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Abstract
This paper presents a new approach to the problem of verifying
safety properties of concurrent programs with shared memory and
interleaving semantics. Our method builds on and extends context-
bounded analysis (CBA), in which thread interleavings are consid-
ered only up toK context switches. In a K-induction argument, the
base case establishes that the property holds for the firstK steps
(first K context switches in our case); the inductive case estab-
lishes that if the property held for the previousK steps (context
switches), then it will hold after one more step (context switch).
Our approach uses CBA directly to handle the base case, and uses
CBA as a subroutine when discharging the inductive case.

The account sketched out above over-simplifies; there are actu-
ally several impediments to combining CBA and K-induction.The
paper identifies these challenges and introduces three techniques
that, when used together, side-step the difficulties.

1. Introduction
Analysis of concurrent programs has been a topic of great interest
in recent research. In the general case, analysis of both concurrent
and sequential programs is undecidable; however, even withsim-
plified modeling frameworks for which the sequential version of
a problem is decidable, the concurrent version of the problem is
either much more expensive, or undecidable.

Because verification is so challenging, another approach has
been to devise tools that explore only a portion of a concurrent
program’s state space, as a means for detecting bugs. For instance,
context-bounded analysis (CBA) [4, 13, 17] analyzes all behaviors
of a concurrent program for up toK context switches, but ignores
behaviors that involve more thanK context switches. While CBA
cannot prove the absence of bugs, empirical results have shown that
it is able to capture many of the interesting behaviors of a program
[13, 16]. If CBA cannot reveal a bug within a few context switches,
this is a strong indication that the program is correct.

This paper develops a technique for verifying safety properties
of concurrent programs (with shared memory and interleaving se-
mantics) by combining methods adapted from CBA with a rule of
induction that generalizes K-induction [1, 6, 8, 9, 20]. In some
sense, it can be thought of as a technique to generalize the infor-
mation learned from a CBA run to construct a proof of correctness.
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Applying K-induction to concurrent programs comes with its
own set of challenges, which force some modifications to be made
to the basic proof technique. For instance, one needs to find away to
have the inductive hypothesis consider only a restricted set of start
states for the inductive case. The paper discusses the challenges
and develops an appropriate version of K-induction that is suitable
for use on concurrent programs, which we callK-induction with
amplification.

Given a concurrent programP and a safety propertyA, K-
induction with amplification breaks down the task of provingthat
P satisfiesA into (roughly) the following two proof obligations:
Base case: Prove that the required property holds after all execu-

tions that start at the program’s initial state and perform up to
K context switches.

Inductive case: Prove that, starting in an arbitrary state, the prop-
erty either (i) fails to hold aftersomeexecution that performs
up to K context switches, or (ii) holds inall executions that
perform up toK + 1 context switches.

(K-induction with amplification also has a further ingredient, which
allows the inductive hypothesis to consider a more restricted set of
start states for the inductive case. See§2 and§4.)

One of the chief motivations for combining K-induction with
CBA is that although the proof obligations refer to a boundednum-
ber of context switches, a context-bounded run still contains execu-
tion sequences of unbounded length between context switches. This
observation suggests that K-induction plus CBA should be more
powerful than a K-induction technique that is based on induction
over single execution steps.

The verification of safety properties for recursive concurrent
Boolean programs is known to be undecidable, and thus aK-
inductive proof using K-induction with amplification may not ex-
ist for some property that indeed holds forP . In keeping with
classical terminology, we say that a property that can be proved
using K-induction with amplification for some boundK is “K-
inductive”. The paper presents a semi-decision procedure based
on K-induction with amplification for recursive Boolean programs,
and identifies a class ofK-inductive programs for which the algo-
rithm terminates.

Contributions. The contributions of the work can be summarized
as follows:
• We identify the challenges involved in employingK-induction

to prove safety properties of concurrent programs.
• We propose a trio of techniques that, when used together, ad-

dress the challenges. The workhorse is CBA (and some neces-
sary manipulations to allow CBA to apply in the inductive case
of a K-induction proof). However, CBA alone is insufficient.
In particular, we employ two further techniques that, in effect,



[1] bool x = true;
[2] error : goto error;
[3]
[4] void rec fun() {
[5] if(*)
[6] rec fun();
[7] else
[8] return;
[9] }

[10] void thread1(){
[11] rec fun();
[12] if( !x )
[13] goto error;
[14] }

[15] void thread2(){
[16] rec fun();
[17] }

Figure 1. A program with two threads. Lines [1]–[9] are shared
declarations and functions. Function thread1() is the entry point
of the first thread and thread2() of the second thread. recfun is a
recursive function that nondeterministically calls itself or returns.
The label error (line [2]) is not reachable:x is initialized to true
and never changed; hence, the true branch of the test in line [12]
can never be taken.

prune states from being considered as potential start states for
the inductive case: (i) Claessen’s method of “Improved Induc-
tion” [6] (except that induction is over context switches rather
than program steps), and (ii) abstract interpretation to remove
from consideration some of the states that are not reachable
from the program’s initial state.

We call this collection of techniquesK-induction with am-
plification. As will be discussed in§2, the advantages of K-
induction with amplification stem from three effects:

it summarizes paths through execution contexts so that ar-
bitrarily long sequences of program actions count as just1
against the bound ofK
instead of considering all states during the inductive step, it
prunes states whose shortest execution-context path to error
is smaller than the current window
some of the states that are unreachable in any execution
from the beginning of the program are pruned.

• We report on an implementation of the method using the model
checker Moped [19].

Related Work. K-induction [1, 6, 20] has been studied in the hard-
ware model-checking community for analysis of circuits, aswell
as in the software-verification community for analysis of sequen-
tial programs [9].

The first work to use K-induction to analyze concurrent soft-
ware was by de Moura et al. [8]. They combined K-induction
with bounded model checking (BMC) [2]. BMC is a state-space-
exploration method that is based on under-approximating a pro-
gram’s semantics (i.e., it may fail to explore some behaviors of
the program). In contrast, our work combines K-induction with
context-bounded analysis (CBA) [13, 17], which is an alternative
to BMC for under-approximating a program’s semantics. Bothour
work and that of de Moura et al. share the goal of using K-induction
to augment a core under-approximating method to make it possible
to verify properties. At the technical level, the two methods are
quite different; a more complete comparison is given in§7.

Organization. §2 uses a small example to illustrate some of the
challenges that arise, as well as the main elements of our solu-
tion. §3 formalizes K-induction with amplification.§4 presents
a program-sequentialization technique that can be used in aK-
induction proof. §5 discusses limitations of the approach.§6
presents experimental results.§7 discusses related work.

2. Overview
This section uses the program shown in Fig. 1 to illustrate the
challenges that arise when one attempts to apply K-induction to
verify safety properties of concurrent programs, as well asthe
principles that we use to overcome them. The program is written

in a C-like notation. Suppose that the goal is to prove the safety
property that the program labelerror (line [2]) is unreachable in
any execution of the program. For this example, one can argue
thaterror is unreachable becausex is initialized totrue and never
changed; consequently, the true branch of the test in line [12] can
never be taken. However, our goal is to develop a general proof
technique, and we would hope that the technique would cover such
a simple example, as well.

In Fig. 1, the space of possible executions for each thread when
run in isolation is infinite, due to recursion inrec fun. Moreover, the
space of possible interleaved executions of the concurrentprogram
is not only infinite, there are now additional behaviors to consider
because there can be an unbounded number of context switchesin
a given run, which are allowed to occur at any execution state.

The need to addressa priori unbounded behaviors suggests
finding a way to use induction. When using induction to verify
sequential programs, the challenge is to identify invariants that are
inductive over the program and that imply the property of interest.
In a K-induction proof, two “windows” ofK steps are considered:
the base case considers a prefix of up toK steps; the inductive
case assumes that the property of interest is true for the previousK
steps, and attempts to establish the property for one more step [1,
6, 8, 9, 20]. When a K-induction proof fails, the need to explicitly
strengthen the current invariant can sometimes be avoided merely
by increasingK. That is, with K-induction, the need to synthesize
stronger invariants for the inductive step is alleviated tosome extent
by the window ofK steps: one way to strengthen the invariant
is merely to increase the size of the window. Of course, the two
approaches—explicit invariant strengthening and increasing K—
are independent, and can be used together.

However, several technical challenges arise when trying touse
K-induction to verify a concurrent program. In particular,the possi-
bility that a context switch can occur at each execution state makes
the use of K-induction challenging in this domain.

CHALLENGE 1 (Effect of context switches on K-induction proofs).
Because a context switch can occur at each execution state, it
is not obvious how to push through a K-induction argument. In
particular, multiple context switches can occur at an execution
state without the program making forward progress—i.e., there
can be unbounded stuttering [15].

