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Abstract

Strong branching is an effective branching technique that can significantly reduce the size of
the branch-and-bound tree for solving Mixed Integer Nonlinear Programming (MINLP) prob-
lems. The focus of this paper is to demonstrate how to effectively use “discarded” information
from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such
as branching-based linearizations, various forms of disjunctive inequalities, and mixing-type
inequalities are all discussed. The inequalities span a spectrum from those that require almost
no extra effort to compute to those that require the solution of an additional linear program.
In the end, we perform an extensive computational study to measure the impact of each of
our proposed techniques. Computational results reveal that existing algorithms can be signif-
icantly improved by leveraging the information generated as a byproduct of strong branching
in the form of valid inequalities.
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1 Introduction

In this work, we study valid inequalities derived from strong branching for solving the convex
mixed integer nonlinear programming (MINLP) problem

zminlp = minimize f(x) (1)

subject to gj(x) ≤ 0, ∀j ∈ J,

x ∈ X, xI ∈ Z|I|.

The functions f : X → R and gj : X → R ∀j ∈ J are smooth, convex functions, and the set

X
def= {x ∈ Rn

+ | Ax ≤ b} is a polyhedron. The set I ⊆ {1, . . . , n} contains the indices of discrete
variables, and B ⊆ I is the the index set of binary variables.

In order to have a linear objective function an auxiliary variable η is introduced, and the
nonlinear objective function is moved to the constraints, creating the equivalent problem

zminlp = minimize{η : (η, x) ∈ S, xI ∈ Z|I|} (2)

where

S = {(η, x) ∈ R×X | f(x) ≤ η, gj(x) ≤ 0 ∀j ∈ J }.

We define the set P = {(η, x) ∈ S | xI ∈ Z|I|} to be the set of feasible solutions to (2).
Branch and bound forms a significant component of most algorithms for solving MINLP

problems. In NLP-based branch and bound, the lower bound on the value zminlp comes from the
solution value of the nonlinear program (NLP) that is the continuous relaxation of (2):

znlpr = min{η : (η, x) ∈ S}. (3)

In linearization-based approaches, such as outer-approximation [16] or the LP/NLP branch-and-
bound algorithm [30], the lower bound comes from solving a linear program (LP), often called the
master problem that is based on a polyhedral outer-approximation of P:

zmp(K) =min η (4)

s.t. η ≥ f(x̄) +∇f(x̄)T (x− x̄) ∀x̄ ∈ K,

gj(x̄) +∇gj(x̄)T (x− x̄) ≤ 0 ∀j ∈ J,∀x̄ ∈ K,

x ∈ X,

where K is a set of points about which linearizations of the convex functions f(·) and gj(·) are
taken. For more details on algorithms for solving convex MINLP problems, the reader is referred
to the surveys [11, 20].

Regardless of the bound employed by the branch-and-bound algorithm, algorithms are required
to branch. By far the most common branching approach is branching on individual integer
variables. In this approach, branching involves selecting a single branching variable xi, i ∈ I such
that in the solution x̂ to the relaxation (3) or (4), x̂i 6∈ Z. Based on the branching variable, the
problem is recursively divided, imposing the constraint xi ≤ bx̂ic for one child subproblem and
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xi ≥ dx̂ie for the other. The relaxation solution x̂ may have many candidates for the branching
variable, and the choice of branching variable can have a very significant impact on the size of
the search tree [27, 3]. Ideally, the selection of the branching variable would lead to the smallest
resulting enumeration tree. However, without explicitly enumerating the trees coming from all
possible branching choices, choosing the best variable is difficult to do exactly. A common heuristic
is to select the branching variable that is likely to lead to the largest improvement in the children
nodes’ lower bounds. The reasoning behind this heuristic is that nodes of the branch-and-bound
tree are fathomed when the lower bound for the node is larger than the current upper bound, so
one should select branching variables to increase the children nodes’ lower bounds by as much as
possible.

In the context of solving the Traveling Salesman Problem, Applegate et al. [4] propose to
explicitly calculate the lower bound changes for many candidate branching variables and choose
the branching variable that results in the largest change for the resulting child nodes. This method
has come to be known as strong branching. Strong branching or variants of strong branching, such
as reliability branching [3], have been implemented in state-of-the-art solvers for solving mixed
integer linear programs, the special case of MINLP where all functions are linear.

For MINLP, one could equally well impose the extra bound constraint on the candidate branch-
ing variable in the nonlinear continuous relaxation (3). We call this type of strong branching,
NLP-based strong branching. In particular, for a fractional solution x̂, NLP-based strong branch-
ing is performed by solving the two continuous nonlinear programming problems

η̂0
i = minimize{η : (η, x) ∈ S0

i } (NLP 0
i )

and
η̂1

i = minimize{η : (η, x) ∈ S1
i } (NLP 1

i )

for each fractional variable index i ∈ F
def= {i ∈ I | x̂i /∈ Z}, where S0

i = {(η, x) ∈ S | xi ≤ bx̂ic}
and S1

i = {(η, x) ∈ S | xi ≥ dx̂ie}. The optimal values of the subproblems (η0
i , η

1
i ∀i ∈ F ) are

used to choose a branching variable [2, 27].
In the LP/NLP branch-and-bound algorithm, the NLP continuous relaxation (3) is not solved

at every node in the branch-and-bound tree, although it is typically solved at the root node.
Instead, the polyhedral outer-approximation (4) is used throughout the branch-and-bound tree.
The outer-approximation is refined when an integer feasible solution to the current linear relax-
ation is obtained. Since the branch-and-bound tree is based on a linear master problem, it is not
obvious whether strong branching should be based on solving the nonlinear subproblems (NLP 0

i )
and (NLP 1

i ) or based on solving the LP analogues to these where the nonlinear constraints are
replaced by the current linear outer approximation. However, our computational experience in
Section 4.3 is that even when using a linearization-based method, a strong-branching approach
based on solving NLP subproblems can yield significant reduction in the number of nodes in
a branch-and-bound tree. Leyffer [26] also has given empirical evidence of the effectiveness of
NLP-based strong branching for solving convex MINLP problems.

On the other hand, using NLP subproblems for strong branching is computationally more
intensive than using LP subproblems, so it makes sense to attempt to use information obtained
from NLP-based strong branching in ways besides simply choosing a branching variable. In this

3



work, we describe a variety of ways to transfer strong branching information into the child node
relaxations. The focus of our work will be on improving the implementation of the LP/NLP
branch-and-bound algorithm in the software package FilMINT [1]. The information may be
transferred to the child relaxations by adding additional linearizations to the master problem (4) or
through the addition of simple disjunctive inequalities. We demonstrate the relation of the simple
disjunctive inequalities we derive to standard disjunctive inequalities. We derive and discuss
many different techniques by which these simple disjunctive strong branching inequalities may
be strengthened. The strengthening methods range from methods that require almost no extra
computation to methods that require the solution of a linear program. In the end, we perform an
extensive computational study to measure the impact of each of our methods. Incorporating these
changes in the solver FilMINT results in a significant reduction in CPU time on the instances in
our test suite.

The remainder of the paper is divided into 4 sections. Section 2 describes some simple meth-
ods for using inequalities generated as an immediate byproduct of the strong branching process.
Section 3 concerns methods for strengthening inequalities obtained from strong branching. Sec-
tion 4 reports on our computational experience with all of our described methods, and Section 5
offers some conclusions of our work.

2 Simple Strong Branching Inequalities

In this section, we describe elementary ways that information obtained from the strong branching
procedure can be recorded and used in the form of valid inequalities for solving MINLP problems.
The simplest scheme is to use linearizations from the NLP subproblems. Alternatively, valid
inequalities may be produced from the disjunction, and these inequalities may be combined by
mixing.

2.1 Linearizations

When using a linearization-based approach for solving MINLP problems, a simple idea for ob-
taining more information from the NLP strong branching subproblems (NLP 0

i ) and (NLP 1
i ) is

to add the solutions to these subproblems to the linearization point set K of the master problem
(4).

