();
[13] while(x == false) }
[4] void thread1(] [14] x=false;

[5] if()

]
]
[6] threadl(); [15] void main2()
]
]
]

]
[71 while(x == true) } [16] vy =false;
[8] x=true; [17] thread2();
91} [18] if(y == true) goto error;
(197}

Figure 11. Limitation of K-induction with amplification: A pro-
gram that is nof<-inductive for K-induction with amplification.

In such programs, functions that read global variables are n
recursive and cannot be called (even transitively) by ieerpro-
cedures. Recursive procedures are free to write to globelblas.
We omit a proof of this result for lack of space.

5. Limitations of K-induction with amplification

Any method proposed as a verification technique for conatirre
programs is inherently incomplete because the problem @f-pr
ing safety properties is undecidable, even for recursiveceo
rent Boolean programs. In the case of K-induction with afipli
cation, the minimum value oK needed for obligation (7) in the
K-induction proof to work is bounded from below by the length o
the shortest execution-context path from a program stagerto.
While we restrict the set of states considered as the irstities
using abstract interpretation techniques, this pruninthefstates
is not enough to guarantee that a proof can be found forfany
Indeed, due to the inherent undecidability of the problédrare is
noway to guarantee that suchkacan be found.

The program shown in Fig. 11 eludes proof by K-induction with
amplification. The program has two threads with entry floreti
thread1()and main2() The execution of either thread consists of
an arbitrary number of recursive calls (lines [5]-[6] ameb [11]—
[12]), followed by returns down to the first caller. Thdile loop
in thread 1 blocks the thread until thread 2 set® falseand the
while loop in thread 2 blocks until thread 1 sets it backtrae.
Consequently, the two threads must return alternagetgr is not
reachable becauggis set to false before the call thread2()and
remains false at line [2].

Unfortunately, it is not possible to prove thatror is unreach-
able using K-induction with amplification. The difficultyes in the
forced synchronization before every return in the progr&nom
some arbitrary starting stack configurations for the twedlds, our

method must expend one epoch to reduce the stack size by 1. Be-P

cause the initial stacks can be of any depth, obligationgif3 for
any value of K. (We encountered this problem earlier in the ex-
ample ing4 (Fig. 5), although the problematic stack configurations
there were spurious.) In particular, the following is a sukefor
generating initial states for which the second obligatiaifsffor a
generalK: (x = true, y = true, ([7]%?, [13]%T1[18])). It is not
possible for the second thread to finish&lH- 1 calls tothread2()
within K epochs. Usind<+1 epochs, there is a schedule for which
thread 2 reaches the if condition in line [18], and becauseas-
sumed to berue, thread 2 reachesrror. The stack configurations
in these initial states are indeed reachable in the progralbeit
with different data states—and thus they are not pruned by th
abstract-interpretation based method for removing sparsiart-
ing states.

6. Experiments

To test the capabilities of K-induction with amplificationg ran
it on a small corpus of examples (whose characteristicsistegl|

Program (Set) #thread$LOC]#globald #localg K [Time(s)
blue2 (Blue) 2 5 6 |[3] 3244
dekkers (Sync) 2 4 1 [3] 3.74
lock_unlock K (Sync) 2 2 1 |4] 06
lock_unlock 3 (Sync) 3 4 3 | 3] 44.02
petersons (Sync) 2 4 1 |3] 03
petersondoop (Sync 2 4 1 |3] 6.05

Figure 12. Summary of the experiments performed using K-
induction with amplification for non-recursive Boolean grams.
Column 1 reports the name, along with the name the progratet sui
Sync is a set of simple mutual-exclusion examples we used for
benchmarking; Blue refers to a set of Bluetooth-driver eplas
[11]. Columns 2—7 report the number of threads, total lifeode,
globals, locals, the minimum bounA needed for the proof to
work, and the time needed for the proof with boukid

@) K 4 5 6 7 8
Time(s) 0.64]1.90/5.69/19.57/108.71

(b) #Thread$ 2 | 3 | 4 5 6 7
Time(s) [0.03[0.27[2.17/17.09132.24 1011

Figure 13. (a) K vs. time: The effect of increasing tti€ needed
for a proof on the time taken. Programs belong toRenpK set.
(b) Number of threads vs. time: The effect of varying the nandf
threads on time taken for a proof witki = 3 for a simple mutual-
exclusion program.

