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Figure 5.2.  Intelligence, surveillance and reconnaissance (ISR) learning and usage scenario.  During the “learning 

phase” an analyst categories interesting images and provides advice through an HCI to train a 

probabilistic model.  In the “real-world use” phase, the model sorts and filters incoming images 

according to the probability the are interesting, presenting the most interesting images to the analyst.  

The analyst then dispatches reconnaissance appropriately. ................................................................... 86 

Figure 5.3.  The Wargus tower-defense task.  Multiple attacking units, consisting of swordsmen, archers, and 

ballista, assault the defender’s tower.  Depending on the composition of the attacking force, the tower 

will survive or be destroyed.  The Wargus tower-defense learning task involves predicting which of 

these outcomes will occur. ...................................................................................................................... 87 

Figure 5.4.  Prototype GUI for advice taking in Wargus.  The GUI consists of four sections: (upper-left) entity 

selection and naming, (upper-right) display of current game board, (lower) controls specifying 

relations between selected entities, and (not shown) a list of previously specified advice. .................. 88 

Figure 5.5.  Sketch of a general ILP advice-giving HCI.  One area of the GUI (top) displays a graph of relations known 

about an example, while the another area (bottom) allows the user to construct advice by dragging 

relations from the relation graph.  While not optimal for all domains, this general HCI would enable 

advice to be provided without the creation of task-specific GUI. ........................................................... 91 

Figure 5.6.  A prototype Wargus HCI used to review the predictions of the learned model. ..................................... 95 

Figure 5.7.  Learning curve showing test set performance in the Wargus tower-defense game comparing models 

learned with hand-written advice, HCI generated advice, and no advice.  All models were learned the 

using boosted relational dependency network algorithm.  The HCI generated advice was generalized 

using the techniques discussed in Chapter 4. .......................................................................................... 99 

Figure 5.8.  Learning curve showing test set performance in the Wargus tower-defense game comparing models 

HCI generated advice and no advice.  Models were learned the using support vector machine (SVM) 

and knowledge-based support vector machine (KB-SVM) algorithms, respectively. ............................ 100 

Figure 6.1.  The Onion layers.  An iterative search through parameters, starting with small constrained search 

spaces and iteratively expanding the search space in layers. ............................................................... 106 
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Figure 6.2.  Illustration of the ONION algorithm.  The ONION repeatedly calls the ILP algorithm, iterating through 

combinations of parameter settings.  Each theory returned from the ILP algorithm is evaluated against 

a tuning set and the ONION stops if a theory’s score exceeds the early-stopping criteria. .................... 107 

Figure 6.3.  Adjustments to Per-Clauses Minimum Recall.  The minimum recall of a single component clause of a 

learned theory scales linearly with the minimum per-clause precision.  Additionally, as the maximum 

number of allowed clauses in a theory increases, the minimum required recall is reduced. ............... 115 

Figure 6.4.  Training, tuning, and testing folds for grid-search experiments. ............................................................ 118 

Figure 6.5.  Advised-By results.  The individual points indicate the ONION algorithm’s testing set F1 score for each of 

the folds.  The curves depict the testing set F1 score with respect to time for each of the grid-search 

folds. ...................................................................................................................................................... 121 

Figure 6.6.  Carcinogenesis results.  The individual points indicate the ONION algorithm testing set F1 score for each 

of the folds.  The curves depict the testing set F1 score with respect to time for each of the grid-search 

folds. ...................................................................................................................................................... 122 

Figure 6.7.  Mutagenesis results.  The individual points indicate the ONION algorithm testing set F1 score for each of 

the folds.  The curves depict the testing set F1 score with respect to time for each of the grid-search 
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Figure 6.8.  Average  precision with respect to the MaximumClauseLength parameter settings based on Section 4.2, 

Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% to 15%.  Only 

data using 100 examples is considered. ................................................................................................ 126 

Figure 6.9.  Number of theories  learned for various MaximumClauseLength parameter settings based on Section 

4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% to 15%.  
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Figure 6.11.  Average precision with respect to the MaximumClausesInTheory parameter settings based on Section 

4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% to 15%.  

Only data using 100 examples is considered. ........................................................................................ 128 

Figure 6.12.  Number of theories  learned for various MaximumClausesInTheory parameter settings based on 

Section 4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% 
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one with dotted lines).  Arcs show the probability of transitions, given the action, and immediate 

rewards.  Value-iteration, with γ=0.9, calculates the Q-value of each state-action pair (not shown).  The 

maximum Q-value from each state (shown inside each state) determines the policy for the state. ... 137 

Figure 7.3.  Sample A-MDP being built in a 2D continuous state space.  (A)  E-states (open dots), reached by two 

actions (solid and dotted arcs).  Actionss reaching filled dots terminated the episode.  (B)  Initial 

terminating preimages considered for learning, with their heuristic scores Hi shown, based upon the 

rewards in the example data.  (C) An A-MDP state learned based upon preimage H2.  Note the A-state 

S1 could cover more example states than intended.  Action arcs show the aggregate reward and 

transition functions for S1.  All calculations use γ=1.  (D) Next stage of preimage selection and scoring.  

(E) A-MDP extended by generalizing preimage H3 into A-state S2.  (F) Final A-MDP after all preimages 

have been generalized.  Note some transitions, such as the top one from S3, may not lead to a learned 

A-state and are placed in a special “uncovered” A-state, with a score of zero. .................................... 139 

Figure 7.4.  Learned rule for shoot_scored preimage, with a parameter to represent both the shoot(left) and 

shoot(right) actions.  The variable GoalPart allows this rule to be applied to shooting at either side of 

the goal, both during learning and problem solving.  Note, the rule name shotThatScored is for 

illustrative purposes only.  Actual rules are have anonymous names................................................... 142 

Figure 7.5.  Synthetic domain MDP.  Arcs represent state-transitions for three separate actions.  All actions are 

deterministic.  S4 and S5 are terminating state.  All rewards are zero, except for the single action 

leading from S3 to S5. ............................................................................................................................. 146 

Figure 7.6.  Synthetic Domain; average reward received per game, averaged over previous 50 games. ................. 148 

Figure 7.7.  2-on-1 Breakaway; average reward received per game, averaged over previous 250 games. .............. 148 

Figure 8.1.  A possible strategy for the RoboCup game KeepAway, in which the RL agent in possession of the soccer 

ball must execute a series of hold or pass actions to prevent its opponents from getting the ball. The 

rules inside nodes show how to choose actions. The labels on arcs show the conditions for taking 

transitions. Each node has an implied self-transition that applies by default if no exiting arc applies. 152 

Figure 8.2.  The structure that corresponds to the example macro clause in Section 8.3.1. .................................... 159 
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Figure 8.3.  Training examples (states circled) for pass(Teammate) rules in the second node of the pictured macro. 

The pass states in Games 1 and 2 are positive examples. The pass state in Game 3 is a negative 

example; this game did not follow the macro, but the pass action led directly to a negative game 

outcome. The pass state in Game 4 is not an unambiguous example because a later action may have 

been responsible for the bad outcome. ................................................................................................ 161 

Figure 8.4.  Training examples (states circled) for the transition from move to pass in the pictured macro. The pass 

state in Game 1 is a positive example. The shoot state in Game 2 is a negative example; the game 

began by following the macro but did not take the transition from move to pass. The pass state in 

Game 3 is not an unambiguous example because a later step may have been responsible for the bad 

outcome................................................................................................................................................. 162 

Figure 8.5.  Probability of scoring a goal in 3-on-2 BreakAway, with Q-learning and with three transfer approaches 
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Figure 8.6.  Probability of scoring a goal in 4-on-3 BreakAway, with Q-learning and with three transfer approaches 
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Figure 8.7.  One of the five macro structures learned from 2-on-1 BreakAway runs. There are between 10 and 20 
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ABSTRACT 

Inductive Logic Programming (ILP) provides an effective method of learning logical theories given a 

set of positive examples, a set of negative examples, a corpus of background knowledge and specification 

of a search space from which to compose the theories.  While specifying positive and negative examples 

is relatively straightforward, composing effective background knowledge and search space definition 

requires detailed understanding of many aspects of the ILP process and limits the usability of ILP.  This 

research explores a number of techniques to automate the use of ILP for a experts whose expertise lies 

outside of ILP.  These techniques include automatic generation of background knowledge from user-

supplied information in the form advice about specific training examples, utilization of type hierarchies to 

constrain search, and an iterative-deepening style search process.  Additionally, I examine methods of 

knowledge acquisition through human-computer interfaces, facilitating the use of ILP by the novice user. 
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1 Introduction 

The world is a complicated place.  If we look around, we see things; chairs and trees abound.  We 

describe these things through some set of properties.  That tree’s species is oak.  This chair’s color is blue. 

In turn, those properties themselves exhibit properties.  Oak leaves are serrated.  The wavelength of blue 

light is 475 nm.  We also describe the world according to how things are associated with each.  The tree is 

near the chair and the tree is between the house and the street.  One way to encode this information is 

through a set of relations.  Thus, we could write species(tree, oak), color(chair, blue), wavelength(blue, 

475), leaves(oak, serrated), near(tree, chair), and between(tree, house, street).  We call this a relational 

representation.  

Relational learning uses information in a relational form to solve learning problems.  Relational 

learning algorithms provide powerful approaches to learning, but in practice relational algorithms prove 

difficult to use compared to non-relational approaches such as those based on a fixed-length feature 

vector.  Thus, users in the machine learning community as well as other fields often avoid relational 

algorithms even when they would prove advantageous. 

In this research, I address some of the difficulty of using relational learning techniques and 

demonstrate the effectiveness of relational learning with the following goals: 

1. Simplify setting up relational learning tasks via human-provided advice.  By ‘advice,’ I mean 

statements, possibly incorrect, providing hints useful while learning. 

2. Simplify setting up relational learning tasks via automation of operations requiring detailed 

knowledge of the specific algorithms such as parameter selection. 

3. Demonstrate novel applications of relational learning in Reinforcement Learning. 
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1.1 Motivation 

Relational learning is an appealing approach1.  This statement, while quantitatively difficult to prove, 

seems qualitatively to hold.  Our world is relational.  Our world is not composed of a fixed number of 

objects with a fixed number of properties, but rather of many entities with relations between them, any 

subset of which may be relevant in any given situation.  Ergo, learning algorithms able to take advantage 

of this relational information are good.  While this statement is both unsubstantiated and overly broad, for 

the purpose of this document I assume this to be true and will posit that we should use relational learning 

algorithms. 

However, even assuming relational approaches are desirable, their complexity often restrict their use, 

especially by non-expert users.  In particular, I will primarily be considering one specific form of 

relational learning – inductive logic programming (ILP)2.  In order to understand how a typical ILP 

algorithm works, consider a simple genealogy domain.  A user of ILP might specify an ILP task through 

the following dialog: 

1. I want to learn implications (referred to as clauses) where the consequence is 

           (                 )3. 

2. I suggest the antecedent (or body) use parent/24 and/or sibling/2 relations.  These relations may 

occur multiple times. 

3. I want there to be at most two literals in the antecedent. 

                                                      

 

1 As opposed to non-relational learning, such as fixed-length vector of features values. 
2 Although I consider only ILP relational approach, most of the limitation and difficulties apply to other relational approaches, 

including many statistical-relational learning algorithms. 
3 I will be using Prolog notation starting logical variables with uppercase letters and constants with lower case letters.  Otherwise, 

I will also use standard conjunction, disjunction, negation, and implication logical notation.  
4 Here parent/2 provides a specification for all relationships with the name “parent” and with two arguments.  
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4. I know the following relations (or facts) are true:       (         )        (         )   

     (         )  and      (        )  

5. I know the following implication (or background knowledge) holds universally: 

        (             )       (              )      (              )  (1.1) 

6. I want the learned clause to imply (or cover) the positive examples            (           ) 

and            (          ). 

7. I do not want the leaned clause to cover the negative examples            (         )  

           (          )  or            (         )  

8. I want to learn at most two separate clauses. 

9. I want any single learned clause to cover at least 50% of the positive examples with a precision of 

100%. 

Given this problem definition, an ILP algorithm searches for a clause of the form  

            (                 )          ( )           ( )  (1.2) 

(see statement #1) where literals 1 to N can be any combination of one or more parent/2 or sibling/2 

literals (see #2), with the goal of covering as many of the positive examples (#6) as possible, while 

covering as few of the negative examples (#7) as possible.  When ILP finds a clause that fulfills the user’s 

requirements (#3, #9) it will return that clause and possibly keep searching for more clauses, depending 

on the user’s problem specification (#8). 

Although this ILP problem seems simple, the user made several of mistakes when specifying the 

above problem.  In statement #2 from the sample dialog, the user did not allow the use of child/2 as a 

candidate literal.  In #3, the user specifies only antecedents with up to two literals may be considered, 

although a careful reader might note that the positive example            (          ) requires a 

length-three clause (i.e.,            (   )        (   )       (   )        (   ) .)  And 
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finally, in #4, the user missed several facts that likely hold in the world (e.g.,       (        )), 

possibly because the user did not know these facts.  

Some of these mistakes have trivial fixes; others may stem from a lack of understanding of the ILP 

system. In general, I expect most user to understand how to specify the target (#1), the facts (#4), the 

positive examples (#6), and the negative examples (#7), as these are standard supervised learning 

concepts.  However, many non-expert users will not understand how to: 

1. Specify background knowledge.   

2. Define the hypothesis space.  

3. Select and tune required parameters. 

I will look briefly at each of these requirements. 

Background Knowledge 

The specification of background knowledge provides the first obstacle for non ILP experts. The 

background knowledge consists of a set of logical statements defining what is “known” about the world.  

This includes ground relational facts such as our       (         ) and      (         ), but also 

includes additional implications, referred to as background rules.  In order to specify background rules, 

the user must: 

1. Understand logic programming. 

2. Understand the limitations of the specific ILP algorithm and what can be stated. 

3. Understand the syntax for specifying the knowledge. 

While most people understand informal logical reasoning, ILP systems reason based upon a logic 

programming paradigm that many users have little or no exposure to.  In addition to understanding logical 

reasoning, the user must also understand the limitations of a given system.  For instance, in the Wisconsin 

Inductive Logic Learner (WILL) ILP system I use in this document, background knowledge must be 

expressed as Horn clauses (Horn, 1951) and one cannot use true negation.  Finally, to specify background 
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knowledge the user must understand the correct syntax to use.  For instance, WILL requires disjunctive 

background concepts to be specified as multiple separate implications.  All of these factors contribute to 

the difficulty of creating proper background knowledge.  Unfortunately, as many ILP-experts will attest, 

the background knowledge greatly affects the performance ILP and the quality of the learned solution and 

contributes greatly to the power relational approaches. 

Defining the Hypothesis Space 

The second difficult ILP problem setup task involves defining the hypothesis space.  Hypotheses in 

an ILP search take the form of an implication in which the antecedent is composed of multiple literals 

(where a literal is a relational fact or rule.)  During learning, the ILP algorithm5 iteratively expands a 

candidate hypothesis by appending literals to the antecedent of the current hypothesis.  The user must 

specify the literals the ILP algorithm may use at each iteration to expand the current candidate hypothesis 

(e.g., statement #2 in the sample dialog specifies that the ILP system may use the parent/2 and sibling/2 

relations).  In addition to specifying the allowed literals, the user must also specify constraints on the 

arguments of each literal.  The constraints specify both the type of the argument and how logical variable 

connect in a candidate hypothesis.  This second step greatly influences ILP effectiveness by constraining 

the search space, thereby making the search tractable.  

Parameters Selection 

Finally, selecting parameters complicates ILP use.  In the sample dialog, the user specified three of 

the possible parameters (see #3, #8, and #9) constituting only a subset of the possible ILP parameters.  

Most learning algorithms have parameters and a user must somehow choose these parameters.  A user 

may select parameters using a variety of methods, including various principled approaches (e.g., by 

                                                      

 

5 Several ILP approaches exist.  We consider one specific “top down” approach.  However, all ILP approaches require analogous 

setup. 
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optimizing some score with respect to the parameter) or ad hoc approaches (e.g., trying all possible 

parameter combinations), or simply according to experience.  For non ILP expert user, parameter 

selection in ILP algorithms is daunting for three reasons: 

1. There exist many parameters with unintuitive and complex interactions. 

2. The parameters generally cannot be selected through a principled approach because performance 

rarely varies smoothly with respect to the parameters. 

3. ILP performance is highly sensitive to parameter choice. 

Between background knowledge, hypothesis space specification, and parameter settings, ILP has a 

steep learning curve and therefore is difficult to use for the non-expert.   

1.2 Contributions 

Background Knowledge Acquisition via Advice-Taking 

In Chapter 4, I will examine an approach that addresses the creation of background knowledge and 

hypothesis-space specification by non ILP experts.  I base the approach on an advice-taking paradigm, 

allowing the user to provide advice as to why specific examples in an ILP problem are either positive or 

negative.  Since the advice pertains to specific examples, the user does not need to understand how to 

write generalized advice in a specific logical form.  My approach translates the provided advice into 

generalized background knowledge usable by the ILP system.  Additionally, I generate the required 

hypothesis space specification automatically, alleviating the need for the user to understand that aspect of 

ILP. 

Advice-Taking via Human-Computer Interface 

I also examine background knowledge acquisition via a human-computer interface.  The advise-

taking approach presented in Chapter 4 requires the user to write logical statements.  In Chapter 5, I look 

at a human-computer interface approach to providing advice.  This approach allows a user to provide 
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advice in a more natural fashion.  The proposed approach then generates background knowledge via the 

techniques presented in Chapter 4 and automatically executes the ILP algorithm using the generated 

knowledge. 

Parameter Tuning via the ONION 

In Chapter 6, I present an automated method (called the ONION) for tuning the ILP parameters.  The 

approach uses an iterative-deepening style search (Korf, 1985), iteratively expanding the search space, 

trying different parameter combinations, and stopping when the ILP system learns an acceptable theory.  

Although other parameter-tuning approaches exist, I show that the ONION algorithm performs well 

without any user interaction. 

ILP Applied to Reinforcement Learning Tasks 

In Chapters 7 and 8, I explore two applications of ILP in reinforcement learning.  I present these 

additional explorations in order to illustrate to applicability of ILP to non-traditional ILP problems, 

further demonstrating the effectiveness of ILP.  Additionally, the approaches in both chapters produce 

machine-generated advice that may be used to solve other tasks (seen explicitly in Chapter 8), 

highlighting that the user need not explicitly present advice to the ILP algorithm but can use other 

approaches to generating advice.  For instance, by telling a learning an algorithm that an old task A is 

relevant to a new task B, the algorithm could automatically extract advice from task A for use in task B. 

1.3 Thesis Statement 

Providing automatic advice-taking algorithms, human-computer interfaces, and automatic parameter 

tuning greatly increases the applicability of inductive logic programming (ILP), enabling use of ILP by 

users whose expertise lies outside of ILP. 
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1.4 Thesis Overview 

This document contains several sections, corresponding to the contributions mentioned above.   

Table 1.1 provides an overview of contents of this document. 

 

I performed much of the research in this document in collaboration with other researchers in addition 

to my advisor.  When applicable, I will use we to indicate work performed with others and will use I to 

denote work perform by myself (or along with my adviser).  I will additionally specify the collaborating 

authors, if any, at the beginning of each chapter. 

Table 1.1.  Overview of thesis chapters. 

Section Chapters Description 

Background and Testbeds 2, 3 Overview of the technologies and testbeds used by proceeding 

section. 

Background Knowledge 

Generation 

4 An advice-based algorithm that automatically generates background 

knowledge, along with the necessary determinations and modes. 

Advice Acquisition 5 An approach to advice acquisition complementing my background 

knowledge generation approach from Chapter 4. 

Parameter Selection 6 An algorithm for automated parameter selection. 

ILP Applications in 

Reinforcement Learning. 

7, 8 A demonstration of the applicability of ILP in non-traditional 

fashions in reinforcement learning. 

 



9 

 

 

  

2 Background 

This chapter provides background information that lays the framework for the rest of this document.  

Section 2.1 provides background on first-order logic, used extensively in inductive logic programming 

(ILP).  Section 2.2 discusses supervised learning and several specific algorithms that are used later.  

Section 2.2.3 describing inductive logic programming and is especially important.  Section 2.3 provides a 

description of reinforcement learning, which is used in Chapters 7 and 8. 

2.1 First-Order Logic 

First-order logic is a formal logic system and provides a framework for reasoning about properties of 

and relations between objects.  First-order logic consists of two expressions: terms and formulas.  

Formulas are statements that evaluate to either true or false depending on the world being considered 

while terms represent “things” in that world.   

 Terms are defined inductively as: 

1. Variables:  Any variable is a term. 

2. Functions:  Any expression f(t1, …, tn) of n arguments, where f is a function symbol of arity n 

and ti is a term, is a term.  Functions of arity 0 are called constants.  

Formulas are defined inductively as: 

1. Predicate symbols:  If p is an n-ary predicate symbol and t1…tn are terms, then p(t1, …, tn) is a 

formula. The notation p/n refers to a predicate symbol p of arity n. 

2. Equality:  t1 = t2, where t1 and t2 are terms, is a formula. 

3. Negation:  If φ is a formula, then ¬ φ, where ¬ is the negation symbol, is a formula. 
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4. Binary connectives:  If φ and ψ are formulas, then φ ˄ ψ, where ˄ is the AND binary logical 

connective, is a formula.  Similarly, formulas exist for other binary logical connectives such as: ˅, 

←, →, and ↔. 

5. Quantifies:  If φ is a formula and x is a variable, then ∀x(φ) and ∃x(φ) are terms. 

In this document I will be using some additional notation often used in first-order settings: 

1. Atomic formula:  A formula obtained from the first two rules. 

2. Literal:  Either the negation or non-negation of an atomic formula.   

3. Positive Literal:  A non-negated atomic formula. 

4. Negated Literal:  A negated atomic formula. 

5. Predicate:  Informally, a synonym for a formula, typically an atomic formula. 

 It is common to assign a nomenclature to the symbols used to represent first-order logic expressions.  

In standard logic notation, symbols starting with an uppercase letters represent predicate symbols, 

function symbols or constants, while symbols starting with lowercase letters represent variables (e.g., 

AnExample(A, b) represents the predicate symbol “AnExample” applied to the constant “A” and logical 

variable “b”.)  In Prolog (discussed further below), symbols starting with lowercase letters represent 

predicate symbols, function symbols, or constants, while symbols starting with uppercase letters represent 

variables (e.g., anExample(a, B).)  I use Prolog nomenclature throughout this document.  The Wisconsin 

Inductive Logic Learner (WILL) used for much of this research supports an addition notation where 

symbols starting with “?” denote variables and symbols starting with either uppercase and lowercase 

letters denote predicate symbols, function symbols, or constants (e.g., anExample(a, ?b) or AnExample(A, 

?b).) 
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2.1.1 Unification 

Unification provides a method to find a logical variable substitution that, when applied to two distinct 

first-order formulas or terms, results in exactly the same first-order formula or term.  For instance, given 

the predicates  ( ) and  ( ), the substitution of       yields  ( ) when applied to either formula.  

Such a substitution   is called a unifier.  Application of the substitution of   applied to formula   is 

written as ( ) .  For any given two first-order expressions, multiple unifying substitutions may exists.  

One of the most commonly required unifiers is the most-general-unifier (MGU).  Algorithm 2.1.  

MOSTGENERALUNIFIER details a recursive algorithm returning the most general unifier substitution, if one 

exists. 

2.1.2 Horn Clauses and Selective Linear Definite (SLD) Resolution 

Gödel's completeness theorem (1929) established that there are sound (i.e., all proofs of formulas are 

valid) and complete (i.e., all valid formulas are provable) deductive systems for first-order logic.  

Unfortunately, general first-order logic is undecidable (Church, 1936), i.e., independent of being sound 

and complete, there exists no algorithmic way of  resolving the truth-value of any arbitrary formula in 

first-order logic.  However, some subsets of first-order logic are decidable and algorithms exist that are 

capable of resolving the truth-values of the subset of expressible formulas. 

Selective linear definite (SLD) resolution (Kowalski, 1973) provides a sound and complete inference 

approach for the subset of first-order logic restricted formulas to Horn clauses (1951).  A Horn clause is a 

disjunction of literals with at most one single positive literal and any number of negated literals.  Table 

2.1 lists standard terminology useful when discussing Horn clauses and SLD resolution.  
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Algorithm 2.1.  MOSTGENERALUNIFIER 

1. Input:  

2.   p, q   –   First-order formulas or terms to unify 

3.  

4. Output:         

5.        –   Most general substitution unifying p and q 

6.  

7. If p or q is a constant or variable then 

8.   If p = q then 

9.    Return {}         // p and q already unify 

10.   Else if p is variable then 

11.    Return substitution {p q}  // Unify variable p to q 

12.   Else if q is variable then 

13.    Return substitution {q p}  // Unify variable q to p 

14.   Else 

15.    Return FAIL 

16.   

17. If ( p is term and q is formula ) or ( p is formula and q is term ) then 

18.   Return FAIL 

19.  

20. Let p = psymbol(p1, …, pn)    // p either a compound term or formula with n arguments.   

21. Let q = qsymbol(q1, …, qm)    // q either a compound term or formula with m arguments.   

22.  

23. If psymbol != qsymbol then  

24.   Return FAIL 

25.  

26. If n != m then 

27.   Return FAIL 

28.  

29. Let   = { } 

30.  

31. For i in 1 to n do 

32.   Let   = MOSTGENERALUNIFIER( (pi) , (qi)  )  // Find MGU of the terms with current   applied. 

33.   If   == FAIL then 

34.    Return FAIL 

35.   Else 

36.    Let   =       

37.  

38. Return    
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SLD resolution relies upon a single inference rule.  Given a goal clause 

                  (2.1) 

and an definite clause 

               (2.2) 

where     and   unify via a substitution  , a new goal clause may be derived where the literal     is  

replaced by            and the substitution is applied to the resulting clause, producing in 

 (                                   ) . (2.3) 

An SLD logic program consists of a list of definite clauses.  By repeatedly applying the SLD 

inference rule, one may determine the truth-value of a goal clause in the form of (2.1) for any given logic 

program.  Depending on the logic program, the goal clause may have multiple derivations, each with 

different resulting variable substitutions. 

SLD resolution does not allow for true negation due to the limitation of the Horn clause 

representation.  For instance, the first-order logical statement        is not representable as a Horn 

clause since the equivalent logical statement       contains two non-negated literals.  Negation-by-

failure, an extension to SLD, provides a mechanism to simulate negation through the introduction of the 

Table 2.1.  Horn clause nomenclature. 

Terminology Sample Description 

Goal clause        Horn clauses with only negated literals.  The clause to determine the true 

value of during SLD resolution. 

Query clause        Synonym for goal clause. 

Definite clause           Horn clauses containing exactly one positive literal.  Logically equivalent 

to the implication       . 

Fact   Informally, a definite clause with no negative literals.  Represents a 

declarative fact in a logic program. 

Rule          Informally, a definite clause with a least one negative literal.  Represents 

implications that can be applied during SLD resolution. 

Head p   ¬q   ¬ r Informally, the single positive literal of a definite clause corresponding the 

consequence when viewed as an implication. 

Body p   ¬q   ¬ r Informally, the negative literals of a definite clause corresponding to the 

antecedents when viewed as an implication. 
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not/1 predicate symbol.  The literal    ( ) in a goal clause resolves to true if no proof of   exists for the 

given logic program. 

Prolog (ISO/IEC-13211, 1995) is one commonly used programming language based upon SLD 

resolution along with negation-by-failure.  A Prolog interpreter allows for the evaluation of the truth-

value of goal clauses given a Prolog program, a logic program consisting of a list of definite clauses.  In 

cases where multiple unique substitutions exist for a given goal clause, Prolog provides a deterministic 

ordering of the substitutions, resolving literals in the goal in order and applying inference according to the 

order of definite clauses in the logic program.  This ordering is necessary since SLD resolution provides 

only an inference approach and does not specified the order possible inferences are performed. 

2.2 Supervised Learning 

One of the most common forms of machine learning (Mitchell, 1997) involves learning to predict a 

target value given some input feature description.  Given a set of training data, supervised learning 

attempts to learn a function predicting this target value.  For instance, consider a task of learning whether 

a particular stock investment is likely to be good or bad, given a set of past good investments and a set of 

past bad investments.  The target values would be good and bad, while the training data would consists of 

the past good and bad investments. 

Algorithm 2.2 provides a general description of the inputs and output of supervised learning.  The 

input consists of a set of training examples, each consisting of a feature description and a label.  The 

feature description provides information about the example while the label provides the target value the 

learned function should predict.  For instance, in the investment task above, for each training example (an 

investment), the feature description might include the cost of the stock, its previous performance, 

information about the company, etc., while the label would be either good or bad. Once learned, the 
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predictive function can then be used to predict the label of new, previously unseen, examples, as shown in 

Figure 2.1. 

 

 

Feature 
Description

Label

Feature 
Description

Label

Example 1

Example N

...

Feature 
Description

New Example

Learning AlgorithmTraining Data

Predicted Label 
for New Example

 

Figure 2.1.  Illustration of Supervised Learning.  Given training data, a supervised learning algorithm 

learns a function.  The function, given a new feature description, predicts a label. 

Algorithm 2.2.  SUPERVISED LEARNING 

1. Given: 

2.   Set of examples where each examples consists of: 

3.    feature description –   information describing the example 

4.    label         –  target value to be predicted 

5.  

6. Do: 

7.   Learn predictive function that maps feature description → label 
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Supervised learning algorithms can be categorized along two axes, one describing the type of the 

feature description and the other describing the type of the label, as shown in Table 2.26.  The feature 

description takes the form of either a fixed-length feature vector or relational feature description.  Labels 

take the form of either a set of discrete classes {c1, …, cn} or a real value.  These distinctions are 

discussed below.  

Table 2.2.  Categories of supervised learning algorithms. 

Type of label 

 

Type of feature description 

Label ∈ {c1, c2, …, cn} Label ∈   

Fixed-length feature vector Fixed feature vector classification Fixed feature vector regression 

Relational Relational classification Relational regression 

2.2.1 Classification Versus Regression 

Generally, the labels attached to the training data consists either of categories (i.e., good or bad; 

positive or negative; blue or green), in which case the task is called a classification task, or the labels 

consists of real values, in which the task is called a regression task. 

Classification Tasks 

A classification task involves learning a target function       that distinguishes between two or 

more classes, where X is some feature space and Y is the set of class {c1, …, cn}, where the maximum n 

depends on the learning algorithm.  Many algorithms only support two class problems naturally. 

Figure 2.2 depicts the input data of a classification task with two classes labeled positive and 

negative.  The learned function creates a decision boundary separating the classes.  Often the learned 

function will not perfectly separate the classes, leading to misclassifications where the predicted label 

does not match the actual value.   The training data for classification takes the form of {(x1, y1), …, (xk, 

yk)}, where xi  X is the feature description for a single training example and yi  Y is the associate label. 

                                                      

 

6 Additional forms of feature description and labels exist, but are less commonly used and will not be discussed here.  
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Regression Tasks 

A regression task involves learning a target function       mapping inputs in some feature space 

X to real values.  Figure 2.2 depicts a typical regression task.  The training data for classification takes the 

form of {(x1, y1), …, (xk, yk)}, where xi  X is the feature description for a single training example and 

  ∈   is the target value. 
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Figure 2.2.  A Classification supervised learning task.  Positively and negatively labeled examples exist in 

some feature space.  A supervised learning algorithm attempts to learn a function that separates the 

positively labeled examples from the negatively labeled ones.  The learned boundary between the positive 

and negative examples is called the decision boundary. 
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2.2.2 Fixed-Length Feature Vectors Versus Relational Feature Description.   

The feature description often takes the form of a feature vector, a fixed length vector containing the 

various values describing each example, where the length of the feature vector is the same for all 

examples.  Alternatively, the feature description may be much more complex, consisting of a set of 

relations describing an example.  For instance, considering once again the investment task from earlier, 

the stocks may have recommendations from various stock analysts and they may have information about 

each analyst, such as the previous reliability of their recommendations.  Thus, the features consist of a 

number of relations describing a single example and the number of relations may vary from example to 

example.  We call this form of a feature description a relational feature description.  For both fixed-length 

vectors and relational-feature descriptions, we call the collections of all possible feature combinations the 

feature space. 