There are a number of reasons why using linearizations about solutions to (NLP 0
i ) and

(NLP 1
i ) may yield significant computational benefit. First, the inequalities are trivial to ob-

tain once the NLP subproblems have been solved; one simply has to evaluate the gradient of the
nonlinear functions at the optimal solutions of (NLP 0

i ) and (NLP 1
i ). Second, the inequalities

are likely to improve the lower bound in the master problem (4) after branching. In fact, if
these linearizations are added to (4), then after branching on the variable xi, the lower bound
zmp(K) will be at least as large the bound obtained by an NLP-based branch-and-bound algorithm.
Third, optimal solutions to (NLP 0

i ) and (NLP 1
i ) satisfy the nonlinear constraints of the MINLP

problem. Computational experience with different linearization approaches for solving MINLP
problems in [1] suggests that the most important linearizations to add to the master problem (4)
are those obtained at points that are feasible to the NLP relaxation. Finally, depending on the
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branching strategy employed, using these linearizations may lead to improved branching decisions.
For example, our branching strategy, described in detail in Section 4.1, is based on pseudocosts
that are initialized using NLP strong branching information, but are updated based on the current
polyhedral outer approximation after a variable is branched on. Thus, the improved polyhedral
outer approximation derived from these linearizations may lead to improved pseudocosts, and
hence better branching decisions.

2.2 Simple disjunctive inequalities

Another approach to collecting information from the strong branching subproblems (NLP 0
i ) and

(NLP 1
i ) is to combine information from the two subproblems using disjunctive arguments. We

call the first very simple inequality a strong branching cut (SBC). We omit the simple proof of its
validity.

Proposition 1 The strong branching cut (SBC)

η ≥ η̂0
i + (η̂1

i − η̂0
i )xi (5)

is valid for the MINLP (2), where i ∈ B, and η̂0
i , η̂1

i are the optimal solution values to (NLP 0
i )

and (NLP 1
i ), respectively.

Similar inequalities can be written for other common branching disjunctions, such as the GUB
constraint ∑

i∈S

xi = 1, (6)

where S ⊆ B is subset of binary variables.

Proposition 2 Let (6) be a constraint for the MINLP problem (2). The GUBSBC inequality

η ≥
∑
i∈S

η̂1
i xi (7)

is valid for (2), where η̂1
i is the optimal solution value to (NLP 1

i ) for i ∈ S.

If the instance contains a constraint of the form
∑

i∈S xi ≤ 1, then a slack binary variable can be
added to convert it to the form of (6), so that (7) may be used in this case as well.

The simple SBC (5) can be generalized to disjunctions based on general integer variables.
The following result follows by using a convexity argument and a disjunctive argument based on
the disjunction xi ≤ bx̂ic or xi ≥ dx̂ie, for some integer variable xi whose relaxation value x̂i is
fractional. A complete proof of Lemma 1 can be found in the Ph.D. thesis of Kılınç [24].

Lemma 1 Let i ∈ I and k ∈ Z. The strong branching cut

η ≥ η̂0 + (η̂1 − η̂0)(xi − bx̂ic)

is valid for (2), where η̂0 and η̂1 are the optimal solution values to (NLP 0
i ) and (NLP 1

i ), respec-
tively.

5



2.3 Mixing Strong Branching Cuts

Mixing sets arose in the study of a lot-sizing problem by Pochet and Wolsey [29] and were
systematically studied by Günlük and Pochet [22]. A similar set was introduced as a byproduct
of studying the mixed vertex packing problem by Atamtürk, Nemhauser, and Savelsbergh [5].

A collection of strong branching inequalities (5) can be transformed into a mixing set in a
straightforward manner. Specifically, let B̂ ⊆ B be the index set of binary variables on which
strong branching has been performed, and let δi = η̂1

i − η̂0
i be the difference in objective values

between the two NLP subproblems (NLP 0
i ) and (NLP 1

i ). Proposition 1 states that the SBC
inequalities

η ≥ η̂0
i + δixi ∀i ∈ B̂ (8)

are valid for the MINLP problem (2). Without loss of generality, assume that δi ≥ 0, for otherwise,
one can define x̃i = 1− xi, δ̃i = −δi, and write (8) as

η ≥ η̂1
i + δ̃ix̃i,

which has δ̃i ≥ 0. Since δi ≥ 0, the value

η
def= max

∀i∈B̂
η̂0

i ≤ η

is a valid lower bound for the objective function variable η. Furthermore, by definition, the
inequalities

η ≥ η + σixi ∀i ∈ B̄ (9)

are valid for (MINLP), where σi = η̂1
i − η and B̄ = {i | σi > 0, i ∈ B̂}. The inequalities (9) define

a mixing set
M = {(η, x) ∈ R× {0, 1}|B̄| | η ≥ η + σixi ∀i ∈ B̄}. (10)

Proposition 3 is a straightforward application of the mixing inequalities of [22] or the star inequal-
ities of [5] and demonstrates that the inequalities, which we call MIXSBC, are valid for M, thus
valid for the feasible region P of the MINLP problem.

Proposition 3 ([5, 22]) Let T = {i1, . . . , it} be a subset of B̄ such that σi(j−1)
< σij for j =

2, . . . , t. Then the MIXSBC inequality

η ≥ η +
∑
ij∈T

θijxij (11)

is valid for M, where θi1 = σi1 and θij = σij − σij−1 for j = 2, . . . , t.

If a MIXSBC inequality (11) is violated by a fractional solution x̂, it may be identified in
polynomial time using a separation algorithm given in [5] or [22].
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3 Strengthened Strong Branching Inequalities

The valid inequalities introduced in Section 2 can be obtained almost “for free” using strong
branching information. In this section, we explore methods for strengthening and combining
simple disjunctive inequalities. By doing marginally more work, we hope to obtain more effective
valid inequalities. The section begins by examining the relationship between the simple strong
branching cut (5) and general disjunctive inequalities. A byproduct of the analysis is a simple
mechanism for strengthening the inequalities (5) by using the optimal Lagrange multipliers from
the NLP strong branching subproblems. The analysis also suggests the construction of a cut-
generating linear program (CGLP) to further improve the (weak) disjunctive inequality generated
by strong branching.

3.1 SBC and Disjunctive Inequalities

The SBC (5) is a disjunctive inequality. For ease of presentation, we describe the relationship
only for disjunctions of binary variables. The extension to disjunctions on integer variables is
straightforward and can be found in [24]. Let (η̂0, x̂0) and (η̂1, x̂1) be optimal solutions to the
NLP subproblems (NLP 0

i ) and (NLP 1
i ), respectively. Since f(·) and gj(·) are convex, linearizing

the nonlinear inequalities about the points (η̂0, x̂0) and (η̂1, x̂1) gives two polyhedra

X 0
i =


(η, x)

∣∣∣∣∣∣∣∣∣∣∣

c0x− η ≤ b0

D0x ≤ d0

Ax ≤ b

xi ≤ 0
x ∈ Rn

+


, X 1

i =


(η, x)

∣∣∣∣∣∣∣∣∣∣∣

c1x− η ≤ b1

D1x ≤ d1

Ax ≤ b

−xi ≤ −1
x ∈ Rn

+


(12)

that outerapproximate the feasible region of the two strong branching subproblems. In the de-
scription of the polyhedra (12), we use the following notation for the gradient ∇f(x) ∈ Rn×1, and
Jacobian ∇g(x) ∈ Rn×|J | of the objective and constraint functions at various points:

c0 = ∇f(x̂0)T ,

b0 = ∇f(x̂0)T x̂0 − η̂0,

D0 = ∇g(x̂0)T ,

d0 = ∇g(x̂0)T x̂0 − g(x̂0)

c1 = ∇f(x̂1)T ,

b1 = ∇f(x̂1)T x̂1 − η̂1,

D1 = ∇g(x̂1)T ,

d1 = ∇g(x̂1)T x̂1 − g(x̂1).

We assume that the sets X 0
i and X 1

i are non-empty, for if one of the sets is empty, the bound
on the variable xi may be fixed to its alternative value. Since X 0

i and X 1
i are polyhedra, we may

apply known disjunctive theory to obtain the following theorem.

Theorem 1 [7] The disjunctive inequality

αx− ση ≤ β (13)
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is valid for conv(X 0
i ∪X 1

i ) and hence for the MINLP problem (2) if there exists λ0, λ1 ∈ R|J |
+ , µ0, µ1 ∈

Rm
+ , θ0, θ1 ∈ R+ and σ ∈ R+ such that

α ≤ σc0 + λ0D0 + µ0A + θ0ei, (14a)

α ≤ σc1 + λ1D1 + µ1A− θ1ei, (14b)

β ≥ σb0 + λ0d0 + µ0b, (14c)

β ≥ σb1 + λ1d1 + µ1b− θ1, (14d)

λ0, λ1, µ0, µ1, θ0, θ1, σ ≥ 0. (14e)

One specific choice of multipliers λ0, λ1, µ0, µ1, θ0, θ1, σ in (14) leads to the strong branching
inequality (5).