Even in the absence of stuttering, the classical definition of K-
induction is hampered by the fact that for concurrent programs the
least value ofK for which a proof is possible can be the length of
a very long trace of program steps.

To develop a feasible K-induction technique for verifying con-
current programs, we found that it was necessary to make three
adjustments to the K-induction proof rule. These adjustments are
based on the two principles introduced below.

PRINCIPLE 1 (Sequences of steps).Treat sequences of program
steps as a single group that collectively count as just1 against the
bound ofK.

The main result in§3 shows that techniques adapted from CBA
[13, 17] can be combined with K-induction to address Principle 1.
An execution contextis a sequence of program steps executed by a
single thread between consecutive context switches. Because CBA
focuses on execution contexts, rather than the individual program
stepsper se, it addresses the second of the two issues raised in
Challenge 1—namely, the need to reason about long traces of
program steps. Because CBA does not impose any bound on the
length of an execution context, a summary transformation identified
for a single execution context can describe the effect of a long
trace of program steps that would otherwise involve a large value
of K. For example, aK = 1 proof can be found for the case of



sequential Boolean programs. This is expected because sequential
reachability for Boolean programs is decidable. The fact that the
boundK has changed from steps to context switches highlights
how the use ofK-induction in this paper focuses on a parameter
related to concurrency, and summarizes arbitrarily long sequential
execution traces.

When K-induction is combined with CBA, the proof obligations
break down into a base case involvingK context switches and an
inductive case involvingK (andK +1) context switches for some
chosen value ofK.1

EXAMPLE 2.1. Let us chooseK to be3 for the program shown in
Fig. 1. The proof obligations are then to show that
Base case: error is not reached in any execution that starts with the

program in its initial state and uses up to3 context switches.
Inductive case: starting from an arbitrary program state, if a run

does not reach error using up to3 context switches, then it
can not reach error by continuing the run and allowing one
additional context switch.

The intuition behind why one can hope to prove safety proper-
ties of concurrent programs via inductive proofs with low values of
K—whereK is the number context switches, not program steps—
is based on the folklore that most bugs in concurrent programs can
be found within a few context switches.

There are a number of other reasons why induction over the
number of context switches should be beneficial.
• It enables us to reduce the problem to one of reachability in

a sequential execution of individual threads, along the lines
of the sequentialization transformation used for CBA [13].In
particular, CBA straight out of the box handles the base case.

• A sequentialization reduction can be implemented as a source-
to-source transformation, which opens up the possibility of ap-
plying essentially any sequential model checker to the problem
of verifying concurrent programs.

• In some cases, it enables us to specify a class of programs
for which the problem is decidable (because the underlying
sequential reachability problem is decidable).
Let us now try to prove the obligations from Ex. 2.1. As we

will see, some challenges remain for the inductive case because K-
induction over the number of context switches alone is unsatisfac-
tory. It is necessary to introduce some other ingredients tochange
the problem into a form in which CBA can be applied to the induc-
tive case. However, to understand what needs to be amended, it is
instructive to understand what goes wrong with K-inductionover
the number of context switches alone, and in particular, whyit fails
to get a handle on long traces of program steps.

EXAMPLE 2.2. The first proof obligation requires us to prove that
error is unreachable within a bounded number of context switches.
We can use the sequentialization-based technique developed in
[13] to discharge the proof obligation.

The second proof obligation is more challenging, and is the
subject of most of the discussion in the remainder of this section.
There are several difficulties:
• Because the proof obligation for the inductive case says, “start-

ing from an arbitrary program state, . . .” it is necessary to con-
sider execution states in which thread1 starts at line [13].

• As mentioned in Challenge 1, a thread can make a context
switch without making any progress, i.e., without executing any
program statements. This phenomenon is calledstuttering[15].

1 As will be explained in§3, induction will actually be based on groups
of program steps that consist ofmultipleexecution contexts, calledepochs.
However, for the purposes of this section, it is sufficient tothink of the
induction as being over context switches.

Consequently, the following execution schedule, where therespec-
tive threads have the indicated program-counter values (and the
values of the respective stacks are irrelevant) is a valid schedule
with 3 context switches:

(t2, [15]) ; (t1, [13]) ; (t2, [15]) ; (t1, [13]).

Indeed, it is now possible for thread1 to jump to error without
performing a context switch, and so the inductive case fails.

For the induction proof to go through, the least we would need
to hope for is to add an artificial assumption about deterministic
progress for each thread in every context switch. However, this pro-
posal suggests a second reason why K-induction over the number
of context switches runs into difficulties: even in the absence of
stuttering, in the worst case, each thread can yield controlafter ex-
ecuting just a single program step.

EXAMPLE 2.3. Assume that thread1 is executing in recfun() and
that its stack holds a pending activation of procedure thread1()
from a call to recfun() at line [11]. The following execution sched-
ule has3 execution contexts (indicated by7→), 3 context switches
(;), and no stuttering:

(t2, [15]) 7→ (t2, [16]); (t1, [8]) 7→ (t1, [13])
; (t2, [16]) 7→ (t2, [4]) ; (t1, [13]).

Once again, thread1 can now jump to error in one program step
(without making an additional context switch), and the inductive
case fails.

What is important to note about Ex. 2.3 is that although the
induction principle was worded in terms of the number ofcontext
switches, the specific context switches that occurred in the run
effectively caused theK elements of the window to degenerate
to individual program steps. In other words, for an improved rule
to have a chance of using induction over context switches to its
advantage, it must address the following challenge—in particular,
by following the second of our two principles (see below):

CHALLENGE 2 (Reduction to individual program steps).An
induction technique for verifying concurrent programs should
guard against the inductive case degenerating to inductionover
individual program steps. The induction technique must also be
able to handle stuttering caused by repeated context switches that
fail to make forward progress.

PRINCIPLE 2 (Prune start states from the inductive case).
Eliminate as many states as possible from being considered as
potential start states for the inductive case.

We employ two techniques that fall under the rubric of Principle 2:
1. We adopt Claessen’s method of “Improved Induction” [6, Defn.

2.3], except that, following Principle 1, the induction is over
context switches rather than program steps. Thus, given a con-
current programP and a safety propertyA, our modified rule
of induction breaks down the task of proving thatP satisfiesA
into the following two proof obligations:
Base case: Prove that the required property holds after all ex-

ecutions that start at the program’s initial state and perform
up toK context switches.

Inductive case: Prove that, starting in an arbitrary state, the
property either (i) fails to hold aftersomeexecution that
performs up toK context switches, or (ii) holds inall
executions that perform up toK + 1 context switches.

In effect, this revised rule of induction eliminates many states
from being considered as potential start states for the induc-
tive case: instead of considering all states during the induc-
tive step (as with K-induction), “Improved Induction” prunes



states whose shortest path to error is smaller than the current
window. In particular, the formerly problematic start states dis-
cussed in Exs. 2.2 and 2.3 are both pruned because both can
reach(t1, [2]) in fewer than3 context switches:(t2, [15]) ;

(t1, [13]) 7→ (t1, [2]), in the case of Ex. 2.2, and(t2, [15]) 7→
(t2, [16]) ; (t1, [8]) 7→ (t1, [2]), in the case of Ex. 2.3.

2. We employ abstract interpretation to remove from consideration
some of the states that are not reachable from the program’s
initial state.

A proof may fail because it ends up considering states that
can never be reached in any execution from the beginning of
the program. We postpone a detailed discussion of this phe-
nomenon until§4.2, but note that the issue is another example
of Principle 2: we need a method that safely prunes some of the
starting states considered during the inductive step. The algo-
rithm in §4.2 addresses this issue by using a simple abstract in-
terpretation that identifies an over-approximationA of the states
reachable from the start of the program; all states not inA can
be pruned from consideration.

All three techniques—(i) induction over context switches,(ii) prun-
ing à la Claessen’s “Improved Induction”, and (iii) pruning via ab-
stract interpretation—must be used together to side-step the dif-
ficulties encountered in applying K-induction to concurrent pro-
grams. We call the combinationK-induction with amplification.

An important point of comparison between K-induction with
amplification and “Improved Induction” relates to guardingagainst
stuttering and, more generally, considering cyclic paths.A cycle
automatically defeats an inductive argument because it “eats up”
the entireK bound; consequently, others [6, 8, 20] have introduced
techniques that, in effect, useshortest pathsto error to short-circuit
longer paths, as well as cyclic paths. In contrast, K-induction with
amplification amplifies shortest paths toshortest execution-context
paths, which are constructed out of unboundedly long execution-
context segments.

EXAMPLE 2.4. Returning to the program from Fig. 1, the inductive
case satisfies the conditions of3-induction with amplification:

For each program state, if it is impossible to reach error on
any execution with a maximum of 3 context switches, then it
is also impossible to reach error from the same starting state
in anyexecution that has a maximum of 4 context switches.