in columns 2—7 of Fig. 12). The experiments were performed on
system with dual quad-core, 2.82 GHz Intel processors; hexye
the analyzer’s implementation is single-threaded. Theesy$as 6
GB of memory and runs 64-bit Linux (Red Hat 2.6.18).
The experiments were designed to test the following questio
e What are the typical values @ needed for a proof?
e How does the method behave &sis increased (for a program
of essentially fixed size)?
e How does the method scale as the number of threads is in-
creased?
Each example consisted of two or more threads with a disshed
point that the algorithm attempts to establish is unredehab
The experiments involved three sets of programs.
blue2: A model of a Bluetooth driver [11] that has been used in
several earlier studies [5, 18].
Sync: Implementations of several mutual-exclusion algorithms,
~each involving two or three threads. One of the examples from
this set was used to study the effect of varying the number of
threads competing for the critical section.
umpK: These programs push the minimukhup by introducing
many synchronization points between the threads. We uged th
programs to study the effect of increasiAgon the analyzer.
We implemented a variant of Alg. 1 by extending a previous im-
plementation of CBA [13], which was built on top of the Moped
[19] model checker for pushdown systems (PDSs). Moped pro-
vides a modeling language, called Remopla, which it corapite
Boolean programs. Instead of performing a source-to-soans-
formation, as described i§4.2, our implementation uses the PDS
rules that Moped generates from a Rempola model as an interme
diate representation (IR), and performs an IR-to-IR tramsétion.
We decided to use Moped because the input language simplifies
specifications of our target programs, and because Mopgzbsisp
backwards reachability queries on the program model gesttra
The ability to answer backwards reachability queries isiaifor
the semi-algorithm developed §4. 4

4The Remopla models used in the experiments are availablofenload
at http://pages.wisc.edupprabhu/kindampexp/

The current implementation falls short of demonstratiregfthl
capabilities of Alg. 1. Although Alg. 1 is applicable to a wid
class of programs, the implementation handles only noarsae
Boolean programs. In the absence of recursion, the setalf sten-
figurations reachable from the start state is finite, whichmsehat
for Boolean programs, there are only finitely many differpra-
gram states that can arise in any execution of the programss, T
the problem of proving that a set of states is not reachabta the
initial state is decidable; a brute-force computation efrsachable
state space always terminates. On the other hand, focusingre
recursive programs lets us validate the applicability efittduction
principle easily, albeit on a small scale.

With respect to the questions posed at the beginning of this
section, we made the following observations:

Typical values of K. With the exception of the programs reported
in Fig. 13(a), Alg. 1 found a proof for all programs wifki = 3 or

4. The programs used in Fig. 13(a) were specifically contcum
pump K up. This emperical measurment shows that K-induction
with amplification greatly reduces the boukdneeded for a proof.
The minimumK for which a simple induction proof can be found
is roughly proportional to the length of the program text.

Behavior as K increasesWe found that the time taken for the in-
duction step of the proof increases rapidly with increasialge of
K. The number of basic PDS operations performe&dacreases
(not reported) remains roughly the same. The slowdown isualtre
of the increase in the size of the data structures used, haktes
the PDS operations used in the implementation expensive.

Behavior as the number of threads increaseslhe final subtrac-
tion operation in Alg. 1 is implemented in a naive fashion,ckh
leads to an exponential increase in time with the numberreéits.

7. Related Work

The goal of verifying properties of concurrent software wiadel-
checking techniques has a long history, going back to thgroaf
the field [7].

K-induction [1, 6, 20] has been studied in the hardware model
checking community for analysis of circuits, as well as ie th
software-verification community for analysis of sequdnpeo-
grams [9]. As discussed &2 and§3, we adopt Claessen’s method
of “Improved Induction” except that, following Principledf §2,
induction is performed over epochs rather than progranmsstep

The first work to use K-induction to analyze concurrent soft-
ware was by de Moura et al. [8]. Both our work and that of de
Moura et al. share the goal of using K-induction to augmerdra c
under-approximating method—which may fail to explore sdoee
haviors of a program—to make it possible to verify propettie
their case, they combined K-induction with bounded modektkh
ing (BMC) [2]; in our work, we combine K-induction with CBA
[13, 17]. Applying K-induction in conjunction with CBA corse
with its own set of challenges. The techniques that we used-to
dress these challenges have been describg2iHiat.

De Moura et al. make use of a technique that appears to be an
independent rediscovery of Claessen’s “Improved Induétio

. . whenever the induction step . . . fails . . . we define
the predicatelU(s) for representing the set of . . . states
[that] may reach the bad state insteps . . . Nowyp is

strengthened ag A —U(s), and quantifier elimination is
used for transforming this strengthened formula into an
equivalent Boolean constraint formula f%)].

Thus, de Moura et al. incorporate “Improved Induction” @sen
blocking conjunct, whereas we incorporate it via the sétrsetion
operation of Eqn. (9).

One major difference between the two techniques is that our
approach performs K-induction over epochs. Although de ftdou
et al. use two kinds of simulation relations to reduce the sizhe
state space they work with, in essence they still performdtidn
over program steps. Their path-compression techniquese¢td
simulation” and “reverse simulation”) are fairly weak—Izdly
variants on “paths of interest contain no repeated stategh as
“paths of interest contain no repeated states, modulordiffees
in the values of the (write-once) input variables”. In cast; the
technique of K-induction over epoch steps permits somerarby
long sequences of program actions to be condensed so tlyat the
count as just against the bound oX'.