Proposition 4 Let (η̂0, x̂0) and (η̂1, x̂1) be optimal solutions to the NLP subproblems (NLP 0
i )

and (NLP 1
i ), respectively, satisfying a constraint qualification. Then,

η ≥ η̂0 + (η̂1 − η̂0)xi

is a disjunctive inequality (13).

Proof.
Since both (η̂0, x̂0) and (η̂0, x̂0) satisfy a constraint qualification, there exists Lagrange multi-

plier vectors λ̂h, µ̂h, φ̂h ≥ 0 and a Lagrange multiplier θ̂h ≥ 0, for each h ∈ {0, 1} satisfying the
Karush-Kuhn-Tucker (KKT) conditions

∇f(x̂h) +∇g(x̂h)T λ̂h + AT µ̂h − φ̂h + θ̂hei = 0, (15a)

g(x̂h)T λ̂h = 0, (15b)

(Ax̂h − b)T µ̂h = 0, (15c)

φ̂h(x̂h − h) = 0, (15d)

x̂h
i θ̂h = 0 (15e)

We assign multipliers σ0 = 1, λ0 = λ̂0, µ0 = µ̂0, θ0 = θ̂0 − η̂0 + η̂1 into (14a) and (14c) and
σ1 = 1, λ1 = λ̂1, µ1 = µ̂1, θ1 = θ̂1 + η̂0 − η̂1 into (14b) and (14d) in Theorem 1. Substituting
these multipliers into (14) and simplifying the resulting inequalities using the KKT conditions
(15) demonstrates that the SBC (5) is a disjunctive inequality. The algebraic details of the proof
can be found in [24].

♦

3.2 Multiplier Strengthening

The analogy between the strong branching inequality (5) and disjunctive inequality (13) leads
immediately to simple ideas for strengthening the strong branching inequality using Lagrange
multiplier information. Specifically, a different choice of multipliers for the disjunctive cut (13)
leads immediately to a stronger inequality.
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Theorem 2 Let (η̂0, x̂0) be the optimal (primal) solution to (NLP 0
i ) with associated Lagrange

multipliers (λ̂0, µ̂0, φ̂0, θ̂0). Likewise, let (η̂1, x̂1) be the optimal (primal) solution to (NLP 1
i ) with

associated Lagrange multipliers (λ̂1, µ̂1, φ̂1, θ̂1). Define µ̂∗ = min {µ̂0, µ̂1}, and φ∗ = min {φ0, φ1}.
If (NLP 0

i ) and (NLP 1
i ) both satisfy a constraint qualification, then the strengthened strong

branching cut (SSBC)
η̂0 + (b−Ax)T µ̂∗ + φ̂∗x + (η̂1 − η̂0)xi ≤ η (16)

is a disjunctive inequality (13).

Proof. We substitute the multipliers λh = λ̂h, µh = µ̂h− µ̂∗, h ∈ {0, 1}, σ = 1, θ0 = θ̂0− η̂0 + η̂1,
θ1 = θ̂1 + η̂0 − η̂1 into (14) in Theorem 1. Simplifying the resulting expressions using the KKT
conditions (15) demonstrates the result. Details of the algebraic steps required are given in the
Ph.D. thesis of Kılınç [24].

♦

3.3 Strong Branching CGLP

In Theorem 1, we gave necessary conditions for the validity of a disjunctive inequality for the set
conv(X 0

i ∪ X 1
i ). A most violated disjunctive inequality can be found by solving Cut Generating

Linear Program (CGLP) that maximizes the violation of the resulting cut with respect to a given
point (η̂, x̂):

maximize β − αx̂ + ση̂

subject to α ≤ σc0 + λ0D0 + µ0A + θ0ei,

α ≤ σc1 + λ1D1 + µ1A− θ1ei,

β ≥ σb0 + λ0d0 + µ0b,

β ≥ σb1 + λ1d1 + µ1b− θ1.

λ0, µ0, θ0, λ1, µ1, θ1, σ ≥ 0

(17)

A feasible solution to (17) with a positive objective function corresponds to a disjunctive
inequality violated at (η̂, x̂). However, the set of feasible solutions to CGLP is a cone and needs
to be truncated to produce a bounded optimal solution value in case a violated cut exists. The
choice of the normalization constraint used to truncate the cone can be a crucial factor in the
effectiveness of disjunctive cutting planes. One normalization constraint studied in [8, 9] is the
α-normalization:

n∑
i=1

|αi|+ σ = 1. (αNORM)

The most widely used normalization constraint was proposed by [6] and is called the Standard
Normalization Condition (SNC)[18]:

∑
h∈{0,1}

( |J |∑
j=1

λh
j +

m∑
j=1

µh
j + θh + σ

)
= 1. (SNC)
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The SNC normalization is criticized by Fischetti, Lodi, and Tramontani [18] for its dependence on
the relative scaling of the constraints. To overcome this drawback, they proposed the Euclidean
Normalization ∑

h∈{0,1}

( |J |∑
j=1

‖dh
j ‖λh

j +
m∑

j=1

‖ah
j ‖µh

j + θh + ‖ch‖σ
)

= 1. (EN)

instead of (SNC). We refer reader to [18] for further discussion on normalization constraints and
their impact on the effectiveness of disjunctive inequalities. In Section 4.8 we will report on the
effect of different normalization constraints on our disjunctive inequalities.

3.4 Monoidal Strengthening

Disjunctive cuts can be further strengthened by exploiting integrality requirements of variables.
This method was introduced by Balas and Jeroslow, where they call it monoidal strengthening
[10]. In any disjunctive cut (13) the coefficient of xk, k ∈ I \ {i} can be strengthened to take the
value

α̃k = max{α0
k − θ0dm̂ke, α1

k + θ1bm̂kc}

where

α0
k = σc0

k + λ0D0
k + µ0Ak,

α1
k = σc1

k + λ1D1
k + µ1Ak,

m̂k =
α0

k − α1
k

θ0 + θ1
,

and λ0
k, µ

0
k, θ

0, λ1
k, µ

1
k, θ

1, σ satisfy the requirements (14) for multipliers in a disjunctive inequality.
The notation Dk, Ak represents the kth column of the associated matrix.

3.5 Lifting

The disjunctive inequality (13) can be lifted to become globally valid if generated at a node of
the branch-and-bound tree. Assume that the inequality is generated at a node of the branch-and-
bound tree where the variables in the set F0 are fixed to zero and the variables in the set F1 are
fixed to one. Without of loss generality, we can assume that F1 is empty by complementing all
variables before formulating the CGLP (17).

Let R be the set of unfixed variables and (α, β, λ0, µ0, λ1, µ1, σ) be a solution to (17) in the
subspace where the variables in the set F0 are fixed to zero so that α ∈ R|R|. The lifting coefficient
for the fixed variables is given by Balas et al. [8, 9] as

γj = min{σc0
j + λ0D0

j + µ0Aj , σc1
j + λ1D1

j + µ1Aj}.

Thus, the inequality ∑
j∈R

αjxj +
∑
j∈F0

γjxj − ση ≤ β

is valid for the MINLP problem (2).
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4 Computational Experience

In this section, we report on a collection of experiments designed to test the ideas presented
in Sections 2 and 3 with the end goal of deducing how to most effectively exploit information
obtained when solving NLP subproblems in a strong-branching scheme. Our implementation is
done using the FilMINT solver for convex MINLP problems.

4.1 FilMINT

FilMINT is an implementation of the LP/NLP-Based Branch-and-Bound algorithm of Quesada
and Grossmann [30], which uses the outerapproximation master problem (4). In our experiments,
all strong branching inequalities are added directly to (4). FilMINT uses MINTO [28] to enforce
integrality of the master problem via branching and filterSQP [19] for solving nonlinear subprob-
lems that are both necessary for convergence of the method and used in this work to obtain
NLP-based strong branching information. In our experiments, FilMINT used the CPLEX (v12.2)
software to solve linear programs.

FilMINT by default employs nearly all of MINTO’s enhanced MILP features, such as cutting
planes, primal heuristics, row management, and enhanced branching and node selection rules.
FilMINT uses the best estimate method for node selection [27].