The hypothesis in the inductive case of K-induction with ampli-
fication is stronger than that of the inductive case of K-induction
because the former asserts that the error state is unreachable for all
executions sequences that start in a given state and have at most
K context switches. In contrast, ordinary K-induction asserts that
the error state is unreachable for aparticular execution sequenceσ
that has at mostK context switches, and it isσ itself that is then
extendedto include one more context switch.

The proof obligation for the inductive case of K-induction with
amplification is harder to satisfy than K-induction. To see that,
let us rewrite the proof obligation of Exs. 2.1–2.4 in relational
notation. (Again, the stacks of the two threads are irrelevant to the
point we wish to make, so that portion of the state will be ignored.)
The set of possible starting states for the inductive case is

S[pc1, pc2] = {[2], . . . , [14]} × {[2], . . . , [9], [15], [16], [17]}

In the inductive case, we are required to prove

∀s ∈ S. ∃p.([2], p) ∈ R3(s) ∨ (p, [2]) ∈ R3(s) [Ind. case (i)]
∨∀p.([2], p) 6∈ R4(s) ∧ (p, [2]) 6∈ R4(s) [Ind. case (ii)]

whereRk(s) is the set of states reachable froms within k con-
text switches and[2] denoteserror. Thus, the formula involves a
quantifier alternation.

To finesse this issue, we can restate the proof obligation in terms
of (i) backwards reachability fromerror, and (ii) set subtraction

B
4(([2], ∗) ∪ (∗, [2])) −B

3(([2], ∗) ∪ (∗, [2])) = ∅, (1)

where “*” stands for any program point, andBk captures back-
wards reachability in the concurrent program withink context
switches.§4.2 describes an approach to checking Eqn. (1) by reach-
ability analysis on a pair of sequential programs obtained from the
concurrent program. The first program in the pair simulates arun
of the concurrent program forK + 1 context switches from an
arbitrary stateσ; the second program simulates the program forK
context switches. For each case, we find the set of allσ that reached
error, and see if there are members of the first set (K + 1) that are
not in the second (K).

To sum up, the three techniques used in K-induction with am-
plification have the following benefits:
• Paths through execution contexts are summarized so that arbi-

trarily long sequences of program actions count as just1 against
the bound ofK.

• Instead of considering all start states during the inductive step,
states whose shortest execution-context path to error is smaller
than the current window are pruned.

• Similarly, some of the states that are unreachable in any execu-
tion from the beginning of the program are pruned.

3. K-induction
In this section, we formalize the aspects that were introduced and
discussed informally in§2.

3.1 Improved K-induction

We begin with the traditional definition ofK-induction for transi-
tion systems, and then present a stronger formulation of theprinci-
ple due to Claessen [6].

DEFINITION 3.1. A transition system is a 4-tuple(S,→, I, E)
where S is the set of states,→ is a binary relation on the setS,
and I and E are subsets ofS. The elements of setS are called
the states,→ the transition relation, and elements inI andE the
initial and error states, respectively.

Given a transition systemG, the problem is either to prove that the
states inE are not reachable from the starting statesI , or to provide
a witness path from some state inI to one inE. The problem is
undecidable for infinite-state transition systems. Induction provides
a sound but incomplete technique to attempt the proof. We first set
up some terminology helpful in presenting the proof techniques.
Let →∗ be the reflexive transitive closure of→, and→k

= and→k
≤

(k > 0), the relations that capture reachability in exactlyk, and
≤ k steps, respectively:

a →k
= b

def
:= ∃a1, a2, . . . ak−1 : (a → a1)

∧ (a1 → a2) ∧ . . . (ak−1 → b)

a →k
≤ b

def
:= ∃t : (t <= k) ∧ (a →t

= b)

For a states, R(s) denotes the set of states reachable froms:
R(s) = {r ∈ S|s →∗ r}, andR(X) denotes the set of reachable
states from a setX, defined as the union of the sets of states
reachable from the elements ofX: R(X) =

⋃
s∈X

R(s). Rk
≤(X)

andRk
=(X) are defined similarly.

THEOREM3.1 (K-induction [6]).Given a transition systemG =
(S,→, I,E), E is unreachable fromI , i.e., R(I) ∩ E = ∅ if
∃k ∈ N such that both of the following hold:

R
k
≤(I) ∩ E = ∅ (2)



a0
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Figure 2. (a)K-induction (K = 3): with a0 as the starting state.
The induction step assumes that the hollow nodes on thepath of
length 3 are non-error states and assertsa4 6∈ E. (b) ImprovedK-
induction (K = 3): with the same starting state, the induction step
assumes that the hollow nodes in thetree of depth 3 are non-error
states (states within the dashed polygon) and assertsa4 6∈ E.

∀a0a1 . . . ak+1 ∈ S : (a0 → a1) ∧ . . .(ak → ak+1) (3)

∧ (¬a0 ∈ E ∧ . . .¬ak ∈E) =⇒ ¬ak+1 ∈ E

Obligation (2) states thatE is unreachable inK steps fromI .
Obligation (3) states a property over all paths in the transition
system: starting from an arbitrary state, if a path does not reach
E in K steps, then it does not reachE at theK + 1st step either.

The modified version ofK-induction, called “Improved Induc-
tion” in [6], changes the second proof obligation slightly.The hy-
pothesis is strengthened to assume that no path of length up to K
from the arbitrarily chosen point (a0) reaches error. Then, the par-
ticular path starting ata0 (which, by the hypothesis, itself did not
reach error inK steps) does not reachE at theK + 1st step.

THEOREM 3.2 (improved K-induction [6]).Given a transi-
tion systemG = (S,→, I, E), E is unreachable fromI , i.e.,
R(I) ∩E = ∅ if ∃k ∈ N such that both of the following hold:

R
k
≤(I) ∩E = ∅ (4)

∀a0 ∈ S : (Rk
≤(a0) ∩E 6= ∅) ∨ (Rk+1

≤ (a0) ∩E = ∅) (5)

Sketch of Proof:We sketch a proof via contradiction. Assume that
both obligations (4) and (5) are satisfied, butE is reachable from
I . Then there is a path of minimal length from a statei ∈ I to
a statee ∈ E. Let the length of this path ben. Obligation (4)
implies n > K. The proof proceeds by progressively tiling the
steps on the pathi →∗ e with trees of depthK disjoint fromE and
using obligation (5) to infer that the next step of the path extending
out from a leaf at depthK of the tree is not inE. Because a path
consists of a finite number of transitions, we tile overe eventually,
provinge 6∈ E, a contradiction.2

The difference in the second proof obligations of the two ver-
sions of induction is brought out in Fig. 2(a) and (b). The figures
show a part of the transition graph including an arbitrary nodea0

considered in obligation (3) and obligation (5) for a proof with
K = 3. In ordinary K-induction (Fig. 2), a path of length 3 froma0

is assumed to be error free to show that the nodeak+1 is not an error
node. On the other hand, in improved induction (Fig. 2(b)), the tree
of depth 3 rooted ata0 (marked by a dashed polygon) is assumed
to be error-free. The stronger induction hypothesis in improvedK-
induction makes it more expressive. Improved K-induction can of-
ten prove a property with a lower bound than ordinary K-induction.
Moreover, some properties that are notK-inductive with ordinary
K-induction can be proved using improved K-induction.

e

a0K=4

K=2

K=?

a1

a2

a3

a4

a5

e

a0 K=2

a1

a2

a3

a4

a5

(a) (b)

Figure 3. (a)K-induction:e is an error state. The induction obli-
gation vacuously holds along the patha0 → a1 → e becausee is
reached within 2 steps froma0. For the same statea0, K ≥ 4 is
needed along the patha0 → a2 → a3 → a4 → e. Along the path
a0 → a5 →∗ e, no value ofK will work if there are paths of un-
bounded length. The minimumK needed for the obligation to hold
for all paths froma0 is the maximum of theK for all paths. (b)
Improved K-induction: In the same graph, the induction obligation
holds froma0 for K = 2 becausee ∈ E lies in a tree of depth 2
rooted ata0. The induction proof works even if there are paths of
unbounded length of the forma0 → a5 →∗ e.