Feature Space

Fu
n
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n
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u

e

Numerically 
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 Examples

A Learned 
Function

 

Figure 2.3.  A Regression supervised learning task.  Numerically labeled examples exist in some feature 

space.  A supervised learning algorithm attempts to learn a function – the dashed line above – predicting 

the values of  unseen points in the feature space. 
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2.2.3 Inductive Logic Programming 

Inductive Logic Programming (ILP) is two-class supervised learning classification algorithm7 that 

learns hypothesis in the form of one or more first-order logic formulas, referred to as a theory.  Figure 2.4 

illustrates the learning and evaluation process in ILP.  Given a set of positive training examples, a set of 

negative training examples, and a set of background knowledge, an ILP algorithm attempts to learn a 

theory that, along with the background knowledge, entails as many positive examples and as few negative 

examples as possible.  Predicting the label of a new example involved determining if the theory, along 

with (possible new) background knowledge, entails the new example.  If it does, the example is classified 

as a positive and is said to be covered by the theory; otherwise the example is classified as a negative and 

called uncovered. 

While there are several variant of ILP, I will be using one made popular by the Aleph ILP system 

(Srinivasan, 2001) and implemented by the Wisconsin Inductive Logic Learner (WILL).  Aleph uses 

Prolog as its underlying representation with inference based on SLD resolution. Thus, examples, 

background knowledge and learned theories are composed solely of Horn clauses.  Conceptually, the 

other variants of ILP such as FOIL (Quinlan, 1990), PROGOL (Muggleton, 1995), and GOLEM 

(Muggleton & Feng, 1992) are similar to the Aleph approach but use either different forms of logical 

inference (and logical representations) or different search approaches to learning theories.  

Table 2.3 provides the setup of a sample ILP task, illustrating some of the information necessary to 

setup and run an ILP task; the table also includes an English description of the information.  The sample 

task involves learning the grandparent concept, as specified by row one.  The second and third rows 

specify search space through settings called determinations and modes.  Rows four through six illustrate 

                                                      

 

7 Variations of ILP that support multiple classes and regression exist.  However, ILP tasks are usually formulated as two-class 

tasks. 
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the input data.  Finally, rows seven and eight provide two of the many parameter settings used to control 

various aspects of an ILP algorithm. 

 

In Aleph and WILL, examples take the form of single literals; background knowledge is expressed 

through definite clauses; and learned theories consist of a list of definite clauses.  Since definite clauses 

can not directly express disjunction, the learned theories are composed of multiple clauses to facilitate 

disjunction in a concept, with the multiple clauses conjoined logically.  For instance, the concept 

      can not be represented directly using a single definite clause.  However, when conjoined as a 

single theory, the clauses     and     can represent the desired concept.   

Logical SentenceLogical Sentence

Positive Examples

New Example

Learned Logical Theory

ILP Algorithm

Logical Formula

Predicated Label 
for New Example

Training Data

Logical SentenceLogical Sentence

Negative Examples

Logical Formula

Logical SentenceLogical SentenceLogical Formula

Background Knowledge

Logical SentenceLogical SentenceLogical Formula

Background Knowledge

+

Logical Formula

 

Figure 2.4.  Illustration of ILP learning and evaluation process.  During learning, the ILP algorithm uses 

training data in the form of positive and negative logical formulas, along with a set of background 

knowledge, to learn a logical theory.  During evaluation, the logical theory, along with background 

knowledge, predicts the label of new examples. 
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The ILP Search 

As shown in Figure 2.5, internally the ILP algorithm consists of two separate loops.  An outer loop, 

the theory learner, repeatedly calls an inner loop, the clause learner.  Algorithm 2.3 SEARCHFORTHEORY 

details the process of learning a theory.  SEARCHFORTHEORY calls Algorithm 2.4 SEARCHFORCLAUSE 

repeatedly. Each clause returned from SEARCHFORCLAUSE is added to the theory and after each iteration, 

SEARCHFORTHEORY scores the current theory, continuing until either the theory scores high enough to 

surpass some stopping criteria specified by the user or the number of clauses in the theory reaches a set 

limit.   

Table 2.3.  Sample grandparent ILP task setup. 

 Name Value(s) English Description 

1 Target predicate 

symbol 
grandparent/2 Learn clauses where the head is 

           (                 ). 

2 Determinations parent/2 
sibling/2 

The body may use parent/2 and/or sibling/2 literals.  

3 Modes grandparent(+person, -person) 
 
parent(+person, -person) 
sibling(+person, -person) 

The grandparent target literal’s first argument 

introduces a variable of type person, while the 

second argument consumes a variable of type person.  

Likewise for the parent and sibling body literals. 

4 Background 

knowledge 

       (             )  
          (              )  
          (              )  

      (         ). 

      (         ). 

     (         ). 

     (        ). 

       (             )   

         (              )      (              )  

These relations are true:       (         )  
      (         )        (         )  and 

     (        )  
 

This implication holds universally: 

5 Positive 

examples 
           (           )  
           (          )  

The learned clause to imply the examples 

           (           ) and 

           (          ). 

6 Negative 

examples 
           (         )  
           (          ). 

           (         ). 

The leaned clause should not imply the examples 

           (         )  
           (          )  or 

           (         )  
7 Maximum 

clauses per 

theory 

2 Learn at most two separate clauses. 

8 Maximum 

literals per 

clause 

2 The antecedent of any learned clause should contain 

at most two literals. 
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Algorithm 2.3.  SEARCHFORTHEORY 

1. Inputs: 

2.  Target/n     –   Predicate name and arity of target 

3.  Pos       –   Set of positive examples 

4.  Neg       –   Set of negative examples 

5.  BK        –   Set of background knowledge 

6.   Determinations  –   Set of determinations 

7.   Parameters    –   Search control parameters  

8.  

9. Outputs: 

10.  Theory      –   Learned theory   

11.  

12. Let Theory = {} 

13.  

14. For i from 1 to Parameters.maxClausesPerTheory 

15.   Let NewClause = SEARCHFORCLAUSE(Target/n, Pos, Neg, BK, Determinations, Parameters) 

16.   If NewClause ≠  then 

17.    Let Theory = Theory    NewClause} 

18.    Let TheoryScore = SCORETHEORY(Theory, Pos, Neg, BK) 

19.     If TheoryScore > Parameters.theoryStoppingCriteria then 

20.      Return Theory 

21.  

22.   Return  // No acceptable theory found 

 

23.  

Theory Learner

Repeatedly calls the clause 
learner and assembles learned 

clauses into theoryLogical SentenceLogical Sentence

Positive Examples

Literal

Training Data

Logical SentenceLogical Sentence

Negative Examples

Literal

Logical SentenceLogical SentenceDefinite Clause

Background Knowledge

Learned Theory

Learned Definite ClauseLearned Definite ClauseLearned Definite Clause

Clause Learner

Learns individual clauses

 

Figure 2.5.  Illustration of ILP learning based upon SLD resolution.  Learned theories are composed of 

multiple definite clauses.  An outer theory-learner repeatedly calls an inner clause-learner in order to 

assemble the learned theory. 
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Each invocation SEARCHFORCLAUSE searches for a single clause and returns the learned clause (if 

any) to the theory learner.    The clause learner performs the actual search of the hypothesis space for 

clauses, using a standard best-first search.  In the Aleph-style “top-down8” search, the clause learner 

searches the hypothesis starting with the most-general clause (e.g., 

           (                 )       from the sample task definition) and expands each node 

according to the determinations and modes (discussed further below), generating candidate clauses.  At 

                                                      

 

8 Aleph is top-down with respect to a  lattice of possible clauses, where the top of the lattice is the most-general clause and the 

bottom of the lattice is the most specific clause containing all possible literal extensions.  Bottom-up approaches exists but are 

not discussed here. 

Algorithm 2.4.  SEARCHFORCLAUSE 

1. Inputs: 

2.   Target/n     –   Predicate name and arity of target 

3.  Pos       –   Set of positive examples 

4.  Neg       –   Set of negative examples 

5.  BK        –   Set of background knowledge 

6.   Determinations  –   Set of determinations 

7.   Parameters    –   Search parameters  

8.  

9. Output: 

10.  Clause      –   Learned clause   

11.  

12. Let RootClause   =   target(Arg1, …, ArgN) ← true. 

13. Let RootScore    =   SCORECLAUSE(RootClause, Pos, Neg, BK) 

14. Let Open      =   {<RootClause / RootScore>} 

15.  

16. While Open !=  do 

17.   Let ClauseToExpand = head of Open 

18.   For Predicate  Determinations do 

19.    Let Extensions = EXTENDCLAUSE(ClauseToExpand, Predicate) 

20.    For NewClause  Extensions 

21.     Let NewScore = SCORECLAUSE(NewClause, Pos, Neg, BK) 

22.     If NewScore > Parameters.clauseStoppingCriteria then 

23.      Return NewClause 

24.     else 

25.      Add <NewClause / NewScore> to Open in ascending order of score 

26.  

27.   Return  // No acceptable clause found 
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each step, the possible expansions are scored and the resulting score determines both the next expanded 

node and controls when the clause search is stopped. Figure 2.6 depicts a simple clause search based upon 

the sample task from Table 2.3.   

 

Covers all positives and all negatives.
Keep searching.

grandparent(Grandprt, Child)   parent(Grandprt, Child)

Covers all positive and only two negatives.
Keep searching.

grandparent(Grandprt, Child)   parent(Grandprt, Parent)

grandparent(Grandprt, Child)   
parent(Grandprt, Parent), parent(Parent, Child)

Covers three positives and no negatives.  
Meets stopping criteria.  Return clause.

Covers no positives and no negatives.  
Abandon branch.

grandparent(Grandprt, Child)   true
1

2

3

4

 

Figure 2.6.  Illustration of an ILP search for a learned clause.  The clause learner generates candidate 

clauses, arranged in a tree structure, using the literals specified by the user.  At each step, the clause is 

scored against the positive and negative examples.  The score determines when the search should stop as 

well as controlling the order of the search.  The numbers indicate the order in which the clause learner 

searched the clauses. 
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Specifying an ILP Task 

The ILP task definition specifies the target predicate, determinations, modes, and a number of 

implementation-specific parameters.  The target predicate (e.g., grandparent/2 from above), often referred 

to as the target concept or simply target, specifies the predicate symbol of the examples.  Learned clauses 

are in the form of definite clauses and the head is always a literal with the same predicate symbol as the 

target. 

 The determinations define the predicate symbols of the literals that may appear in the body of the 

learned clause (i.e., the literals composing the antecedent of the clause when considered as an 

implication.)  For instance, in the grandparent task, there are two determinations:  parent/2 and sibling/2.  

Thus only parent/2 and sibling/2 literals are allowed in the learned clause bodies. 

The modes provide constraints on the arguments of the body literals (i.e., the literals with predicate 

symbols specified by the determinations.)  One form of mode constraint provides typing information 

enforced during the search (e.g., parent has two arguments, both of type person.)  Another form of 

constraint dictates how logical variables of different literals in a candidate clause must connect.  For 

instance, Figure 2.7 depicts a learned grandparent clause that contains three logical variables: Child, 

Parent, and Grandprt.  The grandparent target literal introduces the Grandprt variable to the clause and 

is called an output argument.  Likewise, the second arguments of the two parent literals provide the 

output variables of Parent and Child, respectively.  Outputs introduce logical variables that may be used 

by other literal as inputs.  Conversely, input arguments consume variables, linking to previously 

introduced output variables.  The second argument of grandparent literal and the first arguments of the 

parent literals are inputs.  In the figure, the dotted lines show the connection from outputs to inputs.  If a 

literal extension to the candidate clause violates the mode constraints, it will not be considered by the ILP 

clause learner. 
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In addition to input and output variable constraints, several other styles of modes exist.  Additionally, 

a user may provide multiple modes for a single predicate.  Table 2.4 lists the possible mode constraints. 

 

WILL – An ILP implementation 

For the purposes of this research, we created the Wisconsin Inductive Logic Learner (WILL).   

Written completely in Java, WILL implements an ILP algorithm roughly based on the Aleph ILP system 

(Srinivasan, 2001).  WILL was developed from scratch with the intention of providing a Java-based ILP 

implementation with a lower barrier to entry than the Aleph ILP system.  Although the syntax of the 

configuration files differ between Aleph and WILL, conceptually they are very similar.  People familiar 

Table 2.4.  Mode specifications. 

Name Symbol Constraint 

Input  +x Variable of type x must exist as an output mode from a previous literal in the 

clause 

Output  -x May introduce or a new variable of type x or match one previously introduce 

Constant  #x Argument consists of a constant; no variable is introduced 

InputOnce
†
  $x Variable of type x must exist and the variable must appear only once previously  

OutputOnly
†
  ^x Introduces a new variable of type x.  Can not match existing variable 

InputOrConstant
†
  :x Combination of Input mode or Constant mode 

OutputOrConstant
†
  &x Combination of Output mode or Constant mode 

†
 Introduced by the WILL ILP system. 

 

Figure 2.7.  Candidate clause in ILP search.  The arguments of the literals are either “inputs” or “outputs”, 

consuming and introducing variables, respectively.  The dotted lines illustrate the connection between outputs 

and inputs. 

grandparent(Grandprt, Child)   parent(Grandprt, Parent), parent(Parent, Child)

Inputs  to
example

Inputs to
literals

Outputs from
literals

Outputs  from
example
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with Aleph should be able to adapt to WILL.  While written in Java, WILL provides Prolog-like9 logic 

inference.  We primarily designed WILL to facilitate research of ILP approaches as well as providing a 

platform for other research using the ILP learning.   

WILL implements several extensions to the Aleph algorithm.  First, Aleph only supports a flat type 

hierarchy in the type constraints specified by mode.  WILL extends the Aleph system by supporting a 

hierarchical typing scheme.  This allows an is-a hierarchy (e.g., Figure 2.8) to be employed when defining 

the search space.  Hierarchical typing allows the user to better constrain the search space and has proven 

useful in our research.  The second major difference between Aleph and WILL is the addition of several 

new modes.  WILL support the additional modes constraints annotated by a dagger symbol (†) in Table 

2.4.  These additions allow the user to better control the construction of the search space. 

 

   

                                                      

 

9 WILL follows basic Prolog semantics with regards to inference rules and order.  However, WILL supports only a subset of the 

standard Prolog predicates and language structures. 

vehicle

car truck bus

compact suv
 

Figure 2.8.  An is-a hierarchy.  The types of objects form a tree where sub-trees represent subtypes of the 

parent type.   
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2.2.4 Support Vector Machines 

Support Vector Machines (SVMs) (Cristianini & Shawe-Taylor, 2000) are a state-of-the-art method 

for both classification and regression10 tasks.  SVMs belong to a class of learning algorithms called 

maximum-margin (or max-margin) algorithms.  Maximum-margin algorithms attempt to learn models 

that maximize the distance between the decision boundary and the training examples nearest to the 

decision boundary, as shown in Figure 2.9.   These examples nearest to the decision boundary, along with 

misclassified examples, are called the support vectors.  SVM have the property that only the support 

vectors play a role in defining the decision boundary.  For instance, in Figure 2.9 there are four examples 

that are support vectors.  If the training set consisted of only these examples, the learned model would be 

the same as the model learned with the original training data.  This property is where SVMs get their 

name and provides the advantage that only the support vectors need to be retained after learning in order 

to evaluate the model.  

SVMs are based upon a linear mathematical model.  However, in many tasks the positive and 

negative training examples are not linearly separable.  For instance, in Figure 2.10 (left), the positive and 

negative examples cannot be separated by a linear boundary.  However, under some transformation θ that 

maps the original feature space into a new feature space, the examples may be separable, as shown in 

Figure 2.10 (right).  In an SVM, the transformation θ is provided by a kernel.  In many task, kernels 

greatly increase the effectiveness of SVMs. 

                                                      

 

10 When used for regression, the SVM algorithm is often called support vector regression (SVR). 
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Figure 2.10.  Transformation of the feature space.  In the original feature space (left), no linear decision 

boundary separates the positive examples from the negative examples.  In the transformed feature space 

(right), created by applying transformation θ, the examples are linearly separable. 

+

+

-

-

+

-

   
Margin

 Decision Boundary

Parallel to
Decision Boundary

 

Support 
vector

Support 
vector

Support 
vector

+

Support vector from 
misclassified example

 

Figure 2.9.  Illustration of the maximum-margin decision boundary.  The maximum-margin decision 

boundary maximizes the margin between the boundary and the closest training examples.  Other decision 

boundaries exist that perfectly separate the training examples but do not maximize the margin. 
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Typically SVMs formulate both classification and regression as either linear or quadratic-

programming optimization problems.  While there are many different formulations for the SVM 

optimization problem, all are conceptually similar.  One formulation for SVM regression follows.  

Let the training set consisting of m example feature vectors   ∈    
 and the corresponding 

regression target values   ∈  .   Let the   ’s be the rows of the matrix  ∈      
and let  ∈    be a 

column vector of the   ’s.    An SVM learns a model of the form 

  ( )      (2.4) 

where vector w are the learned parameters11.  The weight vector w can be replaced with its equivalent dual 

form     , which converts Equation (2.4) to 

  ( )       (2.5) 

where   now represents the learned parameters.  This is generalized, using the so-called “kernel trick”, by 

replacing the     term with  (    ) to produce 

  ( )   (    )  (2.6) 

where  (   ) is a kernel.  A kernel is a positive definite function returning an inner product between its 

arguments.  In Equation (2.6), the kernel transforms the input feature space into a new feature space 

called the kernel space.  The discussion of kernels is beyond the score of this work.  An excellent 

discussion of them can be found in Cristianini & Shawe-Taylor (2000). 

For any given  , the error between  ( ) and the target   ’s over all training examples is 

  ( )   ( )    (2.7) 

or, by substituting Equation (2.6) for  ( ), 

  ( )   (    )     (2.8) 

                                                      

 

11 An offset b from the origin is typically included in this formulation.  However, it can trivially be considered part of w and will 

be ignored here. 
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From here, it is easy to formulate a linear that minimizes this error measure.  Equation (2.9) provides 

one simple linear program formulation. 

 

   

(   )
‖ ‖   ‖ ‖ 

         (    )     

 (2.9) 

In this formulation, the latent vector s measures the error of the solution on each training example and 

penalizes inaccuracies via the objective function.  Minimizing the 1-norm of s forces the error term 

towards zero.  Meanwhile, minimizing the 1-norm of   penalizes solutions that are more complex in 

order to avoid over fitting.  The value     is a fixed (though tunable) parameter that trades off the 

accuracy of the solution on the training examples versus the complexity the solution.  This linear program 

can be solved using standard linear program optimization methods. 

Other formulations exist that optimize a different error function, such as the squared error.  These 

formulation often result in quadratic programs, which can take more computation to solve, but may 

produce better results.  Furthermore, due to the simplicity of the linear or quadratic program, additional 

constraints can be added to produce refined results.  This is the approach taken by knowledge-based 

support vector machines (KB-SVM) (Mangasarian, Shavlik, & Wild, 2004) to allow advice to be included 

in addition with the training examples. 

2.2.5 Boosted Relational Dependency Networks 

Boosted relational dependency networks (bRDN) (Natarajan, Khot, Kersting, Gutmann, & Shavlik, 

2010) provide a relational, probabilistic graphical-model classification algorithm.  Probabilistic models 

perform classification by estimating the probability of each predicted class given the description of an 

example.  Graphical models provide a method to factor a probabilistic model into a more manageable 

form (Koller & Friedman, 2009).  The details of probabilistic graphical models are beyond the scope of 

this document and I will only describe boosted relational dependency networks that I use later. 
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A dependency network (Heckerman, Chickering, Meek, Rounthwaite, & Kadie., 2001) approximates 

a joint distribution over the variables as product of conditional distributions.  Relational dependency 

networks (RDN) (Neville & Jensen, 2007) extend these dependency networks to a relational setting.  The 

bRDN algorithm combines relational dependency networks with a form of gradient-tree boosting 

(Dietterich, Ashenfelter, & Bulatov, 2004), in order to improve the performance of the underlying RDN 

approach. 

RDNs consist of a set of predicate symbols composing the nodes of a graphical model.  For each 

predicate Yi, a conditional probability distribution P(Yi | Xi ), defines a distribution over the values of Yi 

given the values of the other features.  The distribution of a variable yi is estimated as 

  r  (     )   
e (     )

∑ e (     )  

∀  ∈   ≠    (2.10) 

Where  (     ) is the potential function of yi given all other features   ≠   . 

The bRDN algorithm approximates these conditional probability distributions (the  s) through 

relational decision trees (Blockeel & De Raedt, 1998).  A sample tree is depicted in Figure 2.11.  Like 

inductive logic programming techniques, bRDNs use relational background knowledge when learning a 

tree.  In these relational decision trees, each interior node is a logical decision point and the leaf nodes 

represent the various potentials, i.e., the  ’s, of the conditional probability distribution.  In order to obtain 

the final probabilities, the potentials must be normalized according to Equation (2.10). 
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While the conditional probability distributions in RDNs can be represented by a single relational 

decision tree (Gutmann & Kersting, 2006), in bRDNs each conditional probability distributions is 

estimated by a sequence of trees, based upon an initial potential    and iteratively adjusted via a set of 

gradients   .  Thus, after m iterations, the potential is given as              .  Here,    is 

given by 

           [
 

     

    (        )] (2.11) 

where    is a scalar controlling the gradient step size.  Thus, a set of trees are learned for every predicate 

such that at each iteration a new set of regression trees estimates the maximum likelihood of the 

distributions with respect to the potential function. 

2.3 Reinforcement Learning 

Reinforcement learning is a form of learning in which the learner attempts to learn the actions to take, 

given a situation, to maximize some reward (Sutton & Barto, 1998).  The learner must determine which 

true false

ballista(B), isNear(B,tower)

true false

numberOfArchers > 5

-0.10.7

0.9 (towerFalls)   =

 

Figure 2.11.  A logical decision tree representing a conditionally probability distribution for determining 

the probability a given tower falls.  Each interior node is a logical decision point, with the left branch 

representing a true evaluation and the right branch a false evaluation.  Leaves represent output potentials 

that must be normalized (see Equation 2.10) to produce the output probability. 
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sequence of actions results in the highest weighted sum of rewards12.  An action may not result in an 

immediate reward but may affect long-term rewards.  Unlike supervised learning where the training data 

is static, reinforcement learning usually13 requires the learner to act within the environment in order to 

obtain training data.  This leads to a situation in which early learning decisions can affect later learning 

since different data will be available depending on the earlier choices by the learner. 

2.3.1 Task Definition 

A reinforcement-learning problem consists of an environment and an agent.  The agent operates 

within the environment according to some policy, a definition of what actions to take in a given state.  

The agent-environment interaction is called a cycle, as shown in Figure 2.12.  The learner controls the 

agent as it interacts with the environment.  At time t, the environment provides the agent information 

about the current state of the world st.  The agent then selects an action at from a set of legal actions.  The 

environment provides feedback to the learner in the form of a reward signal rt and updated agent state 

information st+1 according to the outcome of the selected action.  The reward is a real-valued number.  

The state describes the agent’s situation within the environment and the state can be represented in a 

variety of ways, such as a unique state identifier, a fixed-length feature vector, or a set of relational facts 

describing the environment.  The set of possible actions is typically discrete.  The outcomes of the actions 

may be deterministic or stochastic, depending upon the task definition. 

 

 The specification of an environment, along with the available actions, describes a single 

reinforcement-learning task.  Groups of related reinforcement-learning tasks, which share similar 

                                                      

 

12  Other target reward formulations, such as average reward, also exist.  The weighted sum reward is arguably the most 

commonly used. 
13 If the learner is provided with a complete formal description of the environment, it can learn a policy without interacting with 

the environment. 
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environments, belong to the same reinforcement-learning domain.  Tasks in the same domain often share 

the same underlying rules (i.e., “physics”) dictating the operation of the environments, but often differ in 

action sets, state description, and reward function.  For instance, within a soccer domain, there might exist 

the two tasks of KeepAway and BreakAway (a game where keepers attempt to keep the ball away from 

takers and a game where an offensive team attempts to score a goal against a defensive team, 

respectively).  Tasks that vary only by size or topology, such as 3-person KeepAway versus 5-person 

KeepAway or two mazes with different layouts, are also separate tasks since their optimal solutions are 

different.  

 

A Markov Decision Process (MDP) formally describes a reinforcement-learning environment.  An 

MDP consists of a 5-tuple {S, A, P, R,  } with a set S of states, a set A of actions, a probability 

distribution P, a reward function R, and a discount factor  ∈ (    .      
 ∈ [     represents the 

probability of transitioning from state s to state s’ via action a.    
 ∈   represents the reward received 

when action a is taken from state s.  The set of possible states may be infinite, while the set of actions is 

typically discrete. 

Learner Environment 

action 

reward 

state 

Figure 2.12.  Reinforcement-learning environment-agent interaction.  An agent receives state information 

from the environment.  Based upon that information, the agent chooses an action to perform.  The 

environment determines the outcome of performing the indicated action and presents the agent with a 

reward and updated state information. 
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A learner learns a policy : S   A  [0,1], representing the probability the agent will perform action  

a  A from state s  S.  The learner attempts to learn policies that maximize some measure of total 

reward.  The discounted total reward 

 
0

t

total t

t

R r




  (2.12) 

is a common measure.  If γ = 1, the discounted total reward is simply the total reward received, called the 

Monte Carlo reward.  An optimal policy * is a policy that results in the maximum achievable reward for 

a given MDP. 

 

 

Figure 2.13 illustrates the environment of a maze task and Table 2.5 provides a description of the 

MDP parameter values.  In the maze task, an agent must navigate through a maze to reach an exit.  The 

size and topology of a maze is fixed.  Mazes with different sizes or topologies are considered different, 

albeit related, reinforcement-learning tasks. 

Agent

Exit

 

Figure 2.13.  A sample maze reinforcement-learning task.  The agent must discover a path through the 

maze to the exit.  A large positive reward is received when the exit is reached and a small negative reward 

is received for each action taken. 
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The agent starts at a specific location and may attempt to move in each of the cardinal directions.  A 

move action results in the position of the agent moving one unit in the appropriate direction, unless a wall 

blocks the agent, in which case the agent remains in the same state.  A large positive reward (+10) is 

received for reaching the exit and a small negative reward (-1) is received for each action that does not 

result in reaching the exit. 

The state representation for the maze task consists of six features: two integer features representing 

the current x and y location of the agent and four Boolean features, wall(north), wall(south), wall(east), 

and wall(west), indicating whether a wall is present  immediately adjacent to the agent in the indicated 

direction. 

2.3.2 Optimal Policies and the Bellman Equations 

Bellman (1957) performed some of the earliest research into reinforcement learning.  He proposed a 

method to calculate an optimal policy for a Markov decision process using a value function mapping 

states to the reward.  Bellman’s original function definition, now called the Bellman equation, provides 

the basis for many reinforcement-learning approaches. 

Many derivatives of the original Bellman equation exist.  Equation (2.13) defines the value function 

V*(s) for state s, which is the expect discounted reward received for always taking an optimal action from 

the given state. 

Table 2.5.  MDP parameter values for sample Maze task. 

MDP Parameter Values 

S – States All locations in the maze.  Features include x and y coordinates and the existence or 

absence of walls in the cardinal directions. 

A – Actions The agent can move in any of the four cardinal directions. 

P – Probability of 

next state 

If no wall blocks the movement, the agent deterministically moves to the state a single 

space in the direction of the selected action.  Otherwise, agent remains in same state. 

R – Reward +10 If goal state reached. 

 -1 otherwise. 

γ  1  
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While value function from Equation (2.13) provides a way to calculate the expect reward for taking 

the best action it does not specify which action is the optimal action.  Another variation of the Bellman 

equation, shown in Equation (2.14), provides the state-action function   (   ), typically called the Q-

function, which allows the optimal action to be determined.  Given the optimal Q-function, the optimal 

action for a state s is  r       (   ). 

   (   )  ∑     
 [    

      
  

  (     )]

  

 (2.14) 

Both of these equations require knowledge of all the MDP parameters.  While early research in 

reinforcement learning focused on computational techniques necessary to apply the Bellman equations, 

later research examined how to perform reinforcement learning without a full definition of the MDP. 

2.3.3 Common Reinforcement Learning Approaches 

Many different reinforcement-learning algorithms exist.  The approaches can be roughly categorized  

according to what MDP parameters are known as well as how the algorithm approaches finding the 

optimal policy.  Figure 2.14 provides a brief taxonomy of some of the different RL scenarios and 

approaches.   

 

In some cases, all MDP values are known, including the state-transition function and the reward 

function (left most branch of figure).  When the complete MDP definition is known, finding the optimal 

policy is strictly a computational task, requiring no interaction with the environment.  There are several 

approaches to computing the policy in this scenario, based on the Bellman equations.  For instance, when 

the MDP state set is discrete, the optimal policy can be calculated using dynamic programming.  In cases 

of infinite state sets, approaches exist that calculate the policy by iteratively applying the Bellman 
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equations – however, these approaches typically sacrifice a guarantee of convergence to an optimal policy 

since a some approximation is necessary to represent the states. 

 

Often, only the MDP state definition, action set, and γ are known (top-most right branch of figure).  

In this scenario, the RL algorithm must learn the policy by interacting with the environment, repeatedly 

selecting actions and observing their outcome.  When only a partial MDP is known the approaches 

All Reinforcement Learning Tasks

All MDP Parameters 
Known

State Transition 
and Reward functions 

unknown

1.  Compute optimal 
policy directly from 
MDP parameters

Model Based Model Free

1.  Interact using 
current policy

2.  Learn a model of 
the environment

3. Learn optimal 
policy based on 
model

4. Repeat

Approach

Approach

1.  Interact using 
current policy

2.  Update policy

4. Repeat

Approach

1.  Interact – at each 
state, take action with 
highest Q-value

2.  Update Q-function 
representing 
estimated rewards

3. Repeat

Approach

Policy 
Iteration

Value 
Iteration

 

Figure 2.14.  Taxonomy of some  reinforcement learning approaches. 
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generally fall into two classes:  model-based and model-free.  Model-free approaches can further be 

divided into value-iteration and policy-iteration14. 

Model-Based Reinforcement Learning   

Model-based approaches constitute one major classes of algorithms used to solve RL tasks15.  While 

model-based approaches consist of a diverse class of algorithms, all model-based approaches have a 

common feature; they attempt to learn a model of the underlying task, iteratively updating that model 

while interacting with the environment.  The algorithm then determines the policy to follow based upon 

the learned model. 

Depending on the approach, the learned models vary greatly in both form and level of detail.  Some 

model-based approaches attempt to build a complete predictive model of the environment, effectively 

attempting to model the state-transition and reward functions of the underlying MDP (Sutton, 1991).  

Other approaches attempt to create an abstraction of the underlying MDP, maintaining some congruency 

to the original, but abstracting aspects that are either difficult to learn or irrelevant to producing a usable 

policy (Kersting, Van Otterlo, & De Raedt, 2004; Morales, 2003; Van Otterlo, 2003). Still others model 

only limited aspects of the MDP, such as transition probabilities or reward functions (Croonenborghs, 

Ramon, Blockeel, & Bruynooghe, 2006; Pasula, Zettlemoyer, & Kaelbling, 2004). 

Model-Free Value-Iteration Reinforcement Learning   

Model-free value-iteration is a class of reinforcement-learning algorithms that estimate a state-action 

value function without learning an underlying model.  The state-action value function is called the Q-

function and the class of algorithms that learn the Q-function is referred to as Q-learning (Watkins & 

                                                      

 

14 Value-iteration and policy-iteration approaches exist for all branches of the provided taxonomy but are beyond the scope of 

this document. 
15 The term model-based is sometimes used to refer to approaches where the complete MDP definition is known.  However, in 

recent literature, this usage is less common. 
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Dayan, 1992).  The state-action value function         maps state-action pairs to real-values 

representing the expected reward that will be received by taking an action from a state.  The policy π 

followed by the learner depends upon the Q-function; at each time step, the learner takes the action with 

the highest Q-value.  Additionally, the learner typically takes random exploratory action with some small 

probability.   

Figure 2.15 depicts a Q-function for the maze task defined in Table 2.5.  In the figure, the numeric 

values represent the expected reward (i.e., the Q-value) for taking each of the indicated movement 

directions. 

 

The learning algorithm estimates the Q-function over time by iteratively updating the Q-function.  As 

the learner interacts with the environment, the learner adjusts its current Q-function according to the 

formula 
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Figure 2.15.  Example of the Q-function for a maze task.  For each state in the maze, each action has an 

associated Q-value, representing the expected non-discounted reward received for taking that action (and 

following the policy afterwards).  The Q-values shown are the reward values after the Q-function has 

converged to the optimal values. 