FilMINT uses a reliability branching approach [3], where strong branching based on the current
master linear program is performed a limited number of times for each variable. The feasible region
of the linear master problem (4) may be significant strengthened by MINTO’s preprocessing
and cutting plane mechanisms, and these formulation improvements are extremely difficult to
communicate to the nonlinear solver Filter-SQP. Our approach for communicating NLP-based
strong branching information to the master problem was implemented in the following manner.
For each variable, we perform NLP-based strong branching by solving (NLP 0

i ) and (NLP 1
i ) the

first time the variable is fractional in a relaxation solution. Regardless of the inequalities we
add to the master problem, we solve (NLP 0

i ) and (NLP 1
i ) only once per variable to limit the

computational burden from solving NLP subproblems, which is appropriate in the context of
the linearization-based LP/NLP branch-and-bound algorithm that is used in FilMINT. We then
simply add the strong branching inequalities under consideration to the master problem and then
let FilMINT make its branching decisions using its default mechanism. This affects the bounds in
a manner similar to NLP-based strong branching. For example, for a fractional variable xi, after
adding a simple SBC (5) or linearizations about solutions to (NLP 0

i ) and (NLP 1
i ), when FilMINT

performs LP-based strong branching on xi, the bound obtained from fixing xi ≤ bx̂ic will be at
least η̂0

i , and likewise the bound obtained from fixing xi ≥ dx̂ie will be at least η̂1
i . Note however,

that adding inequalities will also likely affect the value of the relaxation, so the pseudocosts, which
measure the rate of change of the objective function per unit change in variable bound, may also
be affected.

4.2 Computational Setup

Our test suite consists of convex MINLPs collected from the MacMINLP collection [25], the
GAMS MINLP World [13], the collection on the website of the IBM-CMU research group [33],
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and instances that we created ourselves. The test suite consists of 40 convex instances covering a
wide range of practical applications such as multi-product batch plant design problems [31, 35],
layout design problems [32, 14], synthesis design problems [16, 34], retrofit planning [32], stochastic
service system design problems [17], cutting stock problems [23], uncapacitated facility location
problems [21] and network design problems [12]. Characteristics of the instances are given in
Table 1, which lists whether or not the instance has a nonlinear objective function, the total
number of variables, the number of integer variables, the number of constraints, how many of the
constraints are nonlinear, and the number of GUB constraints. We chose the instances so that
no one family of instances is overrepresented in the group and so that each of the instances is not
“too easy” or “too hard.” To accomplish this, we chose instances so that the default version of
FilMINT is able to solve each of these instances using CPU time in the range of 30 seconds to 3
hours.

The computational experiments have been run on a cluster of identical 64-bit Intel Core2 Duo
microprocessors clocked at 3.00 GHz, each with 2 GB RAM. In order to concisely display the
relative performance of different solution techniques, we make use of performance profiles (see
[15]). A performance profile is a graph of the relative performance of different solvers on a fixed
set of instances. In a performance profile graph, the x-axis is used for the performance factor.
The y-axis gives the fraction of instances for which the performance of that solver is within a
factor of x of the best solver for that instance. In our experiments, we use both the number of
nodes in the branch and bound tree and the CPU solution time as performance metrics.

We often use the “extra” gap closed at the root node as a measure to assess the strength of a
class of valid inequalities. The extra gap closed measures the relative improvement in lower bound
at the root node over the lower bound found without adding the valid inequalities. Specifically,
the extra percentage gap closed is

100
(

zCUTS − zmp(K)

zMINLP − zmp(K)

)
,

where zCUTS is the value of LP relaxation after adding inequalities, zmp(K) is the value of LP
relaxation of reduced master problem after preprocessing and default set of cuts of MINTO, and
zMINLP is the optimal solution value.

We summarize computational results in small tables that list the (arithmetic) average extra
gap closed, the number of nodes, and the CPU solution time. The instances for which at least
one solver failed to terminate because of a memory limite are taken out of consideration when
reporting aggregate numbers.

Strong branching inequalities are added in rounds. After adding cuts at a node of the branch-
and-bound tree, the linear program is resolved, and a new solution to the relaxation of the master
problem (4) is obtained. The strong branching subproblem (NLP 0

i ) and (NLP 1
i ) are solved for all

fractional variables in the new solution that have not yet been initialized, and associated strong
branching inequalities are added. If inequalities are generated at a non-root node, they are lifted
to make them globally valid, as explained in Section 3.5. Recall that NLP-based strong branching
is performed at most once for each variable.

We are primarily interested in the impact of using strong branching information to improve
the lower bound of a linearization-based algorithm. Therefore, to eliminate variability in solution
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time induced by the effect of finding improved upper bounds during the search, in our experiments
we input the optimal solution value to FilMINT as a cutoff value and disable primal heuristics.

4.3 Performance of SBC Inequalities and Linearizations

Our first experiment was aimed at comparing elementary methods for exploiting information from
NLP-based strong branching subproblems. The methods chosen for comparison in this experiment
were

• FILMINT: The default version of FilMINT.

• LIN: FilMINT, but with the master problem augmented with linearizations from NLP-based
branching subproblems, as described in Section 2.1.

• SBC: FilMINT, but with the master problem augmented with the simple strong branching
cuts (5).

• PSEUDO: FilMINT, but with an NLP-based strong branching strategy in which strong branch-
ing inequalities are not added. Rather, only the pseudocost value are initialized using the
NLP-based strong branching information.

We included the method PSEUDO to test whether or not using valid inequalities derived
from NLP-based strong branching can yield improvement beyond simply using the information
for branching. In PSEUDO, as in the versions that add strong branching inequalities, we perform
NLP-based strong branching at most once for each variable. However, rather than adding any
strong branching inequalities, we instead simply initialize FiLMINT’s pseudocosts based on the
optimal values of (NLP 0

i ) and (NLP 1
i ). These pseudocosts are then updated based on FiLMINT’s

default update strategy. Thus, although the initial pseudocost information is based directly on
the nonlinear programming relaxation, updates to the pseudocosts are dependent on the outer
approximation that has been obtained in the master problem.

Tables 7 and 8 in the appendix give the performance of each of these methods on each of
the instances in our test suite. The tables are summarized in Figure 1, which consists of two
performance profiles. The first profile uses the the number of nodes in the branch and bound tree
as the solution metric. This profile indicates that all methods that incorporate NLP-based strong
branching information are useful for reducing the size of the branch and bound tree, but also that
using strong branching information to derive valid inequalities in addition to making branching
decisions can further reduce the size. The most effective method in terms of number of nodes is
LIN. The second profile uses CPU time as the quality metric. In this measure, SBC is the best
method, and all methods are at least as good as FILMINT.

The two profiles together paint the picture that simple strong branching cuts (5) can be an
effective mechanism for improving performance of a linearization-based convex MINLP solver.
The SBC inequalities are not as strong as adding all linearizations, but this is not a surprising
result, as the SBC inequalities aggregate the linearization information into a single inequality.
From the results of this experiment, we also conclude that a well-engineered mechanism for in-
corporating “useful” linearizations from points suggested by NLP-based strong branching, while
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Figure 1: Performance Profile of Elementary NLP-based Strong Branching Inequalities
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not overwhelming the linear master problem (4) is likely to be the most effective “elementary”
mechanism for making use of information from NLP-based strong branching subproblems. We
return to this idea in Section 4.6.

4.4 Performance of GUB-SBC Inequalities

A second experiment was designed to test the effectiveness of performing NLP-based strong
branching on the GUB disjunction (6) and using the resulting GUBSBC inequality (7). Of
primary interest is how the method performs compared to using only the disjunction on the
individual binary variables via the simple SBC inequality (5).

In this experiment, if at least one of the variables in a GUB constraint is fractional at a
solution to the master problem (4), then strong branching on the GUB constraint is performed,
and a GUBSBC inequality (7) is generated. In order to generate a GUBSBC inequality, nonlinear
subproblems (NLP 1

i ) are solved for each of the variables in the GUB constraint, regardless of
whether the variable value is fractional. In our implementation, at most one GUBSBC inequality
is generated for each GUB, and the GUBSBC inequalities are generated at the root node only. If
we encounter a fractional binary variable that is not in any GUB constraint, or we are not at the
root node, then a simple SBC inequality (5) is generated for that variable.

In Table 2, we give computational results comparing the relative strength of SBC inequalities
(5) and the GUBSBC inequalities (7). The detailed performance of methods on each instance is
given in Table 9. The comparison is done for 30 instances from our test set of 40 problems for
which there exists at least one GUB constraint in the problem. On average, adding GUBSBC
inequalities closed 19.20% of the gap at root node, and adding only SBC inequalities closed
9.66%. It is then somewhat surprising that the number of nodes required for the two methods
is approximately equal. One explanation of this phenomenon is that FilMINT chooses worse
branching variables when GUBSBC inequalities are introduced to the master problem (4).

While adding GUBSBC inequalities can make a significant positive impact on solving some
instances, our primary conclusion from this experiment is that the GUBSBC inequalities do
not improve the performance of FilMINT more than the SBC inequalities, thus we focused our
remaining computational experiments on evaluating only enhanced versions of SBC inequalities.

