Computer
Sciences
Department

Verifying File System Properties with Type Inference

Haryadi S. Gunawi
Shweta Krishnan

Technical Report #1695

August 2011

Verifying File System Properties with Type Inference

Haryadi S. Gunawi and Swetha Krishnan
{haryadi, swetha@cs.wisc.edu

Abstract highest responsibility for the disk’s contents. Henceijlunt
pointer guards have been installed into the file system, it
The storage stack is not trustworthy due to errors thi& necessary to check and prove that the file system moves
arise from a variety of sources: unreliable hardwareQn-disk pointers around correctly.

malicious errors and file system bugs. Today, softwareas each file system has a different internal represen-
errors play a dominant role due to their inherent comation of on-disk structures, we realize that one specifi-
plexity. In the first part of our project, we look towardgation can only used by one file system. Hence, such
verifying a specific file system property: on-disk pointgihalysis might be useful asvarifier rather than as bug
manipulation. We utilize CQUAL, a framework for addingndingtooL We come up with a second ana|ysis that is
type qualifiers with type inference support, and apply olightweight and reusable across many file systems. In
analysis to the Linux ext2 file system. We find that addiparticular, we attempt to verify a simple rule that relates
qualifiers serves the valuable purpose of ensuring that a reliability bug: “After disk read failure, the data in
on-disk pointers are accessed and manipulated correcihe buffer should not be used.” We name this analysis
by the file system. Thus, we believe that the qualifigi§buffer uptodate analysis Although this is a simple
we introduce would decrease the probability of bugsle, recent work by Prabhakarat al. shows that this
being introduced by file system programmers. We al$@lation still occurs in recent file systems [15]. Unfor-
describe our experience in using CQUAL and discuss {ffhately, their work uses a black-box approach and hence
limitations. Based on our experience with CQUAL, Wgbuld not pinpoint the locations of the bugs. We hope that

come up with a second analysis, a buffer managemgjih source code analysis we shall be able to locate these
verifier, that fits better with the power of CQUAL byygs,

being simpler, yet more widely applicable to different file

systems than the first analysis. In this project, we adopt an approach based on type

qualifiers and type-inferencing [6, 10]. In our first anal-
ysis, we use CQUAL to add qualifiers to pointer types
1 Introduction that point to on-disk structures. Simple qualifiers such as
$i bi t map and$bbi t map could be added to the bitmap

The storage stack is not trustworthy due to errors that arf§@ck pointers in order to distinguish between an inode
from a variety of sources: unreliable hardware, transpafitmap and a block bitmap respectively. With such qual-
firmware, malicious errors and file system bugs. Whilliers, we can verify several basic structural properties of
traditionally hardware has been seen as the main souft@ ext2 file system [2]. Furthermore, with type quali-
of errors, today, software errors play a more dominant pdf's, We can distinguish different kinds of on-disk point-
due to their inherent complexity. Alongside other ong&'s besides the ones implied by existing struc_tures. For
ing file system bug-finding projects, we intend to verif}PSt"""‘Ce'_GXt2 uses thaode structure to describe both
two specific file system properties. First, we attempt {§€ and directory inodes. Hence, to explicitly differenti-
verify that file system manipulates on-disk pointers coif€ file and directory inodesr egi node andsdi r i node
rectly. This means that we verify whether the pointef¥P€ qualifiers can be added to the pointer typede.

in the file system actually point to the disk blocks that The second analysis, the buffer uptodate analysis, re-
they are assumed to point to. Without such verificationgaires flow-sensitivity; a buffer can have different states
programmer can introduce on-disk pointer bugs that w{titnd hence different qualifiers) at different locations in
lead to a corrupt and unusable file system in the wotke program (similar to locking analysis). To apply flow-
case. Moreover, on-disk pointer analysis is important feensitive analysis to the buffer uptodate analysis, weccoul
two reasons: First, even recent commodity file systerimsroduce qualifiers such &\ul | and$Upt odat e to an-

do not sanity-check their on-disk pointers [16, 15], e.gotate the buffer implying whether the buffer contains in-
the file system does not check if a file’s data block pointealid data or invalid data respectively. With such quali-
points to a wrong location. Second, the file system has figrs, the flow-sensitive buffer uptodate analysis will tatc

super_block 2.1 Background on Ext2 Types

l The ext2 file system code uses various structure types to
group_desc represent data and metadata stored on the disk. As seen
in Figure 1, each structure is derived from one or more

block_bitmap inode_bitmap inode_table other structures and integers. First, the superblock id rea

. from the disk, and since the superblock contains infor-
a mation such as the number of groups and the number of
inode number group descriptors per block, this structure is required to

obtain the group descriptor block for a particular block
group. Similarly, the group descriptor contains the infor-
inode_block mation needed for retrieving the block bitmap, the inode
bitmap and the inode table blocks from the disk. The in-
ode bitmap is in turn used to fetch the inode number of
Figure 1: Logical Dependencies: The graph above a file beir)g created. To retrieve Fhe inode block num_ber,
shows a chain of logical dependencies between varih the inode number and the inode table are required.
on-disk structures in ext2. Thus, we can easily observe th{:\t there is a chain of logical
dependencies between the various on-disk structures, and
if there are violations anywhere in this chain, we could be
any erroneoushul | buffer access. marjipulating data in incorregt ways. For instance, if one
accidentally uses the block bitmap block’s contents to try

The rest of this paper is structured as follows. We dgp retrieve an inode number, one would end up with an
scribe the disk pointer and the buffer uptodate analysesiiioneous value.