This difference in strength can be explained in terms of lengths
of paths from a state to an error state. Fig. 3(a) and (b) show
a subgraph containinga0 and an error statee. In ordinary K-
induction (Fig. 3(a)), proof obligation (3) fails forK = 1 on the
patha0 ; a1 ; e because we havea0 → a1 ∧ a1 → e ∧ a0 6∈
E ∧ a1 6∈ E but e ∈ E. The minimum value ofK for which
the proof works is 2, for which the implication in obligation(3)
is vacuously satisfied because the antecedent is false. Similarly,
obligation (3) holds on the patha0 → a2 → a3 → a4 → e
for K ≥ 4 and so forth for different paths froma0 to e. The
minimum value ofK needed to prove obligation (3) froma0 to e is
the largestK needed along any path between them. More generally,
the minimum value ofK needed to prove the second obligation for
ordinary K-induction on a transition system is equal to the length
of the longest path from a non-error state to an error state.

On the other hand, obligation (5) succeeds froma0 with K = 2.
The patha0 → a1 → e of length 2 falsifies the hypothesis
that there is no error state in a tree of depth 2 rooted ata0, and
vacuously proves the obligation (Fig. 3(b)). Longer paths to error
from the node do not forceK higher because the shortest path to
some error state always lies inside a tree of depth larger than the
path length. This property of improved induction of short-circuiting
longer paths to error by the shortest path is extremely important
in the context of concurrent verification. In particular, the path
a0 → a5 →∗ e may be of unbounded length, meaning that a
counter-example can be found for the second proof obligation of
ordinary K-induction for anyK. On the other hand, it does not
affect the improved K-induction proof andK = 2 still suffices to
prove obligation (5) froma0.

LEMMA 3.1 (K-bound).LetGE be the subgraph ofG backwards
reachable from the error setE, and letI ∩ GE = ∅. Then the
property thatE is not reachable fromI holds inG, and the smallest
values ofK which aK-induction proof exists, for the two varieties
of K-induction, are
• Ordinary K-induction: The length of the longest path inGE .
• Improved K-induction:

max
a∈GE∧e∈E

length of the shortest path froma to e.



3.2 K-induction with amplification

We work with the following notion of a concurrent program: A
concurrent program consists ofn threads,T1 through Tn. For
each thread, the local state consists of its execution stack—i.e., the
values of the local variables in each stack frame—and a shared store
S. We assume that the program contains a special error labelerr,
and the safety property to be proved is thaterr is unreachable in
any execution of the program. A general safety propertyA can be
converted to this form by modifying the program to checkA before
exit and perform a jump toerr if the property fails. The semantics
of a concurrent program will be modeled formally as a transition
system.

We show in this section that K-induction can be modified to in-
clude multiple (and possibly an unbounded number of) transitions
in each of theK (respectivelyK+1) steps in the proof obligations
of the inductive argument. The modification involves a special type
of transition system that faithfully models the runtime behavior of
the programs.

The idea is formalized in terms of the notion of around-robin
schedule. Henceforth, we assume that thread scheduling is round-
robin, and call one sweep of the scheduler across all threadsan
epoch. Any execution of then threads witharbitrary interleaving
can be modeled by a different execution with round-robin schedul-
ing, provided the threads are allowed to stutter (yield without mak-
ing progress). Because of the fixed order in which threads areal-
lowed to run during each epoch, it is possible that a larger number
of context switches are required to simulate an execution inwhich
there is an arbitrary interleaving of the threads. (In particular, under
the round-robin schedule many execution contexts would perform
no work before yielding.) However, a round-robin schedule that
consists ofK epochs is guaranteed to contain all schedules with
K or fewer context switches (as well as some schedules with up to
nK context switches).

The method of K-induction with amplification developed in the
following sections allows us to carry out induction on the number
of epochs rather than the number of program steps.

Transition system that corresponds to a concurrent program

For each threadTj , let Tj be the local state space and letS be the
set of states of the shared store. Define the graphGj corresponding

to thread j asGj = (NGj ,
Gj

−−→). Here,NGj = T
j × S and

Gj

−−→⊆ T
j×S → T

j×S captures the effect of one step of thread j on
the state space when run in isolation. To allow the threads tostutter,

we also add the transitions{(τ j , s)
Gj

−−→ (τ j , s) | τ ∈ T
j , s ∈ S}.

Using the individual transition graphs for the threadsT1 . . . Tn,
we define the execution graph for the concurrent programG. The
Single Context Graph for threadj, denoted bySCGj , captures the
semantics of executing threadj without executing a context switch.

DEFINITION 3.2. SCGj = (NSCGj ,
SCGj

−−−−→) with

Nscgj
def
:= (

∏
i T

i)× S× {j}

(τ 1
1 , τ

2
1 . . . τn

1 , s1, j)
SCGj

−−−−→ (τ 1
2 , τ

2
2 . . . τn

2 , s2, j)
def
:=

(∀[i 6= j] : (τ i
1 = τ i

2)) ∧ ((τ j
1 , s1)

Gj

−−→ (τ j
2 , s2))

The edges of the execution graph can be divided into three

types:SCGedges (
SCG
−−−→) correspond to steps taken by individual

threads; Context Switch edges (
CS
−−→) model context switches; and

Epoch Switch edges (
ES
−−→) model the step in an epoch in which the

last thread in the epoch executes a context switch. We now define
the execution graph in terms of these sets of edges.

Using the individualSCGs, we define the Single Epoch Graph
for the kth epoch, denoted bySEGk, as follows; CS edges are
denoted by (†)

DEFINITION 3.3. SEGk = (NSEGk ,
SEGk

−−−−→)

NSEGk
def
:= (

∏
i
T

i)× S× {1, 2, . . . , n} × {k}

(τ 1
1 , τ

2
1 . . . τn

1 , s1, j1, k)
SEGk

−−−−→ (τ 1
2 , τ

2
2 . . . , . . . τn

2 , s2, j2, k)
def
:=

[((τ 1
1 , τ

2
1 . . . τn

1 , s1, j1)
SCGj

−−−−→ (τ 1
2 , τ

2
2 . . . τn

2 , s2, j2))
∧(j1 = j2)] ∨
[(∀i : (τ i

1 = τ i
2)) ∧ (s1 = s2) ∧ (j1 < n ∧ j2 = j1 + 1)] (†)

Finally, the execution graphG is obtained by putting together an
unbounded number of Round Robin sweeps. In the definition,ES
edges are denoted by (*).

DEFINITION 3.4. G = (N,→)

N
def
:= (

∏
i
T

i)× S× {1, 2 . . . n} × N

(τ 1
1 , τ

2
1 . . . τn

1 , s1, j1, k1) → (τ 1
2 , τ

2
2 . . . , . . . τn

2 , s2, j2, k2)
def
:=

[((τ 1
1 , τ

2
1 . . . τn

1 , s1, j1, k1)
SEGk1

−−−−−→ (τ 1
2 , τ

2
2 . . . τn

2 , s2, j2, k1))
∧(k1 = k2)]
∨ [(∀i : (τ i

1 = τ i
2)) ∧ (s1 = s2)∧

((j1 = n ∧ j2 = 1) ∧ (k2 = k1 + 1)] (*)

This graph, together withI =
∏

i
Ii × IS ×{1} × {1}, where

Ii andIS are the possible initial states of the threads and the store,
is the transition system that captures all possible executions of the
program P. Let us now assume that we also have a set of error states,
Ep ⊆ (

∏
i
T

i) × S. ExtendEp to E′ = Ep × {1, 2, . . . n} × N.
Then,E′ is precisely the set of states inG that corresponds to
program P reaching an error state inEp.

We first present a lemma restrictingE′ to a smaller setE.

LEMMA 3.2. If a state g1 = (τ 1, τ 2, . . . τn, s, j, k) ∈ E′ is
reachable fromI , then so isg2 = (τ 1, τ 2, . . . τn, s, 1, k + 1).

As a consequence of Lem. 3.2, we only need to show that the set
E = Ep × {1} × N is unreachable fromI .

DEFINITION 3.5. Define→≤k as an extension of→ in G with the
property that it contains no more thank epoch-switch edges:

→≤k≡ ((
SEG
−−−→)∗

ES
−−→)≤k(

SEG
−−−→)∗

With the previous lemma and definition in place, we now state the
main theorem.

THEOREM3.3. Given an execution graph as defined above,
¬(I →∗ E) holds if both of the following hold:

¬(I →≤k
E) (6)

∀s ∈ T
1 × . . .T

n×S× {1} × {1} : (7)

(s →≤k
E) ∨ ¬(s →≤k+1

E)

Proof omitted.
The statement of Thm. 3.3 is similar to Thm. 3.2 from§3.1 in

that it breaks down the task of proving thatE is unreachable fromI
into two proof obligations. The proof obligations in Thm. 3.3 differ
in that both the base case and the induction case are expressed in
terms of an unbounded number of steps (SEGedges) in the execu-
tion graph. The base case asserts that there is no path containingK
or fewerESedges from a state inI to a state inE. This encom-
passes paths with any number ofSEGedges between consecutive
ESedges. In the same spirit, the induction case refers to unbound-
edly deep trees consisting of paths with respectivelyK andK + 1
ES edges. The concept of induction over epochs is illustrated in
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Figure 4. K-induction with amplification: Execution tree for a
two-thread program for two epoch steps. Filled circles are states
with thread 1 as the active thread and hollow circles are states with
thread 2 active. Bold arrows are transitions where a contextswitch
happens (CSor ESedges). These edges are labeled with the number
of context switches since the initial point. Squiggles represent an
unbounded number of intra-thread steps (SEGedges). One epoch
consists of both threads being scheduled once, hence two epoch
steps correspond to four context switches. Notice that aK = 2 tree
in the execution graph is of unbounded depth due to the presence
of an unbounded number ofSEGexecuted by the active thread in
betweenCS/ESedges. Each polygon encloses a fragment of the tree
covered by one epoch step.