The idea of creating analyzers that place a bound on the numbe
of context switches that a multi-threaded program is altbwe
perform (i.e., CBA) originates in the work of Qadeer and Wa][1
Qadeer and Rehof [17] showed that CBA is decidable for Baolea
programs. Bouajjani et al. [4] extended the decidabilityufeto
Boolean programs with bounded heaps, and Lal et al. [14hexeie
the result to a class of infinite-state program abstractiéiisof
these techniques bound the number of context switches that a
explored (while letting processes perform an arbitrary benof
computation steps in between context switches). Althoug# C
under-approximates the program’s semantics (i.e., it nadytd
explore some behaviors of the program) it encompasses @, larg
and in general unbounded, subset of the program’s behaviors
particular, CBA does not impose any bound on the executiogthe
between context switches.

The use of a sequentialization transformation to reduce & CB
problem to a (larger) sequential-analysis problem in whictiions
of the state are replicated was pioneered by Qadeer and Wu [18
although the Qadeer-Wu transformation is limited to a fixatext
bound of2. The first sequentialization transformation that allowed
for an arbitrary context boun®l’ was given by Lal and Reps [13]. A
different sequentialization transformation for CBAwas given by
La Torre et al. [12]. Although the transformed program imses in
size with the sequentialization approach, the significarfabese
methods is that they allows any sequential-analysis tecienio be
applied after the transformation. Moreover, they have ¢edrter-
of-magnitude speed-ups over some other competing appséch
analyzing concurrent software [13].

Another recent approach to verifying concurrent prograas h
been described by Garg and Madhusudan [10]. Their technique
applies to programs for which rely-guaranteeproof exists for
the property of interest. The class of programs addressealiby
technique is incomparable to the class addressed by Garg and
Madhusudan, and the two methods are based on quite different
approaches. Both techniques are of interest for expantatpbls
available for addressing the difficult and important problef
verifying concurrent software.

References

[1] R. Armoni, L. Fix, R. Fraer, S. Huddleston, N. Pitermandav. Vardi.
SAT-based induction for temporal safety propertieNTCS 119(2),
2005.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic mddbecking
without BDDs. INTACAS 1999.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachability Igsia of
pushdown automata: Application to model-checking. C@NCUR
1997.

[4] A. Bouajjani, S. Fratani, and S. Qadeer. Context-bodndpalysis
of multithreaded programs with dynamic linked structurés.CAV.
2007.

[5] S. Chaki, E. Clarke, N. Kidd, T. Reps, and T. Touili. Veiig con-
current message-passing C programs with recursive callfACAS
2006.

[6] K. Claessen. Induction and state machinesWinter Meeting of the
Computing Science DepEhalmers Univ. of Tech., Sweden, 1999.

[7] E. Clarke, Jr. and E. Emerson. Synthesis of synchrooizakeletons
for branching time temporal logic. MWorkshop on Logic of Programs
1981.

[8] L. de Moura, H. Ruel3, and M. Sorea. Bounded model checéimd
induction: From refutation to verification. BAV. 2003.

[9] A. Donaldson, L. Haller, D. Kroening, and P. Ruemmer. t&afe
verification using k-induction. I$AS2011.

[10] P. Garg and P. Madhusudan. Compositionality entadsisstializabil-
ity. In TACAS 2011.

[11] N. Kidd. The Bluetooth driver models, 2009.
http://pages.cs.wisc.edukidd/bluetooth.

[12] S. La Torre, P. Madhusudan, and G. Parlato. Reducingegtn
bounded concurrent reachability to sequential reachybiln CAV,
2009.

[13] A. Lal and T. Reps. Reducing concurrent analysis undeorgext
bound to sequential analysiEMSD, 35(1), 2009.

[14] A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedurahalysis of
concurrent programs under a context boundTACAS 2008.

[15] L. Lamport. What good is temporal logic? IRIP World Congress
1983.

[16] M. Musuvathi and S. Qadeer. Iterative context boundargystematic
testing of multithreaded programs. RiLDI, 2007.

[17] S. Qadeer and J. Rehof. Context-bounded model checifingncur-
rent software. IMTACAS 2005.

[18] S. Qadeer and D. Wu. KISS: Keep it simple and sequeritidPLDlI,
2004.

[19] S. Schwoon. Moped system. http://www.fmi.uni-
stuttgart.de/szs/tools/moped!.

[20] M. Sheeran, S. Singh, and G. Stalmarck. Checking saieiperties
using induction and a SAT-solver. FIMCAD, 2000.

	TECHCOVER.NEW1701
	1701