4.5 Performance of Mixing Strong Branching Inequalities

We next compared the effectiveness of the mixed strong branching inequalities (MIXSBC) (11)
against the unmixed version (5). There may be exponentially many mixed strong branching
inequalities, so we use the following strategy for adding them to the master problem. First, as
in our of our methods, the NLP subproblems (NLP 0

i ) and (NLP 1
i ) are solved for each fractional

variable xi in the solution to the relaxed master problem (4). The fractional variables for which
(NLP 0

i ) and (NLP 1
i ) have been solved define the mixing set B̄. Next, for each variable in the

mixing set, we add the sparsest MIXSBC inequality for that variable:

η ≥ η + σixi + (σh − σi)xh ∀i ∈ B̄, (18)

where h = argmaxi∈B̄ σi. Note that the sparsest MIXSBC inequality (18) already dominates
the SBC inequality (5). Finally, after obtaining a fractional solution from the relaxation of the

15



master problem, (after adding the inequalities (18)), the two most violated mixing inequalities
are added and the relaxation is resolved. The MIXSBC inequalities are added in rounds until
none are violated or until the inequalities do not change the relaxation solution by a sufficient
amount. Specifically, if

∑
i∈B |x′i−x′′i | < 0.1 for consecutive relaxation solutions x′, x′′, no further

MIXSBC inequalities are added.
In Table 3, we summarize computational results comparing the effect of adding MIXSBC

inequalities (11) with adding only SBC inequalities (5). The detailed performance of each method
on each instance is given in Table 10. The MIXSBC inequalities are significantly stronger than
the SBC inequalities. On average, MIXSBC closed 19.06% of the optimality gap at root node,
and SBC closed only 7.77% of the gap on our test set. Despite this, MIXSBC inequalities perform
worse than SBC in terms of average number of nodes and solution time. An explanation for
this counterintuitive behavior is that the addition of the mixed strong branching inequalities (11)
results in MINTO (and hence FilMINT) performing “poor” updates on the pseudocost values
for integer variables. That is, in subsequent branches, the pseudocosts do not accurately reflect
the true change in objective value if a variable is branched on. Therefore, MIXSBC makes poor
branching decisions, which in turn leads to a larger search tree. For example, MIXSBC closed
62.3% of the gap at the root node for the instance SLay09M and SBC closed only 23.6%. However,
92 seconds and 13,651 nodes are required to prove optimality when using MIXSBC, compared to
only 29 seconds and 6,035 nodes for SBC alone.

4.6 Linearization Strategies

In our computational experiments we were not able to significantly improve performance of strong-
branching inequalities by exploiting GUB disjunctions or by mixing them. We therefore conclude
that, among the strategies for obtaining strong branching inequalities with minimal additional
computational effort, adding linearizations from NLP strong branching subproblems has the most
potential as a computational technique. The performance profiles in Figure 1 indicate that lin-
earizations are very effective in reducing the number of nodes, but often lead to unacceptable
solution times due to the large number of linearizations added to the master problem. Two sim-
ple ideas to improve the performance of linearizations are to add only violated linearizations and
to quickly remove linearizations that are not binding in the solution of the LP relaxation of the
master problem.

In Table 4, we summarize computational results comparing our original linearization scheme
LIN with an improved version denoted by BESTLIN. In BESTLIN, only linearization inequalities
that are violated by the current relaxation solution are added, and if the dual variable for a
linearization inequality has value zero for five consecutive relaxation solutions, the inequality is
removed for the master problem. Full results of the performance of the two methods on each
instance can be found in Table 11. The results show that without degrading the performance of
LIN in terms of the number of nodes, BESTLIN can improve the average solution time from 1,568.3
seconds to 1,078.9 seconds.
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4.7 Performance of Multiplier-Strengthened SBC Inequalities

Initial computational experience with the multiplier-strengthened cuts SSBC (16), introduced in
Section 3.2 suggested that the inequalities in general were far too dense to be effectively used in
a linearization-based scheme. Very quickly, the LP relaxation of the master problem (4) became
prohibitively expensive to solve. Our remedy for these dense cuts was to strengthen only the
coefficients of integer variables. Additionally, after the inequality was generated, the monoidal
strengthening step described in Section 3.4 was performed on the inequalities.

An experiment was done to compare the performance of using the SBC inequalities against
the SSBC inequalities on instances in our test set, and a summary of the results are given in
Table 5. The computational results indicate a slight improvement in both the number of nodes
and the solution time by strengthening the SBC inequalities using multipliers of the NLP-strong
branching subproblems. Full results of the performance of the two methods on each instance can
be found in Table 12.

4.8 Normalizations for CGLP

In Section 3.3, we described three different normalization constraints that are commonly used for
the CGLP (17). We performed a small experiment to compare the relative effectiveness of each in
our context. The performance profiles of Figure 2 summarize the results of comparing disjunctive
inequalities generated by solving the CGLP (17) with the normalization constraints (αNORM)
denoted by SBCGLP-INF, (SNC) denoted by SBCGLP-SNC, and (EN) denoted by SBCGLP-EN.
The performance profiles show that both the standard normalization condition (SNC) and the
Euclidean normalization (EN) perform significantly better than the α-normalization. The results
are consistent with the literature. The performance of (SNC) and (EN) are comparable with
each other, suggesting that the constraints of the instances in our test suite are well-scaled. The
detailed performance of methods on each instance is given in Table 13.

4.9 Comparison of All Methods

We make a final comparison of the methods introduced in the paper. In this experiment, we
compare the methods that performed best in earlier experiments with the default version of
FilMINT. The methods we compare are the following:

• FilMINT: The default version of FilMINT.

• BESTLIN: FilMINT, with the master problem augmented with linearizations from NLP-based
branching subproblems, as described in Section 2.1. The linearization management strategy
introduced in Section 4.6 is employed.

• SSBC: FilMINT, with the master problem augmented with the multiplier-strengthened strong
branching cuts (SSBC) (16).

• SBCGLP-SNC: FilMINT, adding disjunctive inequalities based on solving the CGLP (17) using
the standard normalization condition (SNC).

17



Figure 2: Performance Profile of CGLP with Different Normalization Constraints
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Figure 3: Performance Profile of Best Methods and FILMINT
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The monoidal strengthening step described in Section 3.4 was applied to the inequalities
generated by methods SSBC and SBCGLP-SNC. In Table 6, we list the average number of nodes
and solution time for 38 instances in our test set. (The instances RSyn0820M02M and Safety3
are taken out of consideration when reporting aggregate numbers in Table 6 since SSBC and
SBCGLP-SNC failed to terminate for these instances due to a memory limit). The performance
profiles in Figure 3 show that creating disjunctive inequalities by solving the CGLP (17) with
the standard normalization condition significantly outperforms the other methods. Creating dis-
junctive inequalities by an extra solve of (17) pays dividends both in terms of number of nodes
and solution time. We experienced similar positive effects with other normalization constraints
introduced in Section 3.3 as well. Additionally, both linearizations and SSBC inequalities improve
the performance of default FilMINT substantially. The detailed performance of methods on each
instance is given in Table 14 and Table 15.

5 Conclusions

In this work, we demonstrate how to use “discarded” information generated from NLP-based
strong branching to strengthen relaxations of MINLP problems. We first introduced strong
branching cuts, and we demonstrated the relation of strong branching cuts we derive with other
well-known disjunctive inequalities in the literature. We improved these basic cuts by using La-
grange multipliers and the integrality of variables. We combined strong branching cuts via mixing.
We demonstrated that simple disjunctive inequalities can be improved by additional linearizations
generated from strong branching subproblems. Finally, the methods explained in this paper sig-
nificantly improve the performance of FilMINT, justifying the use of strong branching based on
nonlinear subproblems for solving convex MINLP problems.
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Appendix

For Tables 7-15, if the method could not provide the optimal solution because the solver hit a
memory limit we state the reason with the letter m.