Sections 2 and 3 respectively. We discuss future work in
Section 4. Related work is discussed in Section 5. Finalgl1 1 Imolicit T
we conclude in Section 6. o mplictt 1ypes
In ext2, there are two important elements that have
implicit types: block number which is represented as
unsi gned | ong (sect or t) and the buffer head struc-
2 Disk Pointer Analysis ture with its data field. A block number could assume
typesbl ock_bi t map ori node_bi t map and so on. Ext2

pses the generic in-memory data structbuéf er _head

With disk pointer analysis, we aim to capture and veri% read the contents of a disk block (be it a data or meta-

semantic_ properties relating to the ways in which Valiata block of any sort) into memory. This structure con-
ous on-disk data and metadata are accessed and MatRs achar « b_dat a field which is a pointer to the data

ulated. For example, in the ext2 file system, the pomtg{that block. This data field is cast to various ext2 spe-

to the group descriptor block must originate from the su:,.
: . . cific structures for metadata, so as to extract the necessary

perblock, and the pointer to the inode bitmap block mus . T
L : information. Thus, a buffer head could take on implicit
originate from the group descriptor block. We have ang-

lyzed disk pointers for the Second Extended File Systexp.eS corresponding to the inode structure, the group de-
scriptor structure and so on.

[2] since it is one of the simplest and oldest file systems L . . u

. . . .~ These implicit types come into play in ways “assumed
implemented in the Linux kernel, and so a good cand|dfi\te " : . :
o start with 0 be safe.” For instance, the function used in ext2 to read

any disk block is:
We find that our disk pointer analysis is largely flow-

insensitive (there are few cases where we require flofys uct buffer_head= _

sensitivity, but as illustrated in Section 2.4.2, we fingP-°"€ad (unsigned long bl ock);

_that th_e_y can easily be tra_msformed to be ma_de_ flow- 5 dangerous use of this function could be as follows:
insensitive). Of course, given that our analysis is re-

stricted to ext2, we cannot say this with confidence for struct buffer_head =bh;

other file systems. 2. bh = ext2_read_i node_bitmap(...);
o . o » /1 read an inode_bitmap block by a call
It is important to note that this analysis is specific to // to sb_bread() within the function.
a particular file system since the type qualifiers added are // bh will now refer to an
dependent on the metadata representations used by th fiI%Xi/2 l(_:;g?dgFglutpnggsEl(OCK bh)
system, and the analysis applied is dependent on the con-";; "y thin this function, bh->b _data is

trol flow from one metadata type to another. /1 cast to (struct ext2_group_desc *), so

unsigned long logic_sb_block 2.2 Implementation

bh = sb_bread (logic_sb_block); We outline our approaches of adding qualifiers to ensure
Y correct usage of a single structure that assumes various
struct buffer_head ~ *bh types (such as buffer head), and to impose dependency
checks.
ext2_sb =
(struct ext2_super_block*) eQualifying implicit types associated with buffer head:
bh->b_data; The first naive approach we take is simple, that is, an-
\J notate every function declaration that receives or uses a
struct ext2_super_block *ext2_sb buffer head pointer with the appropriate qualified type ac-

cording to correctness requirements. For example, we add
in our CQUAL prelude file [5], declarations of the form:
Figure 2: Logical Connection: The diagram above
shows how three different entities, the block number, tf{eez
buffer head pointer and thext 2_super _bl ock pointer,
are logically connected by the control flow. This connegysing qualifier subtyping: In our lattice configura-
tion can be captured by attaching a type qualifier such &gn, we definesbbi t nap andsi bi t map to be qualifiers
$super bl ock. with level=value and sign=eq. We also introduce a new
qualifier$bi t map (level=value, sign=neg) and add qual-
ifier subtyping relationshipssi bi t map < $bi t map and
[/ it now points to a group descriptor $bbi t map < $bi t map. This allows us to take into ac-
/1" bl ock. count functions requiring a bitmap of any type as argu-
ment such agxt 2_set _bit function that sets a bit in a

Thus, here the inode bitmap block has been “tainteBitMap:

with a group descriptor block’s contents. We couli cxi2 set bit (int bit, $bitnmap void *addr);

trap this error using CQUAL by adding qualifiers to

tag the buffer head instances with the block type th@yeveraging qualifier polymorphism: A key observa-

represent. For example, we would qualify the buffeion is that the block number and buffer head types, even

head pointer returned byxt 2_r ead_i node_bi t map() though used in different places as multiple types, have a

with $i bi t map, to signify an inode bitmap, and qualifyrelationship: A function that takes a block number cor-

the buffer head type passeddrt 2_get _gr oup.desc() responding to say, a#i bi t map, must always return a

with $groupdesc to signify a group descriptor. Thenbuffer head pointer that semantically refers to an inode

CQUAL would flag an error since the buffer heatl is bitmap @i bi t map). That is, any qualifieQ on a block

used both as a$i bi t map inline 2 and as &gr oupdesc number must also be reflected in the returned buffer head.

in line 3. This is a clear case for using qualifier polymorphism,
which CQUAL provides. We add annotations of the fol-
lowing form to our prelude file:

tic $bbitmap struct buffer_head*
d_bl ock_bi t map(unsi gned i nt bl ock_group);

2.1.2 Logical Connections $.1 struct buffer heads

sb_bread ($_1 sector_t block);
Itis also interesting to observe that in retrieving metadat

from blocks, a series of actions are taken that relate toThis enables the flow of qualifiers from the block
the same logical entity. For example, as Figure 2 showsimber of a block to the corresponding data. We also
the superblock number is passed to a function that readkl a polymorphic functiomet BDat a(bh) to qualify

the block corresponding to the given block number, atlde b_dat a pointer of ast ruct buf f er _.head with the
returns a buffer head pointer. To retrieve metadata inf@ame qualifier as the buffer head pointer passed to it. We
mation from the superblock, the data field of the bufférave to do this since we disablédel dpt r f | owfor the
head is then cast to a pointer to the appropriate strugsalifiers in general, hence preventing qualifiers from
ture xt 2_super _bl ock in this case). Thus, three dif-flowing from a structure to all its fields.

ferent entities - block number, buffer head pointer and su-

perblock pointer - are logically connected by the contreAdding interfaces: To enforce properties, we need to
flow, and this connection can be well captured by attachttach a qualifier to the point of origin of a chain of de-
ing a single type qualifier (sagsuper bl ock) to all of pendencies, for instance, the block number of the block
them. bitmap. Initially, we could not get CQUAL to work with

type qualifiers added directly within the kernel files. Sdiave a dependency on more than one qualified type. This
we had to find a workaround such that our qualifier annarises in cases where there isamputational dependency
tations would be limited to just the CQUAL prelude filawithin the file system’s manipulation of pointers to disk
and would not need to touch the kernel files. For this, vikocks. Consider the simplified code snippet below:
introduce interface functions, such as the one below, dn . oy 2 inode +ext2 get inode

our prelude file: (int inum ..)