Fig. 4. It shows a part of the execution graph for two threads reach-
able from a statea0 within two epoch-steps. Each epoch consists
of some number ofSEGedges, corresponding to program steps ex-
ecuted by the two threads, with an interveningCSedge when the
first thread yields control to the second thread. The epoch ister-
minated by anESedge. There is no bound on the number ofSEG
edges in a sequence ofSEGedges in between twoCS/ESedges.
Thus, performing induction with respect toESedges allows us to
treat sequences of program steps as a single group that collectively
count as just 1 against the bound ofK.

Obligation (7) in Thm. 3.3 embodies our response to the two
challenges posed in§2.
1. Along with obligation (6), it constitutes a proof that uses paths

that consist of many more thanK individual program steps by
folding longer paths into single epochs.

2. It also effectively guards against reducing to a proof over indi-
vidual program steps due to the short-circuiting property men-
tioned in§3.1. An execution from a states to an error statee
with an ES edge after everyn SEGedges can only serve as
a counter-example to the proof constructed from K-induction
with amplification if there is no other path froms to e with
fewerESedges. Hence, an execution trace consisting ofK + 1
epochs with a context switch after every program point is a
counter-example trace only if it is not possible to get froms to
e without executing a context switch after every program step.
If there were another execution trace froms to e with fewer
epoch steps,s would be removed from consideration because
the first clause in obligation (7) would be satisfied. Lem. 3.1
guarantees that the minimumK needed for the proof depends
on the execution traces that reach an error state with the mini-
mum possible number ofESedges; additional traces with more
ESedges do not pushK higher.

4. Proving properties using K-induction with am-
plification

Thm. 3.3 provides us a technique to prove safety properties for
concurrent programs: given a concurrent program with an error

[1] void thread1(){
[2] lock();
[3] }
[4] error: goto error;

[5] void thread2(){
[6] unlock();
[7] }

Figure 5. A program with two threads. Function thread1() is the
entry point of the first thread and thread2() of the second thread().
The labelerror is obviously not reachable because there is no jump
to error from either of the threads.

labelerror, to prove thaterror is not reachable from the initial state,
show that
1. error is not reachable from the initial state withinK epochs.
2. For every statea0 of the program, iferror can not be reached

within K epochs then it cannot be reached inK + 1 epochs.
Item 1 is the classical problem of Context Bounded Analysis of

the given concurrent program with a context boundK. Techniques
developed in [4, 13, 17, 18] address this problem. We use a similar
sequentialization to reduce item 2 (or equivalently, obligation (7)
of Thm. 3.3) to another reachability problem over sequential pro-
grams, but it remains a much harder problem because it requires us
to establish a property about all paths starting from any arbitrary
state in the execution space of the concurrent program.

As noted in§2, we find that an attempt to prove obligation (7)
fails if the set from whicha0 is chosen is left unconstrained.
Thm. 3.3 already begins by restricting the starting states considered
for the obligation to those in the first epoch with the first thread
active.

The set of initial states needs to be restricted further to push
through a proof of the induction step because interactions between
the threads can generate a counter-example to obligation (7).

EXAMPLE 4.1. Consider the example from Fig. 5. lock() is an
atomic function used to acquire a lock. A call to lock() when
the lock has already been acquired before it is released using
unlock() causes a thread to be blocked. The label error is obviously
unreachable because no thread makes a jump to error. However, an
attempt to prove obligation (7) withK = 1 fails for the program
state with the stack configurations (t1, [2][2][4]) (with [4], the
error label at the bottom of the stack) and (t2, [6]). The following
execution schedule with 2 epochs is a counter-example. (Thestates
are represented by the active thread along with its stack. The third
element in each tuple is the current status of the lock:l denotes that
the lock has been acquired, whileu denotes that it is free.)

(t1, [2][2][4], u) 7→ (t1, [2][4], l) ; (t2, [6], l) 7→ (t2, [ ], u) ;

(t1, [2][4], u) 7→ (t1, [4], l)

Without the context switches, it is impossible to reach error from
the state(t1, [2][2][4], u) wheret2 holds the stack [6]: an epoch
is needed to pair up the calls to lock() and unlock() to pop offthe
top of the call stack for both threads. Indeed, the initial call stacks
for the two threads can be extended to arbitrary height to produce
counter-examples for any value ofK.

We address this problem by pruning out troublesome initial
states while proving obligation (7) by only considering states be-
longing to an over-approximation of the program states thatare
reachable from the start of the program. To obtain this over-
approximation to the reachable state space, we use abstractinter-
pretation to compute the set of all reachable stack configurations
for each thread if it were allowed to run in isolation and all branches
were explored. The values of local variables in the stack frames and
the shared store are left unconstrained.
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Figure 6. Initialization phase: The first phase synthesizes an arbi-
trary state of the concurrent program by simulating the execution
of each thread running in isolation for some number of steps,and
concatenates the stacks obtained at the end of such (incomplete)
executions. Shared variables from the concurrent program are rep-
resented byK copies in the simulation—one copy for every epoch.
Both local variables in the stack and shared variables are assigned
random values.

4.1 The general sequentialization technique

This section sketches an approach that uses a sequentialization
transformation to convert the original concurrent programinto
two slightly different sequential versions. We then use reachability
queries on the sequential programs to convert obligation (7) into a
language-containment query; that is, proving obligation (7) reduces
to answering the language-containment query. This generalidea
yields a source-to-source transformation, described in§4.2, that
is applicable to any concurrent program.§4.2 also provides an al-
gorithm to answer the language-containment question for Boolean
programs, but leaves open the question for more general programs.

The basic idea is to simulateK-context-bounded executions
of the concurrent program starting from an over-approximating
envelope of the reachable states, as described above. The simu-
lation involves two phases: aninitialization phase and asimula-
tion phase. First, theinitialization phase runs code that can non-
deterministically generate any one of the states in the envelope
of reachable states. The code for the initialization phase simulates
each thread in isolation; it assigns random values to all local vari-
ables, and ignores all branch conditions. It then concatenates the
stacks that were obtained for each thread to obtain a single stack,
which serves as the starting stack for the sequential program that
runs during thesimulationphase (Fig. 6).

During the simulation phase, each shared variable from the
original program is represented byK copies, one for each epoch.
The initial value of theith copy represents a guess about the value
of the variable at the start of theith epoch. The initial values of the
variables are assigned at the end of the initialization phase, where
the final step is to assign a random value to all of the copies ofthe
shared variables.

The simulation ofK-context-bounded executions of the pro-
gram involves implementing the possibility of context switches
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Figure 7. Simulation phase: A round-robin schedule for two
threads is simulated by executing all epochs for a thread together
[13]. During theith epoch, theith copy of the shared variables is
accessed.

during the execution of the threads. When a thread yields control,
its local state must be remembered while other threads execute,
in order for the thread to continue execution from the storedlo-
cal state. Due to the presence of a stack, there are an unbounded
number of local states to remember. This problem is side-stepped
by executing all epochs for a thread together (Fig. 7). The thread ac-
cesses theith copy of the shared variables in itsith epoch. WhenK
epochs have been simulated for all threads, theith copy of a shared
variable represents the value of the shared variable at the end of
that epoch in the concurrent program. It remains to check that this
value matches the guessed initial value for thei+ 1th epoch.

The simulation phase described above is the same as the se-
quentialization described in [13] with one minor difference: upon
finishing the simulation of all epochs for a thread, we pop offany
residual stack for that thread, which uncovers the initial stack (com-
puted during the initialization phase) for the next thread.

LetLK andLK+1 be sequential programs constructed as above
to simulate the given concurrent program forK andK+1 epochs,
respectively. Note that the initialization phases ofLK andLK+1

are identical. LetEnvelopedenote the set of states with stack con-
figurations belonging to the restricted set of initial configurations
mentioned above.