Table 7: Number of Nodes for FILMINT, SBC, LIN and PSEUDO.
Experiment is described in Section 4.3

Problem FILMINT SBC LIN PSEUDO

BatchS151208M 5391 3071 1395 1609
Continued on next page
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Table 7 – continued from previous page
Problem FILMINT SBC LIN PSEUDO

BatchS201210M 3447 2909 1405 1911
Batch Storage10 BM 10 10 6 4 15917 10351 7597 11059
Batch Storage BM 10 10 6 4 21849 11817 9707 15781
CLay0305H 26449 11017 15979 10445
FLay05H 102207 99691 102791 101697
FLay05M 91579 83289 82173 83129
fo7 2 109811 105729 78265 111777
fo7 276547 331499 293427 206665
m7 621027 320671 395459 209605
nd-12 20873 12179 17125 7275
nd-13 24391 8023 7587 6891
nd-14 101813 105107 95321 89597
o7 2 2028675 1567755 1417959 1274499
o7 2675019 2741915 3213077 4634451
RSyn0810M02M 117015 114369 102065 126109
RSyn0810M03M 88593 93341 87963 98585
RSyn0810M04M 156835 136943 87607 92047
RSyn0815M02M 493283 486495 457321 430125
RSyn0820M02M 2157455 m 2032033 m
RSyn0830M02M 825939 903237 763039 1129401
Safety3 3087205 1431767 1869475 1936385
safety no rotation CH 18327 5525 1925 4769
SLay07H 4505 635 359 689
SLay08H 15203 1921 743 1505
SLay09H 82525 12257 2377 15709
SLay09M 16689 6035 493 4899
sssd-16-8-3 2092313 2793721 1279401 m
sssd-17-7-3 1287961 1297181 269459 3452263
sssd-18-7-3 265695 396017 79281 1918463
sssd-20-8-3 3573363 144505 262273 2725971
Syn20M04M 90393 89875 103651 153573
Syn30M03M 49731 50247 43761 177719
Syn30M04M 237847 245963 228451 744635
Syn40M02M 145331 85947 79033 89121
trimloss4 25535 40863 21279 25885
uflquad-15-60 2523 2303 2091 2501
uflquad-15-80 3689 3401 3319 3559
uflquad-20-40 3591 3359 2681 3619
uflquad-25-40 6973 5115 4221 7399
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Table 8: Solution Time for FILMINT, SBC, LIN and PSEUDO.
Experiment is described in Section 4.3

Problem FILMINT SBC LIN PSEUDO

BatchS151208M 52.0 32.0 30.6 29.9
BatchS201210M 43.3 53.3 43.9 34.4
Batch Storage10 BM 10 10 6 4 112.1 92.6 63.0 81.7
Batch Storage BM 10 10 6 4 150.8 99.9 85.1 111.6
CLay0305H 108.7 28.6 96.4 32.3
FLay05H 1702.0 1486.6 1995.6 1425.5
FLay05M 696.6 695.9 726.3 617.1
fo7 2 177.0 163.0 174.9 189.4
fo7 355.6 442.4 535.6 284.2
m7 796.8 336.8 787.8 240.4
nd-12 1499.0 681.8 2814.8 377.4
nd-13 497.8 509.1 1233.2 542.4
nd-14 6222.7 7502.8 10516.8 3618.7
o7 2 3384.4 2580.0 3548.3 2015.1
o7 3797.3 4292.8 6936.7 8728.7
RSyn0810M02M 272.7 279.0 431.5 281.0
RSyn0810M03M 326.5 461.8 654.4 436.3
RSyn0810M04M 746.3 821.7 900.7 639.2
RSyn0815M02M 1126.5 1136.7 1944.3 998.1
RSyn0820M02M 5770.4 m 8433.4 m
RSyn0830M02M 3017.0 3204.5 5623.0 3738.6
Safety3 9063.5 3607.8 6271.4 5779.5
safety no rotation CH 63.4 20.5 13.5 18.3
SLay07H 38.4 8.9 9.4 9.3
SLay08H 197.0 29.8 24.3 28.7
SLay09H 1458.6 194.2 77.8 264.1
SLay09M 93.1 29.2 8.6 32.2
sssd-16-8-3 1106.5 1563.5 2039.2 m
sssd-17-7-3 614.7 602.1 265.0 1431.0
sssd-18-7-3 110.5 185.1 98.9 1609.8
sssd-20-8-3 3317.5 103.2 394.9 3348.6
Syn20M04M 153.1 188.9 396.5 286.0
Syn30M03M 147.0 177.7 264.6 516.7
Syn30M04M 1127.7 1141.5 1730.2 3507.4
Syn40M02M 317.8 213.1 345.3 205.1
trimloss4 36.9 57.0 38.8 42.2
uflquad-15-60 437.4 379.5 446.0 470.0
uflquad-15-80 1220.9 1177.7 1354.1 1265.2
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Table 8 – continued from previous page
Problem FILMINT SBC LIN PSEUDO

uflquad-20-40 463.4 443.3 418.1 485.8
uflquad-25-40 1389.4 948.9 960.5 1365.7

Table 9: Computational Results Comparing SBC and GUBSBC

Inequalities. Experiment is described in Section 4.4

SBC GUBSBC
Problem Node Time Node Time
BatchS151208M 3071 32.0 2869 43.0
BatchS201210M 2909 53.3 2591 50.9
Batch Storage10 BM 10 10 6 4 10351 92.6 8497 66.6
Batch Storage BM 10 10 6 4 11817 99.9 12643 91.5
CLay0305H 11017 28.6 19173 44.1
FLay05H 99691 1486.6 114785 1791.7
FLay05M 83289 695.9 85747 757.0
nd-12 12179 681.8 11675 700.8
nd-13 8023 509.1 7683 736.8
nd-14 105107 7502.8 105997 4642.1
RSyn0810M02M 114369 279.0 116249 312.0
RSyn0810M03M 93341 461.8 95047 632.4
RSyn0810M04M 136943 821.7 91385 826.4
RSyn0815M02M 486495 1136.7 441117 1162.7
RSyn0820M02M m m 1983993 5824.7
RSyn0830M02M 903237 3204.5 1013379 3507.7
Safety3 1431767 3607.8 1621317 4299.8
safety no rotation CH 5525 20.5 5515 20.0
SLay07H 635 8.9 1167 11.0
SLay08H 1921 29.8 3649 45.1
SLay09H 12257 194.2 16239 289.7
SLay09M 6035 29.2 7409 50.0
sssd-16-8-3 2793721 1563.5 2134397 1175.7
sssd-17-7-3 1297181 602.1 318079 158.4
sssd-18-7-3 396017 185.1 358449 178.0
sssd-20-8-3 144505 103.2 696655 375.0
Syn20M04M 89875 188.9 89227 261.3
Syn30M03M 50247 177.7 51149 226.9
Syn30M04M 245963 1141.5 235895 1309.7
Syn40M02M 85947 213.1 141867 396.9
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Table 9 – continued from previous page
SBC GUBSBC

Problem
Node Time Node Time

trimloss4 40863 57.0 29579 48.7

Table 10: Computational Results Comparing SBC versus
MIXSBC. Experiment is described in Section 4.5

SBC MIXSBC
Problem Node Time Node Time
BatchS151208M 3071 32.0 3243 74.0
BatchS201210M 2909 53.3 3091 71.5
Batch Storage10 BM 10 10 6 4 10351 92.6 13375 108.5
Batch Storage BM 10 10 6 4 11817 99.9 10833 90.7
CLay0305H 11017 28.6 15937 54.7
FLay05H 99691 1486.6 104233 1569.8
FLay05M 83289 695.9 82225 657.5
fo7 2 105729 163.0 105729 163.0
fo7 331499 442.4 331499 442.0
m7 320671 336.8 320671 336.6
nd-12 12179 681.8 9715 606.5
nd-13 8023 509.1 7403 541.6
nd-14 105107 7502.8 94813 6208.2
o7 2 1567755 2580.0 1567755 2586.1
o7 2741915 4292.8 2741915 4297.7
RSyn0810M02M 114369 279.0 115679 329.8
RSyn0810M03M 93341 461.8 93097 474.6
RSyn0810M04M 136943 821.7 91211 639.1
RSyn0815M02M 486495 1136.7 464247 1197.6
RSyn0820M02M m m 2001271 5427.3
RSyn0830M02M 903237 3204.5 903237 3200.8
Safety3 1431767 3607.8 3267119 10082.1
safety no rotation CH 5525 20.5 5227 21.3
SLay07H 635 8.9 1351 13.3
SLay08H 1921 29.8 2559 42.5
SLay09H 12257 194.2 10699 174.2
SLay09M 6035 29.2 13651 92.4
sssd-16-8-3 2793721 1563.5 3966469 1835.8
sssd-17-7-3 1297181 602.1 846487 381.1
sssd-18-7-3 396017 185.1 389081 181.8
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Table 10 – continued from previous page
SBC MIXSBC

Problem
Node Time Node Time

sssd-20-8-3 144505 103.2 1461383 761.0
Syn20M04M 89875 188.9 90757 184.3
Syn30M03M 50247 177.7 50247 177.5
Syn30M04M 245963 1141.5 245963 1139.9
Syn40M02M 85947 213.1 83179 223.6
trimloss4 40863 57.0 27273 56.3
uflquad-15-60 2303 379.5 2431 475.8
uflquad-15-80 3401 1177.7 3595 1428.9
uflquad-20-40 3359 443.3 4063 624.9
uflquad-25-40 5115 948.9 6697 1651.8