$bbi t map tagBl kBi tmap (sector_t bl knum t offset = ((inum- 1) %...);

{ _ i bl ock = gd->i node_table +
return ($bbitnmap sector_t) bl knum (of fset >> BLOCK_SI ZE);

} struct buffer_head *bh =

]) o sb_bread (i bl ock);
We then instrument the points within the kernel where return

an ungqualified variable (such & knum is being used (struct ext2_inode+) bh->b_data;
directly and replace it with a call to the corresponding in-

terface function that would qualify it. The question here is whether we can use type qualifiers
to verify that the computation ofbl ock from two differ-
2.3 Enhancements ent integers is correct. Checking the absolute correctness
of such a computation might be impossible, however, a
We conducted the second phase of the above analysifeap way to check partial correctness could be achieved
where we made the following improvements. by using qualifiers and qualifier propagation provided by
R) CQUAL. The code above shows that in order to obtain an
eMinimizing the number of manual annotations: We jnode block (viai bl ock number), the file system must
found that the interface functions approach required takyow the inode numbei (um) and also the starting ad-
ing a close look at the kernel code to find points at whigfess of the inode table. The inode table pointer can only
to insert calls to these functions. To avoid this, we magg derived by an access to the group descriptor block and
a second attempt in trying to add qualifiers directly in thg, inode number can be acquired by finding the first free
kernel code, and eventually succeeded in getting CQUAYt in the inode bitmap. In order to ensure that a pro-
to work with in-kernel qualifiers. ~_ grammer does not erroneously use say a number derived
There are two things here that are of benefit. First, by some other way in place of the inode number obtained
adding qualifiers at variable and structure field declamtigom the inode bitmap, we introduce qualifiers for such
points, and in function declarations within the file Syssntities (that is, anything that is derived directly or indi
tem code, we could reduce the total manual annotatiofisetly from the disk). We also add interface functions, as
For example, adding the qualifigibbi t map ahead of shown below, to our prelude file, to capture such compu-
bg-bl ock bi t map field of theext 2_gr oup_desc struc- tational dependencies between a qualifier and two other
ture avoids adding annotations at each place where tﬁlﬂﬁi“ﬁers_

field is being used. ,

~ Second, by adding qualifiers ahead of structure typ?oﬁﬂfefﬁgggr(;i table it, $ nutber inum:

instead of annotating each instance of the structure, we

again save on the number of annotations. Since CQUALNote that CQUAL cannot do this automatically since
does not regard qualifier annotations appropriately whtire addition operation between two different qualified
the qualifier is added directly to the structure type defiypes would confuse CQUAL as to which qualifier
nition, we instead explicitly typedef each structure tyg@i t abl e or $i nunber) it should propagate for the |-

to a new name, and attach a qualifier to that new narwalue of the assignment, hence creating a conflict of quali-
Of course, this means that we have to replace the tyffgrs. Current semantics of arithmetic addition in CQUAL
of each structure instance declaration with the new nameguire that the qualifiers on the operands match. How-
but that is fairly automatic and can be done easi@ver, since there are not many places where such compu-
with a find-and-replace. For example, we replace struational dependencies with multiple entities are seen, we
ext 2_group_desc* with EXT2_GD everywhere, where feelthat adding manual annotations in such places can still

EXT2_GDis defined as: be considered low overhead.

t ypedef i
$groupdesc struct ext2_group_descx 2.4 Case Studies
EXT2_GD;

To test the effectiveness of our type-qualifiers approach
eMerging derivations from multiple qualifiers: We to file system verification, we ran CQUAL on the anno-
find that in certain cases, a single qualified type masted kernel ext2 file system code. We set up our own

CQUAL lattice file and prelude file prior to this experi2.4.2 Case Study 2

ment. While we could not uncover any bugs (logical
computational dependency violations) in the ext2 co

we come up with the following interesting case studidd

r .
3@ the second case study, we ensure that “parent” inode

ust always be a directory inode. Consider the code frag-

where small programming errors or missed code can |e|ggnt below:

to violations that our analysis with CQUAL can catch.
struct find_group
(..., $dirinode struct inode* parent)
2.4.1 Case Study 1 struct inodex ext2_new inode
($dirinode struct inodex dir, ...);

In this first case study, we mix up use of buffezads in {

the same function. Consider the code fragment below: ~Stuct inodex inode = new_inode();

if(SISDR(..)) {

i node_dir
($dirinode struct inodex) inode;

find_group dir(..., dir);

voi d ext2_free_bl ocks(...)

{
struct buffer_head *bitmap_bh = NULL; }

. . el se {
struct buffer_head *bh2; /I NOT a directory inode
bit map_bh = read_bl ock_bitmap(...): i node_gen =

($nondi ri node struct inodex)inode;
find_group(inode_gen,...);
/1 find_group(dir,..);

get _group_desc(&bi t map_bh);
/1 get_group_desc(&bh2);

')
}
. Her_e, the intent (a_s observed from the c_ommentedThe functionf i nd_gr oup() finds a block group for
line) is to use two different buffer head pointers fof o oy inode, implementing ext2’s policy of trying to
the block bitmap rgturned and the argument pass&gce the new inode in the same block group as its parent
o get _grgup_descn ptor(). .However, a smal directory. However, notice that the directory assumption
programming error where[n thei t map_bh returned o argument to this function is very loosely captured
by read.bl ock-bi tmap() is pa_ssed as argument tq, o namepar ent given to the argument. We know
get ‘grouP,‘desc() can le"f‘d to incorrect results wheny, . any inode that is treated as a parent of some other in-
bi t map.bh's referred data is later used. Our frameworlﬁde should be a directory inode. However, this function

with qualifiers $bbi t map and $gr oupdesc, can catch
this error, as can be seen in the CQUAL outpshown
below:

44 WARNI NG *=*sbi ->s_group_desc treated as
$bbi t map and $groupdesc
**sbi - >s_group_desc: $bbitmp $groupdesc

139 $bbi t map == desc->bg_bl ock_bi t map
91 == cast

91 == xsbh_bread_ret @1

91 == xbh

102 == xread_bl ock_bitmap_ret
229 == xread_bl ock_bitmap_ret @29
229 == «bi t map_bh

234 == *+xbh@34

234 == xxbh

69 == xxshi - >s_group_desc
44 == $gr oupdesc

(like many other such functions) does not check whether
the inode passed is indeed a directory inode. Rather, this
check happens somewhere deep inside the function call
hierarchy usings_I SDI R() on thenode field , and is as-
sumed elsewhere. If there happens to be a call to this
function, as shown above, with a non-directory inode as
argument instead of a directory inode, then we would end
up with allocations very different from that of the policy,
since the regular inode is no parent. Again, CQUAI can
catch this error by having qualifiers such & ri node
andsnondi ri node at the appropriate places. For exam-
ple, every call toS_.I SDI R() could be followed with an
annotation attachingdi r i node to that inode instance.
Notice that we actually find the need for a flow-
sensitive analysis here since the same inode instance
would need to be qualified differently depending on the

Note that the only annotations added explicitly are t@sult ofS_I SDI R() . However, in many places, we could

thebg_bl ock_bi t map field of the group descriptor struc-

easily transform the flow-sensitive analysis to a flow-

ture, and to the group descriptor structure itself. The réggensitive analysis by using different names for the guali
of the lines in the output result from automatic qualifigied inode instances on the two paths of the branch. There

inference and propagation that CQUAL provides.

10riginal output has been modified (file paths removed) foeesfs
representation

are other places where such transformation is not straight-
forward, and we ignore those for our present analysis.
In any case, properties like the one shown above can be
checked even in the absence of flow-sensitivity.

2.4.3 Case Study 3 Qualifier Sign
$superblock eq

This final case study shows an erroneous computation of $groupdesc eq
inode block number. Consider the code fragment below: $bbitmap eq
Sibitmap eq

voi d ext2_preread_i node(struct inode *inode) $bitmap neg
EXT2_GD gdp; $!table eq
. $inumber eq
bl ock_group = $indirect eq
(inode->i _ino - 1) / $dirinode eq

| NODES_PER_CGROUP(i node- >i _sbh); $nondirinode neg

gdp = ext2_get group_desc $reginode eq
(i node->i _sb, block_group, &bh); $linkinode eq

offset = $inode neg
((inode->i ino - 1) % $error eq

| NODES_PER_GROUP(i node->i _sh)) =
I NODE_SI ZE(i node- >i _sb);
Table 1:Type qualifiers: The table shows the type quali-

block = comput el node(fiers added to check ext2.

| e32_t o_cpu(gdp->bg_bl ock_bi t map),
of fset >> BLOCK_SI ZE_BI TS(i node->i _sh))

/'l bl ock = comnput el node($bbi t map $bi t map
11 | e32_t o_cpu(gdp->bg_i node_t abl e), $i bi t map $bi t map
I of fset >> BLOCK_SI ZE_BI TS(i node- >i _sbh)); $di ri node $i node
} $r egi node $i node

Here, the computation of inode block number js $nondirinode < S$inode
$regi node $nondi ri node

done by an addition involving an offset derived from g ; nki node $nondi ri node
ani node->i i no (qualified with $i nunber in the in-

ode structure), and thieg_i nodet abl e (qualified with \yg 544 a total of 32 qualifier annotations in the ext2
$itable in the group descriptor structure). To engyde e also make changes at a total of 15 places in
force a correctness check on the computation, we Sy code to introduce calls to interface functions such as
stitute the direct arithmetic with an interface functloaet BDat a() . Given that ext2 has around 7000+ lines of
conput el node() , as explained in Section 2.3. Withq4e the number of changes we introduce is trivial.

this, we can catch an erroneous computation like theThe total number of files in ext2 that we touch is 12
one shown above that attempts to compute the incl)g;

<
<
<
<
$l i nki node < $inode
<
<
<

; _(including the extra files such as header files). Since our
b'°,°" number from the block bitmap rather than from i cus was not on verification of special features, we do
bg.i node.t abl e field. not touch certain files (such as acl.c and xatcurity.c)
dealing with permissions and security in the ext2 code.

2.5 Evaluation
We use the latest version (0.991) of CQUAL for our disk-6 Limitations of CQUAL

pointer analysis. We run our analysis on the ext2 files%f the course of our analysis using CQUAL (version
the Linux kernel version 2.6.7. We also include in this d5 991), we have come across several limitations in

rectory the ext2-relevant header files and .c files such , . .
. . UAL's current implementation, and have also found
buffer.c that are present elsewhere in the kernel director

e . .work arounds for some of them.
structure. Table 1 shows the qualifiers we add to distin-

guish different entities (that live on the disk) in the ext2

file system. We add a total of 14 qualifiers. Notice that®\0 Polymorphism for structure fields: . CQQAL _does
few qualifiers like$er r or and$bi t map do not actually not support polymorphism when dealing with fields of

correspond directly to entities that live on the disk, btructures. For example, the following is not supported:

are used to qualify the error number field and to enforce
subtyping relationships respectively. We add these quét-+ ;t rluicat Aa_{
fiers to make our analysis more complete. The subtyping char b:

relationships introduced are as follows:)