LetBK
≤ (error) be the set of states that are backwards reachable

from error acrossK epochs in the concurrent program. Proof obli-
gation (7) can be restated as the following language-containment
query:

B
K+1

≤ (error)−B
K
≤ (error) = ∅. (8)

The drawback of using operations that work purely backwards,
as in Eqn. (8), is that they can consider states that never arise in
any forwards execution. As demonstrated by Ex. 4.1, such states
can generate a counter-example to obligation (7). We can do better
than Eqn. (8), and in many cases overcome problems like the one
discussed in Ex. 4.1, by intersecting each term withEnvelope

(Envelope∩B
K+1

≤ (error))− (Envelope∩B
K
≤ (error)) = ∅. (9)

This is where the initialization phase comes to the rescue: all
states generated at the end of the initialization phase belong to
Envelope. Hence, the simulation phase inLK (LK+1) simulates
the concurrent program only from relevant initial states for K
(K + 1) epochs; Eqn. (9) holds iff the set of states at the end of
the initialization phase that are backwards-reachable from error
in LK+1 is no greater than the set of states at the same point
backwards reachable fromerror in LK . Thus, obligation (7) can be
established by showing that the difference of the set of states at the



Simulation functions: func(. . .)

func(. . .)
. . . =⇒
stmt
. . .

func(. . .)
. . .

τs{stmt}
. . .

τs{stmt}

[1] stmt tag:τv{stmt,ep}
[2] while(*)
[3] ep = ep + 1;
[4] if(ep > K)
[5] if(is function main)
[6] ep = 1;
[7] return;

Figure 8. Transformation of program statements for the simula-
tion phase: All program statements are modified to refer to shared
variables for the current epoch (τv in the figure); a possible context
switch (lines [2]–[3]) and epoch switch (lines [4]–[7]) is imple-
mented immediately thereafter.

Main Function : main()

[1] initialize = true
[2] last threadmain init()
[3] for(i = 1; i < K; ++i)
[4] assume(gold(i+1) == g(i))
[5] if(required property fails)
[6] goto error;

Base Function : base()

[7] for(i = 1; i < K; ++i)
[8] forall(g ∈ Globals)
[9] g[i] = *;
[10] g old[i] = g[i];
[11] ep = 1;
BASE:
[12] initialize = false;

Figure 9. Additional functions in the transformation:main is the
entry point of the sequential program.baseis switching point from
the initialization to thesimulationphase.

end of the initialization phase inLK+1 andLK that are backwards
reachable fromerror is empty.

4.2 The source-to-source transformation

The simulation described above can be realized in the form ofa
source-to-source transformation of the concurrent program. The
transformed program has two copies of the procedures in the cur-
rent program: one each for theinitialization phase and thesimula-
tion phase. The execution of the transformed program builds up the
initial stacks for the threads using the initialization functions. The
program then switches to simulation mode to simulateK-context-
bounded runs of the concurrent program. The simulation functions
are used during the simulating run.

The technique for simulating context-bounded executions is
similar to [13]. Fig. 8 shows how the program statements are modi-
fied in the functions from the concurrent program to obtain simula-
tion functions. A special variableepstores the current epoch being
simulated. All accesses to the shared variables are modifiedto refer
to the copy of the variable for the current epoch. (See the call on
operationτv{stmt,ep} in line [1] of Fig. 8.) The program point cor-
responding to this modified program statement is given a unique la-
bel. Variableep is incremented non-deterministically to simulate a
context switch (lines [2]–[3]). Whenepcrosses the context-bound,
the current thread has been simulated for all epochs, so the function
performs an epoch switch by returning immediately (lines [4]–[7]).
In fact, whenep > K, all the pending calls for this thread also
return without performing any additional actions, which uncovers
the initial stack of the next thread. For function calls, we assume
that returned values are modeled using a special global variableret
for each thread. This assumption simplifies the transformation.

Two additional functions in the sequential program tie the ini-
tialization and simulation phases together. The functionsare shown
in Fig. 9. The functionmain is the entry point of the program. It
begins the initialization phase by setting a special variable initial-
ize to true and calls the initialization copy of the last thread’s main
function. Control returns tomainonly at the end of the simulation
phase. It then performs the check to ensure that the guessed initial
values of the shared variables for different epochs were consistent.

Initialization functions: func(. . .)

func(. . .)
. . . =⇒
stmt
. . .

func init(. . .)
if(initialize)
forall(l ∈ Locals)
l = *;

. . .

τa{stmt}
. . .

τa{stmt}

[1] forall(stmt in statementlist)
[2] if(ep > K) return;
[3] if(initialize && *)
[4] if(first thread) base();
[5] else prevthreadmain init(. . . );
[6] if(!initialize)
[7] goto stmttag;
[8] τi{stmt}

Figure 10. The initialization functions: Each function from the
concurrent program has an initialization copy. These functions
build up the stack for the starting state of the simulation. During
the simulation phase, control is transferred to the simulation func-
tions.τi represents the reinterpreted program statement.

For valid runs, it then checks the property of interest. The function
baseis executed between the two phases. It assigns random val-
ues to all copies of the globals and ends the initialization phase by
settinginitialize to false. Functionbasecontains the labelBASE.

The initialization functions mimic an incomplete run of each
thread from its entry point, ignoring data, to build up the initial
stack for the simulation. The transformation is shown in Fig. 10.
All local variables are assigned random values in the headerof
the function. Data is ignored during initialization by reinterpreting
the program statements via the operationτi{stmt} (line [8] in
Fig. 10). Inτi{stmt}, assignment statements are replaced byskip;
conditionals are replaced by a non-deterministic jump; andfunction
calls are replaced by calls to the initialization copy of thefunctions.
maincalls the initialization copy of the last thread’s main function.
The initialization functions for the last thread build up the initial
stack for that thread and then call the initialization copy of the
previous thread’s main and so on (line [5]), eventually calling base
(line [4]).

The challenge in getting the initialization and simulationphases
to work together lies in being able to transfer control to thesimu-
lation functions at the right program point during the simulation
phase—given that the stacks are initialized with pending return
points in theinitialization code. Line [2] and lines [6]–[7] in Fig. 10
implement the switch from the initialization copy of the function to
the simulation copy. Whenever a stack frame from an initialization
function is uncovered during the simulation phase, depending on
the value ofep, the function either returns (line [2]), or jumps to the
corresponding program point in the simulation function (lines [6]
and [7]). Thus, the initial stack constructed for each thread of the
concurrent program in the sequential program consists of activa-
tion records for the initialization functions. During the simulation
phase, as these stack frames are uncovered, a jump to the corre-
sponding point in the simulation function continues the execution
via the simulation functions.

The final transformed problem. We now describe how Eqn. (9)
relates to the program transformation presented above. We apply
the transformation twice toP to obtain the sequential programs
LK andLK+1, which simulateP for K andK + 1 epochs, re-
spectively.(Envelope∩ BK

≤ (error)) represents the set of states at
the label BASE (line [12] in Fig. 9) inLK that are forwards reach-
able from the program entry and backwards reachable fromerror.
Similarly, (Envelope∩ BK+1

≤ (error)) represents the set of states
at BASE inLK+1 that are forwards reachable from the program
entry and backwards reachable fromerror. It remains to compute
these sets and take their difference.2 Thus, the proof obligation of
the inductive case leaves us with the following alternativeproblem:

2 Technically,LK andLK+1 must have identical state spaces. This issue
is handled by declaring an extra unused copy of the globals inL

K .



• Given the two sequential programsLK andLK+1 with identi-
cal state spaces, and special pointserror and BASE in both pro-
grams, check whether there is a program state in the forwards-
reachable set at BASE that is backwards-reachable fromerror
in LK+1, but not backwards-reachable fromerror in LK .

The program transformation defined above reduces the proof obli-
gation of the inductive case from a reachability problem on acon-
current program to this reachability problem on a pair of sequential
programs. For general programs, we do not know of a solution to
the reformulated problem. For the case of recursive Booleanpro-
grams, the question can be addressed via reachability queries on
pushdown systems.

DEFINITION 4.1. A pushdown system(PDS) is a tripleP =
(P,Γ,∆) whereP is a set of states,Γ is a set of stack symbols,
and∆ ⊆ P × Γ × P × Γ∗ is a finite set of rules. Elements from
the setP × Γ∗ are called configurations of the PDS. A PDS rule is
written as(p, γ) →֒ (q, u) wherep, q ∈ P , γ ∈ Γ andu ∈ Γ∗.
The rules define a transition relation⇒ on configurations ofP : If
(p, γ) →֒ (q, u) then∀u′ ∈ Γ∗(p, γu′) ⇒ (p, uu′). The reflexive
transitive closure of⇒, denoted by⇒∗, is the reachability relation
defined by the runs of the PDS over the configuration space.