Table 11: Computational Results Comparing LIN versus
BESTLIN. Experiment is described in Section 4.6

LIN BESTLIN
Problem Node Time Node Time
BatchS151208M 1395 30.6 2347 37.91
BatchS201210M 1405 43.87 1791 41.99
Batch Storage10 BM 10 10 6 4 7597 63.04 7101 57.09
Batch Storage BM 10 10 6 4 9707 85.12 8643 65.3
CLay0305H 15979 96.38 21131 83.32
FLay05H 102791 1995.57 106617 1600.88
FLay05M 82173 726.34 87447 647.02
fo7 2 78265 174.92 85429 151.63
fo7 293427 535.6 300365 370.69
m7 395459 787.84 130141 171.17
nd-12 17125 2814.81 9673 771.29
nd-13 7587 1233.23 8283 691.18
nd-14 95321 10516.79 115987 6062.51
o7 2 1417959 3548.33 1564357 3438.74
o7 3213077 6936.68 3376079 4737.24
RSyn0810M02M 102065 431.46 116957 301.3
RSyn0810M03M 87963 654.44 85217 466.33
RSyn0810M04M 87607 900.72 63177 510.04
RSyn0815M02M 457321 1944.27 462711 1206.16
RSyn0820M02M 2032033 8433.37 1954165 5218.89
RSyn0830M02M 763039 5622.96 856223 3572.13
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Table 11 – continued from previous page
LIN BESTLIN

Problem
Node Time Node Time

Safety3 1869475 6271.37 2604659 7053.02
safety no rotation CH 1925 13.48 4573 17.98
SLay07H 359 9.38 813 11.06
SLay08H 743 24.25 2349 36.69
SLay09H 2377 77.8 6345 125.43
SLay09M 493 8.58 2295 16.35
sssd-16-8-3 1279401 2039.23 1317759 789.18
sssd-17-7-3 269459 264.96 787457 372.9
sssd-18-7-3 79281 98.92 201431 105.19
sssd-20-8-3 262273 394.88 242025 146.23
Syn20M04M 103651 396.46 89153 264.4
Syn30M03M 43761 264.62 45875 182
Syn30M04M 228451 1730.23 249021 1261.79
Syn40M02M 79033 345.33 81585 210.75
trimloss4 21279 38.83 23583 34.36
uflquad-15-60 2091 445.99 1851 292.52
uflquad-15-80 3319 1354.05 3019 914.67
uflquad-20-40 2681 418.12 2853 324.03
uflquad-25-40 4221 960.54 4831 794.65

Table 12: Computational Results Comparing SBC versus
SSBC. Experiment is described in Section 4.7

SBC SSBC
Problem Node Time Node Time
BatchS151208M 3071 31.97 3071 31.95
BatchS201210M 2909 53.33 3259 51.32
Batch Storage10 BM 10 10 6 4 10351 92.55 14651 131.98
Batch Storage BM 10 10 6 4 11817 99.87 11879 106.69
CLay0305H 11017 28.62 11017 28.6
FLay05H 99691 1486.59 99691 1484.55
FLay05M 83289 695.89 83289 696.52
fo7 2 105729 163.01 105729 163.26
fo7 331499 442.44 331499 442.27
m7 320671 336.79 320671 336.7
nd-12 12179 681.76 6587 476.7
nd-13 8023 509.07 8471 490.8

Continued on next page

28



Table 12 – continued from previous page
SBC SSBC

Problem
Node Time Node Time

nd-14 105107 7502.78 110687 4997.81
o7 2 1567755 2579.99 1567755 2581.51
o7 2741915 4292.82 2741915 4327.49
RSyn0810M02M 114369 279.01 115459 302.48
RSyn0810M03M 93341 461.84 94485 467.8
RSyn0810M04M 136943 821.72 77739 597.46
RSyn0815M02M 486495 1136.73 463365 1086.75
RSyn0820M02M m m m m
RSyn0830M02M 903237 3204.45 1071975 3619.43
Safety3 1431767 3607.77 1576035 4239.98
safety no rotation CH 5525 20.5 5525 20.47
SLay07H 635 8.85 635 8.85
SLay08H 1921 29.78 1921 29.77
SLay09H 12257 194.23 12257 194.42
SLay09M 6035 29.21 6035 29.22
sssd-16-8-3 2793721 1563.47 1491441 834.42
sssd-17-7-3 1297181 602.06 1043811 805.61
sssd-18-7-3 396017 185.12 374615 191.52
sssd-20-8-3 144505 103.19 354987 238.97
Syn20M04M 89875 188.87 91683 197.25
Syn30M03M 50247 177.72 47779 178.85
Syn30M04M 245963 1141.51 248575 1186.51
Syn40M02M 85947 213.07 83171 210.24
trimloss4 40863 57.03 23353 35.02
uflquad-15-60 2303 379.45 2303 379.84
uflquad-15-80 3401 1177.67 3401 1177.76
uflquad-20-40 3359 443.29 3435 417.04
uflquad-25-40 5115 948.88 5233 963.24

Table 13: Computational Results Comparing Normalization
Conditions αNORM, SNC and EN . Experiment is de-
scribed in Section 4.8

SBCGLP-EN SBCGLP-SNC SBCGLP-INF
Problem Node Time Node Time Node Time
BatchS151208M 4101 67.31 2843 43.77 3499 65.92
BatchS201210M 3113 70.78 3649 81.59 2555 80.17
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Table 13 – continued from previous page
SBCGLP-EN SBCGLP-SNC SBCGLP-INF

Problem
Node Time Node Time Node Time

BatchS10BM101064 10601 99.1 8323 72.97 14965 118.21
BatchSBM101064 8943 93.01 10615 93.32 16149 151.33
CLay0305H 14595 56.67 17037 67.33 21429 64.85
FLay05H 106611 1767.95 104777 1667.28 106173 1902.9
FLay05M 83085 781.69 80525 614.33 84149 680.5
fo7 2 81119 139.27 65135 116.93 88959 148.01
fo7 240737 467.54 277537 515.96 231859 375.35
m7 2461 3.67 3817 4.48 11401 11.5
nd-12 10221 662.61 9937 658.01 6487 266.88
nd-13 8561 649.7 8079 566.05 8491 563.07
nd-14 97085 6645.54 109993 7035.41 107957 5285.1
o7 2 1412825 2643.59 2826683 4971.34 1428113 2709.14
o7 5710371 10136.23 6357337 10162.08 m m
RSyn0810M02M 7173 51.15 7051 51.1 83641 317.42
RSyn0810M03M 12047 176.39 12007 177.23 56303 500.6
RSyn0810M04M 2443 173.21 3827 180.11 67095 893.06
RSyn0815M02M 15143 88.17 12565 76.86 274925 1011.29
RSyn0820M02M 33773 185.04 37359 202.34 1285209 5446.63
RSyn0830M02M 10773 126.15 8909 108.35 210943 1411.48
Safety3 m m m m 2025337 5561.19
safety no rotation CH 2461 14.11 3375 19.04 8139 34.24
SLay07H 495 8.98 711 11.9 1559 16.64
SLay08H 1617 29.2 1853 34.15 1787 35.81
SLay09H 9121 185.26 4717 108.22 8387 170.49
SLay09M 3777 28.4 1851 16.83 5761 35.08
sssd-16-8-3 1228207 686.96 465701 333.11 1131861 557.1
sssd-17-7-3 370313 192.37 182611 107.42 699239 306.61
sssd-18-7-3 546293 251.77 444957 214.8 594687 338.96
sssd-20-8-3 268233 175.43 647019 423.73 563567 457.56
Syn20M04M 1167 35.77 869 33.81 11903 110.92
Syn30M03M 83 27.24 139 27.59 16197 111.86
Syn30M04M 171 66.76 287 74.52 79373 717.48
Syn40M02M 219 20.38 227 19.64 5523 53.42
trimloss4 21925 41.8 27185 53.02 32695 58.56
uflquad-15-60 2131 483.34 2147 470.82 2485 487.71
uflquad-15-80 3375 1708.49 3421 1510.98 3575 1435.12
uflquad-20-40 2957 471.5 2861 436.28 4187 611.01
uflquad-25-40 5267 1242.44 5263 1054.66 6951 1463.38
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Table 14: Number of Nodes for FILMINT, BESTLIN, SSBC, and
SBCGLP-SNC. Experiment is described in Section 4.9