Such support would be have useful for us with respedt Buffer Uptodate Analysis
to the structurébuf f er _head and itsb_dat a field, since
this field should be qualified depending on the qualifi§ince each file system has its own internal representation
attached to the structure instance. We work around tlon-disk structures, our first analysis described in the
by introducing theget BDat a() interface function as previous section is not applicable to other file systems be-
explained in Section 2.2. sides ext2 and ext3. Hence, such analysis might be use-
ful as averifier rather than @ug findingtool. To under-
eNo support for variable properties for the same stand how CQUAL can be utilized as a bug finding tool we
qualifier with respect to different structures: CQUAL study how CQUAL has been used in previous work. Ta-
allows us to specify “fieldptrflow” for each qualifierble 2 shows the code coverage and number of bugs found
introduced, which refers to the direction in which thé three analyses that uses CQUAL. The two take-away
qualifier flows between pointers to aggregates (structuggnts from Table 2 are: all analyses are lightweight and
and unions) and pointers to their fields. However, thetfee corresponding rules are reusable across many source
is no way to specify a different “fieldptrflow” directioncodes. For example, in the user/kernel pointer analysis,
for the same qualifier with respect to different structurekhie rule that programmers must transform a user pointer to
For example, qualifiesq should propagate fromt ruct a kernel pointer appropriately can be applied to any part
buf f er _head to itsb_dat a field but the same qualifi¢ygy of the kernel code. Also logically, having a large code
should not propagate fromit ruct ext2_group_desc base as the target code gives a higher probability in find-
to its bg.i node_bi t map or bg_bl ock_bi t map field. We ing bugs.
work around this by disabling “fieldptrflow” and instead In the file system world, one analysis that is reusable
qualifying structure fields separately or introducingcross many file systems is an analysis that relates to
interface functions for qualifier propagation as the cabeffer management. Almost all file systems use a buffer
may be. cache as the mechanism to store file system data in the
memory and thus must use the buffer head abstraction.
eDefinition of polymorphic function is ignored: This provides the ground for our second analysis that we
CQUAL ignores definition of polymorphic functions.namebuffer management verifieiThe other property of
Even though commenting certain lines of code caudke buffer head besides being used by many file systems
CQUAL to analyze the body of the function, but callss that the buffer head contains a lot of states representing
to that function still go to the polymorphic declaratiornthe current status of the buffer as depicted in Figure 3.
As a result, though we can catch a type-qualifier errorHaving a lot of states implies that there are many rules
internal to the function, we cannot catch one that requirggat can be checked upon buffer usage. For example, the
analyzing the function and connecting those results to tinaditional lock/unlock analysis can also be applied here;
results at a call-site. to find a reliability bug, we could enforce a rule such as
“a dirty buffer should not be released” because it should
eFalse positives due to qualifier semantics in arith- be submitted to the disk first, otherwise the file system
metic operations: Qualifiers flow from one operand tocould reach an inconsistent state; to find a performance
the other in case of arithmetic operations, causing falseg, we could also catch redundant operations such as an
positives in some cases. For example, the current semamnecessary disk read of an uptodate buffer. Although
tics for arithmetic “+” in CQUAL require that the quali-it is possible to impose such rules by deploying runtime
fiers on the operands match. Hence, the following codeecks throughout the kernel code, such deployment is
fragement causes CQUAL to complain with an eftior not a common practice as it could lead to excessive check-
compatible operands of *since the variable gets two ing and performance degradation [13]. Instead, when an
qualifiers$q-t 1 and$q-t 2 that flow to it through the ad- operation is reached, a corresponding state is usually as-
dition. But as we can see, there is no real incorrect usemed to be true. For example, when accessing the data
of qualified types here; this is a false alarm. The creatdield of the buffer, it is assumed that the buffer is indeed
of CQUAL suggest that in future, the semantics of aritiptodate. Thus, type qualifiers might be an appropriate
metic operations can alternately require the qualifiers approach to unearth and assert the assumed states.
the operands to lower-bound the qualifier on the result.

$q_tlint a 3.1 Buffer Access Rule

$g_t2 int b;

i nt c; For this project, we attempt to verify a simple rule that
: 2: \Zl relates to a reliability bugAfter a disk read failure, the

z =a+c; data in the buffer should not be usedlthough this is a

v =">b+c; simple rule, recent work by Prabhakaretral. shows that

Conf. Analyses Target Bugs

PLDI'02 Locking Analysis [7] 892 files 11
SEC'01 Format String Vulnerabilities [17] 10 programs (20BC/prog) 2
SEC'01 User/Kernel Pointer Bugs [10] Whole kernel 11

Table 2: CQUAL as a Bug Finding Tool: The table shows how CQUAL has been used as a bug finding toel. Th
analyses shown in the second column are generally lightweigd applicable to large code base.

struct buffer_head

{
unsigned long b_state // buffer state bitmap
atom c_t b_count /'l users using this block
u32 b_size /1 block size (usually 4KB)
sector _t b_bl ocknr // disk bl ock nunber
char * b_data /1 pointer to data bl ock
}
enum bh_state_bits
{
BH_Upt odat e, /! Contains valid data
BH Dirty, /Il Is dirty
BH Lock, // 1Is | ocked
}

Figure 3:Buffer Head Structure and Buffer States: The code above shows important fields of the buffer head and
bitmaps that represent the state of the buffer (there aretd# bits in total). Buffer head structure is the abstrantio
that will hold a disk block. For our analysis, we only trabkst at e andb_dat a fields of the buffer head and the
BH_Upt odat e state bit.

this violation still occurs in recent file systems [15]. Imate flag (line 18) before using the data field of the buffer

their work, they construct approximately 50 test cases dfine 26). The functiom ead_i node in particular reads an

compassing different block types and POSIX APIs, aimbde buffer from the disk and casts the buffer data to an

run test cases to three different file systems in Linux 2i6ode structure. Meanwhile, please ignore the instruction