A PDS can be used to model the control flow of a program.
The PDS has a single statep and stack symbols corresponding
to the program points. An intraprocedural edge(u, v) is modeled
by the PDS rule(p, u) →֒ (p, v); a call to a function with entry
e, from the call-sitec, and with a return tor, is modeled by the
rule (p, c) →֒ (p, er); and a return statement from program point
r is modeled by the rule(p, r) →֒ (p, ǫ). Data in the Boolean
program is encoded by expandingP to be the set of global states
and expanding the stack symbols to store the values of the local
variables. The PDS rules are also updated to reflect the effect of the
program steps on the values of the global and local variables.

Given a Boolean program to verify, applying the source-to-
source transformation explained above yields the two program sim-
ulations forK andK + 1 epochs. Abusing notation, we useLK

andLK+1 to refer to the PDS models of the two sequential pro-
grams obtained. Because the procedurebase()had no local vari-
ables in the source-to-source transformation, the stack symbols for
the procedure correspond one-to-one with the program points. We
use BASE to denote the stack symbol corresponding to the pro-
gram label with the same name. Similarly, let ERR be a special
stack symbol corresponding to the error point inmain()(line [6] of
Fig. 9).

There are two main operations needed to verify the induction
step usingLK and LK+1. Given the two PDS modelsLK =
(PK ,ΓK ,∆K) andLK+1 = (PK+1,ΓK+1,∆K+1),
1. CalculateMK : the set of configurations that arise in the runs

of the PDSLK with BASE at the top of the stack, that are
backwards reachable from the configurations with ERR on top
of the stack. Similarly, calculateMK+1.

2. Check language containment:L(MK+1) ⊆? L(MK)
K-induction with amplification for a givenK is tractable for

Boolean programs because both items 1 and 2 are computable. For
a regular set of configurationsQ in the configuration space of a
PDS, the set of configurations reachable in the runs of the PDS
starting from configurations inQ is also a regular set. There are
algorithmspost∗ andpre∗ [3] that compute the forwards (respec-
tively, backwards) reachable set of configurations from a regular set
of configurations.

post
∗[P ](Q) = {v ∈ Γ∗ | ∃u ∈ Q u ⇒∗

P v}

pre
∗[P ](Q) = {v ∈ Γ∗ | ∃u ∈ Q v ⇒∗

P u}
Bothpost∗ andpre∗ answer queries about an input set given in the
form of a finite state automaton (FSA). A configuration(p, u) is in

the set represented by automatonQ iff Q acceptsu starting from
the start statep. The answer is returned in the form of a similar
automaton.

Item 1 above can be calculated as

M
K = post[LK ]∗(I) ∩ABASE∩ pre[LK ]∗(AERR).

HereABASE is an FSA that accepts configurations{(p,BASEu) |
p ∈ PK ∧ u ∈ (ΓK)∗}; AERR is an FSA that accepts con-
figurations {(p,ERR u) | p ∈ PK ∧ u ∈ (ΓK)∗}; and I
is the set of initial configurations of the PDSP . Note that the
subtermpost[LK ]∗(I) ∩ ABASE intersects an automaton that ac-
cepts all configurations forwards reachable from the initial point
(post[LK ]∗(I)) with an automaton that accepts configurations with
BASE at the top of the stack (ABASE), and hence corresponds to
Envelopein Eqn. (9).

The check performed in item 2 is standard regular-language
containment.

Algorithm 1 Semi-decision procedure for Boolean programs.

1: // ABASE is an automaton that acceptsBASEΓ∗

2: // AERR is an automaton that acceptsERRΓ∗

3: for K = 1; true;K = K + 1 do
4: if CBAK(P) returns reachablethen
5: // Error is reachable: bug found
6: EXIT
7: // Compute the set of states that reach error inK epochs,MK

8: synthesizeLK from P
9: M

K = post[LK ]∗(I) ∩ABASE∩ pre[LK ]∗(AERR)
10: // Compute the set of states that reach error inK + 1 epochs, MK + 1

11: synthesizeLK+1 from P
12: M

K+1 = post[LK+1]∗(I) ∩ABASE∩ pre[LK+1]∗(AERR)
13: if MK+1 − M

K = ∅ then
14: // Both obligations passed: program proved correct
15: EXIT

The semi-decision procedure.Alg. 1 states a semi-decision pro-
cedure for recursive concurrent Boolean programs based on the
ideas discussed above. The algorithm starts withK = 1 and
tries to push through a proof using K-induction with amplification.
The base case is checked by applying CBA [13] with the context
boundK. The inductive step is checked via sequentialization and
the language-containment operation described above. If ERR can
be reached in a run of the concurrent program withinK epoch
switches, CBA returns a trace for the run. The algorithm exits with
the error trace: a bug has been found.3 If the program passes both
CBA and the containment check, ERR is unreachable and a K-
induction with amplification proof has been found for the bound
K. If the program passes CBA, but the containment check fails,K
is incremented and the loop repeats.

For the class of non-recursive, concurrent Boolean programs,
Alg. 1 is a decision procedure. If the program has a bug, thereexists
an error trace within a finite number of epochsK, and CBA fails
for that context bound. If the program has no bug, there is some
K for which both checks in Alg. 1 will succeed: non-recursive,
concurrent Boolean programs have a finite number of states, and
Alg. 1 does not explore cyclic paths (paths with repeated states),
which implies that it will eventually terminate.

In addition to non-recursive, concurrent Boolean programs, we
identified a few classes of recursive, concurrent Boolean programs
for which Alg. 1 is a decision procedure. One class consists of re-
cursive Boolean programs in which all reads of the shared variables
occur only when the stack is no deeper than some fixed bound.

3 If the Boolean program is an abstraction of some concrete program, and
we wish to use Alg. 1 inside an abstraction-refinement loop, line 5 is where
the counter-example would be checked to see whether it is spurious, and if
so, a refined Boolean program would be generated.



[1] bool x;
[2] bool y;
[3]error: goto error;

[4] void thread1(){
[5] if(*)
[6] thread1();
[7] while(x == true){}
[8] x = true;
[9]}

[10] void thread2(){
[11] if(*)
[12] thread2();
[13] while(x == false){}
[14] x = false;

[15] void main2(){
[16] y = false;
[17] thread2();
[18] if(y == true) goto error;
[19]}

Figure 11. Limitation of K-induction with amplification: A pro-
gram that is notK-inductive for K-induction with amplification.

In such programs, functions that read global variables are non-
recursive and cannot be called (even transitively) by recursive pro-
cedures. Recursive procedures are free to write to global variables.
We omit a proof of this result for lack of space.

5. Limitations of K-induction with amplification
Any method proposed as a verification technique for concurrent
programs is inherently incomplete because the problem of prov-
ing safety properties is undecidable, even for recursive concur-
rent Boolean programs. In the case of K-induction with amplifi-
cation, the minimum value ofK needed for obligation (7) in the
K-induction proof to work is bounded from below by the length of
the shortest execution-context path from a program state toerror.
While we restrict the set of states considered as the initialstates
using abstract interpretation techniques, this pruning ofthe states
is not enough to guarantee that a proof can be found for anyK.
Indeed, due to the inherent undecidability of the problem, there is
noway to guarantee that such aK can be found.

The program shown in Fig. 11 eludes proof by K-induction with
amplification. The program has two threads with entry functions
thread1()andmain2(). The execution of either thread consists of
an arbitrary number of recursive calls (lines [5]–[6] and lines [11]–
[12]), followed by returns down to the first caller. Thewhile loop
in thread 1 blocks the thread until thread 2 setsx to falseand the
while loop in thread 2 blocks until thread 1 sets it back totrue.
Consequently, the two threads must return alternately.error is not
reachable becausey is set to false before the call tothread2()and
remains false at line [2].

Unfortunately, it is not possible to prove thaterror is unreach-
able using K-induction with amplification. The difficulty lies in the
forced synchronization before every return in the program.From
some arbitrary starting stack configurations for the two threads, our
method must expend one epoch to reduce the stack size by 1. Be-
cause the initial stacks can be of any depth, obligation (7) fails for
any value ofK. (We encountered this problem earlier in the ex-
ample in§4 (Fig. 5), although the problematic stack configurations
there were spurious.) In particular, the following is a scheme for
generating initial states for which the second obligation fails for a
generalK: (x = true, y = true, ([7]K+1, [13]K+1[18])). It is not
possible for the second thread to finish allK + 1 calls tothread2()
within K epochs. UsingK+1 epochs, there is a schedule for which
thread 2 reaches the if condition in line [18], and becausey is as-
sumed to betrue, thread 2 reacheserror. The stack configurations
in these initial states are indeed reachable in the program—albeit
with different data states—and thus they are not pruned by the
abstract-interpretation based method for removing spurious start-
ing states.