42 

 

 

  

  1
'

'( , ) (1 ) ( , ) max ( , ')t t t t t t
a

Q s a Q s a R Q s a        (2.15) 

where, at each time step t, st denotes the state, the at denotes the action taken, rt denotes the reward 

received, and st+1 denotes the resulting new state.  This formula, based upon the Bellman equations, 

estimates a new Q-value '( , )t tQ s a for a state and action by combining the previous estimated value 

( , )t tQ s a  with a new estimate based upon the observed information
1

'
max ( , ')t t

a
R Q s a  .  Here, 

(0 1)    controls the learning rate of the algorithm.  Over time  decreases so that later interactions 

have smaller impact on the learned model.   

Under certain conditions, the policy resulting from repeatedly interacting with the environment and 

updating the Q-function converges to an optimal policy (Watkins & Dayan, 1992).  This, for instance, 

occurs in discrete domains when every state-action Q-value is stored separately in a Q-table (a table with 

a value for every possible state-action combination), every state-action pair is visited infinitely often, and 

the learning rate decreases appropriately over time.  Even when these assumptions are violated, Q-

learning often results in a high-quality policy that performs well empirically, but may not be optimal 

(Sutton & Barto, 1998). 

In practice, many of the tasks in which we are interested are continuous or are discrete, but the state 

and action space is so large it becomes infeasible to store the Q-values in a table.  In these cases, Q-

learner approaches use a regression-function, supervised learner (usually called a function approximator) 

to estimate the Q-function.  The use of a function approximator usually violates the assumption necessary 

for guaranteed convergence, but has the advantage of allowing the learner to generalize the Q-function 

with respect to the state space.  This generalization often increases the learning rate by reducing the 

number of states the learner must visit. 

Numerous refinements to the basic Q-learning algorithm exist.  These include temporal-difference 

methods (Sutton, 1988) that provide better convergence properties; SARSA approaches (Rummery & 
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Niranjan, 1994) designed to more accurately model the current policy; and relational extensions that 

allow complex relational domains to be handled more naturally (Džeroski, De Raedt, & Blockeel, 1998). 

Model-Free Policy-Iteration Reinforcement Learning 

Policy iteration provides a second class of algorithms used in model-free reinforcement learning16.  

Policy iteration methods forego maintaining a Q-function, instead representing the policy  : S   A  

[0,1] explicitly.  The class of policy-iteration approaches is more diverse than value-iteration approaches.   

In value iteration, the Bellman equations define how interaction with the environment changes the 

policy.  Although some policy iteration approaches use the Bellman equations, not all do.  In the absence 

of a Q-function, policy iteration requires different policy-refinement method.  For instance, Whitley et. al. 

(1993) use genetic algorithms to find a policy by randomly mutating the current policy multiple times, 

selecting the best new policy, and mutating it again.  At no point does the algorithm attempt to estimate 

the expected reward as value-iteration approaches would.  Policy iteration is not used in this research and 

further details are beyond the scope of this document. 

                                                      

 

16 Policy iteration has several meanings, depending on the source.  Sutton and Barto (1998) present a specific algorithm which 

they call policy iteration.  Here I present a wider view of policy iteration not tied to that specific implementation. 
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3 Testbeds 

In order to evaluate the work presented here, I use a number of different evaluation tasks.  Bootstrap 

learning is a set of third-party tasks used to evaluate the advice-taking contributions in Chapter 4.  

Wargus is an open-source real-time strategy video game used to evaluate the advice-giving human-

computer interface work in Chapter 5.  Chapter 6 uses several ILP tasks from the literature to evaluate 

automated parameter tuning approaches.  RoboCup is a soccer simulation used to evaluate the relational 

reinforcement learning approaches in Chapters 7 and 8. 

3.1 Bootstrap Learning ILP Tasks 

The Bootstrap Learning (BL) project, funded by the United States Defense Advanced Research 

Projects Agency (DARPA), explores a new learning paradigm proposed by Oblinger (2006) which views 

machine learning as human-guided knowledge acquisition.  In the BL setting, the machine learner induces 

concepts that build upon one another through a “ladder” of tasks, which are organized as self-contained 

lessons; lower rungs of the lesson ladder teach simpler concepts, which are learned first and then used to 

learn − i.e., bootstrap − more complex concepts.  The lessons in the project incorporate a wide variety of 

natural teacher instruction methods, including providing domain descriptions, pedagogical examples, 

telling of general instructions, demonstration, and feedback.  Our role in the project involved learning 

lesson using ILP taught through teacher provided examples and advice.  These lessons are referred to as 

by-example lessons. 

The BL project consists of three independent domains: Unmanned Arial Vehicle (UAV), Armored 

Task Force (ATF), and International Space Station (ISS).  An independent third party developed all three 

domains and each domain consists of a complete ladder of bootstrapped lessons.  The domains are 

described below.   
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Each lesson consists of a sequence of messages from the teacher to the learner. Teacher instruction 

includes training examples and experts’ advice rules for certain examples, called the relevance 

information, to help the student learn these tasks effectively. The messages that make up each lesson i.e., 

the teacher instructions to the student, are given using a general-purpose, strongly typed, object-oriented 

language called Interlingua that was also developed under DARPA’s guidance by another third party for 

the purposes of the BL project. For each lesson, we converted the messages into ILP facts and examples 

expressed in first-order logic, specifically as Horn clauses. 

Only a subset of the BL lessons are by-example lesson.  In this document, I specifically look at 14 of 

the by-example lessons, seven AFT lessons and seven UAV lessons.  Table 3.1 summarizes the size of 

the tasks in terms of the number of ground background knowledge facts of the tasks.  Each of these 

ground facts corresponds to a property of an object.  For instance, in the UAV domain, the ground facts 

include the location of the UAVs and information about the environment observable to a UAV such as the 

location of near-by vehicles. 

 

 

Table 3.1.  Number of facts per lesson.  This table lists the number of ground facts that have ILP modes, 

broken down by both domain and task. 

ATF Tasks # of Facts UAV Tasks # of Facts 

CallsForColumnFormation 277,800 AssessGoal 193,400 

CallsForEchelonLFormation 277,800 FullFuelTank 192,400 

CallsForEchelonRFormation 277,800 IsASingleMovingTruck 197,313 

CallsForLineFormation 277,800 IsASingleStoppedTruck 197,387 

CallsForVeeFormation 277,800 Near 193,387 

CallsForWedgeFormation 277,800 ReadyToFly 193,200 

CompanyHasMinePlow 306,391 TruckIsAtIntersection 221,424 

Average # of Facts 
 

 240,122 
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3.1.1 Unmanned Arial Vehicle Domain 

The unmanned aerial vehicle domain involves operating a UAV and its camera to perform intelligent 

surveillance and reconnaissance (ISR). Lessons in this domain include determining if the UAV has 

enough fuel to accomplish a mission, flying to appropriate latitude, longitude, and altitude, learning if 

there are stopped (or moving) trucks in view, and learning whether an object (say a truck, building, or 

intersection) is near another object of interest.  The overall goal is to have the UAV automatically identify 

scenarios that are potentially interesting from a surveillance perspective; the tasks considered during my 

research (such as TruckIsAtIntersection, to determine if a truck of interest is stopped at an intersection) 

form a crucial part of the lesson hierarchy.  Figure 3.1 shows some of the lessons in the UAV domain, and 

their respective positions on the "lesson ladder" of bootstrap learning.  

 

 

 

Figure 3.1.  The UAV domain’s task hierarchy. The overall goal is to train an Unmanned Aerial Vehicle 

(UAV) to perform Intelligent Surveillance and Reconnaissance (ISR).  The expanded nodes represent by-

example lesson, while the small boxes represent lesson taught via other methods.  In some nodes “Int” is 

used as shorthand for “Interestingness.”   
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3.1.2 The Armored Task Force Domain 

The goal of the ATF domain is to teach the learner how to command a company of armored platoons 

moving from one battlefield location to another in accordance with military doctrine. These lessons are 

also organized based on the complexity of tasks, following the bootstrap principle. At the lowest level are 

the tasks concerning individual armored vehicles, terrain segments and enemy unit information. At a 

higher level are tasks concerning platoons (sets of armored vehicles), while at the top-most level are the 

tasks concerning the command of a company, which is a set of platoons. 

3.2 Wargus Real-Time Strategy Tasks  

In Chapter 5, I present a human-computer interface (HCI) approach to knowledge acquisition.  I 

utilize the Wargus (2002) video game to illustrate advice acquisition via the HCI.  In Wargus, a real-time 

strategy game, two or more players direct units such as peasants, swordsmen, archers, etc. in an attempt to 

conquer opposing players.  Play involves constructing buildings, producing unit, harvesting resources, 

and directing attacks against opponents. 

The complete Wargus game is more complex than necessary for my experiments.  Instead, I use a 

small subset of Wargus called tower defense.  In tower defense, an attacking team consisting of a small 

number of peasants, archers, swordsmen, and ballista attack a single tower belonging to the defenders.  

The learning task consists of predicting whether the tower will survive the attack, given the number of 

attacking and type of attacking units.  Figure 3.2 depicts a typically tower defense game board.  

Variations of the game board include the existence of moat and rivers and the number and type of the 

attacking units.   
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Table 3.2 provides a brief description of the features describing the tower defense world.  Learned 

theories may use these properties as well as the predicates listed in Table 3.3.  Each world state 

corresponds to a single ILP example, labeled either towerStands or towerFalls. 

 

Table 3.2.  Features describing the tower defense world. 

Category Values 

Units archer, swordsman, ballista, peasant, tower 

Unit properties x-location(Unit), y-location(Unit), health(Unit) 

Group Properties unitInGroup(Group, Unit), groupSize(Group) 

World Properties countOf(UnitType), moatExist, contentsOfTile(X,Y) 

 

Defending
Tower

Attacking
Archer

Attacking
Swordsman

 

Figure 3.2.  Wargus Tower Defense Game.  Multiple attacking units, consisting of swordsmen, archers, 

and ballista, attack a defender’s tower.  Depending on the composition of the attacking force, the two may 

survive or be destroyed.  The Wargus tower-defense learning task involves predicting which of these 

outcomes will occur. 
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3.3 Standard ILP Tasks 

Chapter 6 uses several standard ILP tasks to evaluate automated parameter tuning approaches.  These 

tasks – advised-by, carcinogenesis, and mutagenesis – are detailed below. 

3.3.1 Advised-By ILP Task 

Introduced by Richardson and Domingos (2006), the advised-by ILP task involves learning rules 

predicting if a professor advised a student, based upon a database describing the Department of Computer 

Science and Engineering at the University of Washington (UW-CSE).  The task includes 115 positive 

examples and 1675 negative examples.  Table 3.4 lists the predicates along with the total number of facts 

defined in the task.  All advised-by information consists of ground facts with no additional background 

knowledge provided.  

 

3.3.2 Carcinogenesis ILP Task 

The carcinogenesis task, first used as an ILP testbed by Srinivasan et. al. (1997), involves learning 

rules predicting carcinogenicity for a set of drugs.  This task is considered an extremely challenging task, 

Table 3.4.  Advised-by ground facts (over all examples).  

Predicate and Argument Types # of Facts 

professor(person)  62 

student(person)  216 

yearsInProgram(person, years)  140 

courseLevel(course, level)  132 

taughtBy(course, person, quarter)  286 

teachingAssistant(course, person, quarter)  481 

inPhase(person, phase)  140 

hasPosition(person, position)  52 

 

Table 3.3.  Predicates available for the “theories tower will stand” predication task.  

Category Predicates 

Numeric Comparitors greaterThan, lessThan, greaterThanOrEquals, lessThanOrEquals, equals  

Spacial Comparitors isNearTo, isFarFrom, canReach 
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partially due to the large search space resulting from the extensive background knowledge.  The task 

includes 182 positive examples and 148 negative examples.  Table 3.5 details the ground facts defined for 

the carcinogenesis task.  In addition to these ground facts, the task defines an extensive set of background 

knowledge – listed in Table 3.6 – providing knowledge about the structure and chemical properties of the 

various drugs.  Although it is unnecessary to calculate all possible groundings of the background 

knowledge, if generated, the number of grounding would exceed 100,000 additional facts.  

 

 

3.3.3 Mutagenesis ILP Task 

The mutagenesis task involves learning rules predicting the mutagenesis effect of certain drugs (e.g., 

drugs that changes the genetic material, usually DNA, of an organism and thus increases the frequency of 

mutations above the natural background level.)  With only 13 positive examples and 29 negative 

examples, the mutagenesis proves difficult due to the low example counts.  The ground facts, shown in 

Table 3.6.  Carcinogenesis background knowledge. 

Background Knowledge Predicate and Argument Types 

nitro(drug, ring) alkyl_halide(drug, ring) 

sulfo(drug, ring) imine(drug, ring) 

methyl(drug, ring) deoxy_amide(drug, ring) 

connected(ring, ring) amide(drug, ring) 

five_ring(drug, ring) ester(drug, ring) 

non_ar_hetero_5_ring(drug, ring) carboxylic_acid(drug, ring) 

non_ar_5c_ring(drug, ring) phenol(drug, ring) 

hetero_ar_5_ring(drug, ring) alcohol(drug, ring) 

carbon_5_ar_ring(drug, ring) sulfide(drug, ring) 

six_ring(drug, ring) ether(drug, ring) 

non_ar_hetero_6_ring(drug, ring) ketone(drug, ring) 

non_ar_6c_ring(drug, ring) aldehyde(drug, ring) 

hetero_ar_6_ring(drug, ring) amine(drug, ring) 

benzene(drug, ring) methoxy(drug ring) 

ar_halide(drug, ring)  

 

Table 3.5.  Carcinogenisis ground facts (over all examples). 

Predicate and Argument Types # of Facts 

alerts(drug, alerts, numberOfAlerts)  1143 

atom(drug, atomid, element, integer, charge)  18506 

has_property(drug, property, propertyValue)  1654 
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Table 3.7, define the basic atoms and chemical bond for the drugs occurring in the positive and negative 

examples, as well as several other chemical properties.  Additional background knowledge, shown in 

Table 3.8, defines several additional chemical properties. 

 

 

3.4 RoboCup Simulated Soccer Reinforcement Learning Domain 

Chapter 7 and 8 present applications of ILP in reinforcement learning, using a set of tasks based upon 

RoboCup (Kitano, 1997), a complex two-dimensional soccer simulation, originally intended for research 

into robotics.  To provide realism, the simulator is both stochastic and provides only noisy information to 

the agents acting within the environment (i.e., the soccer players.)  For these reasons, RoboCup is a 

challenging testbed for reinforcement learning (Stone & Sutton, 2001) and the complete game is still 

unsolved by state-of-the-art reinforcement-learning techniques.  

Since the complete RoboCup soccer game is too complex to solve with current RL methods, several 

RoboCup sub-tasks have been proposed by various researchers (see Figure 3.3).  The first task within the 

RoboCup domain, proposed by Stone and Sutton (2001), is M-on-N KeepAway.  In this task, the 

objective of the M players, called keepers, is to keep the ball away from N hand-coded players, called 

Table 3.8.  Mutagenesis background knowledge. 

Background Knowledge Predicate and Argument Types 

benzene(drug, ring) 

carbon_5_aromatic_ring(drug, ring) 

nitro(drug, ring) 

methyl(drug, ring) 

anthracene(drug, ringlist) 

phenanthrene(drug, ringlist) 

ball3(drug, ringlist) 

 

Table 3.7.  Mutagenesis ground facts (over all examples). 

Predicate and Argument Types # of Facts 

atom(drug, atomid, element, integer, charge) 5894 

bond(drug, atomid, atomid, integer) 1654 

lumo(drug, energy) 230 

logp(drug, hydrophob) 230 
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takers.  In KeepAway, the learner controls one of the keeper currently in possession the ball (the ball 

holder), who has the action choices of holding the ball or passing it to one of the other keepers.  All 

players not in possession of the ball, including both keepers and takers, follow a hand-coded policy. The 

learners receive a +1 reward for each time step their team keeps the ball; the game ends when the ball 

either goes out of bounds or is intercepted by a taker.  Stone and Sutton argue that effective KeepAway is 

not only a challenging RL task by itself, but is also a significant step toward playing soccer. 

 

Through the course of our research, we have developed several additional tasks beyond KeepAway.  

Mobile KeepAway (Torrey, Shavlik, Walker, & Maclin, 2006) is an extension to KeepAway designed to 

provide actions that are more interesting for the learner to utilize.  Mobile KeepAway replaces the hold 

ball action of KeepAway with four movement actions, move forward, move back, move left, and move 

3-on-2 

KeepAway

3-on-3 

MoveDownfield

3-on-2 

BreakAway

 

Figure 3.3.  RoboCup soccer tasks.  Several reinforcement learning task have been designed for the 

RoboCup soccer simulator.  Three such tasks are shown here. 
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right.  Other aspects of the game remain the same as KeepAway.  This game provides a richer selection of 

actions from which knowledge can be extracted, which is important in our approaches. 

M-on-N BreakAway (Torrey, Walker, Shavlik, & Maclin, 2005) is a task where the objective of the M 

players called attackers is to score a goal against N-1 hand-coded defenders and a hand-coded goalie.  

The game lasts until the attackers lose the ball, the attackers score a goal, the attackers kick the ball out of 

bounds, or a play time exceeds 10 seconds.  The learners receive a +1 reward for a goal and 0 reward 

otherwise.  The attacker who has the ball is controller by the learner and may choose to move (ahead, 

away, left, or right with respect to the goal), pass to a teammate, or shoot at an area of the goal (either left, 

right, or center).  This task is particularly challenging to learn due to the sparse rewards received while 

playing17. 

M-on-N MoveDownfield (Torrey, Shavlik, Walker, & Maclin, 2006) is a task where the objective of 

the attackers is to move toward the opposing team’s goal while maintaining possession of the ball.  The 

game ends when the attackers successfully move the ball past a certain position of the field, when an 

opponent takes the ball, when the ball goes out of bounds, or after a time limit of 25 seconds.  The 

learners receive symmetrical positive and negative rewards for movement toward and away from the goal 

line, respectively (i.e., for every “meter” of movement toward the goal, the learner received a +1 reward, 

and for every “meter” of movement away from the goal, the learned received a -1 reward.)  As with the 

other tasks, attackers without the ball and the defenders follow a hand-coded strategy to receive passes.  

The action set is the same as in BreakAway, except without the shoot actions. 

The state representations for all four tasks are based upon the original representation developed by 

Stone and Sutton (2001).  Table 3.9 shows the predicates used in the relational features sets.  Each 

                                                      

 

17 Often in reinforcement learning, a richer reward structure is use in order to facilitate learning.  We intentionally used a sparse 

reward in order to focus on the role of advice and knowledge transfer. 
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predicate represents one or more actual features, depending on the logical variables in the predicate and 

the game size.  For each state description, the player names (e.g., a0… aM for the attackers) are assigned 

to the players according to their distance to the ball holder.  Thus, a0 represents the attacker with the ball 

(or k0 for KeepAway) and a1 is the keeper currently closest to a0.  Empirically, Stone and Sutton found 

that this ordering reduces the difficulty of the tasks. 

 

Table 3.9.  RoboCup task features.  Arguments with capitol letters are logical variables.  A complete list of 

task features is generated by replacing variables with all appropriate constants.  The ClosestTaker refers 

to the taker closest to the keeper currently holding the ball.  Likewise, the ClosestDefender refers to the 

defender closest to the attacker currently holding the ball. 

KeekAway and Mobile  

KeepAway features 

BreakAway and  

MoveDownfield features 

distBetween(k0, Player) distBetween(a0, Player) 

distBetween(Keeper, ClosestTaker) distBetween(Attacker, ClosestDefender) 

angleDefinedBy(Keeper, k0, ClosestTaker) angleDefinedBy(Attacker, k0, ClosestDefender) 

xPosition(Object) xPosition(Object) 

yPosition(Object) yPosition(Object) 

distBetween(Keeper, fieldCenter) distBetween(Attacker, goalCenter) 

 distBetween(a0, GoalPart) 

 angleDefinedBy(GoalPart, a0, goalie) 

 angleDefinedBy(topRight, goalCenter, a0) 

 distBetween(Attacker, goalie) 

 angleDefinedBy(Attacker, a0, goalie) 

 timeLeft 
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4 Generation of Background Knowledge from 

Advice about Specific Examples 

Inductive Logic Programming (ILP) provides an effect method to learn logical theories in relational 

domains.  However, compared to most non-relational supervised learning algorithms, ILP requires a lot of 

expert knowledge to setup a learning task.  In addition to the standard supervised-learning information, 

such as the positively labeled examples, the negatively labeled examples, and the known facts (i.e., the 

example features), ILP often requires the user to define a complex corpus of background knowledge and 

always requires the user to provide a specification of the search space.  The ILP-setup problem of 

articulating background knowledge can be difficult and requires detailed understanding of the ILP 

algorithm, greatly limiting ILP’s usability by non-experts. 

At least two possible solutions to this problem exist.  One approach is to create a domain specific ILP 

system.  In this approach, first an ILP expert works closely with a domain expert to tailor the general-

purpose ILP algorithm to a specific domain, such as drug design (Finn, Muggleton, Page, & Srinivasan, 

1998).  Once the domain specific system has been created, domain experts, who are not ILP experts, can 

then use the tailored system without in-depth ILP knowledge.  While effective, this custom-system 

approach does not fulfill our goal of increasing the usability of ILP without an ILP expert’s assistance.  It 

changes the point at which an ILP expert’s knowledge is required, but does not alleviate the expert’s 

involvement.  
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A second solution to this ILP-setup problem, which retains the general-purpose nature of the ILP 

system and alleviates the need of any ILP-expert assistance, is to allow a teacher18 to, as naturally as 

technically possibly, explain why specific examples are positive or negative through some advice 

language.  This teacher-provided advice supplies hints about the concept being learned, beyond the 

traditional labeling of examples.  Given this teacher-provided advice, the automated learner can generate 

background knowledge and setup the search space appropriately. In this chapter I present work exploring 

this second approach.  This is the first study to explore this approach, although some prior ILP work is 

related and reviewed in Section 4.3.  Much of the work presented in this chapter was performed in 

collaboration with several others and presented in (Walker, et al., 2010). 

Consider the following sample dialog between the teacher and the learner.  Assume the formula 

( ( )     (   ))     ( ) is a relevant piece of background knowledge for concept C.  The teacher 

might express this indirectly via the following dialogue about a small number of training examples: 

“In example 1, object a is a positive instance of concept C because  ( ) is true.”  

Note that, in human instruction, the teacher might say this to mean simply that p is relevant to C 

rather than the complete definition of C. 

“In example 2, object b is a positive instance of C because  ( ) is true.” 

Note here that an algorithm that induces background knowledge from these statements needs to 

generalize both objects a and b to the same variable.  

“In example 3, object d is a negative instance of C because  (   ) is false.” 

                                                      

 

18 Throughout this chapter, I refer to the advice giver as the teacher.  The teacher is typically a domain expert in the subject area 

of the task, but who has not ILP expertise. 



57 

 

 

  

Note that the teacher is telling the learner about relevant background knowledge through a negative 

example.  The piece of advice in this case needs to be negated.  In addition, the machine learner does 

not know whether the advice is about (1) all possible choices for the second (or first) argument of q, 

(2) restricting the choice of the second argument to be the same as the first, or (3) just the specific 

choice of constant d as the second (or first) argument. 

Although (  ( )     (   ) )     ( ) may be the formula necessary to define the concept, formulas 

such as (  ( )     (   ) )     ( ),  or   ( )     (   )     ( ),  or   ( )    (  (   )      ( ) ), or 

yet still others, are also consistent with this human-provided advice. 

An additional benefit to allowing the teacher to provide such advice permits the use of ILP in an 

setting in which only a few examples, along with teacher-provided annotations, are sufficient to learn the 

target concept.  In a setting with few examples, while the target concept might be complex, such as 

(  ( )     (   ) )     ( ), a simple clause, say  ( ), by itself might be sufficient to discriminate 

between examples.  Thus, in this setting the advice should motivate the learner to prefer formulas that use 

all the teacher-mentioned predicates (i.e., p, q and r), rather than just the simplest formula consistent with 

the labeled examples. 

Below, we present an algorithm to convert teacher-provided advice into ILP background knowledge.  

We designed this algorithm with the sparse example setting in mind.  Motivations for the algorithm we 

present include the following: 

1. High accuracy of the learned concept definition on teacher-labeled training examples. 

2. Robustness in the presence of a small number of training examples and perhaps a total lack of 

negative examples. 

3. Inclusion of most, if not all, teacher-mentioned predicates in the learned concept definition. 

4. Flexible combination and generalization of the teacher’s advice within and across examples. 

5. Robustness to teacher errors, both in data labeling and advice. 
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6. Learned concepts may need to include predicates not mentioned in teacher-provided advice but 

supplied as part of example descriptions. 

Our primary motivation is to allow human users of ILP systems to express their knowledge about the 

learning task at hand in whatever means seems most natural to them, from explaining (partially or fully) 

why some specific examples are positive or negative members of the concept being learned, to simply 

stating the proper categories (i.e., positive or negative) for other examples.   

We present our approach as a “batch” system that is given a set of labeled examples and possibly 

some advice about the examples, and then produces a set of one or more logical clauses (“inference 

rules”) that best capture the concept being taught.  However, we envision our approach as being best 

situated in a setting where the human-machine dialog is continual; the human teacher provides some 

initial training, the algorithm then learns, after which the teacher can provide additional guidance and the 

process repeats until an acceptable concept description results (where ‘acceptable’ can either be based on 

inspection of the learned clauses, or, more likely, on the quality of the predictions of the learned clauses 

for new examples). 

As mentioned above, we address the problem of effectively incorporating, into the ILP framework, 

teacher-provided advice; a human teacher usually provides the latter and this interaction can be viewed 

from the wider perspective of human-machine interaction. Such teaching refers to humans teaching 

computers concepts and/or behaviors, through as natural and human-like dialog as possible.  In our 

setting, the taught concepts take the form of logical theories and the teacher provides relevance advice 

about specific examples. The relevance advice takes a number of different forms, from simple “this 

feature is important” advice to complex statements that can be mapped to a grounded form of the concept 

being taught.  The advice can be provided by a human familiar with the advice language but with no ILP 

experience, i.e., a non-expert.  
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Figure 4.1 illustrates, using propositional logic for simplicity, how advice-generated background 

knowledge can help focus ILP’s search.  A common ILP search strategy is to build clauses in a top-down 

manner, successively adding various literals that might improve a rule.  If a long clause is needed, the 

search space can be exponentially large, and if there are only a few training examples, many possible 

rules can accurately match the training examples.  However, good background knowledge can quickly 

lead to the consideration of long clauses effectively skipping to more relevant areas of the search space, as 

the figure shows.  In the case where the user provides only a small number of examples, background 

knowledge can also help choose among many equally performing rules. 

 

 

Throughout this chapter, we reference an algorithm called the ONION that we designed to augment the 

standard ILP search process.  We will briefly introduce this algorithm here and will discuss it in detail in 

Chapter 6.  The ONION algorithm is a control structure capable of exploring successive layers of the 

target ← true

target ← q

…

target ← q, r, …, x, y

target ← q, r, …, x, y, z

target ← q, r, …, x

target ← p… 

…

…

… … … 

Standard ILP Search

With Advice

 

Figure 4.1.  An illustration of a top-down ILP search for a inference rule to predict the literal predicate, 

whose definition is the conjunction of literals q through z. Finding a long clause such as this can be quite 

hard, but if a teacher gives advice (possibly across multiple examples) that the conjunction of literals q 

through y is relevant, then finding the correct definition is much easier. 
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hypothesis space, from an innermost layer that tightly follows the advice to an outermost, rarely used, 

layer that effectively ignores the advice.  The ONION accomplishes this through a set of relevance 

priorities assigned to the generated background knowledge (and other background knowledge, if desired).  

In an iteratively deepening style of search (Korf, 1985), the ONION first searches a hypothesis space 

containing only high-priority elements.  If the ONION does not find a solution, it iteratively expands the 

search space to include lower priority elements.  Additionally, the ONION also attempts to automate ILP 

parameter selection through a similar method of iteratively considering parameter settings, starting with 

parameters that generate a small search space and iteratively adjusting the parameter settings to explore 

larger spaces. 

4.1 Converting Advice to Background Knowledge 

Teacher advice provides a method for the user to instruct our learning algorithm.  The advice takes 

the form of logical statements.  From this information, we construct new background knowledge 

representing sub-concepts. We also generate the necessary ILP determinations and modes (recall from 

Chapter 2 these specify the usable predicates, constraining the types of arguments and state for the 

arguments of a new literal, i.e., which need already appear in the clause, which can be new variables, and 

which should be constants.)  Additionally, we attach priorities to all of the generated background 

knowledge for use by our ONION algorithm.  We assume the teacher talks about a specific example (either 

positive or negative) and specifies the advice in a ground format that we then variablize into a general 

form.  It is straightforward to extend our system to allow the teacher to provide generalized advice, but we 

believe that for most users it will be easier to explain why specific examples are or are not members of the 

concept being taught and that is the interaction style on which we focus. 

Although we assume that the user understands basic logic (i.e., the meaning of AND, OR, and NOT), 

we attempt to allow the user to communicate advice in a natural, and possibly somewhat inaccurate 
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manner.  Thus, although we specify the exact logical format of the advice below, our system attempts to 

rectify common user misunderstandings, such as predicate/function confusion.  We also do not expect the 

user to understand the algorithmic details of the underlying ILP system. 

Our algorithm processes the original teacher-provided advice in several phases consisting of  

(1) generalizing advice, (2) standardizing advice variables, (3) generating background knowledge rules, 

and (4) assigning modes and priorities.  Algorithm 4.1, GENERATEBACKGROUNDKNOWLEDGE, details the 

process of creating background knowledge from the teacher-provided advice.  Below we will examine 

each of the phases in detail. 

As we walk through the algorithm, we illustrate the steps through a sample concept:  readyToFly.  

The readyToFly concept indicates, as one might guess, that an airplane is ready to fly.  We define the 

concept (unknown a priori) as: 

           (     )          (     )            (     )              (     )  (4.1) 

Table 4.1 shows two training examples and three pieces of teacher provided advice for the 

readyToFly concept.  Figure 4.2 illustrates processing of the teacher advice via the 

GENERATEBACKGROUNDKNOWLEDGE algorithm. 

 

4.1.1 Generalizing Advice   

The first phase of the algorithm (lines 7 to 13), variablizes the ground advice statements via applying 

anti-substitution (Siekmann, 1990), i.e., a mapping from occurrences of ground terms to variables. For 

our purposes, we only need to map constants to variables. The anti-substitution may be either a direct-

Table 4.1.  ReadyToFly concept.  Training data includes two examples, one positive, one negative, along 

with three pieces of teacher provided advice, two pieces for the first example and one for the second. 

Advice # Ground Example Pos/Neg Teacher Advice 

1 readyToFly(plane1)  Positive fueled(plane1) 

2 readyToFly(plane1)  Positive gearDown(plane1) 

3 readyToFly(plane2)  Negative damaged(plane2) 
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mapping that maps all occurrences of the same constant to the same variable and occurrences of distinct 

constants to distinct variables, or an indirect-mapping, where occurrences of the same constant can be 

mapped to different variables. 
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Algorithm 4.1. GENERATEBACKGROUNDKNOWLEDGE 

1. Input:  

2.   Labeled examples, some of which may have associated advice 

3.  

4. Output:         

5.   Generalized background knowledge 

6.  

7. ---- Generization Phase ---- 

8. For each example ei ∈ {e1…en} 

9.    Given advice Ai associated with example ei 

10.    If ei is positive example then create an associated implication ei ⟵ Ai 

11.    else create an associated implication ei ⟵ ¬ Ai 

12.  

13.    Generate all non-equivalent formulas via anti-substitution  

14.        from the implication to yield the set of formulas Fi 

15.  

16. ---- Standarization Phase ---- 

17. Let F denote the set F1   F2   … Fn 

18.  

19. Standardize apart all formulas in F  // See text for definition of standardize apart 

20.  

21. Let θ be the most general unifier of all consequents of formulas in F 

22.  

23. For each Fi 

24.    Apply θ to all formulas in Fi to yield F’i  
25.    Collect all antecedents from formulas in F’i to yield Gi 

26.  