They find that there are two cases where disk read failuhat is marked as “CQUAL instr”; these instructions will

is ignored, one in ReiserFS and one in IBM JFS. Unfdpe described in the next section. The check on the buffer

tunately, their work uses a black-box approach and heng#odate bit of the buffer state is done through a wrap-

could not pinpoint the locations of the bugs. We hope thaér functionbuf f er _upt odat e. Since the buffer upto-

with source code analysis we can locate these bugs. date flag is only set and cleared by the disk driver, buffer
In order to verify such a property, we need to observptodate check must be pgrformed every time after a syn-

the buffer uptodate bit in the buffer state field of the buff&hronous disk read. The file system should not make any

head (See Figure 3). If the uptodate bit is set, it meafgSumption that the read succeeds.

the data field of the buffer head points to a location that

contains avalid data, otherwise it points to an invalid

data. Note that this is not a null/non-null pointer analy-

sis; in both cases, uptodate and not uptodate, the buffegenerally, if the buffer is not uptodate, control flows to

data pointer points to an already allocated region of me@tajjure handling block, but if the buffer is uptodate the

ory. However, the data in the region could only be valigy(field is allowed to be accessed. For example, the code
if the uptodate bit is asserted, thus the need to check %ment in Figure 4 flows to thei | : block which sets

uptodate flag in correspondence with buffer data usagege inode to NULL if the buffer is not uptodate. But if the

Figure 4 shows an example of a function that performsad succeeds, the buffer can be accessed and cast to an
disk read (line 15) and correctly checks the buffer uptaiode structure.

13 void read_inode (struct inode* inode, struct buffer_head *bh)

14 {

15 subni t _bh(bh); /1 Submit a disk read
16 change_type (*bh, $Null struct buffer_head); /1 CQUAL instr

17

18 if (!buffer_uptodate(bh)) { /1 is buffer uptodate?
19 goto fail; /1 if not, goto fail
20 }

21 el se {

22 change_type (*bh, $Uptodate struct buffer_head); // CQUAL instr

23 }

24

25 assert _type(*bh, $Uptodate struct buffer_head); /1l CQUAL instr

26 i node = (struct inodex) bh->b_data; /1 read data and cast
27 return; /1 to inode struct
28

29 fail:

30 i node = NULL; /1 if fail, set inode
31 } /1 to NULL

Figure 4: An Example of Disk Read Operation. The functiornr ead_i node illustrates an example of how disk
read is performed. The functioread_i node accepts a buffer heash whose data fieldo(dat a) has been allocated,
and then it primarily performs three things: submits a diskd (line 15), checks if the disk read succeeds or fails
by checking the buffer uptodate bit of the buffer state fikhe (18), and casts the data field of the buffer to an inode
structure if the disk read succeeds (line 26). All instroeti that are marked with “CQUAL instr” are the CQUAL
instructions that are added automatically in order to run G&L flow-sensitive analysis on the code. In particular,
change_t ype changes the qualifier of the buffer head axxkert _t ype ensures that the buffer head has the same
given qualifier.

$Top *bh has qualifiersUpt odat e. Since CQUAL does not
know which path was taken to reach that point, it decides
that atfail:, *bh has qualifier$Nul | | $Upt odat e,
which is not allowed in the partial order in the absence
of $Top. Thus, adding th&Top qualifier would allow
$Null $Upt0date CQUAL to use the qualifie$Top at the join point.
Each time after a disk read is performed, we add a
change_t ype($Nul I) CQUAL instruction that changes
Figure 5:Lattice for Buffer Uptodate Analysis. We in- the type of the buffer téNul | (line 16 of Figure 4). Sub-
troduce three qualifiersNul |, $Upt odat e, and$Top in sequently, we have the buffer uptodate check where the
order to perform flow-sensitive buffer uptodate analysisgorresponding f block describes what should happen if
the buffer is not uptodate. The idea here is that we need to
. introduce arel se block whose body contains a CQUAL
3.2 Qualifiers instruction that changes the buffer type $0pt odat e

. : line 21-23). Finally, before any uses of the buffer data
To apply a flow-sensitive analysis to the buffer uptodagg|q we invoke theassert _t ype CQUAL instruction to

analysis, we introduce 3 qualifiers to annotate the buffeeqrt that the data buffer is indeed valid (line 25).
head as depicted in Figure SNul I, $Uptodate, and g fiow_sensitive buffer analysis will catch any er-

$Top. A $Nul | qualifier implies that the buffer has NOtoneousshul | buffer access. For example, imagine
been verified uptodate hence could contain invalid daja, o goto fail; in line 19 is mistakenly removed.

On the other hand, aUpt odat e data is valid to be Used'CQUAL will flag an error, with output as below since
The $Top qualifier, and the subtypingNul | <$Top there is a flow fromchange_t ype($Nul 1) at line 16 to

ands$Upt odat e<$Top, are needed because at every joifsser t .t ype($Upt odat e) at line 25.

point in the program (e.gf ai | :), CQUAL joins quali-

fiers together. In particular, in one predecessdrddl :, CQUAL error output:

*bh has qualifiersNul | , and in the other predecessor,16 i nconpati bl e types in change_type

Moreover, since doing that still gives many false posi-

*bh@6: $Uptodate tives, we specifically only preserve functions that perform
16 $Nul'l <= __change disk read and access the buffer data. One slight problem
ig <=+ EE@G here is that buffer heads are stored within other structures

<= %

and further these structures are also nested in others (e.g.