6. Experiments
To test the capabilities of K-induction with amplification,we ran
it on a small corpus of examples (whose characteristics are listed

Program (Set) #threadsLOC #globals #locals K Time(s)
blue2 (Blue) 2 5 6 3 32.44
dekkers (Sync) 2 4 1 3 3.74
lock unlock K (Sync) 2 2 1 4 0.6
lock unlock 3 (Sync) 3 4 3 3 44.02
petersons (Sync) 2 4 1 3 0.3
petersonsloop (Sync) 2 4 1 3 6.05

Figure 12. Summary of the experiments performed using K-
induction with amplification for non-recursive Boolean programs.
Column 1 reports the name, along with the name the program suite:
Sync is a set of simple mutual-exclusion examples we used for
benchmarking; Blue refers to a set of Bluetooth-driver examples
[11]. Columns 2–7 report the number of threads, total lines of code,
globals, locals, the minimum boundK needed for the proof to
work, and the time needed for the proof with boundK.

(a)
K 4 5 6 7 8
Time(s) 0.64 1.90 5.69 19.57 108.71

(b)
#Threads 2 3 4 5 6 7
Time(s) 0.03 0.27 2.17 17.09 132.24 1011

Figure 13. (a) K vs. time: The effect of increasing theK needed
for a proof on the time taken. Programs belong to thePumpKset.
(b) Number of threads vs. time: The effect of varying the number of
threads on time taken for a proof withK = 3 for a simple mutual-
exclusion program.

in columns 2–7 of Fig. 12). The experiments were performed ona
system with dual quad-core, 2.82 GHz Intel processors; however,
the analyzer’s implementation is single-threaded. The system has 6
GB of memory and runs 64-bit Linux (Red Hat 2.6.18).

The experiments were designed to test the following questions:
• What are the typical values ofK needed for a proof?
• How does the method behave asK is increased (for a program

of essentially fixed size)?
• How does the method scale as the number of threads is in-

creased?
Each example consisted of two or more threads with a distinguished
point that the algorithm attempts to establish is unreachable.

The experiments involved three sets of programs.
blue2: A model of a Bluetooth driver [11] that has been used in

several earlier studies [5, 18].
Sync: Implementations of several mutual-exclusion algorithms,

each involving two or three threads. One of the examples from
this set was used to study the effect of varying the number of
threads competing for the critical section.

PumpK: These programs push the minimumK up by introducing
many synchronization points between the threads. We used the
programs to study the effect of increasingK on the analyzer.

We implemented a variant of Alg. 1 by extending a previous im-
plementation of CBA [13], which was built on top of the Moped
[19] model checker for pushdown systems (PDSs). Moped pro-
vides a modeling language, called Remopla, which it compiles to
Boolean programs. Instead of performing a source-to-source trans-
formation, as described in§4.2, our implementation uses the PDS
rules that Moped generates from a Rempola model as an interme-
diate representation (IR), and performs an IR-to-IR transformation.
We decided to use Moped because the input language simplifies
specifications of our target programs, and because Moped supports
backwards reachability queries on the program model generated;
The ability to answer backwards reachability queries is crucial for
the semi-algorithm developed in§4. 4

4 The Remopla models used in the experiments are available fordownload
at http://pages.wisc.edu/∼pprabhu/kindampexp/



The current implementation falls short of demonstrating the full
capabilities of Alg. 1. Although Alg. 1 is applicable to a wider
class of programs, the implementation handles only non-recursive
Boolean programs. In the absence of recursion, the set of stack con-
figurations reachable from the start state is finite, which means that
for Boolean programs, there are only finitely many differentpro-
gram states that can arise in any execution of the programs. Thus,
the problem of proving that a set of states is not reachable from the
initial state is decidable; a brute-force computation of the reachable
state space always terminates. On the other hand, focusing on non-
recursive programs lets us validate the applicability of the induction
principle easily, albeit on a small scale.

With respect to the questions posed at the beginning of this
section, we made the following observations:

Typical values ofK. With the exception of the programs reported
in Fig. 13(a), Alg. 1 found a proof for all programs withK = 3 or
4. The programs used in Fig. 13(a) were specifically constructed to
pumpK up. This emperical measurment shows that K-induction
with amplification greatly reduces the boundK needed for a proof.
The minimumK for which a simple induction proof can be found
is roughly proportional to the length of the program text.

Behavior asK increases.We found that the time taken for the in-
duction step of the proof increases rapidly with increasingvalue of
K. The number of basic PDS operations performed asK increases
(not reported) remains roughly the same. The slowdown is a result
of the increase in the size of the data structures used, whichmakes
the PDS operations used in the implementation expensive.

Behavior as the number of threads increases.The final subtrac-
tion operation in Alg. 1 is implemented in a naive fashion, which
leads to an exponential increase in time with the number of threads.

7. Related Work
The goal of verifying properties of concurrent software viamodel-
checking techniques has a long history, going back to the origin of
the field [7].

K-induction [1, 6, 20] has been studied in the hardware model-
checking community for analysis of circuits, as well as in the
software-verification community for analysis of sequential pro-
grams [9]. As discussed in§2 and§3, we adopt Claessen’s method
of “Improved Induction” except that, following Principle 1of §2,
induction is performed over epochs rather than program steps.

The first work to use K-induction to analyze concurrent soft-
ware was by de Moura et al. [8]. Both our work and that of de
Moura et al. share the goal of using K-induction to augment a core
under-approximating method—which may fail to explore somebe-
haviors of a program—to make it possible to verify properties. In
their case, they combined K-induction with bounded model check-
ing (BMC) [2]; in our work, we combine K-induction with CBA
[13, 17]. Applying K-induction in conjunction with CBA comes
with its own set of challenges. The techniques that we used toad-
dress these challenges have been described in§2–§4.

De Moura et al. make use of a technique that appears to be an
independent rediscovery of Claessen’s “Improved Induction”:

. . . whenever the induction step . . . fails . . . we define
the predicateU(s) for representing the set of . . . states
[that] may reach the bad state ink steps . . . Nowϕ is
strengthened asϕ ∧ ¬U(s), and quantifier elimination is
used for transforming this strengthened formula into an
equivalent Boolean constraint formula [8,§5].

Thus, de Moura et al. incorporate “Improved Induction” using a
blocking conjunct, whereas we incorporate it via the set-subtraction
operation of Eqn. (9).

One major difference between the two techniques is that our
approach performs K-induction over epochs. Although de Moura
et al. use two kinds of simulation relations to reduce the size of the
state space they work with, in essence they still perform induction
over program steps. Their path-compression techniques (“direct
simulation” and “reverse simulation”) are fairly weak—basically
variants on “paths of interest contain no repeated states”,such as
“paths of interest contain no repeated states, modulo differences
in the values of the (write-once) input variables”. In contrast, the
technique of K-induction over epoch steps permits some arbitrarily
long sequences of program actions to be condensed so that they
count as just1 against the bound ofK.

The idea of creating analyzers that place a bound on the number
of context switches that a multi-threaded program is allowed to
perform (i.e., CBA) originates in the work of Qadeer and Wu [18].
Qadeer and Rehof [17] showed that CBA is decidable for Boolean
programs. Bouajjani et al. [4] extended the decidability result to
Boolean programs with bounded heaps, and Lal et al. [14] extended
the result to a class of infinite-state program abstractions. All of
these techniques bound the number of context switches that are
explored (while letting processes perform an arbitrary number of
computation steps in between context switches). Although CBA
under-approximates the program’s semantics (i.e., it may fail to
explore some behaviors of the program) it encompasses a large,
and in general unbounded, subset of the program’s behaviors. In
particular, CBA does not impose any bound on the execution length
between context switches.

The use of a sequentialization transformation to reduce a CBA
problem to a (larger) sequential-analysis problem in whichportions
of the state are replicated was pioneered by Qadeer and Wu [18],
although the Qadeer-Wu transformation is limited to a fixed context
bound of2. The first sequentialization transformation that allowed
for an arbitrary context boundK was given by Lal and Reps [13]. A
different sequentialization transformation for CBA-K was given by
La Torre et al. [12]. Although the transformed program increases in
size with the sequentialization approach, the significanceof these
methods is that they allows any sequential-analysis technique to be
applied after the transformation. Moreover, they have led to order-
of-magnitude speed-ups over some other competing approaches for
analyzing concurrent software [13].

Another recent approach to verifying concurrent programs has
been described by Garg and Madhusudan [10]. Their technique
applies to programs for which arely-guaranteeproof exists for
the property of interest. The class of programs addressed byour
technique is incomparable to the class addressed by Garg and
Madhusudan, and the two methods are based on quite different
approaches. Both techniques are of interest for expanding the tools
available for addressing the difficult and important problem of
verifying concurrent software.
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