27. ---- Generation Phase ---- 

28. Let H = {}, a set of generated rule antecedents 

29. For each generalized advice-piece Gi  

30.    Let H = H   Gi    // Per-piece antecedents 

31.  

32. For each example ej ∈ {e1…en} with associated advice 

33.    Let Kj =   { g ∈ G | g was generated from example ej advice} 

34.    Let H = H   Kj  // Per-example antecdents 

35.  

36. Let H = H    { “Mega-Rules” }  // See text 

37.  

38. For each generated logical combination h ∈ H 

39.   Introduce a new predicate  p and assert p(V1, V2, …, Vk) ⟵ h,  where V1, V2, …, Vk are variables  

40.     selected via DETERMINEHEADVARIABLES 

41.    If p ⟵ h is a Mega-Rule then assign p ⟵ h High priority 

42.     else if p ⟵ h is per-example then assign p ⟵ h Medium priority 

43.     otherwise assign p ⟵ h Low priority 

44.  

45. Return set of all generated implications  

46.      p ⟵ h along with priorities 
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Plane1 is ready to fly because it is fueled.

Plane2 is not ready to fly because it is damaged.

Plane1 is ready to fly because it is fueled.

readyToFly(plane1 )   fueled(plane1 )

readyToFly(plane1 )   gearDown(plane1 )

readyToFly(plane2 )     damaged(plane2 )

readyToFly(A )   fueled(A )

readyToFly(B )   gearDown(B )

readyToFly(C )     damaged(C )

fueled(A )

gearDown(A )

¬ damaged(A )

rule1(A )   fueled(A )

rule2(A )   gearDown(A )

rule3(A )     damaged(A )

rule4(A )   fueled(A ) ˄ gearDown(A )

rule5(A )   gearDown(A )

rule6(A )   ( fueled(A ) ˄ gearDown(A ) ) ˄   damaged(A ) 

rule7(A )   ( fueled(A ) ˄ gearDown(A ) ) ˅   damaged(A ) 

rule8(A )   ( fueled(A ) ˅ gearDown(A ) ) ˄   damaged(A ) 

rule9(A )   ( fueled(A ) ˅ gearDown(A ) ) ˅   damaged(A ) 
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Advice 

statements

Initial implications 

(lines 7 – 10)

Implications after 

anti-substitutions 

(lines 12-13)

Antecedence after 

standardization 

(lines 15-20)

Per-piece generated 

rules (lines 22-24)

Per-example 

generated rules 

(lines 26-28)

Subset of generated 

Mega-rules (line 30)

 

Figure 4.2.  Processing of sample advice by GENERATEBACKGROUNDKNOWLEDGE algorithm.  Advice is 

transformed through a series of phases, first generalizing individual advice statements, then standardizing 

variables that occur in the target concept literal, and finally generating new background knowledge 

consisting of various combinations of the individual advice pieces.  Line numbers refer to those in 

Algorithm 4.1.  The generation of modes and priorities is not shown. 
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Indirect-mappings address cases where two constants are coincidentally equivalent. This occurs 

regularly in examples with numeric constants, where common numbers such as 1.0 may perform two 

different roles.  Later, when we assign priorities to generated background knowledge, those created with 

indirect-mappings receive a lower priority than those created with direct-mappings. Indirect mapping 

anti-substitutions perform what is sometimes called “variable splitting” in ILP (Srinivasan, Muggleton, & 

King, 1995) where two occurrences of the same term are generalized to different variables. It is well-

known that variable splitting can lead to an increase in run-time that is exponential in the number of 

occurrences of the same term within a formula. In practice, such multiple occurrences are rare, except in 

the case of very common constants within a domain, for example, the 1.0 case discussed above. To 

prevent this exponential worst-case increase, in practice, we limit the maximum number of variable 

splittings (cases of two occurrences of the same term being mapped to distinct variables) by an anti-

substitution to some small constant k.  Alternative approaches to controlling the cost of variable splitting, 

such as employing domain-specific heuristics about commonly-occurring constants, are a direction for 

future research. 

Table 4.2 depicts both a direct and indirect anti-substitution.  As shown, we perform the same anti-

substitution on both the example and the piece of advice, linking variables in the example to variables in 

the advice.  Although not shown in Table 4.2 we generalize all advice for a single example at the same 

time.  Thus, constants can be tied together across different advice for the same example, but are not tied 

across advice for different examples.  

 

Table 4.2.  Direct and indirect anti-substitutions.  Direct anti-substitutions generalize equivalent terms to 

the same variable.  Indirect anti-substitutions generalize equivalent terms to different variables. 

Ground Example & Advice Anti-substitution Type 

readyToFly(plane1) ← fueled(plane1) readyToFly(X) ← fueled(X) Direct 

readyToFly(X) ← fueled(Y) Indirect 
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In some cases, it is important that a constant seen in the ground advice remain constant in the final 

generated background knowledge.  For instance, staying with our readyToFly concept, if the teacher 

provides advice such as flightInstrumentValue(tachometer) > 1000 it is probably important that 

tachometer remain constant, as it would not make sense check if, say, the altitude is greater than 1000.  

We use two techniques to determine when a constant in the advice should remain a constant in the 

generated background knowledge.  First, we allow the teacher to state “the constant tachometer should 

remain constant.”  In cases where the teacher does not provide this hint, we attempt to identify possible 

constants through a simple algorithm.  For each constant occurring in the original advice, we evaluate the 

piece of advice with all other constants generalized against each example (positive examples for positive 

advice or negative examples for negative advice.)  If the piece of advice holds for m examples, we assume 

that the constant should remain a constant in the generalized version of the advice.  Here m is a tunable 

parameter based upon the total number of example in the training set. 

In some cases, this approach will either fail to identify values that should remain constant or will 

determine a value should be held constant when it should not.  One approach to handling these errors is to 

create multiple generalizations, not variablizing the constant in one and variablizing the constant in 

another.  In this approach, we would assign a priority to each generalization so that the ones we 

determined to be more likely could be searched first.  However, in cases where a single piece of advice 

contains multiple constants, this leads to exponentially many different generalizations.  When this occurs, 

we limit the number of resulting generalization to some small constant k. 

When teacher provides advice about negative examples, the advice may be ambiguous.  Imagine a 

teacher says an example is negative because color = blue.  Does this mean the example is negative 

because it is blue or because it is not? Since the teacher is talking about specific examples that are 

observable by our learning algorithm, we address this in an obvious way.  Namely, we evaluate the 

teacher’s statement on the current example, and we then, if necessary negate the advice so that it says 
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something that is true.  Hence, if the current example is red, we would adjust the advice about color to be 

color  blue. 

4.1.2 Standarizing Advice 

Given the generalizations from the first phase, the second phase of 

GENERATEBACKGROUNDKNOWLEDGE (lines 15 to 20) performs a unification to merge variables that 

arose from constants found in the target literal (e.g., readyToFly(X).)  For instance, if we consider the 

direct anti-substitutions of all pieces of advice from Table 4.1, we have           ( )            ( ), 

          ( )            ( ),19 and           ( )           ( ).  After the unifications, 

the implications would be           ( )         ( )            ( )            ( )  and 

          ( )           ( )  where X is shared.  This allows distinct constants from different 

examples that played the same role to be merged into a single variable. 

4.1.3 Generating Background Rules 

In the third phase (lines 22 to 30), we generate compound logical formulas by connecting the 

generalizations for different pieces of advice with the AND and OR logical connectives.  We generate 

four different styles of formulas: per-piece, per-example, per-class, and “Mega Rules.”  The per-piece 

formulas correspond to the individual pieces of advice specified by the teacher.  The per-example 

formulas aggregate all the advice provided for a single example into one formula with the individual 

pieces of advice joined via AND connectives.  The per-example formulas allow the teacher to provide 

many small pieces of advice about an example instead of requiring the teacher to compose a single 

                                                      

 

19 The fueled and gearDown advice pieces already use the same variable since they both came from advice attached to the same 

example.  As mentioned earlier, generalization for all advice attached to a given example occurs at the same time using the 

same anti-substitution. 



68 

 

 

  

complex piece of advice.  The per-class formulas combine via AND connectives either all of the positive 

advice or all of the negative advice.  Finally, Mega Rules attempt to capture all of the advice into one 

logical statement, by conjoining direct-mapping generalizations of all advice from all positive and 

negative examples. 

More specifically, we do the following to produce our Mega Rules: 

Let Fi be the logical formula that our algorithm produces by conjoining (“ANDing”) all of the 

relevance statements about positive example i. 

Let Gj be the logical formula that our algorithm produces by conjoining all of the relevance 

statements about negative example j. 

We make the following Mega Rules, where i ranges over the positive examples with advice and j over 

those negative examples with associated advice: 

   (                )       (                 )              (4.2) 

   (                )       (                 )              (4.3) 

  (               )        (                )               (4.4) 

  (               )        (                 )              (4.5) 

The above are all ways to explain a collection of teacher-provided advice, though some are more 

natural than the others.  In the first one, our algorithm interprets the teacher as using each positive 

example to provide aspects of a conjunctive concept and each negative example to state properties that 

members of the concept lack (“this is a bird because it has wings, this other example is a bird because it 

lays eggs, this third example is not a bird because it has leaves, this fourth example is not a bird because it 

is made of metal. …”).  The third and fourth lines are appropriate for disjunctive concepts (“Alice got to 

work by taking the bus.  Bob got to work by walking. … Carl did not make it to work because he slept all 

day.”).  In addition to the rules shown above, we also generate four additional Mega Rules in which we 

negate positive advice and do not negate the negative advice.  
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When only direct-mapping generalizations exist, only a handful of formulas are generated, providing 

excellent scalability.  When indirect-mappings occur, we generate additional rules in which we substitute 

all combinations of the indirectly-mapped advice pieces into the per-piece, per-example, and per-class 

formulas.  This process scales exponentially in the number of indirect-mapping generated.  When this 

occurs, we limit the number of resulting generalization to some small constant k. 

4.1.4 Priority and Mode Assignment 

In the final phase (lines 32 to 37) we convert each of the generated formulas back into an implication 

(as a precursor to creating ILP background knowledge).  During this phase, we assign a search priority 

with a preference for longer formulas, i.e., those that use as much of the user-provided advice as possible.  

Mega Rules receive the highest priority, followed by per-class and per-example formulas, and finally per-

piece formulas.  It is these priorities that define the layers iteratively searched by our ONION algorithm 

detailed in Chapter 6.  Table 4.3 shows several of the implications generated for the sample concept.   

 

The head of the generated clauses (e.g., rule1(X) or rule2(X) from Table 4.3) controls the logical 

variables we exposed to the ILP algorithm during the search process.  This is an important step as it 

directly affects the effectiveness of our algorithm.  In order to illustrate the importance of properly 

Table 4.3.  Generated Background Knowledge.  Three types of background knowledge are created during 

advice processing: per-piece, per-example, and mega-rule background knowledge.  Per-piece is composed 

of single pieces of advice.  Per-example is composed of all advice piece for a single example.  Mega-rules 

use all provided advice combined via various logical operators. 

Generated Background Knowledge Type Priority 

rule1(X) ← fueled(X)   gearDown(X)   ¬ damaged(X) Mega-Rule High 

rule2(X) ← ( fueled(X)   gearDown(X) )   ¬ damaged(X) Mega-Rule High 

rule3(X) ← fueled(X)   gearDown(X) Per-Example Medium 

rule4(X) ← ¬ damaged(X) Per-Example Medium 

rule5(X) ← fueled(X) Per-Piece Low 

rule6(X) ← gear(X, down) Per-Piece Low 

 



70 

 

 

  

exposing the correct logical variable in the generated rule’s head, consider a somewhat more complicated 

readyToFly concept indicating that a plane has enough fuel to fly 1000 miles, defined logically as 

           ( )      (      )    (     )                             . (4.6) 

A teacher might make the following statement about an example: “For       , it is important 

that     (          )    (         )                 .”  Here, the teacher has essentially 

specified how to calculate the range of the plane but has not giving advice about the range comparison.  

Even though this is only partial advice, it is still valuable.  Ignoring the head of the generated background 

knowledge, our GENERATEBACKGROUNDKNOWLEDGE algorithm would produce the formula 

     (      )    (     )                 . (4.7) 

Given this formula, Table 4.4 lists several of the rules that could be created, each with a different possible 

head. 

 

If we are trying to learn concept (4.6), rule1, rule2, and rule4 are not useful as they do not expose the 

Range variable.  Both rule3 and rule5 would be useful when learning the concept, although rule3 may be 

considered more desirable since it provides all of the necessary variables and nothing extra.  This 

illustrates the importance of choosing the correct variables to expose in the head. 

Algorithm 4.2 details the method used to selected the variables that we place in the head of the 

generated clause along with the ILP modes for each of the variables.   Essentially all of the variables tied 

to the example during the generalization phase become input variables for the clause.  As illustrated, it is 

also advantageous to expose variables occurring in the body of the rule as output variables.  However, the 

size of the ILP search space increases exponentially in the number of variables exposed in the head of the 

Table 4.4.  Several possible background knowledge heads for the same rule body. 

Background Knowledge 

rule1(A)  ← fuel(A, Fuel), mpg(A, MPG), Range = Fuel × MPG 

rule2(A, Fuel)  ← fuel(A, Fuel), mpg(A, MPG), Range = Fuel × MPG 

rule3(A, Range)  ← fuel(A, Fuel), mpg(A, MPG), Range = Fuel × MPG 

rule4(A, Fuel, MPG)  ← fuel(A, Fuel), mpg(A, MPG), Range = Fuel × MPG 

rule5(A, Fuel, MPG, Range)  ← fuel(A, Fuel), mpg(A, MPG), Range = Fuel × MPG 
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clauses, so it is infeasible to expose them all.  In absence of other information, for each formula, we 

expose only a single output variable. For any given formula, we determine the output variable by 

considering all of the literals that we derived from positive pieces of advice and selecting the last variable 

that was introduced (e.g., Range from above.)  This approach scales well.  However, in some cases, 

variables that would be helpful may not be exposed in the head of the generate clause.   

 

We assign input variables both an ILP input mode of ‘+’ (the argument must already be in the clause 

being constructed) and a constant mode of ‘#’, plus we assign output variables both an output mode of ‘–’ 

(a new variable can be introduced) and a constant mode of ‘#’.  Additionally, our algorithm also works 

when the ground advice contains logical functions by generalizing the complete function into a single 

variable (e.g., p( f(x, y ) ) generalizes to p(A) ) and generalizing the terms of the function, but not the 

function itself (e.g., p( f(x, y ) generalizes p( f(A, B ) .) 

Algorithm 4.2.  DETERMINEHEADVARIABLES 

1. Input:  

2. A generalized clause of the form: e ⟵ A 

3.    from F’i on line 19 of Algorithm 4.1, 

4.    where e is the variablized example literal 

5.    and A is variable advice body consisting of one or more literals 

6.  

7. Ouput:         

8.    Head literal for generated background clause along with ILP modes 

9.  

10. Let ExampleVars = { v ∈ arguments of e | v is a logical variable }   // Collect variables in e 

11. Let BodyVars = { v ∈ arguments of literal in A | v is a logical variable } // Collect variables in body 

12.  

13. Let HeadVars = {} // Variables that will be in generated clauses head along with mode for variable 

14.  

15. For each var ∈ ExampleVars 

16.   If var ∈ BodyVars then 

17.    Let HeadVars = HeadVars   { var } 

18.    Assign “input” (+) and “constant” (#) mode to var 

19.  

20. Let lastVar = last variable that occurs in a literal in A 

21. If lastVar ∉ HeadVars then 

22.   Let HeadVars = HeadVars   { lastVar } 

23.   Assign “output” (-) and “constant” (#) mode to lastVar 

24.  

25. Return HeadVars along with assigned modes 
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Clauses derived from formulas with OR connectives have the additional requirement that the selected 

output variable must occur in all of the OR-ed subformulas.  Determining whether a variable occurs in all 

of the subformulas requires us to determine if two variables are equivalent.  If argument-type information 

(provided by the ILP modes) is available, we require only that type of the output variable match in all of 

the subformulas.  In the absence of typing information, we disallow output variables for disjunctive 

formulas. 

4.2 Experimental Results 

We performed several experiments to demonstrate the performance of our background generation 

algorithm.  In addition to measuring learning performance on our test beds, we conducted comprehensive 

empirical analyses to study the performance when there is noise in the labels on examples and when there 

is noise in the advice. We designed these experiments to demonstrate the effectiveness of our algorithm, 

its robustness to noise, and how the system is capable of generalizing advice about specific examples to 

all the available examples leading to improved learning and accuracy. The improvements in 

generalization performance can be significant, especially in the presence of a very small number of 

examples. 

We are interested in studying the behavior of our advice algorithm with respect to several criteria:   

1. Its ability to learn diverse concepts across domains without the intervention of an ILP expert, 

2. Its ability to effectively exploit teacher advice in order to learn concepts with only a small number 

of examples, 

3. Its robustness to teacher errors of commission in the examples (mislabeled examples), 

4. Its robustness to teacher errors of omission in the advice (incomplete or missing literals).   

Our experimental study consists of three experiments that we describe below. 
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4.2.1 Methodology 

The experiments were all performed using the Bootstrap Learning testbed (see Section 3.1).  We use 

14 separate tasks from that domain during the experiments.  The tasks all included third-party generated 

training examples (up to 100 examples for each task) along with teacher advice for certain examples.  The 

mean accuracy of always guessing the majority category across each of these 14 tasks is 57%. 

For each task we have 100 training examples and 100 test set examples.  During our experiments, we 

split the training set to generate a tuning set, used by the ILP system to evaluate parameter settings.  For 

runs with more than 25 examples, we place two-thirds of the data provided to our learner into a training 

set and one-third the data into a tuning set.  For runs where fewer than 25 training examples, we do not 

use a separate tuning set, instead relying directly on training-set accuracy to tune parameters.  In all 

experiments we used an equal number of positive and negative examples. 

Because there is an intended pedagogical order to the examples, some of which have associated 

advice, we did not perform 10-fold cross validation within each lesson (in addition, since we have data 

simulators, cross validation is not necessary – instead we simply use fresh samples of 100 examples as 

our test sets).  The results presented for each experiment are the test-set accuracies averaged over all 14 

tasks.  Across all of these tasks, we used the same parameter choices.  That is, over all of the experiments 

that we report here, our ILP system was run unchanged.   

4.2.2 Results 

Experiment A  

In our first experiment, we compare the performance of our advice algorithm to the performance 

without advice over all the 14 tasks.  Figure 4.3 shows the results, where we plot learning curves, i.e., 

test-set accuracy as a function of increasing numbers of training examples.  (As mentioned earlier, our 
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implementation is not an on-line, incremental learner.  We simply run in “batch mode” for various 

numbers of training examples.) 

 

In the case where the learner is not given any advice, the ILP system is able to generalize across tasks 

and domains, and obtain an average test-set accuracy of 74.0% when using all 100 training examples. 

Even when using smaller fractions of training data, the performance without advice exceeds 57%, the 

equivalent to the test set accuracy produced by random guessing. The main results in Figure 4.3 however, 

are the test-set accuracies achieved in the presence of advice.  Even when using only four training 

examples per lesson, our algorithm achieves an average test-set accuracy of 93.8%, and reaches 100% 

with only ten examples. 

Experiment B 

Experiment A involved advice from a 3
rd

 party who was careful to create rich and accurate advice.  

However, real teachers are likely to make errors.  In our 2
nd

 experiment we simulate errors of omission by 

dropping literals from advice.  We randomly drop literals as follows.  For each advice rule we flip a 

 

Figure 4.3.  Experiment A:  Testset accuracy as a function of the number of training, with and without 

advice, averaged over 14 tasks. 
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weighted coin, and it if comes up ‘heads’ we delete the last literal in the rule.  If we deleted the last literal, 

we flip the coin again and consider deleting the second-from-last literal; this continues until either the 

rule’s literals are exhausted or the coin comes up ‘tails.’  In the later case, we place the possibly truncated 

advice rule in our noisy advice set.  We choose to remove from the end of advice rules, since prefixes of 

conjunctive rules are likely to be partially coherent, whereas dropping literals from the middle of multi-

literal (i.e., conjunctive) statements may lead to nonsensical advice.  A topic for future research is to 

create more realistic models of imperfect advice. 

Figure 4.4 shows the results of our errors-of-omission experiment, where we plot the test-set accuracy 

as a function of the probability of randomly removing each literal as specified above.  For each selected 

probability-of-removing, we generated 30 independent “noisy” advice sets for each of our 14 lessons.  

The impact of noisy advice depends on the number of training examples, so we perform this experiment 

using 4 and 100 training examples. 

 

 

Figure 4.4.  Experiment B:  Impact of errors of omission in advice.  The x axis indicates the probability 

value used in the advice-removal process (see text). 
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For both the training set with 4 examples and 100 examples, the test set performance exhibit similar 

behavior, with the accuracy dropping steadily as increasing fractions of advice literals are removed. 

However, with advice-omission rates as high as 50%, and with a small number of examples, our 

algorithm produces average test-set accuracies of over 80%. This demonstrates that even partial advice 

can be effective for learning, and we are able to leverage this information effectively even in the presence 

of significant imperfections in advice. 

Experiment C   

In this final experiment, we compare the performance with and without advice in the presence of 

mislabeled training examples.  Figure 4.5 shows the results; we plot test-set accuracy as a function of the 

percentage of mislabeled examples.  We generate the noisy examples by first removing examples that 

have advice attached from the set of training examples.  With the remaining training examples, we 

randomly select a fraction of the examples and flip their labels.  We then return the examples with 

attached advice to the training set.  We took care to guarantee that the final fraction of mislabeled 

examples was correct when the examples with advice added back into the training set.  This approach to 

noise generation limited the range of noise available, especially for small training sets.  For instance, if we 

have a training set size of four and two of those are examples with advice attached, the minimum amount 

of noise that can be considered is 25% (the result of flipping a single, non-advice, example). 

For experiment C, we generate 30 independent sets of mislabeled examples and, separately, ran with 

and without advice using each of these noisy data sets.  The results are averaged over all random 30 runs 

and over all 14 tasks.  As expected, the example noise reduces the performance of both the advice-free 

and with-advice cases.  The main result from Figure 4.5 is that our advice algorithm, combined with the 

ONION, performs well even in the presence of large amounts of data noise.  In contrast, the no-advice case 

degrades more quickly about the level of random guessing (50%). 
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4.2.3 Discussion 

In summary, our experiments demonstrate that advice-taking proves effective when compared to 

experiments without advice and demonstrates that our algorithm is able to effectively leverage the 

provided advice.  Our experiments also show that our algorithm is robust to two forms for noise: example 

and advice noise.  Both of these forms of noise are common and proper handling of them is necessary. 

Advice is especially advantageous when the example sets are small as it allows ILP to select 

appropriate solutions when multiple hypotheses score equivalently on the examples.  Our algorithm 

accomplishes this by preferentially selecting hypotheses that include most, if not all, of the teacher-

mentioned predicates. 

 

Figure 4.5.  Experiment C:  The impact of mislabeled examples under various conditions.  The x-axis 

indicates the percentage of  training data that is mislabeled. 
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4.3 Related Work 

ILP research has a rich history of developing systems capable of initiating human-computer 

interaction and using them guide and constrain the search.  The most notable such systems include 

MARVIN (Sammut, 1981), MIS (Shapiro, 1983), DUCE (Muggleton, 1987),  CIGOL (Muggleton & 

Buntine, 1988) and CLINT (De Raedt, 1992) where the algorithm can ask the human one or more 

questions that would guide the search.  For instance MIS relied on the human answering queries by 

providing the labels of examples, together with a proof, or derivation, for each positive response.  In 

contrast, in our present work the human initiates the input by providing advice, either in general or in 

association with the original training data.   

Another general area of related work is theory refinement or theory revision (e.g., Mangasarian, 

Shavlik, & Wild, 2004; Pazzani & Kibler, 1992; Srinivasan, 2001) where the user provides an initial 

logical theory that explains many and not all examples, and the learning system must modify this theory.  

As a result the search is constrained to prefer theories close to the original theory, similar to the present 

work.  But a key distinction is that the advice in our present work is example-specific, which can 

substantially ease the burden on the user, as compared to expressing abstract rule(s) underlying the 

concept. 

Our work is closely related to argument-based machine learning ABML (Mozina, Zabkar, & Bratko, 

2007) that takes as input user-provided advice about specific examples, in the form of an argument.  A 

key distinction is that the present work does not assume the arguments are exactly correct and therefore 

may combine various pieces of different arguments in order to construct rules.  Another distinction is that 

to our knowledge ABML has been applied strictly to propositional-rule learning. 
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4.4 Conclusions and Future Work 

Not surprisingly, teacher advice is useful to learning. The key challenge is the need to generalize hints 

and advice the teacher gives about specific examples so that it accurately applies to future examples. We 

present a formal approach to incorporating this into the wider framework of ILP. The empirical results 

show that our system is able to learn well, across multiple concepts, from a combination of training 

examples and teacher-provided hints.  Running our ILP system without these hints − i.e., only using the 

training examples – also produces reasonable accuracies on held-out (“test set”) examples. Another key 

challenge is effective parameter selection and the automation of the ILP-setup task. The final challenge is 

to ensure that the system is robust to noise, both in examples and in advice. 

We evaluated our algorithms, holding all default parameter settings constant, on 14 tasks from two 

domains designed by third-parties not under our control; these human teachers provided training 

examples as well as relevance information. In our experiments, we demonstrated that our system is 

capable of (1) effectively automating the ILP-setup task over different tasks from significantly different 

domains,  (2) exploiting teacher hints and relevance information to learn concepts with near-perfect test-

set accuracies even if given only a small set of training examples,  (3) being robust to example-label noise 

that can arise from teachers’ errors of commission, and  (4) being robust to advice noise that is likely to 

arise from teachers’ errors of omission.  

One possible future direction is to look further at exploiting teacher-provided feedback beyond 

statements about which features and objects are relevant, such as allowing teachers to provide corrections 

to previous advice statements.  Another is to explore the possibility of refining the learned theories using 

teacher feedback along the lines of theory refinement for ILP (Mozina, Zabkar, & Bratko, 2007; 

Muggleton, 1995; Oblinger, 2006; Pazzani & Kibler, 1992; Richards & Mooney, 1995).  Refining 

teacher's advice is important as it renders the ILP systems more robust to teacher errors that occur 

naturally in human teaching.  Another direction is deploying our approach in the context of probabilistic-
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logic learning (Getoor & Taskar, 2007). A final appealing direction of this research is to embed it into 

some user interface where a human can train their software by a combination of making simple English 

statements, pulling down menus, selecting items, and gesturing at objects (e.g., clicking with the mouse) 

to indicate relevance and objects of discourse (“this object should not be near that one”). 
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5 Advice Acquisition via a Human-Computer Interface 

As I demonstrated in Chapter 4, it is possible to design an Inductive Logic Programming (ILP) 

system that facilitates the use of ILP by non ILP experts, allowing domain experts, with no ILP 

experience to use ILP.  However, the algorithm presented in Chapter 4 still required some understanding 

of the advice format used by the algorithm and understanding of basic logic.  Although I do not believe 

these requirements are onerous for the user, it would be even more advantageous to allow the same 

information to be collected through a human-computer interface (HCI).   

In this chapter, I outline an interactive learning process and examine the use of an HCI to further 

facilitate the use of ILP.  The HCI provides a way for the user to specify relational knowledge about 

specific examples.  I demonstrate the approach's effectiveness by examining the task in the Wargus real-

time strategy game (Wargus, 2002).  I providing a simple GUI through which a domain expert can specify 

relational advice explaining various scenarios and show that combining the HCI and a suitable advice-

taking learning algorithm is effective.  I compare successfully against both (a) using no advice and (b) 

hand-written advice. 

I am not the first to demonstrate an HCI for knowledge acquisition.  Extensive research exists 

studying HCIs for this purpose.  Some approaches rely on demonstration by the domain expert of some 

process (Chen & Weld, 2008; McDaniel & Myers, 1999).  Others provide an interface in which the expert 

may specify additional examples to guide or correct the learning algorithm (Vander Zanden & Myers, 

1995).  Some treat domain knowledge as a form of constraints and provide an interface to specify those 

constraints (Huang & Mitchell, 2006).  However, my method is the first to look at automatically obtaining 

relational knowledge and then automatically integrating that knowledge with an underlying ILP learning 

system.  The HCI approach to obtaining relational knowledge in a ground format, automatically 
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processing it into the required knowledge representation, and immediately using the knowledge to 

perform ILP learning is, I believe, unique to this research. 

Much of the work presented in this chapter was performed in collaboration with several others and 

presented in “Integrating Knowledge Capture and Supervised Learning through a Human-Computer 

Interface” (Walker, Kunapuli, Larsen, Page, & Shavlik, 2011) at the 6th International Conference on 

Knowledge Capture. 

5.1 Overview of Approach 

We consider a learning paradigm designed to assist domain experts (we will also refer to them as 

users) in the process of creating and refining domain knowledge through the use of an HCI.  We view 

domain knowledge as a form of advice provided by the user to the learning algorithm.  We also consider 

advice acquisition to be an iterative process (see Figure 5.1) of a user specifying advice, an algorithm 

learning a model, a user reviewing results, and a user refining or augmenting the advice.  Although this 

paradigm applies to many forms of learning, we specifically consider supervised learning algorithms that 

take as inputs both training examples and additional domain knowledge. 

Our iterative learning process proceeds in four stages.  First, we present an HCI through which the 

user specifies advice.  Our HCI accomplishes this by displaying information about a single training 

example and asking the user to “explain” why that example was positive (or negative).  We specifically 

consider advice in the form of concrete logical statements, as discussed in Chapter 4.  For instance, in a 

medical domain, the HCI might display with a patient’s information, health history, etc. and ask the user 

why that patient was high risk for heart problems.  The user might have the domain knowledge that the 

patient was a high risk because “the patient’s cholesterol was high during her last visit and her father’s 

family has a history of heart disease.”  Through the HCI, the user would be able to express this 

knowledge without understanding the required representation or even formal logic. 
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After the user finishes entering advice for a number of training examples, the second phase of our 

process translates the advice into a form usable by the learning algorithm.  This usually entails 

generalizing the advice and possibly changing the representation of the advice to the form used by the ILP 

algorithm.  The process of converting the advice can be quite complex and often there are multiple 

generalizations with distinct meanings.  Since we do not expect the user to understand the underlying 

representation of the advice, it is often infeasible to ask the user to correct the advice directly and we 

instead rely upon our iterative process to indirectly improve the advice.   

Phase three of our process performs the actual learning.  At this point, we provide to the learning 

algorithm both the training examples and the generalized advice.  The learning algorithm then produces a 

model.  After learning, we pass this model onto phase four.  Here, we evaluate the model against 

additional examples and present an HCI allowing the user to review the effectiveness of the model. 

Advice-Taking
HCI

Learning 
Algorithm

Advice 
Processor

HCI to evaluate 
learned model

Training 
Examples

Ground
Advice

Generalized 
Advice

Learned 
Model

Refine
or

Extend 
Advice

 

Figure 5.1.  Our human-computer learning paradigm.  Initially the user specifies advice through an HCI.  

Then the advice is processed and learning occurs.  Afterward the results are presented to the user via an 

evaluation HCI.  The process iterates until the user is satisfied with the results. 
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The reviewing HCI presents the user information about which test-set examples were correctly or 

incorrectly predicted by the model.  Based on this, the user may elect to return to phase one in order to 

adjust previously presented advice, provide new advice, or label new examples.  In addition to being used 

as part of an iterative learning process, the review HCI, especially when coupled with a probabilistic 

learning algorithm, can be used for other applications, as discussed in Section Error! Reference source 

not found.. 

5.2 Intelligence, Surveillance and Reconnaissance – A Motivating Application 

When designing the Wargus tower-defense task used as a basis for this research, our goal was to 

design an application that demonstrated the use of advice-taking, learning, and an HCI for intelligence, 

surveillance, and reconnaissance (ISR).  ISR refers to the integration of analysis and planning 

(intelligence) with the operation of passive sensors (surveillance) and active intelligence gathering assets 

(reconnaissance).  For instance, one common ISR application entails the analysis of satellite imagery to 

plan and execute reconnaissance via unmanned drones during military operations.  Similarly, the 

integration of video surveillance and the dispatching of law enforcement units falls under the ISR 

umbrella.  In a typical ISR application, large amounts of surveillance information is gather and passed off 

to analysts who must look through the data to identify important events.  Once identified, reconnaissance 

or other actions are planned accordingly. 