18 <= *bh super _bl ock- >super bl ock_i nf o- >buf f er _head).
25 <= assert Hence, functions and instructions that touch those related
25 <= $Upt odat e ’

structures must also be preserved. Although the process
L of finding those related structures can be automated,
3.3 Limitations right now we manually specify them. Furthermore, due

Unfortunately, unlike the flow-insensitive disk pointePO Iack_ of sqpport for polymarphism, we must remove
analysis described in earlier section, the flow-sensiti{lg"Y insignificant calls t_hat are unrelated to the analy-
buffer analysis cannot be directly applied to the kerngf>: For example, functions S.UCh hsel ease() and
code, mostly due to the limitations of the flow-sensitive2ck-buf fer (), that also manipulate the buffer, do not

implementation of CQUAL, which we briefly describé"‘ﬁect our buffer uptodate analysis in any way and hence

here. More description on these limitations can be fouff@" be omitted.

in the CQUAL paper and manuals [4, 5, 7]. We are not

sure whether the features below are theoretically imposgi5 Results

ble with a flow-sensitive analysis or they are just not yet

implemented. We targeted three file systems for our analysis: ext2,
First, CQUAL' flow-sensitive implementation does nd@xt3, and ReiserFS which consist of approximately 300

have field-sensitivity; all instances of a structure shhee tkLOCs. We have not analyzed IBM JFS because

same field qualifiers. For example, giverr uct foo { IBM JFS uses another buffer abstractieny uct bi o,

struct buffer_head a; } x, y;,x.aandy.awill instead of the generic buffer head interfaseruct

share qualifiers, which is a property that is not desiradlef f er \head. We believe it is straightforward to extend

for the kind of analysis we do. Second, polymorphis@ur analysis to include thii o interface. The CIL output

is not supported; as described by Fosteral, analy- consists of approximately 6 KLOCs, which is only 2%

sis without context-sensitivity will not be accurate due tof the original code base. We know from previous find-

excessive false positives [10]. Third, there is no “caitgs that ReiserFS and IBM JFS each has one bug of non-

preserve”; in our buffer analysis, cast preserve is needéefodate buffer access. Yet, with our current approach, we

because buffers are often stored in generic lists, whéi#l could not find the bugs, which we believe is because

buf f er _head is casted td i st _head. In summary, with- Of the very low code coverage of the analyzed code.

out the features above, running flow-sensitive CQUAL di- Nevertheless, since we want to test whether our analy-

rectly on the kernel gives way too many errors (hundreds} is useful or not, we inject bugs into the source code and

that are impossible to analyze. In order to continue wittheck whether the bug is detected as expected or not. In

the analysis, this limitation only leaves us with an optidiault-injection experiments, the first question that comes

to reduce the kernel code base. up is where to inject the bugs. We write another program
with CIL to help pinpoint interesting places to inject the
3.4 Code Reducerin CIL bugs. We define and locate three types of interesting func-

tions where we inject the bugR-Ais a function that per-

We write a program using CIL [14] to reduce the kerndbrms disk read (callsubni t _bh and accesses the data
code base into a much smaller code base that only cbuiffer within the same functionR-FAis a function that
ers functions and instructions related to buffer manipulperforms disk read and then calls another function that
tion. The program consists of approximately 600 lines afcesses the buffeFR-Ais a function that calls another
code. Besides reducing the code, the program will alsmction to perform the disk read, and then accesses the
automatically insert qualifier annotations as describedboffer.
Section 3.2, including adding thel'se” block to change In order to introduce bugs that are realistic, we
the qualifier to$Upt odat e. This automated process idefine our bug as removal of one important line.
actually a big advantage of the code reducer. In additidrhis line usually contains a statement that defines
control flow such as while, if, etc. must be preserved cahe control flow of the program such as thmto
rectly in order to have the same flow as in the originéhi | ; statement in line 19 of Figure 4. So far,
code. we have only analyzedR-A type of functions. We

To significantly remove unrelated code, we only préind three related functions_gxt 3_get i node.l oc,
serve functions and instructions that relate to buffer headur nal read_transacti on, and search_by_key)

10

and introduce the bugs in these three functions. All tfige system specifications have been formally introduced
injected bugs are detected as expected. in some previous work [1, 9]. Recently, Joshi and Holz-
mann realized that testing the file system is not enough,
hence they took a “mini” challenge to a formal specifica-
4 Future Work tion for a file system and verify it [11]. They intend to
) o solve the challenge within three years.
We realize that our buffer uptodate analysis is far from The framework for adding type qualifiers to a language,
complete, largely due to the low coverage of the reducwpﬂch serves as a means to define polymorphic types
kernel code, which is again due to the limitations of tr\ﬁas proposed by Fostet al. in [6]. In subsequent
flow-sensitive CQUAL. However, we feel that even witly . *3ohnsoret al. use type qualifiers to find user/kermel
low code coverage, we still could come up with intets ;e 195 [10]. In our project, we take the same ap-
Estlng case stu_dleshwhet:g we C;)ukl)d Inject c()jur ovr\1/n bugeach but for solving file system specific problems. An-
ence suggesting that this might be a good path t0 pfgr e 1oo] that might be useful is Sparse, which is a static

ceed along. We feel that. we have Iittlg hope in haVingt)‘?‘pe-checking program written by Linus Torvalds specifi-
fully supported flow-sensitive CQUAL in the near future

) . . : cally for the Linux kernel [19]. However, CQUAL seems
Hence, this leaves us with couple of options described t?gbe more powerful than Sparse
low. '
From our buffer uptodate analysis, we learn that n
many gxisting FOOIS. work perfectly on the Linux kerne |. [16]. Yanget al. use model checking to show that
dueto its massive Size. Hence,. we have consFructed a{ Q file system code is buggy and find serious errors in
phase analysis. The first one is about reducing the CO4€he file systems explored. Bairavasundanal. em-
base. Currently, we write our own code reducer usi

CIL. We plan to studv other tools that h imilar f asize how on-disk pointers form a critical piece of the
- We pian to study othertoois that have similar tuntg system code that is likely to fail under erroneous con-

tionality, such as the Chen’s MOPS infrastructure [3]. Age‘

Our motivation to analyze file system code stems from
e work of Yanget al. [20] and Bairavasundararet

mentioned in Section 3, there are many rules that can ltions. Surprisingly, they find that Windows NTFS, one

checked within the buffer management world. Thereforgi»she most widely used file systems, does not verify on-

infrastructure that prod h I de wh k pointers thoroughly before using them, causing the
an infrastructure that produces much smaller code WNQgf. o, 14 crash and rendering the file system unusable.