Problem FILMINT BESTLIN SSBC SBCGLP-SNC

BatchS151208M 5391 2347 3071 2843
BatchS201210M 3447 1791 3259 3649
Batch Storage10 BM 10 10 6 4 15917 7101 14651 8323
Batch Storage BM 10 10 6 4 21849 8643 11879 10615
CLay0305H 26449 21131 11017 17037
FLay05H 102207 106617 99691 104777
FLay05M 91579 87447 83289 80525
fo7 2 109811 85429 105729 65135
fo7 276547 300365 331499 277537
m7 621027 130141 320671 3817
nd-12 20873 9673 6587 9937
nd-13 24391 8283 8471 8079
nd-14 101813 115987 110687 109993
o7 2 2028675 1564357 1567755 2826683
o7 2675019 3376079 2741915 6357337
RSyn0810M02M 117015 116957 115459 7051
RSyn0810M03M 88593 85217 94485 12007
RSyn0810M04M 156835 63177 77739 3827
RSyn0815M02M 493283 462711 463365 12565
RSyn0820M02M 2157455 1954165 m 37359
RSyn0830M02M 825939 856223 1071975 8909
Safety3 3087205 2604659 1576035 m
safety no rotation CH 18327 4573 5525 3375
SLay07H 4505 813 635 711
SLay08H 15203 2349 1921 1853
SLay09H 82525 6345 12257 4717
SLay09M 16689 2295 6035 1851
sssd-16-8-3 2092313 1317759 1491441 465701
sssd-17-7-3 1287961 787457 1043811 182611
sssd-18-7-3 265695 201431 374615 444957
sssd-20-8-3 3573363 242025 354987 647019
Syn20M04M 90393 89153 91683 869
Syn30M03M 49731 45875 47779 139
Syn30M04M 237847 249021 248575 287
Syn40M02M 145331 81585 83171 227
trimloss4 25535 23583 23353 27185
uflquad-15-60 2523 1851 2303 2147
uflquad-15-80 3689 3019 3401 3421
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Table 14 – continued from previous page
Problem FILMINT BESTLIN SSBC SBCGLP-SNC

uflquad-20-40 3591 2853 3435 2861
uflquad-25-40 6973 4831 5233 5263

Table 15: Solution Time for FILMINT, BESTLIN, SSBC, and
SBCGLP-SNC. Experiment is described in Section 4.9

Problem FILMINT BESTLIN SSBC SBCGLP-SNC

BatchS151208M 52.0 37.9 32.0 43.8
BatchS201210M 43.3 42.0 51.3 81.6
Batch Storage10 BM 10 10 6 4 112.1 57.1 132.0 73.0
Batch Storage BM 10 10 6 4 150.8 65.3 106.7 93.3
CLay0305H 108.7 83.3 28.6 67.3
FLay05H 1702.0 1600.9 1484.6 1667.3
FLay05M 696.6 647.0 696.5 614.3
fo7 2 177.0 151.6 163.3 116.9
fo7 355.6 370.7 442.3 516.0
m7 796.8 171.2 336.7 4.5
nd-12 1499.0 771.3 476.7 658.0
nd-13 497.8 691.2 490.8 566.1
nd-14 6222.7 6062.5 4997.8 7035.4
o7 2 3384.4 3438.7 2581.5 4971.3
o7 3797.3 4737.2 4327.5 10162.1
RSyn0810M02M 272.7 301.3 302.5 51.1
RSyn0810M03M 326.5 466.3 467.8 177.2
RSyn0810M04M 746.3 510.0 597.5 180.1
RSyn0815M02M 1126.5 1206.2 1086.8 76.9
RSyn0820M02M 5770.4 5218.9 m 202.3
RSyn0830M02M 3017.0 3572.1 3619.4 108.4
Safety3 9063.5 7053.0 4240.0 m
safety no rotation CH 63.4 18.0 20.5 19.0
SLay07H 38.4 11.1 8.9 11.9
SLay08H 197.0 36.7 29.8 34.2
SLay09H 1458.6 125.4 194.4 108.2
SLay09M 93.1 16.4 29.2 16.8
sssd-16-8-3 1106.5 789.2 834.4 333.1
sssd-17-7-3 614.7 372.9 805.6 107.4
sssd-18-7-3 110.5 105.2 191.5 214.8
sssd-20-8-3 3317.5 146.2 239.0 423.7

Continued on next page

32



Table 15 – continued from previous page
Problem FILMINT BESTLIN SSBC SBCGLP-SNC

Syn20M04M 153.1 264.4 197.3 33.8
Syn30M03M 147.0 182.0 178.9 27.6
Syn30M04M 1127.7 1261.8 1186.5 74.5
Syn40M02M 317.8 210.8 210.2 19.6
trimloss4 36.9 34.4 35.0 53.0
uflquad-15-60 437.4 292.5 379.8 470.8
uflquad-15-80 1220.9 914.7 1177.8 1511.0
uflquad-20-40 463.4 324.0 417.0 436.3
uflquad-25-40 1389.4 794.7 963.2 1054.7
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Table 1: Test Set Statistics

Problem NL Obj Vars Ints Cons NL Cons GUBs
BatchS151208M

√
446 203 1780 1 24

BatchS201210M
√

559 251 2326 1 24
BatchStorage10BM101064

√
239 89 798 1 20

BatchStorageBM101064
√

239 89 798 1 20
CLay0305H 276 55 336 60 15
FLay05H 383 40 461 5 10
FLay05M 63 40 61 5 10

fo7 2 115 42 198 14 0
fo7 115 42 198 14 0
m7 115 42 198 14 0

nd-12 601 40 290 40 4
nd-13 641 40 317 40 2
nd-14 817 48 370 48 2
o7 2 115 42 198 14 0
o7 115 42 198 14 0

RSyn0810M02M 411 168 855 12 200
RSyn0810M03M 616 252 1435 18 435
RSyn0810M04M 821 336 2117 24 772
RSyn0815M02M 471 188 960 22 236
RSyn0820M02M 511 208 1047 28 266
RSyn0830M02M 621 248 1233 40 322

Safety3
√

260 98 294 0 28
safety no rotation CH

√
409 60 456 6 15

SLay07H
√

477 84 609 0 21
SLay08H

√
633 112 812 0 28

SLay09H
√

811 144 1044 0 36
SLay09M

√
235 144 324 0 36

sssd-16-8-3 185 152 57 24 24
sssd-17-7-3 169 140 53 21 24
sssd-18-7-3 176 147 54 21 25
sssd-20-8-3 217 184 61 24 28

Syn20M04M 421 160 997 56 462
Syn30M03M 481 180 982 60 386
Syn30M04M 641 240 1489 80 684
Syn40M02M 421 160 757 56 244

trimloss4 106 85 61 4 20
uflquad-15-60

√
916 15 960 0 0

uflquad-15-80
√

1216 15 1280 0 0
uflquad-20-40

√
821 20 840 0 0

uflquad-25-40
√

1026 25 1040 0 0
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Table 2: Solution Statistics Comparing SBC versus GUBSBC inequalities

Extra gap Average # of nodes Average time
closed (%) Arithmetic Geometric Arithmetic Geometric

SBC 9.66 289476.6 48531.6 840.3 244.3
GUBSBC 19.20 261314.3 51506.5 807.1 274.7

Table 3: Solution Statistics Comparing Mixing SBC versus SBC

Extra gap Average # of nodes Average time
closed (%) Arithmetic Geometric Arithmetic Geometric

SBC 7.77 352,975.5 50,396.9 922.4 313.3
MIXSBC 19.06 450,208.7 56,829.5 1107.7 379.4

Table 4: Solution Statistics Comparing LIN versus BESTLIN

Average # of nodes Average time
Arithmetic Geometric Arithmetic Geometric

LIN 338,089.2 39,330.3 1,568.3 407.3
BESTLIN 375,883.0 47,346.7 1,078.9 312.3

Table 5: Solution Statistics Comparing Strengthened SBC versus SBC

Extra gap Average # of nodes Average time
closed (%) Arithmetic Geometric Arithmetic Geometric

SBC 7.77 352,975.5 50,396.9 922.4 313.3
SSBC 7.86 323,574.1 49,200.5 865.7 310.7

Table 6: Solution Statistics Comparing Best Methods and FILMINT

Average # of nodes Average time
Arithmetic Geometric Arithmetic Geometric

FILMINT 413,917.2 71,059.5 983.6 485.8
BESTLIN 275,697.2 38,634.1 812.7 267.1
SSBC 290,614.6 44,910.6 776.9 290.1
SBCGLP-SNC 308,574.7 12,797.4 847.8 161.9
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