ISR provides an excellent testbed for integration of advice-taking, learning, and an HCI due to the 

massive amount of data generated by the wide-spread surveillance capability currently deployed.  

Analyzing all the data is often beyond the limited resources of human analysts.  Pre-filtering the gathered 

surveillance reduces the amount of human analysis required, allowing more data to be processed in less 

time. 
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However, learning the appropriate model to enable this filtering requires an extensive amount of 

domain knowledge.  What constitutes an interesting scenario, i.e., one that a human analysis must 

examine, may depend on numerous factors; learning with only positive and negative examples can be 

challenging and the difficulty of this learning task may be reduced through the utilization of domain 

knowledge.  However, as discussed throughout this document, the domain expert (i.e., the analyst) often 

does not have the skills necessary to provide the knowledge in a way usable by the machine learner. 

Figure 5.2 depicts the training and real-world usage phases in an ISR application.  During the 

“learning phase” an analyst categories interesting images and provides advice through an HCI.  From this, 

a probabilistic learning algorithm learns a model and allows the analyst to further refine the model 

through additional advice.  After the analyst determines the model is accurate enough, in the “real-world 

use” phase, the model sorts incoming images according to the probability they are interesting, presenting 

the most interesting images to the analyst.  The analyst then dispatches reconnaissance appropriately. 

One important aspect of an ISR application is the use of a probabilistic algorithm.  A probabilistic 

model allows incoming surveillance to be sorted according to how likely it is to be interesting.  Without 

this aspect, only a coarse (i.e., binary) categorization could be performed and the analyst would have to 

examine far more images. 

We designed the Wargus tower-defense task to be a simple ISR application.  We consider scenarios 

interesting if the tower falls, as these are the situations in which reconnaissance might be necessary to 

determine further the amount of risk the tower was in.  In this chapter we look at the advice-taking aspect 

of the ISR application in the Wargus domain. 

5.3 Our Advice-Taking HCI 

In this section we provide details of a prototype HCI we created to take advice in the Wargus tower-

defense task, discussed in Section 3.2 and depicted in Figure 5.3.  The goal of this prototype was to both 



86 

 

 

  

demonstrate the effectiveness of an HCI in the Wargus task.  Figure 5.4 depicts the simple prototypical 

GUI we designed and used to gather relational advice.   

 

 

In general, the design of the HCI depends greatly upon the type of the knowledge being gathered and 

the task for which the knowledge is being provided for.  Although our prototype HCI is specific to the 

Wargus task, conceptually, many of the same design elements would be required for other tasks. 
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Figure 5.2.  Intelligence, surveillance and reconnaissance (ISR) learning and usage scenario.  During the 

“learning phase” an analyst categories interesting images and provides advice through an HCI to train a 

probabilistic model.  In the “real-world use” phase, the model sorts and filters incoming images according 

to the probability the are interesting, presenting the most interesting images to the analyst.  The analyst 

then dispatches reconnaissance appropriately. 
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5.3.1 Elements of our Advice-Taking HCI 

In our approach, the user provides advice through the following process: 

1. An example is selected, either manually by the user or through some automatic process. 

2. The HCI provides the user (ideally visually) information about the example. 

3. The user provides advice through the HCI to explain why this example was either positive or 

negative. 

4. The user either returns to Step 1 to provide more advice or stops. 

In order to facilitate this process, our HCI needs to: 

 Provide information about specific examples. 

 Allow selection and naming of entities or groups of entities. 

 Provide a method to indicate relations among selected entities. 

 Allow the user to review, and possibly edit, previously specified advice. 

Defending
Tower

Attacking
Archer

Attacking
Swordsman

 

Figure 5.3.  The Wargus tower-defense task.  Multiple attacking units, consisting of swordsmen, archers, 

and ballista, assault the defender’s tower.  Depending on the composition of the attacking force, the tower 

will survive or be destroyed.  The Wargus tower-defense learning task involves predicting which of these 

outcomes will occur. 
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Providing Example Information 

The HCI must provide information to the user about examples.  In our knowledge-capture approach, 

each advice statement is about a specific example.  Thus, the HCI needs to provide at least the 

information about one example.  In the Wargus tower-defense game we can depict all information about 

an example as a picture of the game board.  In some domains, this is not possible or not desirable.   

 

Figure 5.4.  Prototype GUI for advice taking in Wargus.  The GUI consists of four sections: (upper-left) 

entity selection and naming, (upper-right) display of current game board, (lower) controls specifying 

relations between selected entities, and (not shown) a list of previously specified advice.  
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Selecting and Naming Entities 

Advice in our system consists of relations among entities.  Here, an entity is any object in the domain.  

For instance, in the Wargus domain, the various units on the game board are entities.  A user needs a 

method to indicate the entities that should be related.  Thus, we require some sort of entity-selection 

mechanism.  The entity-selection methodology will different depending on the domain.  In board game 

domains, such as Wargus, simply clicking on one or more entities is sufficient.  However, for other 

domains, a much more complex approach may be necessary. 

One extension we found particularly useful in our Wargus GUI prototype was the ability to name 

groups of entities.  When selecting entities in Wargus, by default we named single entities either THIS or 

THAT.  When selecting groups of entities, the default names are THESE or THOSE.  Thus, later on, when 

specifying a particular relation, we could state THIS is related to THAT or THESE are related to THAT.  

However, in order for this approach to work, the underlying task must be able to understand these entity 

grouping.  In the Wargus domain, background knowledge exists facilitating this.  For instance, the 

count/220 predicate supports sets of entities. 

Specifying Relations 

In addition to selecting entities, in many domains, objects have additional properties.  For instance, in 

the Wargus domain, all units have a property indicating its x-y location.  Thus, a mechanism is required to 

access the properties.   

In relational logic, we specify relations through predicates.  For instance, isNearTo(archer1, tower) or 

colorOf(archer1, green).  The HCI needs to know what predicates the user may use to specify relations.  

Here, the complexity of the HCI will depend greatly on the complexity of the domain.  Our Wargus 

                                                      

 

20 As mentioned previously, count/2 represents the set of literals with a predicate symbol of “count” and two arguments. 
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domain contains only binary relations, so we provide drop-down menus to the entity-relation-entity 

information. 

Our ground advice format allows conjunctions, disjunctions, and negations.  Thus, the HCI must also 

support specifying advice with these logical connectives.  In our prototype, we provide the negation of all 

predicates in the “relation” menu.  A button provides the ability to create conjunctions of multiple 

relations.  Disjunctions are implied implicitly between different pieces of advice.  However, as discussed 

in Chapter 4, the advice algorithm tries several combination of the user-provided advice statement.  This 

further relieves the user from understanding the exact ILP algorithm while allowing the user to specify 

advice in a variety of ways. 

Editing Advice 

From a usability standpoint, allowing the user to edit previous provided advice is important.  While 

our GUI allows for some simple editing of the current piece of advice and the viewing of previously 

provided advice, it does not allow the user to edit previous advice.  While this is an integral part of the 

HCI, I do not explore this aspect of the HCI other than to mention that while using our GUI, we often 

examine the previous advice to determine if we needed to state something new or not. 

5.3.2 A General HCI implementation 

Above we showed a prototype HCI customized to a specific task, namely the Wargus tower defense 

game.  While this specialized HCI allowed us to investigate the requirements of an advice-giving HCI and 

determine the usability of a GUI for providing advice, we believe that a more general approach would 

also be effective.  Figure 5.5 sketches one possible general HCI for advice-giving.  In this HCI, the user 

would be presented a set of the known relations about an example.  In ILP, the relations form a graph, 

chaining from one relation to another through the arguments of the various relations.  The nature of the 

relational structure allows the GUI to present the relations in an easy to understand format.  To specify 
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advice, the use would simply drag the relevant relations from the graph.  This general HCI, while perhaps 

non-optimal for some tasks, would provide non-experts an accessible method to writing advice. 

 

One of my research goals is to make ILP more accessible to the non ILP expert user.  This general 

HCI approach would help fulfill that goal by further abstracting the details of the underlying ILP system.  

Since this general approach is not task specific, it requires no ILP expert and could be provided as part of 

an ILP system. 

hadHeartAttack(pat1)

appointment(pat1, app1)

lastAppointment(pat1, app3)

dob(pat1, 1/12/1947)

relation(familyP1, mother)

appointment(pat1, app9)

                   … 

history(pat1, familyP1)

history(pat1, familyP6)

                   … 

hadHeartAttack(familyP1)

                   … 

bloodPressure(app1, 90, 140)

cholesterol(app1, 295)

weight(app1, 295)

                   … 

Patient 1 Relations

Why did patient 1 have a heart attack?

lastAppointment(pat1, app3) cholesterol(app3, 310) AND

Drag new relation here to extend advice...

hadHeartAttack(pat1)

 

Figure 5.5.  Sketch of a general ILP advice-giving HCI.  One area of the GUI (top) displays a graph of 

relations known about an example, while the another area (bottom) allows the user to construct advice by 

dragging relations from the relation graph.  While not optimal for all domains, this general HCI would 

enable advice to be provided without the creation of task-specific GUI. 
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5.4 Generating Generalized Advice and Learning with It 

Next we look at an advice-processing approach that converts the ground advice obtained through the 

advice-taking HCI into background knowledge in the form of generalized Horn clause.  Several relational 

learning algorithms, such as various inductive logic programming approaches and the boosted relational 

dependency network (bRDN) algorithm described in Section 2.2.5, use a Horn-clause representation for 

background knowledge and can use such generated background knowledge directly. 

Output from our advice-taking HCI is represented as a set of ground logical implications.  As shown 

in Table 5.1, the consequence of a piece of advice states the category of a specific training example.  The 

antecedent is a conjunction of literals defined within the domain (either as 'raw' features or via 

background rules).  We transform the ground advice into generalized Horn clauses using the advice-

handling process presented in Chapter 4.  As discussed previously, this algorithm take advice in a ground 

format, generalizes the advice, and creates background knowledge representing various combinations in 

the form of (1) “per-piece” advice by considering each advice statement independently, (2) “per-example” 

advice by conjoining all of the advice specified for a given example into a single combination, (3) “per-

class” advice by conjoining all of the positive advice or all of the negative, and (4) “mega-rules” as shown 

in Table 5.1. 

5.5 HCI for Reviewing Learned Models 

In addition to providing an accessible way for users to provide advice, an HCI provides an intuitive 

way to present the results of learning to the user.  For instance, as discussed previously and shown in 

Figure 5.1, an HCI could provide a method for the user to review the results of learning and to correct 

previously provided advice or augment the advice based upon the errors of the learned model.   
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Figure 5.7 shows a prototype HCI we designed to review the results of learning in Wargus.  This 

simple HCI displays a visual representation of a set of examples, along with the categorization assigned 

by the learned model.  In our prototype Wargus HCI, we use boosted Relational Dependency Networks 

(bRDN) as a learning algorithm (Natarajan, Khot, Kersting, Gutmann, & Shavlik, 2010).  BRDNs provide 

a probabilistic classification algorithm.  As seen in the figure, this allows our HCI to order the examples 

according to predicted probability of the class.  Probabilities allow two interesting applications:  1) error 

correction by providing additional or refined advice and 2) filtering examples according to their 

probability. 

In an error-correction application, the review-results HCI presents examples that have been 

misclassified, ordered according to how misclassified the examples were.  This allows the user to see the 

examples that the model has the most trouble classifying correctly, i.e., how highly probable negative 

examples were predicted to be and how improbable positive examples were predicted to be..  The user 

can then provide additional advice attached to those particular examples to help the learner with those 

particular examples.  Alternatively, the HCI could present example that were misclassified by a small 

margin for review.  This approach focuses more on the “hard” examples and is a common practice in 

Table 5.1.  Generated background knowledge for some simple ground advice.  Initial ground advice is first 

generalized.  Then various combinations are generated representing possible guesses at the meaning of the 

set of advice statements.  

Description Advice 

Initial ground advice ex(pos1) ← p(pos1)   q(pos1). 

ex(pos1) ← r(pos1). 

ex(pos2) ← s(pos2). 

“Per-piece” advice a1(E) ← p(E)   q(E). 

a2(E) ← r(E). 

a3(E) ← s(E). 

“Per-example” advice e1(E) ← p(E)   q(E)   r(E). 

e2(E) ← s(E). 

“Per-class” advice c1(E) ← p(E)   q(E)   r(E)   s(E). 

“Mega” advice m1(E) ← p(E)   q(E)   r(E)   s(E). 

m2(E) ← p(E)   q(E)   r(E)   s(E). 
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active learning (Settles, 2008).  The error-correction application is an integral part of the  human-

computer learning paradigm discussed earlier and provides the functionality necessary for the last stage of 

the process depicted in Figure 5.1. 

A second interesting application for the model-review HCI is presenting filtered examples.  In many 

applications, the amount of data exceeds the ability of the user to examine the data.  For instance, as 

discussed previously, in Intelligence, Surveillance and Reconnaissance (ISR), it is advantageous to 

identify examples that are interesting in some way.  The Wargus TowerFalls task embodies this type of 

application, here the interestingness corresponds to how likely the tower will fall.  In the filtering 

application, the model-review HCI becomes a tool were only the examples with the highest model-

predicted probability are displayed.  These examples are the ones model deemed most interesting and are 

likely to be the ones that analysts need to examine in detail. 

5.6 Experimental Results 

In order to evaluate our HCI and advice-taking approach we performed experiments using the Wargus 

tower-defense game.  We are interested in the effectiveness of advice generated using our advice-taking 

HCI versus both hand-written advice and using no advice. 

Our initial goal is to determine whether our HCI is capable of representing the types of advice a user 

might like to say in general.  To evaluate that, we had group members who were not directly involved 

with Wargus nor its HCI (a) watch Wargus games, (b) learn some basic strategy, and then (c) provide 

advice in ordinary English describing why a tower fell or stood for 5-10 specific initial states of our 

Wargus game. 

A vast majority of the natural language advice was given in terms of the numbers and types of units in 

the attacking force.  Overall, users provided 311 sentences of advice about 100 examples. Table 5.2 

contains some general statistics gleaned from the natural language advice provided by the users. Users 
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usually tended to give specific advice in terms of certain features such as numbers of units, the presence 

or absence of a moat, and whether or not the there was a ballista in the attacking force. For instance, "five 

archers are sufficient to destroy the tower," or conjunctive advice: "there is a moat and only footmen; 

hence the tower stands."  We used this collected natural language advice to guide the design decisions of 

what we enabled the user to state in the final version of our HCI prototype. 

 

 

Figure 5.6.  A prototype Wargus HCI used to review the predictions of the learned model.   
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About 10% of the advice provide in natural language could not be expressed via our HCI.  For 

instance, one user stated “the attacks are coming from many directions.”  Another mentioned “the north-

most footman will absorb damage so the weaker archer can live longer.”  A small number of users also 

provided advice that was too vague (e.g., "there are too many attackers” or "too few attackers") or 

described the existence of paths between attackers and the tower. 

Our HCI is able to capture the vast majority of advice given by the users because it exploits the users' 

inclination to provide specific advice. Furthermore, it also provides mechanisms to allow users to provide 

general advice in terms of groups of units and even units in the scenario. The design is flexible enough to 

allow for various levels of specificity of advice as desired by the user. 

 

5.6.1 Methodology 

In order to evaluate our approach, we ran three separate experiments: one with no advice, one with 

hand-written advice, and one with advice obtained through our HCI.  The HCI advice was based upon a 

Table 5.3.  The seven sentences of advice used. 

Advice 

about  

towerFalls 

examples 

Three or more footmen can take down a tower if there is no moat. 

Five or more archers can take down a tower. 

A single ballista is sufficient to destroy the tower. 

Advice 

about  

towerStands 

examples 

If there are only peasants, the tower stands. 

Four archers or less cannot take down a tower. 

One footman cannot take down the tower.  

If there is a moat, and no archers or ballista, the tower cannot be destroyed. 

 

Table 5.2.  General statistics gleaned from the natural language advice provided by the users. 

Feature Mentioned  

In Advice 

Context and Number of Mentions 

Tower stands Tower falls 

Total number of attackers  50  36 

Number of Archers  43  62 

Number of Footmen  50  46 

Number of Ballistae  18  1 

Number of Peasants  0  24 

Presence of Moat  6  28 

Other (terrain/distance/angle)  10  16 
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representative sample of seven sentences (Table 5.3) expressed in natural language (we selected these 

seven sentences before running any experiments and did not modify them during the course of our 

experiments).  We only used relations that could be entered through the HCI; we disregarded the rest of 

the natural language advice.   

Table 5.4 shows some of the ground advice generated via the HCI.  After creating the ground advice 

through the HCI, we used the advice generalization algorithm described previously to generate a set of 

background clauses, resulting in 21 separate pieces of background knowledge including the per-piece, 

per-example, and mega rules.  While our advice taking learner can accept advice expressed in predicate 

calculus, the full richness of first-order logic was not needed to capture the human-provided advice. 

 

We created the hand-written advice (see Table 5.5) without using the HCI, representing what a 

domain expert who understood the required knowledge representation would create, writing the advice 

directly as seven Horn clauses.  Once we created the advice, we used the boosted relational dependency 

network (bRDN, Section 2.2.5) algorithm to learn a model predicting whether the towers would stand or 

fall.  All learning was performed using the same parameters for the bRDN algorithm. 

Table 5.4.  Sample ground logical statements about the Wargus tower-defense game for one positive (pos1) 

and one negative example (neg1). 

Example Advice 

towerStands(pos1) count(archers, pos1) =  0    

count(footman, pos1)  =  0    

count(ballista, pos1) =  0. 

count(archers, pos1) ≤  4. 

count(footman, pos1)  =  1. 

moatExists(pos1)     

count(archers, pos1) =  0    

count(ballista, pos1) =  0. 

towerStands(neg1) count(footman, neg1) ≥  3. 

count(archers, neg1)  ≥  5.  

count(ballista, neg1) ≥  1. 
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 We evaluated the learned models for the three separate experiments against a held-aside set of 900 

testing examples and produced learning curves comparing the performance of (a) no advice, (b) hand-

written advice, and (c) HCI generated advice.   

5.6.2 Results 

Figure 5.7 shows the area under the ROC (AUROC) curve for the three experiments.  We tested 

significance of the results via the (two-tailed) sign test, a nonparametric test based on the binomial 

distribution (Mendenhall, Wackerly, & Scheaffer, 1989).  The sign test is an exact test (McNemar’s test is 

an approximation that was historically used purely because of computational limitations).  The null 

hypothesis of the sign test is that both approaches are equally accurate; hence each test case for which the 

two approaches make different predictions is viewed as the flip of a fair coin.  An approach “wins” such 

as test case if it predicts correctly and the other approach predicts incorrectly.  Where there are N test 

cases for which the approaches give different predictions, and the most wins for either approach is h, the 

computed p-value is the probability of at least h heads by either method under the binomial distribution 

b(N,0.5), that is, in N flips of a fair coin. 

Table 5.5.  Hand-written advice about the Wargus tower-defense game.  The actual advice submitted to 

the ILP system consisted of seven Horn clauses directly representing the hand-written advice. 

Example Advice 

towerStands(World) count(archers, World) =  0   

count(footman, World)  =  0   

count(peasants, World) ≥  0. 

count(archers, World)  ≤  4. 

count(footman, World)  =  1. 

moatExists(World)     

count(archers, World) =  0   

count(ballista, World)  =  0. 

towerStands(World) count(archers, World) ≥  0. 

count(ballista, World) ≥  1. 

¬ moatExists(World)     

count(footman, World) ≥  3. 
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The difference in error rates between the HCI advice approach and the no advice approach is 

statistically significant (p < 0.05) at every point in the curve, with p-values as low as 3.89 × 10
-15

 at the 

largest difference in the curves (at 30 training examples).  This demonstrates that, in this domain, the 

HCI-generated advice does improve learning, especially in the early regions of the learning curve. 

The difference in error rates when using the two different types of advice is significant only for a few 

points in the curve, at 30, 70 and 100 examples.  We consider this a positive result, as it indicates that our 

HCI approach performed as well as hand-written advice.    

In addition to the bRDN experiments, we also compared using the HCI-generated advice with a 

knowledge-based support vector machine (KB-SVN) (Fung, Mangasarian, & Shavlik, 2002) as the 

learning algorithm.  In a knowledge-based SVM, the advice is provided as a set of linear equations 

dictating areas that should be either positive or negative.  Since support vector machines, in their standard 

formulation, work with fixed-length feature vectors, we converted all of the features in the Wargus tower-

 

Figure 5.7.  Learning curve showing test set performance in the Wargus tower-defense game comparing 

models learned with hand-written advice, HCI generated advice, and no advice.  All models were learned 

the using boosted relational dependency network algorithm.  The HCI generated advice was generalized 

using the techniques discussed in Chapter 4. 
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defense task into Boolean or real valued features.  Additional, all of the advice had to be hand-translated 

into a set of linear equations representing the advice in the correct format. 

We compared advice and no-advice resulting in an SVM formulation by running experiments with a 

vanilla SVM (i.e., no-advice) and a KB-SVM (i.e., advice).  They results, shown in Figure 5.8, are similar 

to the bRDN results, with the HCI advice outperforming the no-advice equivalent by a good margin early 

in the learning curve. 

 

5.6.3 Discussion 

We performed these experiments to evaluate two factors:  whether a GUI could be effectively used by 

non ILP experts to create advice and whether the generated advice could be as effective as background 

knowledge written by an ILP expert.  As mentioned early, based on the natural language data we 

collected, our GUI was able to represent 90% of the advice that users provided through natural language.  

Thus, while not all desired advice could be specified, the users were able to create, through our prototype 

 

Figure 5.8.  Learning curve showing test set performance in the Wargus tower-defense game comparing 

models HCI generated advice and no advice.  Models were learned the using support vector machine 

(SVM) and knowledge-based support vector machine (KB-SVM) algorithms, respectively.  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10 20 30 40 50 60 70 80 90 100

A
re

a 
U

n
d

e
r 

th
e

 R
O

C
 C

u
rv

e
 

o
n

 9
0

0
 T

e
st

se
t 

Ex
am

p
le

s 

Number of Training Examples 

No Advice (SVM)

HCI Advice (KB-SVM)



101 

 

 

  

GUI, the majority of the advice they would have stated if working with an ILP expert.  Furthermore, the 

effectiveness of the GUI provided advice compared favorably with the hand-written ILP expert advice.  

This further shows effectiveness of the GUI in the facilitation of advice-giving for the Wargus task. 

5.7 Background and Related Work 

Extensive research exists studying domain expert knowledge acquisition through the use human-

computer interaction (Stumpf, Rajaram, Li, & Wong, 2009).  Additionally, previous research examines 

how to exploit domain knowledge obtained either through an HCI, generated algorithmically or by hand. 

Other non-HCI methods exist. One method is programming by demonstration (Cypher, 1993).  In 

programming by demonstration, a domain expert performs a sequence of actions demonstrating how to 

perform some task.  From this demonstration, a learning algorithm builds a procedural program intended 

to solve the task.  Often, the learned programs must be adjusted through further interaction with the user.  

One such system (McDaniel & Myers, 1999) allows the user “nudge” the system through the inclusion or 

removal of training examples.  Another approach (Chen & Weld, 2008) allows users to adjust the training 

data directly, adding missing information after the demonstration process.  Unlike our approach, both of 

these system work directly with the training examples without accepting explicit background knowledge.  

Some approaches do allow explicit background knowledge to be specified.  For instance, Vander Zanden 

and Myers (1995) provide a method to specify background knowledge, but require understanding of the 

underlying knowledge representation represented in the Lisp programming language.  Another method of 

human-computer interaction is programming by example (Fails & Olsen, 2003; Lieberman, 2001).  Here 

the user provides a prototypical example of the desired result, such as the result from a database query.  

These approaches again differ from our approach in that they operate on the examples not on additional 

background knowledge. 
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5.8 Conclusions and Future Work 

My main goal in this document is to demonstrate that ILP can be used without expert ILP knowledge.  

Advice-giving techniques, such as those seen in Chapter 4 reduce the difficult of using ILP.  However, 

they still require the user to understand the advice-giving format and limitations.  In some ways, our 

previous advice algorithm traded off the requirement that the user understand ILP with the requirement 

that the user understand the advice-giving format.  Allowing the user to specify knowledge as ground 

advice about specific examples through a human-computer interface provides one appealing method of 

overcoming this difficulty.  Here I have demonstrated that an HCI can alleviate much of this additional 

requirement.  The HCI provides a process through which the user can easily provide advice as also 

guarantees that the advice conforms to the limitations of the underlying advice processing algorithm. 

I also believe that the HCI process provides a method to further extend ILP by providing an iterative 

process allowing the user to refine provided advice.  In practice, this iterative process is performed by 

most ILP experts as they work on a task, with the expert iteratively defining new background knowledge 

and refining existing background knowledge until the ILP algorithm produces an acceptable solution.  

Exposing this refinement process to the user, especially through an HCI that requires no ILP experience, 

would further increases the usability of ILP.  One interesting future direction is to examine the 

effectiveness of this advice-refinement process by presenting the user with an HCI displaying the results 

of learning. Another direction is to examine using an NLP-based system that “understands” simple 

English, such as that provided by Kate etc. al. (2004), in order to allow the user to more naturally specify 

the advice when using an HCI. 
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6 The ONION – Automatic Parameter Tuning for Inductive Logic 

Programming 

One of the more challenging issues of using ILP consists of tuning various parameter settings.  While 

most machine-learning algorithms have parameters, ILP algorithms tend to have more than other 

supervised-learning algorithms.  For non ILP experts, choosing the correct parameter setting proves to be 

an arduous task and raises the barrier of entry to using ILP.  Even ILP experts who understand the 

available parameters and their function may find this issue challenging, as the parameter settings often 

interact in non-obvious ways that depend on the both specific ILP algorithm and the concept being 

learning. 

The parameter settings control a number of important aspects of the ILP algorithm.  One of the 

aspects the parameter settings control involves determining the correct search space.  A balance must be 

found such that the search space is large enough, but not too large.  If the user specifies parameter settings 

leading to too small a search space, no hypotheses will exist that perform well on the training data.  

Conversely, if the user specifies too large a search space, the ILP search may never find an acceptable 

hypothesis, as it may waste too much time exploring areas of the search space without acceptable 

hypotheses.  Another parameter setting control how ILP scores candidate hypothesis.  Hypothesis can be 

scored using a variety of methods, include coverage, precision, recall, accuracy, or Fβ score.  In addition 

to specifying the scoring metric to use, parameter settings specify the minimum score a theory must have 

to be acceptable. 

Various approaches exist to tune the parameter settings of algorithms.  If the performance of an 

algorithm varies smoothly as particular parameters change, tuning parameters may be performed 

techniques such as gradient-descent methods (Snyman, 2005) or simulated annealing (Cerny, 1985).  

These methods typically work by iteratively running the learning algorithm and adjusting the parameters 
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depending on the changes in performance or by exploiting the mathematical properties of the underlying 

algorithm.  In ILP algorithms, few, if any, of the parameters vary smoothly, thus eliminating the 

possibility of using these forms of tuning approaches. 

Grid search provides another commonly used method for tuning parameters.  A grid search involves 

forming the cross product of possible parameter settings and evaluating the performance of the learning 

algorithm on each of the possible combinations.  For instance, if an algorithm used two parameters, say 

color  {red, blue} and size  {large, small}, a grid search would independently run the learning 

algorithm with the parameters settings of (red & large), (blue & large), (red & small), and (blue & 

small).  While this approach may be effective, a number of limitations exist.  First, runtime of the grid 

search grows exponentially in the number of parameter setting considered.  Second, over-fitting may 

occur – if one tries enough parameters settings, one or more setting combinations may coincidentally 

perform well during parameter tuning but not generalize to unseen data. 

In this chapter, I present an approach to parameter tuning called the ONION. Much like a grid search, 

the ONION performs multiple ILP searches with each search using different parameter settings (each 

called an ONION layer).  However, unlike a grid search, the ONION orders the layers, prioritizing layers 

corresponding to smaller search spaces.  Additionally, if ONION finds a hypothesis satisfying some 

stopping criteria, it stops searching early.  This early stopping both reduces the runtime and provides 

some resiliency to over-fitting.  Initially, the ONION uses stringent early-stopping criteria, slowly relaxing 

them as the search proceeds.   

I designed the ONION to achieve the following criteria: 

1. Ease of use by users without expert ILP knowledge. 

2. Effective parameter tuning. 

3. Improved efficiency over grid-search approaches. 

4. Robustness to over-fitting. 
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5. Effective parameter tuning with small amounts of training data. 

While most of the parameters tuned by the ONION are standard ILP parameters, the ONION 

additionally supports a relevance strength parameter unique to the WILL ILP system.  When the user (or 

an automated algorithm such as that described in Chapter 4) provides the ILP-task specification, each 

predicate in the ILP search space (specified by the ILP modes) has a relevance strength attached.  The 

relevance strength indicates how likely it is that the target concept contains the predicate.  Like other 

parameter settings, the ONION iteratively search through layers of relevance strengths, starting with highly 

relevant predicates and proceeding to less relevant predicates as the search progresses.  While not 

required, relevance information allows for additional control over the search and has the advantage of 

being easily understood by users without ILP experience. 

Much of the work presented in this chapter was performed in collaboration with other researchers and 

presented in “Automating the ILP setup task: Converting user advice about specific examples into general 

background knowledge” (Walker, et al., 2010) at the 20th International Conference on Inductive Logic 

Programming. 

6.1 Layered Approach to Parameter Tuning 

In order to select parameters, the ONION iterates over a list of possible parameter-setting 

combinations, executing the underlying ILP algorithm with each combination in a predetermined order.  I 

call each set of parameter settings a layer (see Figure 6.1). As the ONION executes each layer, it evaluates 

the learned theory (if any) against a tuning set, stopping when the tuning set performance meets a number 

of criteria.  In this aspect, the ONION resembles an iterative-deepening style search (Russell & Norvig, 

2010), although unlike, the ONION dramatically changes the search space over time by varying parameters 

controlling more than just the depth of the search. 
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The ONION orders layers such that it searches small hypothesis spaces initial and gradually expands 

the hypothesis spaces until the ONION learns an acceptable theory.  This ordering of hypothesis spaces 

attempts to favor simpler hypothesis, providing some resistance to over-fitting by searching (Quinlan & 

Cameron-Jones, Oversearching and layered search in empirical learning, 1995).  As a side benefit, the 

preference for smaller hypothesis spaces lends some efficiency to the search over other possible search 

orders.  

Figure 6.2 illustrates a broad overview of the Onion algorithm and Algorithm 6.1 presents the basic 

algorithm. Essentially, the ONION iterates over a set of ILP parameter settings, performing an ILP search 

for each layer.  When a given ILP search returns a theory, the ONION evaluates that theory against a set of 

acceptance criteria (such as minimum F1 score), and if the theory is acceptable, the ONION returns that 

theory.  Otherwise, it continues searching additional layers, until either a learned theory passes the 

acceptance criteria or the ONION exhausts all configured layers.  If no layer produces an acceptable 

theory, the ONION algorithm fails. 

 

 

Figure 6.1.  The Onion layers.  An iterative search through parameters, starting with small constrained 

search spaces and iteratively expanding the search space in layers. 
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Algorithm 6.1 specifies a set of parameters and their corresponding setting for each layer of the 

ONION.  The set of parameters presented are the values used by our WILL ILP implementation.  The 

concept behind the ONION generalizes to other algorithms that require parameter tuning.  Other 

algorithms would have different parameter to tune and would initially require an expert to select 

Theory Learner

Clause Learner

Learns individual clauses

Repeatedly calls the clause learner and 
assembles learned clauses into theory

The ONION

Repeatedly calls the ILP algorithm with different parameter combinations

Evaluates each learned theory against a tuning set, stopping if the learned 
theory surpasses the early-stopping criteria
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Figure 6.2.  Illustration of the ONION algorithm.  The ONION repeatedly calls the ILP algorithm, iterating 

through combinations of parameter settings.  Each theory returned from the ILP algorithm is evaluated 

against a tuning set and the ONION stops if a theory’s score exceeds the early-stopping criteria. 
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reasonable parameter settings specific to that algorithm.  Once an expert completes this initial parameter 

selection, users could use the algorithm without expert knowledge of the parameters. 

 

As with any tuning algorithm, the ONION requires a tuning set, a set of data used to evaluate the 

acceptability of hypotheses learned by the core ILP algorithm.  In some cases, the user may provide a 

tuning set that is independent of the training data (note that with few examples, overfitting is less likely 

and underfitting is the larger risk).  However, in the spirit of minimum user setup, the ONION provides an 

automated method for selecting a tuning set based on the size of the provided training set. 

Algorithm 6.1.  THE ONION 

1. Input: 

2.   Task          // ILP Task Definition 

3.   TrainingData     // ILP Training Data 

4.  

5. Output: 

6.   Learned Theory   // Theory learned by the ONION 

7.    

8. For each MinimumTheoryPrecision    in   {0.90, 0.75, 0.00} 

1.   For each MaximumSearchNodes    in   {10, 100, 1000} 

2.    For each RelevanceLevel      in   {High, Medium, Low, None} 

3.     For each MaximumClausesInTheory  in   {1, 3, 7, 15} 

4.      For each MaximumClauseLength   in   {1, 3, 7} 

5.       For each LearnNegatedConcept  in   {False, True} // See Section 6.3.6 

6.  

7.         Let LayerSettings = { 

8.           MinimumTheoryPrecision, 

9.           MaximumSearchNodes, 

10.           RelevanceLevel, 

11.           MaximumClausesInTheory, 

12.           MaximumClauseLength, 

13.           LearnNegatedConcept } 

14.                        

15.        // See Algorithm 6.2 

16.        Let (LearnedTheory, TuningScore) =  

17.        LEARNTHEORYVIACROSSVALIDATION(Task, LayerSettings, TrainingData) 

18.  

19.        If TuningScore precision >= MinimumTheoryPrecision then  

20.         Return LearnedTheory  

21.  

22.  Return FAIL 
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Algorithm 6.2 outlines the LEARNTHEORYVIACROSSVALIDATION tuning procedure executed for 

each layer of the ONION.  Depending on the number of training examples available, the ONION uses one 

of two tuning methods.  In order to be robust to training sets with few examples (one of the over-arching 

goals the ONION), for training sets with less than 25 examples, the ONION uses the training set as the 

tuning set, resulting in an overlap of the training and tuning sets.  While undesirable, this setup maximize 

the amount of training data provided to the ILP algorithm, trading off the likelihood of over-fitting against 

the benefit of additional training data.  Lines 10-18 of Algorithm 6.2 detail this method of selecting a 

tuning set.  When the number of training examples exceeds 25, the ONION switches to a cross-validation 

(Devijver & Kittler, 1982) approach to tuning, as shown by lines 21-39 of Algorithm 6.2.  By default, the 

ONION uses a 2-fold cross-validation procedure.  The use of cross-validation provides robustness to over-

fitting at the cost of additional learning time and a reduced number of training examples for any single 

fold. 

6.2 Exploiting Relevance 

Although I designed the ONION to be parameter-tuning approach, while designing the algorithm I also 

examined allowing the user to provide relevance information about the candidate predicates that ILP uses 

to construct hypothesis clauses.  Relevance indicates the user’s believe that a predicate will be in the 

learned concept, allowing a user to exploit their knowledge of the domain.  This form of domain 

knowledge does not require detailed understanding of the underlying ILP algorithm and thus provides an 

excellent method for the user to provide additional hints to the ILP algorithm.  Automated methods, such 

as our advice-handling process detailed in Chapter 4, also produce this relevance information based on 

teacher-provided instruction. 
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Table 6.1 lists the relevance strengths supported by our WILL ILP implementation.  The ONION 

provides relevance support using the same methodology as other parameters, by iteratively expanding the 

search space, initially including only the most relevant predicate and later considering less relevant 

predicates.  When the ONION considers weaker relevance levels, it also considers all more relevant target 

Algorithm 6.2.  LEARNTHEORYVIACROSSVALIDATION 

1. Input: 

2.   Task        // ILP Task Definition 

3.   LayerSettings           // Settings for the current layer of the ONION 

4.   TrainingData      // Complete set of training data 

5.  

6. Outputs: 

7.  LearnedTheory        // Best learned theory  

8.   TuningSet score      // Score of the best learned theory on tuning test 

9.  

10. If  | TrainingData | < 25 then 

11.   // Low example count tuning procedure – no  cross-validation 

12.  Let CVTrainingData     =  TrainingData 

13.   Let CVTuningData      =  TrainingData 

14.     

15.   Let LearnedTheory     =  RUNILP(Task, CVTrainingData) 

16.  

17.   Let TuningScore       = score of the LearnedTheory evaluated on CVTuningData 

18.  

19.   Return (LearnedTheory, TuningScore) 

20.  

21. else 

22.    // Cross-validation tuning procedure 

23.   Let BestLearnedTheory   =  ∅ 

24.   Let BestTuningScore     = 0 

25.  

26.   for n in 1 to 3 

27.    Let CVTuningData    = nth third of TrainingData  

28.    Let CVTrainingData   =  remaining TrainingData 

29.   

30.      Let LearnedTheory    =  RUNILPALGORITHM(Task, CVTrainingData) 

31.  

32.    Let TuningScore      = score of the  LearnedTheory evaluated on CVTuningData 

33.   

34.    If TuningScore > BestTuningScore then 

35.     Let BestTuningScore   = TuningScore 

36.     Let BestLearnedTheory  = LearnedTheory 

37.   

38.    Return (BestLearnedTheory , BestTuningScore) 

 



111 

 

 

  

predicates, i.e., when considering the RELEVANT relevance strength, the ONION also includes all the 

VERYSTRONGLYRELEVANT, VERYSTRONGLYRELEVANTNEG, POSSIBLEANSWER, and 

POSSIBLEANSWERNEG relevant predicates.  Although Table 6.1 specifies 14 separate relevance strengths, 

to reduce the number of ONION layers, the ONION divides the 14 strengths into 4 groups, as shown in the 

3
rd

 column of Table 6.1. 

 

6.3 Parameters to Tune 

The following section details the specific parameters used by our WILL ILP system. Algorithm 6.1 

shows the primary parameters tuned by the ONION.  From these, the ONION derives several secondary 

parameters, as shown in Table 6.2.  We also detail both the primary and secondary parameters in this 

section. 

Table 6.1.  Relevance Strengths and associated meanings, listed in order of their relative strengths. 

Relevance  

Strength 

Meaning Onion  

Layer 

POSSIBLEANWER 

POSSIBLEANWERNEG† 

Target predicate alone may be the actual concept. High 

VERYSTRONGLYRELEVANT 

VERYSTRONGLYRELEVANTNEG† 

Target concept highly likely to use target predicate. Medium 

RELEVANT 

RELEVANTNEG† 

Target concept likely to use target predicate. Low 

ISMENTIONEDINSIDEADVICE Advice used this target predicate. None 

WEAKLYRELEVANT 

WEAKLYRELEVANTNEG† 

Target predicate may be relevant, but not likely. None 

ISOBSERVEDFEATURE The target predicate was observed in some way somewhere in the 

domain (i.e., via the process used to collect the data or via 

watching some human teacher specify advice), but the relevance 

strength is unknown. 

None 

NEUTRAL User has no knowledge about the relevance of target predicate.  

Default relevance strength. 

None 

WEAKLYIRRELEVANT Target predicate is somewhat unlikely to be relevant. None 

IRRELEVANT Target predicate is unlikely to be relevant. Skipped 

STRONGLYIRRELEVANT Target predicate is very unlikely to be relevant. Skipped 

† The NEG relevance strengths perform the same functions as their corresponding non-NEG relevance strength.  

However, the NEG version indicates that the knowledge somehow derives from the negative examples or 

negative advice. 
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6.3.1 MinimumTheoryPrecision Parameter  

The MinimumTheoryPrecision dictates the minimum precision required by the ONION to accept a 

learned theory as the final answer.  Initially, the ONION attempts aggressively high precision values, 

slowly iterating through less stringent precision criteria.  This helps prevent the ONION from settling on a 

marginal answer when better ones might be found through additional search. 

For any given layer, the ONION adjusts the actual MinimumTheoryPrecision used during learning 

according to the following criteria: 

If  MinimumTheoryPrecision < the best possible mEstimate adjusted precision  

then  MinimumTheoryPrecision = best possible mEstimate adjusted precision. 

 

If  MinimumTheoryPrecision < best possible precision by predicting the major class 

then  MinimumTheoryPrecision = best possible major class precision. 

 

These criteria guarantee that learned theories can achieve the MinimumTheoryPrecision and that the 

learned theory outperforms the trivial theory predicting the majority class.   

The F1EarlyStoppingScore is directly calculated from the MinimumTheoryPrecision parameter 

setting.  After each layer completes, the resulting theory is scored on the tuning set, generating an F1 

score.  If that F1 score is greater than the F1EarlyStoppingScore, the Onion terminates, returning the 

learned theory.  An F1 score is the harmonic mean of the precision and recall scores.  When calculating 

the F1EarlyStoppingScore, we assume that the desired recall of the final theory is equal to the 

Table 6.2.  Primary and secondary parameters tuned through the ONION. 

Parameter Type Description 

MinimumTheoryPrecision Primary Minimum precision of final learned theory 

F1EarlyStoppingScore Secondary Minimum F1 score to terminate the Onion 

MaximumSearchNodes Primary Number of clauses to search in the inner ILP loop before stopping 

MaximumClauseLength Primary Maximum literals in any single clause learned by inner ILP loop 

MaximumClausesInTheory Primary Maximum clauses in any single learned theory 

MinimumPrecisionPerClause Secondary Minimum precision of any single clause learned by inner ILP loop 

MinimumRecallPerClause Secondary Minimum recall of any single clause learned by inner ILP loop 

LearnNegatedConcept Primary Indicates ILP should search for the negated target concept 
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MinimumTheoryPrecision parameter setting.  Given this assumption, F1EarlyStoppingScore turns out to 

equal the MinimumTheoryPrecision. 

6.3.2 MaximumSearchNodes Parameter  

The MaximumSearchNodes parameter controls how many search nodes the ILP algorithm creates 

before it abandons the search and stops the ILP clause learner (i.e., the inner most ILP search process).  

Early ONION layers constrain the search dramatically, while later allowing for much more extensive 

search of the space.   

6.3.3 RelevanceStrength Parameter  

As discussed earlier, in Section 3.3, the RelevanceStrength affects which predicates composed the 

search space during of any given layer.  We use parameters of High, Medium, Low, and None during the 

search.  However, if the user provides no relevance information (and none is generated automatically), 

one or more of the relevance levels may result in the same set of included predicates and thus the same 

hypothesis space.  For instance, if all predicates have a relevance level of NEUTRAL, they would all be 

first explored in the None layer of the ONION, thus there would be no point in searching the High, 

Medium, and Low layers. When this occurs, the ONION prunes the duplicate or irrelevant layers, skipping 

them completely. 

6.3.4 MaximumClausesInTheory Parameter  

Some concepts are naturally disjunctive.  A single Horn clause does not allow the expression of 

disjunctive concepts.  To express disjunctive concepts, a theory must use multiple clauses.  The 

MaximumClausesInTheory parameter controls how many Horn clauses a learned theory may contain.  

Initially, the ONION attempts to find non-disjunctive theories consisting of only a single clause.  If this 
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approach fails to produce a theory, the ONION allows theories with multiple clauses, increasing the 

number of clauses allowed in later layers. 

When considering theories with multiple clauses, we expect any give clause of the theory to cover 

only a subset of the positive examples.  For example, if we consider the disjunctive concept   (     

 ), we might learn three clauses:    ,    , and    .  Any given clause may cover, say, only a third 

of the positive examples.  However, the overall theory may cover all of the positive examples.  At the 

same time given that any single clause must cover fewer examples, we expect the individual clauses to be 

more precise. 

To account for this, the ONION introduces two additional derived parameters: 

MinimumPrecisionPerClause and MinimumRecallPerClause, defined as: 

 

                          

                       (  
                        

 
) 

(6.1) 

                          
                         

                      
 (6.2) 

Figure 6.3 depicts the relationship between these two values.  Higher MaximumClausesInTheory 

parameter settings greatly reduce the recall required for any single clause.  Although not as evident in the 

figure, the MinimumPrecisionPerClause parameter setting increases as the MaximumClausesInTheory 

increases. 

6.3.5 MaximumClauseLength Parameter  

The MaximumClauseLength controls the number of literals allowed in the body of the any single 

learned clause.  The size of the hypothesis space increases exponetially with the MaximumClauseLength.  

Thus, we constrain the early ONION layers to clauses containing only a single literal, again relaxing this 

requirement in later layers.  The RelevanceStrength parameter setting affects the values tried for the 

MaximumClauseLength parameter.  When the RelevanceStrength parameter is set to High, layers 
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exploring MaximumClauseLength = 1 exist.  However, when RelevanceStrength is not High, the Onion 

skips this set of layers. 

 

Although a single literal may seem overly restrictive, WILL does not count accessors literals when 

determining the clause length.  Our logical representation does not support logical functions. Accessors 

literals essentially implement logical functions through a literal, resolving to a single function value for 

any given input.  For instance, the x_position predicate may access the x position of some object allowing 

the use of that value later in the clause.  Typically, accessor function values provide no directly 

discriminator power by themselves, i.e., they provide no gain in the score of a hypothesis clause.  

However, when considered with the literals that use the function values, the accessor literals often 

contribute to a gain in the score.  Because of this, WILL explores extensions to the hypothesis clauses via 

accessors despite their immediately lack of gain and considers these accessor “free,” not counting them as 

part of the clause length. 

 

Figure 6.3.  Adjustments to Per-Clauses Minimum Recall.  The minimum recall of a single component 

clause of a learned theory scales linearly with the minimum per-clause precision.  Additionally, as the 

maximum number of allowed clauses in a theory increases, the minimum required recall is reduced. 
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6.3.6 LearnNegatedConcept Parameter  

In some case, especially with disjunctive concepts, learning the negation of a concept proves easier 

than learning the non-negated concept.  In the case of disjunctive concepts, the negated concept often 

becomes a conjunctive concept, which the ILP algorithm generally learns more easily.  For instance, 

consider the disjunctive concept: 

    (          ( )      )  (          ( )      )  (6.3) 

When we negate the body, we produce: 

      (           ( )           ) 21 (6.4) 

This concept proves much easier to learn using a top-down ILP search than the original.  To learn 

negated concepts, the ONION exchanges the positive training examples and the negative training 

examples.  We call this process flip-flopping for shorthand.  If the ILP algorithm learns a suitable flip-

flopped theory, the ONION negates the learned theory to obtain a theory representing the original non flip-

flopped target concept. 

6.4 Experimental Results 

The primary goal of the ONION is to increase the usability of ILP for non ILP experts.  One aspect 

necessary to achieve this goal is ease of use.  However, the ONION must also perform well in order to 

make it worth using.  In order to evaluate the ONION’s performance, I22 perform several experiments 

comparing the ONION against the well-known grid search parameter-tuning technique.  A grid search is 

composed of a systematic exploration of all possible parameter combinations.  I specifically examine the 

performance of the F1 score of the ONION and of a grid search versus learning time.  While I do not 

                                                      

 

21 Actually, this is not the strict negation of the concept C.  The x_position provides the function value for all inputs and thus it is 

possible to simplify the clause as shown. 
22 I performed all of the experiments in this chapter, thus my use of I in the following sections. 
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expect the ONION to outperform a grid search in all situations, its performance should not be significantly 

worse.  I use three separate ILP tasks during these experiments: Advised-By (see Section 3.3.1), 

Carcinogenesis (see Section 3.3.2), and Mutagenesis (see Section 3.3.3).  All three are standard ILP 

testbeds used previously by other researchers.   

6.4.1 Methodology 

For each of the three experiment tasks, I run both the ONION algorithm and I run a complete grid 

search over all possible combinations of the parameters settings listed in Table 6.3, resulting in 27 

separate parameter setting combinations.  These are the default ONION parameter settings with a few 

exceptions.  While the ONION would normally also attempt a MaximumClauseLength of 15, I disabled 

that setting for these experiments.  The ONION attempts that length for completeness, in case a concept is 

particularly complicated.  However, I felt it was unfair to the grid search to attempt that setting given the 

low likelihood it would be necessary.  This is the type of tuning decision that ILP experts regularly make, 

even when using a grid-search approach.  Additionally, since none of the tasks have associated advice, all 

literal determinations have a NEUTRAL relevance strength.  The Onion automatically skips all the ONION 

layers pertaining to relevance strengths other than NEUTRAL.  Finally, I only explore the non-negated 

concept learning, as these tasks have a skew between positive and negatives reducing the effectiveness of 

learning negated concepts. 

 

Table 6.3.  Parameter settings tried during grid search and ONION experiments. 

ILP Parameter Possible Settings 

Minimum Theory Precision 0.85, 0.70, 0.00 

Maximum Search Nodes 1000 

Relevance Strength NEUTRAL 

Maximum Clauses in Theory 1, 3, 7 

Maximum Clause Length 3, 5, 7 

Learn Negated Concept False 
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For each experiment, I run N folds, as specified in Table 6.4.  For the Advised-By and Carcinogenesis 

tasks, I use (N-1) sub-folds to perform tuning as depicted in Figure 6.4.  The experiments using the 

ONION perform internal tuning in a similar manner.  Since the Mutagenesis data set is small, I use the 

training set also as the tuning set. 
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Figure 6.4.  Training, tuning, and testing folds for grid-search experiments. 

Table 6.4.  Dataset sizes for ONION versus grid-search experiments. 

Task Total # of Positive Examples Total # of Negative Examples Testing Folds 

Advised-By   115  1675  4 

Carcinogenesis   182  148  3 

Mutagenesis   13  29  2 
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The ONION algorithm generates only a single F1 score per fold, thus for each task we get N ONION 

algorithm data points, where N is the number of testing folds for the task.  For the grid search, I generate a 

learning curve by simulating multiple grid searches of various sizes, sub-sampling from all grid-search 

results.  Algorithm 6.3 GENERATEGRIDSEARCHLEARNINGCURVE repeatedly calls Algorithm 6.4 

GENERATEGRIDSEARCHSAMPLESCORE to generate samples of size k, where k varies from 1 to the total 

number of parameter combinations.  GENERATEGRIDSEARCHSAMPLESCORE returns a pair of values 

representing the total time taken during a simulated grid of size k and the best testing score determined by 

finding the best sub-fold testing score based upon sub-fold tuning scores.  

GENERATEGRIDSEARCHLEARNINGCURVE is run separately for each testing fold.  Thus, N separate 

learning curves are created, one for each fold. 

 

Algorithm 6.3.  GENERATEGRIDSEARCHLEARNINGCURVE 

1. Input:  

1.   //  Map contains a key entry for each parameter setting combination mapping 

2.   // to a set of (N-1) sub-fold results (i.e., N-1 results per setting combinations.) 

3.   Map M of <settings> to set of <sub-fold, time, F1TuningScore, F1TestingScore> 

4.   

5. Output: 

6.   Set <time, F1TestingScore>  // Set composing the learning curve of time versus F1 score 

7.   

8. Let S =  

9. For sampleSize in 1 to <# of parameter combinations> 

10.   For repetitions in 1 to 20 

11.    Let <time, F1TestScore> = GENERATEGRIDSEARCHSAMPLESCORE(M, sampleSize) 

12.    Let S = S   <time, F1TestScore> 

13.    

14. Return S 

 



120 

 

 

  

 

6.4.2 Results 

Figure 6.5, Figure 6.6, and Figure 6.7 show the experimental results for the Advised-By, 

Carcinogenesis, and Mutagenesis experiment.  Each of individual points represent the F1 score of a 

Algorithm 6.4.  GENERATEGRIDSEARCHSAMPLESCORE 

1. Input:  

2.  //  Map contains a key entry for each parameter setting combination mapping 

3.   // to a set of (N-1) sub-fold results (i.e., N-1 results per setting combinations.) 

4.   Map M of <settings> to set of <sub-fold, time, F1TuningScore, F1TestingScore> 

5.  

6.   sampleSize      // Number of parameter settings to sample 

7.  

8. Output: 

9.  

10.   <time, F1TestScore>  // Total time and best testing score 

11.   

12. Let totalTime           =  0 

13. Let bestOverallTestScore      =  0 

14. Let bestOverallTuneScore     =  0 

15.  

16. For sample in 1 to sampleSize 

17.   Randomly select key K from M, without replacement 

18.    Let R = M{K}    // Set of sub-fold results for settings K 

19.  

20.    Let bestSubfoldTuneScore    =  0 

21.    Let bestSubfoldTestScore    =  0 

22.    Let subfoldTime        =  0 

23.  

24.    For aResult in R   // Select best tuning score from sub-folds and record time and test score 

25.     If aResult.F1TuningScore > subfoldTungScore then 

26.      Let bestSubfoldTuneScore  =  aResult.F1TuningScore 

27.      Let bestSubfoldTestScore  =  aResult.F1TestingScore 

28.  

29.      // Update total time to include all time spent during sub-fold learning 

30.     Let totalTime        =  aResult.time 

31.  

32.    // Update the best overall score based on the best sub-fold score 

33.    If bestSubfoldTuneScore > bestOverallTuneScore then 

34.     Let bestOverallTuneScore  =  bestSubfoldTuneScore 

35.     Let bestOverallTestScore  =  bestSubfoldTestScore 

36.  

37. Return (totalTime, bestOverallTestScore) 
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Onion run for a single testing fold.  The curves represent the simulated grid search learning curves, again 

one for each testing fold. 

 

 

Figure 6.5.  Advised-By results.  The individual points indicate the ONION algorithm’s testing set F1 score 

for each of the folds.  The curves depict the testing set F1 score with respect to time for each of the grid-

search folds. 
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Figure 6.7.  Mutagenesis results.  The individual points indicate the ONION algorithm testing set F1 score 

for each of the folds.  The curves depict the testing set F1 score with respect to time for each of the grid-

search folds. 
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Figure 6.6.  Carcinogenesis results.  The individual points indicate the ONION algorithm testing set F1 

score for each of the folds.  The curves depict the testing set F1 score with respect to time for each of the 

grid-search folds. 
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In the case of the Advised-By task, on three of the four folds, the ONION performs equally as well as 

the grid search, although the grid search runs reach their asymptotes in less time.  However, the learning 

curves for the grid search are simulated.  In practice, a grid search performs all parameter setting 

combinations and actually takes the maximum time shown in the curves.   

The ONION fares better on the Carcinogenesis tasks.  In two of the three folds, it actually outperforms 

the grid search.  By examining the individual grid search runs, I determined that during the grid search 

there were many parameter combinations that performed well on their tuning sets but poorly on their 

testing sets.  While the ONION would have eventually reached these parameter combinations, it stopped 

prior to encountering them, resulting in better performance.  This behavior is a form of over-fitting 

avoided through early stopping by the ONION and is one of the advantages of the ONION. 

Finally, in the Mutagenesis task, the ONION and grid search perform similarly.  In the first fold, over-

fitting is again evident.  In this case, both the ONION and the grid search over-fit the data.  Given the small 

number of training examples available for the Mutagenesis task this is not unexpected as there are not 

enough examples to create separate training and tuning sets. 

6.4.3 Discussion 

As the experiments show, the ONION does not always outperform a grid search.  This is expected, as 

both approaches search the same hypothesis spaces and will learn the same theory for any given 

parameter combination.  However, it is important to note that while the performance of the ONION might 

be similar to the grid search, the ONION provides stopping criteria that substantially reduce the runtime 

compared to a complete grid search.  While the simulated grid search appears to outperform the ONION in 

terms of runtime, in practice without a way to (a) order the search spaces and (b) determine when to stop 

early, a grid search must examine all parameter combinations and thus the actual runtime is maximum 

time shown in the graphs. 
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6.5 Why the ONION is Needed 

Changes in an ILP parameter setting often produces non-predictable change in performance, i.e., 

smoothly changing a single parameter setting over a range of values does not result in a smooth change in 

performance.  Additionally, the interaction between multiple parameter settings often varies in 

unpredictable ways.  This effect is important because it limits the use of more principled and efficient 

parameter-tuning approaches, such as gradient-descent methods (Snyman, 2005) or simulated annealing 

(Cerny, 1985).  In order to demonstrate this effect, I examine how several individual parameter settings 

and combinations of parameter settings affect ILP performance.   

6.5.1 Methodology 

To demonstrate the non-smooth effect of changes in parameter settings, I look at the results data from 

Experiment C in Section 4.2, which examines of labeling errors on ILP performance for tasks in the 

Bootstrap Learning domain (see Section 3.1).  I use this data set as it provide more diversity than the 

experiments in Section 6.4, using 14 separate tasks and introducing a controlled amount of example noise.  

Additional, since Experiment C includes advice, its results allow the comparison of advice and no-advice 

learning scenarios. 

Experiment C provides results for both 24 training examples (12 positive and 12 negative) and 100 

training examples (50 positive and 50 negatives).  I use only the results that use 100 examples.  While 

Experiment C varies the example noise from 0% to 45%, I use only the data ranging from 0% to 15% 

example noise, as this more realistically represents the levels of example noise one might encounter in 

real-world tasks.  All of the results below aggregate the results from all Experiment C tasks and examine 

the effect of varying one or more parameters. All of the source data from Experiment C use the ONION 

during learning.  
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6.5.2 Results 

Below, I look at the MaximumClauseLength and MaximumClausesInTheory parameters settings, both 

individually and together.  In a traditional ILP search (i.e., one not using our ONION algorithm), these two 

parameters often contribute the most to the size of the search space and are two of the parameters 

commonly tuned. 

Maximum Clause Length  

The MaximumClauseLength controls the maximum number of literals any single learned clause can contain.  

 

Figure 6.8 shows the average precisions of theories learned for the various MaximumClauseLength 

parameter settings, while Figure 6.9 shows the total number of theories learned. 

0.00

0.25

0.50

0.75

1.00

1 3 7

A
ve

ra
ge

 P
re

ci
si

o
n

 

Maximum Literals in a Clause 

With Advice 

0.00

0.25

0.50

0.75

1.00

1 3 5 7

A
ve

ra
ge

 P
re

ci
si

o
n

 

Maximum Literals in a Clause 

No Advice 



126 

 

 

  

 

 

 

Figure 6.9.  Number of theories  learned for various MaximumClauseLength parameter settings based on 

Section 4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% to 

15%.  Only data using 100 examples is considered. 
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Figure 6.8.  Average  precision with respect to the MaximumClauseLength parameter settings based on 

Section 4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% to 

15%.  Only data using 100 examples is considered. 
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When using advice, there is little variation in the precision across the different parameter settings.  

For advice, the number of theories learned when MaximumClauseLength = 1 outnumbers the others; this 

is expected and shows that the ONION is taking advantage of the advice.  For no-advice runs, there is an 

upward trend in average precision as MaximumClauseLength increases.  In order to examine this trend 

further, Figure 6.10 shows a comparison of the average precision for 0% and 15% example-noise levels 

separately (previous figures averaged over all example noise results.)  As can be seen, for 0% noise the 

increase in average precision is much less pronounced while the results with noisy training data follow a 

similar pattern as the no-advice results from  This demonstrates that, while some trends occur with respect 

to MaximumClauseLength, those trends only occur in limited circumstances. 

 

MaximumClausesInTheory  

The MaximumClausesInTheory controls the maximum number of individual clauses a learned theory 

may contain, which is necessary in order to represent disjunctive concepts.  Figure 6.11 shows the 

 

Figure 6.10.  Average  precision with respect to the MaximumClauseLength for 0.0 and 0.15 example 

noise levels.  Average of precision from on Section 4.2, Experiment C results for all 14 Bootstrap Learning 

tasks. 
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average precisions of theories learned for the various MaximumClausesInTheory parameter settings, while 

Figure 6.12 shows the total number of theories learned.   

 

The results for average precision with respect to MaximumClausesInTheory show less of a trend than 

the previous MaximumClauseLength results, both for advice and for no-advice.  For advice there is a large 

number of learned theories with only a single clause in the theory, while the number of no-advice theories 

is distributed evenly between the different parameter settings.  This difference is easily explained by the 

presence of the background knowledge generated from advice.  In tasks where a disjunctive learned 

theory is required, some of the background knowledge introduced through the advice takes the form of 

disjunctive mega-clauses.  Without advice, disjunctive concepts require a MaximumClauseLength greater 

than one. 

 

Figure 6.11.  Average precision with respect to the MaximumClausesInTheory parameter settings based on 

Section 4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% to 

15%.  Only data using 100 examples is considered. 
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MaximumClauseLength and MaximumClausesInTheory Interaction 

Above, the average precision of the learned theories showed weak trends, especially with respect to 

the MaximumClauseLength parameter without advice.  From this, one might conclude that one could tune 

the MaximumClauseLength parameter using optimization techniques mentioned earlier.  However, this 

does not take into account the interactions between the various ILP parameters.  In order to examine this 

aspect, Figure 6.13 (with advice) & Figure 6.14 (no advice) presents the average precision and Figure 

6.15 (with advice) & Figure 6.16 (no advice) provides the distribution of learned theories for all possible 

parameter combinations of MaximumClauseLength and MaximumClausesInTheory together. 

 

Figure 6.12.  Number of theories  learned for various MaximumClausesInTheory parameter settings based 

on Section 4.2, Experiment C results  for all 14 Bootstrap Learning task for example-noise levels from 0% 

to 15%.  Only data using 100 examples is considered. 
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Figure 6.14.  Average precision with respect to the both MaximumClauseLength  and 

MaximumClausesInTheory parameter settings based on Section 4.2, Experiment C results  for all 14 

Bootstrap Learning task with no advice for example-noise levels from 0% to 15%.  Only data using 100 

examples is considered. 
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Figure 6.13.  Average precision with respect to the both MaximumClauseLength  and 

MaximumClausesInTheory parameter settings based on Section 4.2, Experiment C results  for all 14 

Bootstrap Learning task with advice for example-noise levels from 0% to 15%.  Only data using 100 

examples is considered. 
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When we consider MaximumClauseLength and MaximumClausesInTheory together, all obvious 

trends disappear.  The Onion still learns a large number of theories at the (MaximumClauseLength = 1, 

 

Figure 6.16.  Number of theories  learned for various both MaximumClauseLength and 

MaximumClausesInTheory parameter settings based on Section 4.2, Experiment C results  for all 14 

Bootstrap Learning task with no advice for example-noise levels from 0% to 15%.  Only data using 100 

examples is considered. 
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Figure 6.15.  Number of theories  learned for various both MaximumClauseLength and 

MaximumClausesInTheory parameter settings based on Section 4.2, Experiment C results  for all 14 

Bootstrap Learning task with advice for example-noise levels from 0% to 15%.  Only data using 100 

examples is considered. 
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MaximumClausesInTheory = 1) parameter combination when using advice, but this is expected for the 

same reasons we saw this effect above.  This further demonstrates the non-smooth performance with 

respect to the parameter settings. 

6.5.3 Discussion 

I predicated much of the necessity of the ONION on the difficulty of tuning ILP parameters.  If the ILP 

parameters could be tuned through an optimization method, it would be more effective to use such 

methods.  However, as demonstrated above, the performance of ILP does not vary predictively with 

respect to the parameters and a tuning process like the ONION must be used. 

An automated tuning process is especially important for non ILP expert users, as they are unlikely to 

know even where to focus the search to produce good performance.  An ILP expert at least may 

understand the parameter settings likely to produce good performance, guided by both an understanding 

of the parameters and previous experience.  However, even in this case, the above results indicate that it is 

difficult to predict what parameter combinations will result in good performance.  

6.6 Related Work 

Automatic parameter selection for machine-learning methods has been explored earlier (Kohavi, 

John, & Prieditis, 1995), where the goal is to use the expected error for each parameter setting to guide 

the selection of the parameters for decision trees.  Lavrac et al. (1999) proposed a feature selection 

framework for ILP that worked well in propositional learning and special cases of relational learning.  

This was later extended by Alphonse and Matwin (2002) using powerful statistical feature-selection 

techniques to control the dimensionality of the search space. The key idea in their work is to reduce ILP 

examples to non-recursive clauses by removing irrelevant literals.  Muggleton (1995) theoretically shows 

that as the number of predicates in the background theory increases, the size of the search space of an ILP 
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system can increase greatly.  This necessitates the intervention of an ILP expert who can reduce the 

search space.  In such a context, relevance information and automated parameter tuning becomes crucial.  

6.7 Conclusions and Future Work 

The main purpose of the ONION is to provide an effective parameter-tuning method, accessible to 

users without ILP expertise via an iterative-deepening style search of possible parameter combinations.  

This is critical both due to the number of parameters and ILP’s high sensitivity to parameter settings.  

Through the mechanism of early-stopping criteria, the ONION reduces over-fitting while improving 

efficiency compared to a grid search.  Additionally, the ONION’s support of relevance information 

provides a simple way for users to provide knowledge about the importance of predicates.  The support of 

relevance information also facilitates the advice giving algorithm presented in Chapter 4, as well as 

allowing concepts to be learned with fewer examples. 

One limitation of the ONION is its serial nature; the ONION searches layer sequentially until an 

acceptable theory is found.  While this property is advantageous in some respects, the ONION is not able 

to take advantage of multiple processors.  This is one area in which a grid search has a clear advantage.  

One future research direction would be to parallelize the ONION.  In the simplest approach, this might 

entail running multiple layers at once while still evaluating the results sequential order.  Another future 

direction might be to consider more parameter combinations.  This has the side effect of increasing the 

number of layers and thus increasing the search time, which is undesirable.  Approaches such as randomly 

selecting layers to search according to some weighted distribution might allow a wider range of parameter 

combinations to be considered while retaining many of the efficiency and ease of use benefits of the 

ONION. 
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7 Additional Explorations – Building Relational World Models 

Prior to the work presented earlier in this document, I explored several tangential directions in the 

field of relational reinforcement learning.  This prior work used inductive logic programming (ILP) 

extensively and provided much of the motivation for the main body of work, specifically concerning 

automatic generation of background knowledge and improving the ease of use for ILP. 

In this chapter, I explore the automatic generation of background knowledge guided by the 

information produced during the course of solving a reinforcement-learning task.  The end goal of this 

research was to generate a relational model of the reinforcement-learning task that could be used to solve 

the task faster than traditional Q-learning approaches.  This approach to solving the reinforcement-

learning task falls under the model-based class of reinforcement-learning approaches, as discussed in 

Section 2.3.3.  Specifically, I look at Markov decision process (MDP) abstraction, where the MDP 

represents the underlying state-transition and reward model of a reinforcement-learning task, in scenarios 

where the underlying parameters of the MDP (i.e., the state-transition function and reward function) are 

unknown. 

Markov decision-process abstraction is a learning method where the original MDP (whose parameters 

are possibly unknown to the learner) is modeled via a second abstract MDP, the A-MDP23, created during 

learning.  For instance, the left half of Figure 7.1 depicts a state-transition function for a single action for 

small discrete MDP.  The right half of the figure shows one possible abstract A-MDP.  In order to be 

useful for learning, the learner attempts to devise an A-MDP that maintains some degree of congruency 

with the original. 

                                                      

 

23 The nomenclature A-MDP is not standard reinforcement learning or MDP terminology.  I use it throughout this chapter to 

clarify the difference between the underlying MDP and the abstract one learned via my algorithm. 
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I specifically look at learning A-MDPs for relational reinforcement-learning tasks.  I am not the first 

to apply relational approaches or MDP abstraction to reinforcement learning.  Morales (2003), Van 

Otterlo (2003), and Kersting et al. (2004) all present relational abstraction techniques.  However, in all 

three, they require full knowledge of the original underlying MDP or required the user to provide the 

abstraction a priori, which greatly limits the applicability of their approaches to many real-world RL 

tasks.   

My algorithm AMBIL (Abstract Model Building via ILP) requires neither of these elements and can 

handle complex relational reinforcement-learning task with real-valued, high-dimensional feature spaces 

and sparse reward structures.  Via its novel method for partitioning an environment into useful abstract 

states (A-states), AMBIL attempts to find good policies by building a model of a domain’s state-transition 

structure in the form of an MDP abstracting the underlying domains MDP.  AMBIL uses ILP extensively 

to learn the states in the A-MDP, treating each state as a separate ILP learning problem.  The use of ILP 

Original MDP Abstract MDP
 

Figure 7.1.  (Left) The state transitions for a single action of a discrete Markov decision process and 

(Right) a possible abstract representation.  The circles represent states in the original MDP  and the 

arrows represent state-transitions via some action.  The abstract MDP attempts to coarsely represent the 

original MDP while maintaining enough congruency to be useful  for learning purposes.  Although only 

one action is shown, actions can also be abstracted by combining multiple actions into a single abstract 

action. 
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techniques provides power and generality to our models that would otherwise be unattainable with other 

approaches. 

In complex domains, generalization by function approximators, often used by traditional Q-learning 

(Sutton & Barto, 1998), can pose significant difficulties and typically requires a large amount of training 

data.  AMBIL attempts to improve generalization by focusing on the state transitions seen in the training 

data.  AMBIL uses ILP to partition the state space and, since these partitions are based directly upon the 

state transitions of actions, may generalize the examples more effectively.  AMBIL exploits the relational 

aspects of RL domains; similar domain actions can be abstracted and learned together rather than 

individually.  AMBIL also abstracts objects in the domain, learning rules that apply to whole classes of 

objects. 

The partitions learned by AMBIL form a relational abstract MDP, with the transition and reward 

function estimated from previously observed data.  Existing techniques, such as value-iteration (Sutton & 

Barto, 1998), provide estimates of the expected reward for each A-MDP state.  AMBIL’s A-MDP both 

determines the policy and provides an explicit, easy-to-analyze representation of the domain. 

I present empirical results in a synthetic domain and in the challenging Breakaway subtask of the 

RoboCup soccer domain (Maclin, Shavlik, Torrey, Walker, & Wild, 2005), demonstrating faster learning 

and higher asymptotes at convergence than traditional Q-learning reinforcement-learning algorithms. 

7.1 Building World Models 

AMBIL partitions the state space and creates an A-MDP from the partitions.  First-order logical rules 

define the portion of state space each partition covers.  The A-MDP in turn leads to a policy intended to 

maximize the rewards received.  AMBIL then exploits this policy to collect more examples from the RL 

task.  AMBIL iterates between building models and utilizing those models in the task.  Figure 7.2 depicts a 

sample MDP produced by AMBIL.  The following sections explain the model-building process. 
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7.1.1 Terminology 

AMBIL operates on a collection of examples containing sequences of {state, action, reward} tuples 

from the RL task we are attempting to solve.  I will refer to these tuples as instance in the space of E-

states.  As we partition the E-state space, the individual partitions become A-states in the learned A-MDP.  

Similarly, I refer to the non-abstracted MDP underlying the RL task as the E-MDP24.  Additionally, when 

specifying variables I will use uppercase letters for A-states and lowercase letters for E-states.  E.g., an A-

state might be S while an E-state might be s.  The E-MDP and A-MDP use the same set of actions as the 

original MDP, thus this distinction is not necessary for action variables. 

AMBIL bases its partitioning upon preimages of the current, partially built A-MDP.  The preimage of 

an A-state S for action a is the set of E-states s = {s1, …, sn } that lead to S via action a.  A terminating 

preimage is the set of E-states s = {s1, …, sn } in which action a was taken, resulting in the termination of 

                                                      

 

24 While the E in E-state is shorthand for “example” state, the E in E-MDP has no corresponding meaning.  E-MDP was chosen 

simply to clarify that the E-states are states in the E-MDP. 

Figure 7.2.  A sample A-MDP produced by AMBIL.  First-order logical rules define each A-state, although 

here only propositional logic is used.  Arcs represent action transitions for two actions (one action with solid 

and one with dotted lines).  Arcs show the probability of transitions, given the action, and immediate rewards.  

Value-iteration, with γ=0.9, calculates the Q-value of each state-action pair (not shown).  The maximum Q-

value from each state (shown inside each state) determines the policy for the state. 
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an RL episode with immediate reward of r ± δ.  For instance, the terminating preimage of shots scored in 

a soccer RL task would be all E-states in which the agent shot resulting in a score and an immediate 

reward of +1, thus ending the episode. 

7.1.2 Algorithm Overview  

Algorithm 7.1 presents the AMBIL algorithm and  

Figure 7.3  depicts several stages of the algorithm in operation. When partitioning example space, 

AMBIL begins with an empty A-MDP model.  It then examines all terminating preimages and greedily 

selects one that scores the highest according to a heuristic (see  

Figure 7.3-A).  Once a preimage is selected, AMBIL uses ILP to generalize the E-states in the 

preimage into one or more first-order logical rules, which may include some incorrectly generalized E-

states.  Each rule becomes a single A-state, covering all of the E-states that match its logical rule.  Each 

time AMBIL adds an A-state, it calculates the transition and reward functions for that A-state by 

examining the E-states covered by the rule (see  

Figure 7.3-C).  Then, AMBIL applies value-iteration to obtain the score for each state currently in the 

Algorithm 7.1.  BUILDMODEL 

1. Inputs:   

2.   E     –   Set of example states 

3.  BK   –   Background knowledge expressed in first-order predicate calculus 

4.  

5. Output: 

6.   AMDP –   Learned abstract MDP Model 

7.  

8. Let AMDP = empty model 

9.  

10. While model does not cover sufficient states do 

11.   Score possible preimages and greedily select best one to learn 

12.   Learn rule(s) via inductive logic programming based upon selected preimage, E, and BK 

13.   Add learned rule(s) to AMDP as new A-state 

14.   Estimate AMDP’s reward functions and transition probabilities 

15.   Calculate Q-values for all states in AMDP 

16.  

17. Return AMDP 
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A-MDP.  This process repeats, greedily selecting from all previously unlearned terminating preimages 

and A-state preimages (see  

Figure 7.3-D, E, F) until the A-MDP covers at least a user-specified fraction of the example states.  

 

7.1.3 Preimage Selection 

When constructing an A-MDP, AMBIL greedily selects preimages to define the A-MDP.  These 

preimages consist of E-states not currently covered by some A-state and lead to a previously learned A-

state or a terminating preimage. 
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Figure 7.3.  Sample A-MDP being built in a 2D continuous state space.  (A)  E-states (open dots), reached 

by two actions (solid and dotted arcs).  Actionss reaching filled dots terminated the episode.  (B)  Initial 

terminating preimages considered for learning, with their heuristic scores Hi shown, based upon the 

rewards in the example data.  (C) An A-MDP state learned based upon preimage H2.  Note the A-state S1 

could cover more example states than intended.  Action arcs show the aggregate reward and transition 

functions for S1.  All calculations use γ=1.  (D) Next stage of preimage selection and scoring.  (E) A-MDP 

extended by generalizing preimage H3 into A-state S2.  (F) Final A-MDP after all preimages have been 

generalized.  Note some transitions, such as the top one from S3, may not lead to a learned A-state and are 

placed in a special “uncovered” A-state, with a score of zero.  
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A simple heuristic scores each eligible preimage by an optimistic Q-value using Bellman-backups 

(Bellman, 1957), according to equation (7.1).  The optimistic Q-value represents the expected Q-value of 

the preimage’s constituent E-states.  Thus, the value is the expected reward of a transition from an E- state 

in the preimage to the destination A-state via action a.  This value is optimistic since it assumes AMBIL 

can learn the preimage exactly and the example data is an i.i.d. sample of all possible E-states in the 

preimage.  In RL domains, this will not be true, since the distribution of E-states visited depends upon the 

policy of the learner.  In addition, the rule(s) learned to represent the preimage will often cover parts of 

example space that were not part of the preimage.  Even though the optimistic Q-value is inaccurate, it 

serves as a good heuristic to guide preimage selection. 

 Preimage(S, )

( , ) (S)

(Preimage(S, ))
Preimage(S, )

opt

s a

r s a Q

Q a
a









 (7.1) 

Given the current A-MDP, only a subset of the possible preimages are eligible for learning. AMBIL 

ignores preimages learned previously.  Each preimage must contain a minimum number of E-states, 

guaranteeing that enough data will be available for the rule-learning stage.  Preimages must also obtain a 

minimum optimistic Q-value score.  This eliminates preimages unlikely to result in an increase in 

performance. 

AMBIL exploits the relational nature of the domain during preimage selection. It considers preimages 

with multiple actions whenever the user indicates that two or more actions share similar behavior (via a 

AMBIL specific configuration file).  In these cases, the preimage will be parameterized appropriately for 

each action.  For instance, two shooting actions, such as shoot(left) and shoot(right) used in Section 8.5’s 

experiments, might be considered together as shoot(GoalPart), where GoalPart is a logic variable 

parameterizing the portion of the goal the shot was aimed at.  This grouping allows AMBIL to exploit the 

relational nature of some actions.  Even when these groupings exist, AMBIL also considers the single-

action preimages since parameterized concepts may be more difficult to learn or specialized versions of 
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actions might be needed, depending on the task (e.g., shoot(left) and shoot(right) may make sense to 

combine since they are symmetrical actions;  however, shoot(center) may benefit from a specific shoot-

center rule.) 

When AMBIL first creates an A-MDP, the MDP will contain no states to use as a basis for preimages.  

Thus, AMBIL currently uses terminating preimages to initiate the MDP-building process (recall, a 

terminating preimage is a set of E-states s = { s’ | s’ terminates the episode via action a }.)  In the domains 

I have focused on, clearly defined terminating preimages exist (e.g., shots resulting in a scored goal).  

AMBIL could also use a domain’s reward-structure information, if available, to determine the initial 

preimages.  In non-sparse or infinite-horizon domains with no user-provided objective, AMBIL could 

cluster the sampled rewards to determine initial concepts. 

7.1.4 Learning Concepts via ILP 

For each preimage selected, AMBIL uses inductive logic programming (ILP) to generate first-order 

rules that describe the set of E-states that the preimage covers.  Given an E-state, the learned rules classify 

whether or not it is in the preimage, i.e. whether it leads to the relevant A-state via the indicated action or 

not.  Although AMBIL could use simpler propositional methods to learn the preimage classification, ILP 

allows the relational aspect of the domain to be exploited:  similar actions can be parameterized and 

learned as a single concept, similar domain objects can be generalized, and extensive background 

knowledge can be utilized to aid in describing the preimages.  AMBIL uses the ILP system Aleph 

(Srinivasan, 2001).   

AMBIL selects the positive and negative ILP examples based upon the preimage being learned.  For a 

preimage(s, a), the E-states that transition to A-state S via action a, AMBIL collects, as positive examples, 

all E-states where the action a was taken and the following E-state is covered by state S.  The negative 

examples are the E-states where action a was taken and the following state is not covered by S.  E-states 
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in which the action a was not taken are ignored.  There are generally many more negatives than positives.  

AMBIL uniformly subsamples the positive and negative examples to reduce Aleph’s runtime.  In the 

experiments presented, I subsample down to 500 total ILP training examples due to runtime constraints.  

The positive and negative examples AMBIL provides to Aleph are in the form of sets of first-order 

predicates.  As such, the examples can be parameterized to contain additional information.  As mentioned 

previously, this allows AMBIL to learn multiple actions as a single preimage.  For instance, the preimage 

“shots that score a goal” can be parameterized to include the shot destination as an argument, such as 

shot_scored(GoalPart)25.   

Figure 7.4 shows a parameterized rule (defining a single A-state) learned by Aleph for a soccer 

domain involving two shoot actions, shoot(left) and shoot(right).  In this instance, the positives contained 

all examples of shot left or right and scoring.  The negative set contained all examples involving shot left 

or right that did not score. 

 

7.1.5 Building the A-MDP 

Given a learned preimage theory (i.e., a set of rules learned from a single set of positive and negative 

ILP examples) from ILP, AMBIL extends the A-MDP model by adding A-states, one for each rule in the 

                                                      

 

25 The user must specify which actions are similar and what parameters they require, but once that is done, AMBIL handles all of 

the parameterizations automatically. 

Figure 7.4.  Learned rule for shoot_scored preimage, with a parameter to represent both the shoot(left) 

and shoot(right) actions.  The variable GoalPart allows this rule to be applied to shooting at either side of 

the goal, both during learning and problem solving.  Note, the rule name shotThatScored is for illustrative 

purposes only.  Actual rules are have anonymous names. 

shotThatScored(GoalPart) ⟵ 

    x_distance_wrt_kick_at_goal (GoalPart) > 6.0 

 y_distance_wrt_kick_at_goal(GoalPart) > 2.0 

 angle_between_kick_&_goalie(GoalPart) < 129. 
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theory.  While AMBIL treats the separate rules from a theory independently, an A-state could be 

represented by the complete theory.  However, since a separate rule may represent different aspects of the 

learned preimage introducing multiple A-states per learned theory increases the specificity of the final 

model. 

While AMBIL treats the learned model as an A-MDP, the model might not actually be one.  Often, the 

created model violates the Markovian assumptions required by MDPs and might be better characterized 

as a partially observable Markov decision process26 (Sondik, 1971).  However, in my experiments, even 

when the Markovian assumptions were clearly violated, treating the model as an MDP still yielded good 

results and made the calculation of the value function much faster. 

In a proper MDP, states are discrete and disjoint.  However, many of the A-states overlap with either 

other A-states within a single preimage’s theory or other A-states previously added to the MDP.  In order 

to enforce disjointness among A-MDP states, AMBIL orders the states by their creation order, essentially 

creating an IF-ELSEIF-ELSE structure used to determine in which A-state an E-state belongs.  When 

AMBIL adds multiple rules from a single preimage’s theory, the created A-states are ordered according to 

their m-estimate adjusted accuracy on the Aleph training set. 

After adding A-states to the A-MDP, AMBIL calculates the MDP’s state-transition probabilities and 

reward functions.  AMBIL computes the transition probability from MDP A-state S to MDP A-state S’ via 

action a by counting the number of E-states that are covered by S and lead to S’ via action a, normalizing 

these counts by the number of times action a was taken in state S.  Similarly, it calculates the expected 

reward for action a from A-state S by averaging over the rewards seen in the training data. AMBIL 

employs m-estimates to condition the transition probabilities.  I use m = 5 in my experiments.  In some 

                                                      

 

26  Partially observable Markov decisions processes (POMDP) allow states in which a attributes or values of the state are 

unknown.  This allows the Markovian assumptions to be partially circumvented by including “hidden” variables in the state 

definition.  The discussion of POMDPs is beyond the scope of this document. 
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cases, E-states will exist that are not covered by any A-state.  AMBIL assigns these E-states to a special 

default state called the uncovered A-state. 

After it calculates the transition probabilities and rewards, AMBIL performs value-iteration (Sutton & 

Barto, 1998) for all A-states in the A-MDP, except the special uncovered A-state.  The uncovered state’s 

Q-value is some domain-dependent “background” score (e.g., zero).  This discourages actions that would 

lead to the uncovered state.  Although not necessary in our experiments, AMBIL could utilize refinements 

of the standard value-iteration algorithm, such as prioritized sweeping (Moore & Atkeson, 1993), to 

increase the efficiency of the Q-value calculates. 

When adding A-states to the A-MDP, AMBIL must address several additional considerations.  If two 

or more A-states overlap, A-states added later may not have adequate data.  If the amount of data 

available to an A-state is below some minimum threshold (currently, five E-states), AMBIL discards that 

particular A-state. 

On occasion, when AMBIL adds a state, the policy action it recommends (the argmax Q over all 

actions for this state) is not the same as the action of the original preimage.  When the action does not 

match the preimage, this is indicative of one of two things:  either a state does not have adequate data or 

Aleph improperly generalized the preimage.  In these cases, AMBIL could discard the MDP state.  

However, in our experiments, this occurs infrequently and discarding the states is unnecessary. 

7.1.6 The RL Learning Cycle 

The previous sections described the process AMBIL uses to build a single A-MDP (and the associated 

policy).  In the complete learning cycle for a given RL domain, AMBIL first gathers some initial data by 

interacting with the domain.  It then repeatedly generates A-MDPs with a corresponding policy and 

interacts with the domain following the new policy to gather more data.  In each iteration, AMBIL 

attempts to generate a new, higher-scoring policy. 



145 

 

 

  

Since the AMBIL model-building process is computationally expensive, AMBIL may not want to 

rebuild a full model whenever new data is available.  However, incrementally updating the reward and 

transition functions for the A-MDP between full builds is computationally feasible and does result in 

some improvement of the policy.  I use this approach in the empirical results section below. 

To gather initial data AMBIL either explores the domain randomly or uses another RL learning 

algorithm (e.g., standard model-free Q-learning as a bootstrap).  In domains with very sparse rewards 

under a random policy, the bootstrapping process is preferred since it is more likely to obtain informative 

data.  After an A-MDP exists, when interacting with the RL domain, given an E-state, AMBIL determines 

the action to perform by matching the E-state against the A-states in the A-MDP model.  The argmax of 

the Q-values for all actions for a given state determines the policy for that state.  Additionally, as done by 

standard RL algorithms, AMBIL performs a small fraction of exploratory actions. 

7.2 Experiments 

I present empirical results in two domains: a synthetic RL domain and the Breakaway RL domain 

(Maclin, Shavlik, Torrey, Walker, & Wild, 2005), a subtask of the RoboCup soccer domain.  I compare 

AMBIL with the standard SARSA(λ) (Sutton & Barto, 1998) algorithm and with a model-learning 

approach based upon a Dyna-Q architecture (Sutton, 1991).  I chose Dyna-Q as a control because it is an 

established approach for creating models of an environment in order to speed up RL. 

7.2.1 Methodology 

The synthetic domain, shown in Figure 7.5, is a simple five-state, three-action, non-deterministic 

MDP, with two numeric features (drawn from overlapping uniform distributions), and a sparse reward 

structure, with the only reward occurring in one of two terminating states.  I purposefully overlap the 

feature values for each state to simulate uncertainty in determining the underlying MDP state.  I provided 
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the learners no direct knowledge of the underlying MDP.  They must interact with the domain to obtain 

information. 

 

My Breakaway state representation is that of Maclin et al. (2005).  For the Q-learner, I discretize 

these features into 32 overlapping intervals called tiles, each of which becomes a Boolean feature.  Stone 

and Sutton (2001) used this enhancement in RoboCup; tiling allows linear function approximators to 

represent non-linear concepts.  

For Breakaway, the AMBIL background knowledge consists of feature_less_than, 

feature_greater_than, feature_in_range, and feature_not_in_range predicates.  Additionally, the 

background includes predicates that provide information relative to passes and kicks.  For example, 

x_distance_wrt_kick measures the distance from the kicker to an object along the direction of the kick.  

The background knowledge was designed to allow Aleph to discretize the base features. 

All three learning algorithms, AMBIL, SARSA(λ), and Dyna-Q, are implemented as batch learners 

and, as much as possible, I used the same tuning parameters on the standard Q-learner, giving the benefit 

of doubt to the experimental control.  Parameters were tuned on the Q-learning base line and used for the 

other learners.  Each learner “batch learns” every 25 games.  All use an exploration rate of 1% and a 

discount factor of 0.97.  For the Q-learner and Dyna-Q I used a λ setting with λ=1 for recent E-states 

decaying to λ=0 after a fixed number of games (200 for Breakaway, 50 for the synthetic MDP). 

Figure 7.5.  Synthetic domain MDP.  Arcs represent state-transitions for three separate actions.  All 

actions are deterministic.  S4 and S5 are terminating state.  All rewards are zero, except for the single 

action leading from S3 to S5. 

r=1

S1 S2 S3

S4

S5
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Both AMBIL and Dyna-Q use the standard Q-learning algorithm until enough data is available to start 

the respective algorithm.  Fifty and 250 games are played prior to Dyna/AMBIL running for the synthetic 

and Breakaway domains, respectively. 

Dyna-Q creates models that predict the feature values in the next state and the reward function of the 

domain directly from the data and then uses the models to train Q-functions.  I modeled the reward 

function using a C4.5 decision tree (Quinlan, 1993).  Next state feature values are modeled independently 

of each other using support vector regression.  I attempted to make these models as accurate as possible, 

although modeling high-dimensional, real-valued environments is known to be difficult.  The next state 

models created by Dyna-Q are used to create synthetic examples.  These examples are then utilized in the 

same manner as real examples.  I created enough synthetic data to maintain a 4-1 ratio of actual examples 

to synthetic examples. 

For the Breakaway domain, I also attempted to implement an RRL algorithm (Džeroski, De Raedt, & 

Blockeel, 1998), a combination of traditional Q-learning with a relational TILDE-RT (Blockeel & De 

Raedt, 1998) function approximator.  Unfortunately, I was unable to obtain results better than random 

walks with this approach. 

7.2.2 Results 

Figure 7.6 shows the average reward per game for the synthetic domain.  Figure 7.7 shows the 

average reward per game for the 2-on-1 Breakaway domain.  For both domains, I performed 10 runs of 

each algorithm and averaged the results.  The reward per game is averaged over the previous 50 games 

for the synthetic domain and previous 250 games for the Breakaway domain. 
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7.2.3 Discussion 

In both domains, AMBIL outperformed both the Q-learner and the Dyna-Q algorithms, both in terms 

of early learning rate and asymptotic performance.  Several factors contribute to AMBIL’s early 

 

Figure 7.7.  2-on-1 Breakaway; average reward received per game, averaged over previous 250 games. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 250 500 750 1000 1250 1500

A
ve

ra
ge

 S
co

re
 

Games Played 

AMBIL

Q-Learner

Dyna-Q

 

Figure 7.6.  Synthetic Domain; average reward received per game, averaged over previous 50 games. 
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performance gains over the Q-learner.  The background knowledge I provide to AMBIL offers it an 

advantage. I attempted to provide propositionalized versions of the background knowledge to the standard 

Q-learner, but this resulted in worse performance, presumably due to overfitting allowed by the greatly 

increased number of features. 

Beyond the background knowledge, AMBIL’s models, by construction, focus on reaching high-reward 

states immediately and generalizing accurately.  In Q-learning, on the other hand, reward information 

propagates slowly through the model by the means of SARSA(λ) backups and generalization performed 

by function approximation can be inaccurate, especially early in the learning curve.   

The Dyna-Q implementation performed poorly in both domains.  This was due to the difficulty of 

modeling the underlying domain directly.  It is the difficulty of this type of modeling that motivated 

AMBIL’s approach. 

7.3 Related Work 

Reinforcement learning using TD methods has been studied extensively.  Sutton and Barto (1998) 

provide an excellent summary of the basic techniques.  Dietterich and Flann (1995) introduced the 

concept of using chains of preimages in their explanation-based reinforcement learning.  Their action 

chaining approach shares some basic similarities with AMBIL. However, their approach requires an 

accurate definition of the action consequences.  Kersting et al. (2004) create abstract relational MDPs 

with many similarities to our own models.  However, their approach to learning abstract MDPs requires 

the underlying MDP.  I essentially provide a learning method capable of learning a similar abstract MDP 

in complex domains without knowledge of the underlying MDP be provided. 

Morales’ (2003) rQ-learning provides a state-abstraction approach to reinforcement learning, 

although their approach does not use an MDP representation.  Unlike AMBIL, which learns the abstract 

states, Morales’ approach requires user-provided abstractions.  However, rQ-learning supports STRIPs-
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like operators with more richness then AMBIL’s actions and provides a learning algorithm for refining 

these operators. Van Otterlo’s (2003) CARCASS system provides a relational MDP representation, 

similar to AMBIL’s, and provides methods to score and use the resulting MDP based upon interaction with 

the domain.  Like rQ-learning, Van Otterlo’s methods assume user-provided abstractions. 

As an alternative approach to building an MDP, Džeroski et al. (1998) proposed using a relational 

decision tree, such as TILDE , during Q-learning.  Like AMBIL, this allows for both the integration of 

background knowledge and the exploitation of the relational aspects of actions and objects in the domain.  

However, like Q-learning, their approach represents only the long-term expected reward and does not 

model the immediate reward or transition information, while AMBIL does.  Furthermore, they are still 

performing function approximation, which can be difficult for RL.  Lecoeuche (2001) and Driessens et al. 

(2001), among others, further refined this approach. 

Another recent approach to relational reinforcement learning, by Zettlemoyer et al. (2005), also 

models the domain without building an abstract MDP.  Instead, they learn probabilistic STRIPs-like rules.  

A probabilistic planner uses these rules to solve the domain. Like AMBIL, they focus on the state 

transitions resulting from observed actions, although the rule learning process and final model does not 

resemble AMBIL’s. 

7.4 Conclusions and Future Work 

Models of reinforcement-learning tasks can allow faster learning than model-free Q-learning 

methods, as demonstrated in my empirical study, and provide information about the structure of the 

domain.  My algorithm, AMBIL, builds relational abstract MDPs via inductive logic programming 

techniques, focusing on areas of high reward to guide search.  The use of ILP techniques allows our 

models to represent relational domains, with abstraction of both objects and actions, and allows the 

incorporation of background knowledge.   
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Furthermore, this technique illustrates an important aspect of advice giving, namely that ILP 

background knowledge can be automatically acquired.  In essence, the AMBIL algorithm plays the role of 

the non ILP expert, providing “advice” to the ILP system that is then used to learn additional concepts.  

Although not explored here, the rules learned by AMBIL could be used as a transfer mechanism to help 

learn related reinforcement-learning tasks.  Again, this transferred knowledge could be considered as 

advice, produced by AMBIL and used to aid in learning the new task. 
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8 Additional Explorations – Building Relational Macros 

for Transfer in Reinforcement Learning 

In this chapter, I further explore the automated creation of background knowledge for use in transfer 

learning.  Transfer learning approaches take advantage of relationships between similar tasks, using 

knowledge learned in a source task to speed up learning in a related target task. Algorithms that allow 

successful transfer represent progress towards making machine learning as effective as human learning. 

One area in which transfer is often desirable is reinforcement learning (RL), since standard RL 

algorithms can require long training times. The RL domain that I use in this work is the simulated soccer 

project RoboCup (Kitano, 1997).  Several algorithms for transfer in domains like RoboCup have been 

proposed.  In Torrey et. al. (2006), we introduce an approach that transfers skills using inductive logic 

programming (ILP), where a skill is a type of action that the RL learner uses. In this chapter, I extend that 

approach by transferring strategies, which are action plans that may require composing several skills. I 

continue to use ILP to learn strategies, and I represent them with a structure that I call a relational macro. 

A relational macro is a finite-state machine (FSM) that uses first-order logic for decision-making. An 

FSM is a model consisting of a set of nodes and transitions. To use a macro, an RL agent takes transitions 

to move between nodes representing internal states, and it chooses actions to take in each node. Its 

hold ←  true
pass(Teammate) ← 

   isOpen(Teammate)

isClose(Opponent)

¬ isClose(Opponent)
 

Figure 8.1.  A possible strategy for the RoboCup game KeepAway, in which the RL agent in possession of 

the soccer ball must execute a series of hold or pass actions to prevent its opponents from getting the ball. 

The rules inside nodes show how to choose actions. The labels on arcs show the conditions for taking 

transitions. Each node has an implied self-transition that applies by default if no exiting arc applies. 
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choices are determined by first-order logical clauses.  Figure 8.1 shows a simple example of a relational 

macro. 

We use inductive logic programming (ILP) to learn macros because domains like RoboCup are 

inherently relational. To our knowledge, fully relational RL approaches have not yet been successfully 

applied in domains as complex as RoboCup. However, as shown previously (Torrey, Shavlik, Walker, & 

Maclin, 2006), relational information can be successfully transferred between RoboCup tasks. Therefore, 

we continue to use ILP in this approach, describing source-task behavior and relational macros in first-

order logic. 

Relational-macro transfer begins by examining existing source-task episodes and analyzing them to 

learn a successful strategy in the form of a macro. Section 8.3 describes our algorithm for this learning 

stage. There are several possible ways to use the macro to improve learning in the target task; we use it to 

demonstrate the successful strategy, as described in Section 8.5. After a short demonstration period that 

gives the target-task learner a head start, we continue learning the task with standard RL. We call this 

approach Relational Macro Transfer via Demonstration (RMT-D). 

The work presented in this chapter was performed in collaboration with several others and previously 

published (Torrey, Shavlik, Walker, & Maclin, 2007).  I mostly participated in the ILP learning aspects of 

this work, while the much of the design was done by L. Torrey. 

8.1 Related Work in Transfer Learning  

The goal in transfer learning is to speed up learning in a target task by transferring knowledge from a 

related source task. One straightforward way to do this in reinforcement learning is to begin performing 

the target task using the learned source-task models. Taylor et al. (2005) use this type of transfer method, 

which we refer to as model reuse.  



154 

 

 

  

Another approach that has been proposed is to follow source-task policies during the exploration 

steps of normal RL in the target task, instead of doing random exploration. This approach is referred to as 

policy reuse and is performed by Fernandez and Veloso (2006).  Our previous work includes a method 

called skill transfer (Torrey, Shavlik, Walker, & Maclin, 2006). In skill transfer, we learn rules with ILP 

that indicate when the agent chooses to take a single source-task action. There are multiple ways that 

these skills could be used in the target task; we use an advice-taking approach in this previous work. Our 

advice places soft constraints on the target-task solution that can be followed or ignored according to how 

successful they are. Taylor and Stone (2007) also learn a set of rules for taking actions, and they propose 

different advice-taking mechanisms: for instance, they give a Q-value bonus to the advised action.  

There are also approaches for transferring multi-step action sequences, such as those of Perkins and 

Precup (1999) and Soni and Singh (2006).  Known as options, these sequences have their own internal Q-

functions that are followed until they reach a termination state. The target-task learner treats options as 

alternative actions. Croonenborghs et al. (2007) learn relational options for use in relational reinforcement 

learning (RRL). Options are often used in hierarchical RL (Dietterich, 2000) as well as in transfer 

learning. 

We propose to perform transfer by learning relational macros and using them to demonstrate 

successful behavior in the target task. Our approach is related to several of the methods described above. 

It could be viewed as a type of model reuse or policy reuse that creates an abstract version of the source-

task model instead of reusing it directly. Like skill transfer, it uses ILP, but it involves multi-step 

strategies instead of single actions. It shares the idea of transferring sub-policies with option transfer, but 

an option traditionally represents a single policy while a macro contains a separate sub-policy at each 

node. 
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8.2 Executing a Relational Macro  

We have defined a relational macro as a finite-state machine (Gill, 1962).  An FSM models the 

behavior of a system in the form of a directed graph. The nodes of the graph represent states of the 

system, and in our case they represent internal states of the agent in which different policies apply.  

The policy of a node can be to take a single action, such as move(ahead) or shoot(goalLeft), or to 

choose from a class of actions, such as pass(Teammate). In the latter case, a node uses first-order logical 

clauses to decide which grounded action to choose. An FSM begins in a start node and has conditions for 

transitioning between nodes. In a relational macro, these conditions are also sets of first-order logical 

clauses.  

Figure 8.1 show a sample macro from the KeepAway reinforcement task.  When executing this 

macro, a KeepAway agent begins in the initial node on the left. The only action it can choose in this node 

is hold. It remains there, taking the default self-transition, until the condition isClose(Opponent) becomes 

true for some opponent player. Then it transitions to the second node, where it evaluates the 

pass(Teammate) rule to choose an action. If the rule is true for just one teammate player, it passes to that 

teammate; if several teammates qualify, it randomly chooses between them; if no teammate qualifies, it 

abandons the macro and reverts to using the Q-function to choose actions. The receiving teammate then 

becomes the learning agent, and it remains in the pass node if an opponent is close or transitions back to 

the hold node otherwise.  

Figure 8.1 is a simplification in one respect: each transition and node in a macro has an entire set of 

rules, rather than just one rule. This allows us to represent disjunctive conditions. When more than one 

grounded action or transition is possible (when multiple rules match), the agent obeys the rule that has the 

highest score. The score of a rule is the estimated probability that following it will lead to a successful 

game. We estimate these probability scores from source-task data.  
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8.3 Learning a Relational Macro  

We learn a macro by analyzing source-task data. We assume that this data is available because we 

have previously learned the source task and stored the games27 generated during the learning process. The 

method by which the source task was learned is not particularly important, since the data we use only 

consists of states, actions, and rewards.  In reinforcement learning, as the policy become better defined 

and more stable, later games tend to have less variance and there is less variety in the states encountered 

and action taken.   Thus, when selecting the training from the source-task, it is important that the data 

include game from early in the learning curve as well as later to guarantee that the training data is diverse.  

In our system, we include all 3000 games from the source-task learning curve.  

Given this data, we use inductive logic programming (ILP) to characterize successful behavior in the 

source task. Specifically, we use a locally modified version of Aleph (Srinivasan, 2001). Given a set of 

positive and negative training examples, the Aleph algorithm selects a positive “seed” example, builds the 

most specific clause that entails the example within the provided language restrictions, and searches for a 

more general clause that maximizes a provided scoring function.  

The precision of a rule is the fraction of examples it calls positive that are truly positive, and the 

recall is the fraction of truly positive examples that it correctly calls positive. We use the F1 scoring 

function  

      
                

                
 (8.1) 

because as it balances precision and recall, both of which are important when learning macros. We use 

both the heuristic and randomized search algorithms provided by Aleph.  

                                                      

 

27 Each game consists of a sequence of states and actions.  Throughout this research we look at a soccer task and thus the 

sequence of actions a game.  It might be more accurate to call the sequence a trajectory or episode.  
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Recall that a macro consists of a set of nodes along with rulesets for transitions and action choices. 

The simplest algorithm for learning a macro might be to provide Aleph with language restrictions that 

allow it to learn both the structure (i.e., the finite-state machine’s states) and the rulesets (i.e., the 

transition conditions between states) simultaneously. However, this would be a very large search space. 

To make the search more feasible, we separate it into two phases: first we learn the structure, and then we 

learn each ruleset independently. Each phase therefore has its own language restrictions, which we detail 

in the following sections. The overall algorithm is summarized in Algorithm 8.1.  

Note that one final step might be necessary if the actions and features in the source and target tasks 

are not identically named: a mapping from source-task names to target-task names, as in Torrey et al. 

(2005; 2006).  Our approach does not even require the tasks to be completely isomorphic, because we can 

set the Aleph language restrictions so that only source-task elements (i.e., features, actions, etc.) that have 

corresponding target-task elements appear in the macro.  

Algorithm 8.1.  Our RMT-D algorithm for learning a relational macro from a source task 

1. // Phase 1: Structure learning 

2. Collect games from source task 

3. Let Pos  =  high-reward games 

4. Let Neg  =  low-reward games 

5. Learn a macro sequence via ILP that distinguishes Pos from Neg 

6.  

7. // Phase 2: Ruleset learning 

8. Collect games Ggood that contain the macro sequence and are high-reward 

9. Collect games Gbad that are low-reward 

10. For each node N in the macro sequence 

11.   For each action A represented by a node N 

12.    Let Pos =  Ggood states from node N that took action A 

13.    Let Neg  =  (Ggood state from node N that took action B ≠ A)   (Gbad states that ended with action A) 

1.    Learn a ruleset via ILP that distinguishes Pos from Neg 

14.  

15. For each transition T in the macro 

16.   Let Pos =  Ggood states that took transition T 

17.   Let Neg =  (Ggood states that could have taken T and did not)   (Gbad states that ended with action A) 

18.   Learn a ruleset that distinguishes Pos from Neg        
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8.3.1 Structure Learning  

The first phase in our RMT-D algorithm for learning a macro is the structure-learning phase. The 

objective is to find a sequence of actions that distinguishes successful games from unsuccessful games. 

The sequence does not need to separate the games perfectly, and indeed we should not expect it to, 

because it does not yet have any conditions on states. The structure only needs to provide a good starting 

point for the second phase.  

The language restrictions for Aleph in this phase are as follows. Let the predicate actionTaken(G, S1, 

A, P, S2) denote that action A with argument P was taken in game G at step S1 and repeated until step S2. 

Aleph must construct a clause macroSequence(G) with a body that contains a combination of these 

predicates. The first predicate may introduce two new variables, S1 and S2, but the rest must use an 

existing variable for S1 while introducing another new variable S2. In this way, Aleph finds a connected 

sequence of actions that translates directly to a linear node structure.  

We provide Aleph with sets of positive and negative examples, where positives are games with high 

overall reward and negatives are those with low overall reward. For BreakAway, this is a straightforward 

separation of scoring and non-scoring games. For tasks with more continuous rewards, we could set 

thresholds or upper and lower percentiles on the overall reward acquired during a game.  

We store all the clauses that Aleph encounters during its search that separate the positive and negative 

examples with at least 50% accuracy. After the heuristic and randomized searches finish, we take the 

sequence with the highest F1 score as the macro structure.  

For instance, suppose that the scoring BreakAway games consistently look like these examples:  

 Game 1:  move(ahead), pass(a1), shoot(goalRight)  

 Game 2:  move(ahead), move(ahead), pass(a2), shoot(goalLeft) 
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Assuming that the non-scoring games have different patterns than the examples above do, Aleph 

might learn the following clause to characterize a scoring game:  

 

   macroSequence(Game) ← 

    actionTaken(Game, StateA, move, ahead, StateB),  

    actionTaken(Game, StateB, pass, Teammate, StateC),  

    actionTaken(Game, StateC, shoot, GoalPart, gameEnd).  

 

The macro structure corresponding to this sequence is shown in Figure 8.2. The policy in the first 

node will be to take a single action, move(ahead). In the second node the policy will be to consider 

multiple pass actions, and in the third node the policy will be to consider multiple shoot actions. The 

conditions for choosing an action, and for taking transitions between nodes, are learned in the next phase.  

8.3.2 Ruleset Learning  

The second phase in our RMT-D algorithm for learning a macro is the ruleset-learning phase. The 

objective is to describe when transitions and actions should be taken based on the RL state features. We 

learn a ruleset for each transition and each action independently, so that we perform several smaller, in-

depth searches rather than one large search. Because of this, variables in these rules are local to a node 

rather than global to the entire macro.  

The language restrictions for Aleph in this phase are as follows. There is one predicate for each state 

feature of the RL task (shown in Table 8.1). To describe the conditions on state S under which a transition 

should be taken, Aleph must construct a clause transition(S) with a body that contains a combination of 

move(ahead) pass(Teammate) shoot(GoalPart)

 

Figure 8.2.  The structure that corresponds to the example macro clause in Section 8.3.1. 
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these predicates. To describe the conditions under which an action should be taken, Aleph must construct 

a clause action(S, Action, ActionArg).  

 

Aleph may learn some action rules in which the action argument is grounded, such as action(S, move, 

ahead), as well as rules in which the action argument remains a variable, such as action(S, pass, 

Teammate). In the case of the move action in BreakAway the action argument in a rule is always 

grounded, since the original state features do not include useful references to move directions. We could 

have defined additional predicates that did, but we chose to use only the original features. Note that it is 

still possible to have a state move(Direction) for taking multiple move actions, but the rules for choosing a 

grounded move action will use only grounded arguments. 

We provide Aleph with sets of positive and negative examples, consisting of states in source-task 

games that took the transition or action. Consider the macro structure in Figure 8.2; we will describe the 

action datasets for the pass node and the transition datasets for the transition from the move node to the 

pass node. Let Ggood represent the set of high-reward source-task games that contain the macro sequence 

and let Gbad represent the set of low-reward source-task games.  

Table 8.1.  BreakAway task features.  Arguments with capitol letters are logical variables.  A complete list 

of task features is generated by replacing variables with all appropriate constants.  The ClosestDefender 

refers to the defender closest to the attacker currently holding the ball. 

BreakAway features 

distBetween(a0, Player) 

distBetween(Attacker, ClosestDefender) 

angleDefinedBy(Attacker, k0, ClosestDefender) 

xPosition(Object) 

yPosition(Object) 

distBetween(Attacker, goalCenter) 

distBetween(a0, GoalPart) 

angleDefinedBy(GoalPart, a0, goalie) 

angleDefinedBy(topRight, goalCenter, a0) 

distBetween(Attacker, goalie) 

angleDefinedBy(Attacker, a0, goalie) 

timeLeft 
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In the action datasets for the pass node, the positive examples are states in Ggood games that fall into 

that node. The negative examples are states in Gbad games in which the last step of the unsuccessful game 

was the node action, pass. This indicates that the pass action led directly to a negative game outcome. 

Figure 8.3 illustrates some hypothetical action-choice examples.  

In the transition datasets for the transition from the move node to the pass node, the positive examples 

are states in Ggood games that match the pass node and for which the previous state matched the move 

node. A negative example is a state in a Ggood game that does not match the pass node even though the 

previous state matched the move node. Other negative examples are states in Gbad games in which the last 

step of the unsuccessful game was a transition from the move node to the pass node. Figure 8.4 illustrates 

some hypothetical transition examples. 

 

move(ahead) pass(Teammate) shoot(GoalPart)

move(ahead) pass(a1) shoot(goalRight)

Game 1 (scored goal)

move(ahead) pass(a2) shoot(goalLeft)

Game 2 (scored goal)

move(right) pass(a1)

Game 3 (did not score)

move(ahead) pass(a1) shoot(goalRight)

Game 4 (did not score)

positive

positive

negative

 

Figure 8.3.  Training examples (states circled) for pass(Teammate) rules in the second node of the pictured 

macro. The pass states in Games 1 and 2 are positive examples. The pass state in Game 3 is a negative 

example; this game did not follow the macro, but the pass action led directly to a negative game outcome. 

The pass state in Game 4 is not an unambiguous example because a later action may have been responsible 

for the bad outcome. 
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As in the first phase, we store all the clauses that Aleph encounters during the search that classify the 

training data with at least 50% accuracy. However, instead of selecting a single best clause as we did in 

the previous phase, we collect from these a ruleset for each transition and each action. We wish to have 

one strategy (i.e. one finite-state machine), but there may be multiple reasons for making internal choices. 

Our procedure for greedily selecting which clauses are included in a ruleset is summarized in 

Algorithm 8.2. We sort the rules by decreasing precision and walk through the list, adding rules to the 

final ruleset if they increase the set's recall and do not decrease its F1 score. 

We assign each rule a score that may be used to decide which rule to obey if multiple rules match 

while executing the macro. The score is an estimate of the probability that following the rule will lead to a 

successful game. We determine this estimate by collecting training-set games that followed the rule and 

calculating the fraction of these that ended successfully.  

move(ahead) pass(Teammate) shoot(GoalPart)

move(ahead) pass(a1) shoot(goalRight)

Game 1 (scored goal)

move(ahead) shoot(goalLeft)

Game 2 (scored goal)

move(ahead) pass(a1)

Game 3 (did not score)

positive

negative

shoot(goalRight)
 

Figure 8.4.  Training examples (states circled) for the transition from move to pass in the pictured macro. 

The pass state in Game 1 is a positive example. The shoot state in Game 2 is a negative example; the game 

began by following the macro but did not take the transition from move to pass. The pass state in Game 3 

is not an unambiguous example because a later step may have been responsible for the bad outcome. 
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8.4 Transferring a Relational Macro 

Our target-task learner begins by simply executing the macro strategy for a set of episodes, instead of 

exploring randomly as an untrained RL agent would traditionally do. In this demonstration period, we 

generate examples of Q-values: each time the macro chooses an action because a high-scoring rule 

matched, we use the rule score to estimate the Q-value of the action. Recall the rule score is the estimated 

probability that following the rule leads to a successful game. Since BreakAway has Q-values ranging 

from zero to one, we simply set the estimate equal to the rule score (if this were not the case, we could 

multiply the probability by an appropriate scaling factor to fit a larger Q-value range). We also use rule 

scores to produce Q-value estimates for other actions for which rules fired. Finally, we infer that actions 

for which no rules fired had very low Q-values, which in the BreakAway domain we estimate as zero.  

Note that the examples with low estimated Q-values are necessary to ensure that the initial Q-function 

is not overly optimistic in unexplored areas. Driessens and Džeroski (2004) also encountered this problem 

in their work on guidance in RRL; they addressed it by interleaving imitation with exploration. 

For each step of the demonstration we therefore have a Q-value estimate for each action, and via 

support vector regression we use these to learn an initial Q-function for the target task. The demonstration 

period lasts for 100 games in our system, and as usual after each batch of 25 games we relearn the Q- 

Algorithm 8.2.  The RMT-D procedure for selecting the final ruleset for one transition or action. 

1. Let R  =  all rules encountered with > 50% accuracy  

2. Let S  =  R sorted by decreasing precision on the training set  

3. Let T  =  ∅ 

4.  

5. For each rule r ∊ S do 

6.   Let W = T     r } 

7.   If recall(W) > recall(T ) and score(W)   score(T ) then  

8.    Let T = W  

9.  

10. Return FinalRuleset = T 
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function. After 100 games, we continue learning the target task with standard RL. This generates new Q-

value examples in the standard way, and we combine these with the old macro-generated examples as we 

continue relearning the Q- function after each batch. As the new examples accumulate, we gradually drop 

the old examples by randomly removing them at the rate that new ones are being added. 

Since standard RL has to act mostly randomly in the early steps of a task, a good macro strategy can 

provide a large immediate advantage. The performance level of the demonstrated strategy is unlikely to 

be as high as the target-task agent can achieve with further training, unless the tasks are similar enough to 

make transfer a trivial problem, but the hope is that the learner can smoothly improve its performance 

from the level of the demonstration up to its asymptote. If there is limited time and the target task cannot 

be trained to its asymptote, then the immediate advantage that macros can provide may be even more 

valuable in comparison to methods like skill transfer. 

8.5 Experimental 

8.5.1 Methodology 

We present results from transfer experiments with RMT-D in the RoboCup domain. To test our 

approach, we learn a macro from data acquired while training 2-on-1 BreakAway and transfer it to both 3-

on-2 and 4-on-3 BreakAway. We learn the source task with standard RL for 3000 games, and then we 

train the target tasks for 3000 games to show both the initial advantage of the macros and the behavior 

as training continues.  

8.5.2 Results 

Figure 8.5 and Figure 8.6 show our results in 3-on-2 and 4-on-3 BreakAway respectively. We 

compare our approach against Q-learning as well as two related transfer methods: model reuse (Taylor, 

Stone, & and Liu, 2005) and skill transfer (Torrey, Shavlik, Walker, & Maclin, 2006). Each curve in the 
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figure is an average of 25 runs and has points smoothed over the previous 500 games to smooth over 

the high variance in the RoboCup domain. For the transfer algorithms, there are five target-task runs 

generated from each of five source-task runs, to allow for variance in both stages of learning. 

Our agents in 2-on-1 BreakAway reach a performance asymptote of scoring in approximately 70% of 

the episodes. The macros learned from the 2-on-1 source runs, when executed in 2-on-1 BreakAway, 

score in approximately 50% of the episodes. (A random policy scores in less than 1% of the episodes.) 

The macros therefore appear to capture the majority of the successful behavior of the source task, though 

they do not describe it completely. Capturing source-task behavior more completely, while avoiding 

overfitting, is one topic for future work.  

 

Figure 8.5.  Probability of scoring a goal in 3-on-2 BreakAway, with Q-learning and with three transfer 

approaches that use 2-on-1 BreakAway as the source task. 
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8.5.3 Discussion 

The macros that RMT-D learned from the five source runs all had similar structures. The most 

common version is shown in Figure 8.7. In one of the runs the initial pass node was not included, and 

the ordering of shoot(goalRight) and shoot(goalLeft) varied, as would be expected in the symmetrical 

BreakAway task. The presence of two shoot nodes may seem counterintuitive, but it appears that the RL 

agent uses the first shot as a feint to lure the goalie in one direction, counting on a teammate to intercept 

the shot before it reaches the goal. When it does, the learning agent switches to the teammate in 

possession of the ball and performs the second shot, which is actually intended to score. This tendency of 

RL agents to use actions in unintended (or creative) ways is an indication of the difficulties that can arise 

when learning relational concepts from RL data. 

 

Figure 8.6.  Probability of scoring a goal in 4-on-3 BreakAway, with Q-learning and with three transfer 

approaches that use 2-on-1 BreakAway as the source task. 
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All of the transfer algorithms speed up learning in comparison to Q-learning, but the benefits they 

provide are different. Model reuse and relational macros both provide an advantage in the early 

performance of the target-task learner. RMT-D produces a larger advantage in these scenarios than model 

reuse does, and it scales better as the distance between the source and target grows. Skill transfer provides 

no initial benefit, but then develops a steady advantage over Q-learning. During the middle section of the 

learning curve it performs slightly better than RMT-D before they all converge at the asymptote.  

In pointwise t-test comparisons at the 99% confidence level, the RMT-D curve is significantly 

above the model-reuse curve for the first 1100 episodes in Figure 8.5 and 1425 episodes in Figure 8.6. 

The RMT-D curve is significantly above the skill-transfer curve for the first 575 episodes in Figure 8.5 

and 875 episodes in Figure 8.6. The skill-transfer curve is significantly above the RMT-D curve at just 

one point in Figure 8.5 (at 1825 episodes) and never in Figure 8.6, and the model-reuse curve is never 

significantly above the RMT-D curve in either figure.  

We also tried an algorithm that combines skill transfer via advice with RMT- D. The combination is 

straightforward: we begin by demonstrating the macro as in RMT-D, and we incorporate advice when 

learning the Q-function as in skill transfer. This produces a learning curve (not shown) that is not 

significantly different from the RMT-D curve. The substantial early effects of transferring a macro via 

demonstration apparently overwhelm the effects of skill-transfer advice. 

move(Teammate) move(Direction) shoot(goalRight) shoot(goalLeft)

 

Figure 8.7.  One of the five macro structures learned from 2-on-1 BreakAway runs. There are between 10 

and 20 rules associated with each transition and action, so those are not shown. 
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8.6 Conclusions and Future Work  

I described an approach for transferring relational macros from a source task that gives the target-task 

learner a significant head start.  Our relational-macro approach makes extensive use of ILP during 

learning, demonstrating ILP in applications, i.e., transfer and reinforcement learning, not typically 

associated with ILP.    As with the work presented in Chapter 7, the use of relational macros for transfer 

can be considered a form of advice giving in which the ILP-learned relational macro is the advice.  This 

again highlights the power of using relational advice along with ILP. 

Although not investigated here, one interesting future direction would be to further refine the 

relational macro after transferring it to the target task.  The refinement might take the form of updating 

the parameters or structure of a macro based on early experience in the target task or might entail learning 

a completely new relational macro.  In this second scenario, instead of using the transferred macro to 

demonstrate a good policy, the transferred macro could be provided to the target-task learner as advice.   

Other possible extensions to this work include alternative macro designs that may capture the source-

task behavior more completely. While a single linear action sequence appears to explain the majority of 

our agents' success in the source task, other configurations might perform better.  Using probabilistic 

approaches, such as statistical relational learning, to estimate probabilities and to make decisions from 

rulesets would also be an interesting extension. 

Finally, our RMT-D algorithm is most effective when the user is confident that the source-task 

strategy is a reasonable approximation of a good target-task strategy. However, relational macros might 

be applicable in more distant transfer scenarios, such as when only part of a source-task strategy is useful 

in a target task. This might require alternative approaches to applying the relational macros in the target 

task, which might again involve a form of refinement of the original relational macro, as mentioned 

above. 
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9 Conclusions 

Relational supervised learning approaches, such as inductive logic programming (ILP), can be 

powerful learning tools.  However, these approaches are generally difficult to use, requiring in-depth 

expertise.  This thesis presents my original research aimed at reducing the level of expertise necessary to 

employ these algorithms.  The complexity of relational approaches stems primarily from three different 

tasks:   

1. Specify background knowledge.   

2. Define the hypothesis space. 

3. Select and tune required parameters. 

In Chapter 4, I examined an approach that addresses the creation of background knowledge and 

hypothesis-space specification by experts whose expertise lies outside of ILP.  I based the approach on an 

advice-taking paradigm, allowing the user to provide advice as to why specific examples in an ILP 

problem are either positive or negative.  Since the advice pertains to specific examples, the user does not 

need to understand logic programming nor ILP.  My approach translates the provided advice into 

generalized background knowledge usable by the ILP system.  Additionally, I generate the required 

hypothesis space specification automatically, alleviating the need for the user to understand that aspect of 

ILP. 

In Chapter 5, I further extended my advice-taking approach by examining the use a human-computer 

interface (HCI).  The HCI further reduces the difficulty of providing advice.  I proposed an iterative 

method of learning with advice taking, in which the user can repeatedly specify advice, followed 

immediately by learning and evaluation of the learned model, after which the user can provide further 

advice (or refine previously provided advice).  This approach can take advantage of probabilistic 

relational learning algorithms to assist the user in determining which examples where highly misclassified 
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and need to be corrected the most.  Additionally, I introduced the intelligence, surveillance, and 

reconnaissance (ISR), an important application that demonstrates the benefits of this iterative HCI advice-

taking approach. 

In Chapter 6, I presented an automated method, the ONION, for tuning the ILP parameters.  The 

approach uses an iterative-deepening style search, iteratively expanding the search space, trying different 

parameter combinations, and stopping when the ILP learns an acceptable theory.  I showed that the 

ONION algorithm performs well without any user interaction.  This approach again relieves the burden of 

the user when it comes to configuring and running ILP. 

Future Work 

Although my contributions solve some of the difficulties of using ILP, there are still many aspects of 

ILP learning that could be improved through further research.  First, while the automated generation of 

background knowledge through advice-giving is a powerful mechanism, the approach has limitations.  

One of the major limitations is that the advice can often be ambiguous.  In the current approach, I resolve 

this introducing multiple interpretation of the advice as background knowledge and allowing the ILP 

search process to determine the interpretation that fits the data.  However, the number of interpretations 

grows exponentially as the complexity of the advice grows, limiting the effectiveness of this approach.  A 

better solution might be to allow the user to provide information to determine which interpretations are 

likely to be the correct ones.  Additional research should examine what that additional information might 

be and how the user might specify it, while keeping in the spirit of not forcing the user to understand the 

underlying ILP algorithm. 

Another open area of study is how to expose the underlying power of ILP to the user, again without 

forcing the user to understand the underlying algorithm.  My current approach necessarily hides much of 

the underlying ILP configuration, but in doing so, some of the power of ILP is lost.  This is a particularly 

difficult problem, but I believe an HCI approach might again be useful, perhaps by presenting the user 
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with feedback during the search and allowing the user to adjust how the search progress, essentially 

changing the underlying configuration according to the input from the user. 

Finally, and perhaps most importantly, it would be advantageous to apply my advice-taking paradigm 

to a more diverse set of relational algorithms.  Statistical relational learning (SRL) algorithms (Getoor & 

Taskar, 2007) that combine logical and probabilistic techniques present many of the same difficulties for 

the non-expert user that ILP does.  In some cases, my techniques apply directly to SRL algorithms with 

little change, as I demonstrated with bRDNs (Natarajan, Khot, Kersting, Gutmann, & Shavlik, 2010).  In 

other cases, additional work is needed to determine how to apply this work to these algorithms. 

Overall Conclusion 

My contributions, considered together and validated on multiple diverse testsets, provide solutions for 

many of the issues encountered when using ILP.  The advice-taking paradigm is easily understood by non 

ILP experts, especially when the advice pertains to specific examples.  The addition of an HCI alleviates 

the need for the non ILP expert to understand the ILP configuration file format or syntax while providing 

direct feedback to the user, further assisting in learning.  The ONION alleviates the last major difficulty by 

providing automated parameter tuning. 
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Nomenclature 

Term Domain† Definition 

accessor FOL Informally, a literal in a logical rule that introduces a variable representing the 

property of an entity.  For instance, color(ACar, Color) would access the color 

property for the ACar entity. 

action RL A Markov decision process element that represents one of the possible choices an 

agent can select at each time step.   

agent RL An entity that selects actions to perform, typically according to a learned policy. 

background 

knowledge 

ILP The set of logical statements that are believed to be true in a ILP problem.  Used to 

determine if a given learned rule or theory entails an example.  

Bellman equation RL An equation recursively defining the expected reward value of an RL state or state-

action pair.  

Bellman-backups RL A sequence of recursive applications of the Bellman equation. 

body ILP The set of negated literals in a definite clause corresponding to the antecedent of the 

definite clause when in implication form. 

boosted 

relational 

dependency 

networks 

(bRDN) 

 A specific classification supervised learning algorithm that uses first-order logic 

rules and graphical models to provided probability based classification of examples 

(Natarajan, Khot, Kersting, Gutmann, & Shavlik, 2010). 

bootstrap 

learning 

 A learning approach in which simple concepts are learned first, followed by more 

difficult concepts that use (i.e., bootstrap from) the simpler concepts. 

class  One of two or more categories that a classification algorithm attempts to distinguish 

between. 

classification  A supervised learning method where the example labels consist of two or more 

classes and the goal is to learn a model that distinguishes between the classes. 

clause ILP A disjunction of positive and negative literals.  Informally, shorthand for a Horn 

clause or a definite clause, depending on context. 

clause learner ILP In an ILP algorithm, the inner-most loop that learns individual rules in the form of 

definite clauses. 

covered ILP Given a rule (or theory), an ILP examples is covered if the rule (or theory) and 

background knowledge entails the example.   

decision 

boundary  

 The separating boundary between two classes in classification supervised learning. 

definite clause ILP A Horn clause with exactly one positive literal. 

determination ILP A configuration parameter specifying a predicate symbol to include in the ILP 

search space, i.e., a literal that may appear in the body of a learned ILP rule. 

error of omission  A mistake in which knowledge is omitted. 
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Term Domain† Definition 

fact ILP Informally, a definite clause consisting of a single positive literal.  Typically used 

to distinguish between definite clauses with and without a body in background 

knowledge (i.e., a fact versus a rule.) 

feature 

description 

 The information detailing a single supervised learning example.  

feature space  The space of all possible feature descriptions for a given supervised learning task. 

feature vector  See fixed-length feature vector. 

fixed-length 

feature vector 

 A feature description of an example that consists of n feature values, where n is 

fixed for all examples in a given learning task. 

flip-flopping   Informally, the processes of swapping the positive and negative examples sets 

during ILP in order to learn a theory representing the negation of the target concept. 

function 

approximator 

RL A regression function, typically used to estimate a Q-value given an input state and 

action. 

goal ILP A definite clause consisting of only negated literals.  In SLD resolution, a query to 

be resolved. 

grid search  A parameter-tuning approach where the cross-product of all possible parameter 

combinations is exhaustively evaluated to find the best parameter settings. 

Horn clause ILP A clause containing a set of disjunctive literals with at most one positive literal and 

any number of negated literals.  

kernel  A positive definite function k(x,y) representing an inner-product between x and y. 

knowledge-based 

support vector 

machine (KB-

SVM) 

 An extension to support vector machines that incorporates additional knowledge 

when learning a model.  The knowledge takes the form of inequalities specifying 

the class for regions of the search space. 

label  In classification, the class of an example.  In regression, the real value associated 

with an example. 

literal FOL Either the negation or non-negation of an atomic formula. 

logic program FOL A list of logical statement that, along with an associated logical resolution 

semantics (e.g., SLD resolution), which allows the truth value of a goal statement to 

be evaluated.  

Markov decision 

process 

 A model formally describing a reinforcement-learning environment, consisting of a 

5-tuple {S, A, P, R,  } with a set S of states, a set A of actions, a probability 

distribution P, a reward function R, and a discount factor  ∈ (    .   

maximum-

margin 

 A supervised learning technique that attempts to find the decision boundary that 

separates the example classes while maximizing the minimum distance between the 

boundary and examples. 

max-margin  See maximum-margin. 

misclassification  An incorrectly classified example. 

model-based RL Reinforcement learning techniques that attempt to learn a model of the underlying 

MDP. 
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Term Domain† Definition 

model-free RL Reinforcement learning techniques that do not attempt to learn a model of the 

underlying MDP, typically learning a value-function or Q-function directly. 

modes ILP Constraints applied to the arguments of candidate literals in the ILP search space, 

controlling both the type of an argument and its possible value. 

parameter  A configuration value for an algorithm that controls certain aspects of the 

algorithm.  Typically either specified by the user or tuned through some automated 

method.  

policy RL A function π : S   A mapping states to action.  Used to determine the action taken 

by an RL agent for any given state. 

Q-function RL A function Q : S × A     that maps a given state and action to the expected 

discounted reward for taking the action from the state. 

regression   A form of supervised learning in which the examples labels are real values and the 

learned function maps examples to real values. 

relevance 

strength 

ILP An indicator attached to literals in the ILP search space to indicate how likely they 

are to occur in the learned rules. 

reward RL The real-valued signal provided to an RL learning agent according to the reward 

function R : S × A      f the MD   

supervised 

learning 

 A form of machine learning where the input is a training set of examples and their 

associated label, possibly along with additional information, and the output is a 

model that predicts a label for (possibly unseen) examples. 

target ILP The predicate symbol of the examples in an ILP task. 

target predicate ILP See target. 

theory ILP A collection of definite clauses rules logically conjoined.  Used to represent 

disjunctive concepts. 

theory learner ILP A loop in the ILP learning process that repeated calls a clause learner and 

assembles the returned clauses into a single theory. 

transfer learning RL A form of learning in which information is extract from a source task in order to 

learn a target task. 

uncovered ILP Given a rule (or theory), an ILP examples is uncovered if the rule (or theory) and 

background knowledge does not entail the example.   

WILL ILP The Wisconsin Inductive Logic Learner. 

† FOL   F r t-Order Logic.  RL = Reinforcement Learning.  ILP = Inductive Logic Programming. 
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