contents are only relevant with buffer management will b . .
very useful as many buffer analyses can be performed ﬁA‘ recent approach to ensuring safe accesses to disk
Bocks through pointers is described in the ACCESS pro-

top of it. . ; S
In the second phase, which is the analysis itself, Vtv%type built over Type-Sate Disks [18], which is intended

i i " be implemented on disk processors. TSD only dis-
have experienced that although the flow-sensitive CQU'{\%guishes between normal data blocks that do not have
Vi

is theoretically appropriate to our analysis, it does ngg outgoing pointers and reference blocks (such as in-
e

have many features that are presentin the flow—insensitb
CQUAL. Hence, we need to investigate other tools th?

are appropriate and fu_IIy supported for this kind of anare:“a block cannot be accessed until a valid reference
ysis. One example might be the GrammaTech’s COdez%ck pointing to it is accessed.” and and “No pointer cre-

onar [8]. : : "

[8] . . . ations/deletions can be made to root blocks.” The two ma-
For the on-disk pointer analysis, we plan to conduct
o X -]ar differences between TSD and our disk pointer analysis

verification of further file system correctness properties

such as “no hard links to a directory inode”. We also i are: First, our approachis more lightweight (with type in-

tend to explore other interesting buffer management an grenee support) and requires less changes to existing sys-

yses, such as for ones to detect performance hitches. %@S; with TSD, existing file systems must be modified

.~ _in order to support new TSD APIs. Second, TSD ensures
would also need to expand our analyses to more file s

S- : : . .
tems in order to comprehensively demonstrate the eﬁgr&?t the final product _(the collection of on-disk p0|nter§)
) IS always correct, but it does not solve the problem of file
tiveness of such analyses. .) . ;

system bugginess; we take into account the various ways

in which the file system uses on-disk pointers.

blocks) that have incoming and outgoing pointers.
us, the only access constraints that TSD can enforce

5 Related Work

Being the primary guardian of the disk contents, verify® Conclusions

ing file system properties can be considered a good re-

search path. As far as we know, after two decades siiwle have shown that checking type qualifiers with auto-
the first “intelligible” file system was published [12], nomatic type inference is a powerful means of enforcing
many formal file system verifiers exist until today. Somfile system correctness properties. Our on-disk pointer

11

analysis with qualifier annotations is a useful and simpt&0] R. Johnson and D. Wagner. Finding User/Kernel Pointer

way

for kernel programmers to trap the errors they might

make while modifying the file system. With the bare min-

imal

overhead of a just few annotations, identifying disk-

pointer mismatches in the code with a simple tool can fid]
some relief for coding in the complex kernel domain. Our
buffer management verifier which performs flow-sensitive
analysis using qualifiers, can be used to prevent religbilit
bugs in the file system code. Since qualifiers are staticglly]
checked, our analysis does not impact the performance of
a file system in action. Nevertheless, our analyses are not
complete. We hope that with further extension and imt3]
provement of our analyses, we shall be able to uncover
known as well as unknown bugs in the file systems of to-

day.

[14]

Acknowledgments

We

and

would like to thank Ben Liblit for advising this

Rob Johnson for answering our questions promptly.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
9]

K. Arkoudas, K. Zee, V. Kuncak, and M. Rinard. Verifying[16]
a file system implementation. IRroceedings of the 6th
International Conference on Formal Engineering Methods
(ICFEM '04), Seattle, Washington, November 2004.

R. Card, T. Ts'o, and S. Tweedie. Design and Implementa-
tion of the Second Extended Filesystem. In Proceedingslf]
the First Dutch International Symposium on Linux, 1994.

H. Chen and D. Wagner. MOPS: an infrastructure for ex-
amining security properties of software. Rroceedings

of the 9th ACM Conference on Computer and Commui-8]
cations Security (CCS '02Washington, DC, November
2002.

J. S. Foster. “CQUAL User's Guide Version 0.98", Feb.
2004. [19]

J. S. Foster. “CQUAL User’s Guide Version 0.991", Feb.
2004. [20]

J. S. Foster, M. Fahndrich, and A. Aiken. A Theory of
Type Qualifiers. InProceedings of the 1999 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI '99)Atlanta, Georgia, May 1999.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-Sensitive
Type Qualifiers. InProceedings of the 2002 ACM SIG-
PLAN Conference on Programming Language Design and
Implementation (PLDI '02)Berlin, Germany, June 2002.

GrammaTech. “CodeSonar”. www.grammatech.com.

M. Heisel. Specification of the Unix file system: A com-
parative case study. lath International Conference on
Algebraic Methodology and Software Technology (AMAST
'95), Montreal, Canada, July 1995.

12

Bugs With Type Inference. IProceedings of the 13th
USENIX Security Symposium (Sec 08an Diego, Cal-
ifornia, August 2004.

R. Joshi and G. J. Holzmann. A Mini Challange: Build
a Verifiable Filesystem. InWorkshop on Verified Soft-
ware: Theories, Tools, Experiments (VSTTE ;@&)rich,
Switzerland, October 2005.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry.
A Fast File System for UNIXACM Transactions on Com-
puter System2(3):181-197, August 1984.

G. C. Necula, J. Condit, M. Harren, S. McPeak, and
W. Weimer. CCured: Type-Safe Retrofitting of Legacy
Software.ACM Transactions on Programming Languages
and System27(3), May 2005.

G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil:
An infrastructure for ¢ program analysis and transforma-
tion. In International Conference on Compiler Construc-
tion (CC '02), pages 213-228, April 2002.

. . 15] V. Prabhakaran, L. N. Bairavasundaram, N. Agrawal,
project. We also extend particular thanks to Jeff Fos er] 9

H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. IRON File Systems. Rroceedings of the 20th
ACM Symposium on Operating Systems Principles (SOSP
'05), pages 206—-220, Brighton, United Kingdom, October
2005.

M. Rungta, L. N. Bairavasundaram, A. C. Arpaci-Dusseau
and R. H. Arpaci-Dusseau. Limiting Trust in the Storage
Stack. InThe 2nd International Workshop on Storage Se-
curity and Survivability (StorageSS 'Q&)lexandria, Vir-
ginia, November 2006.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detec
ing Format-String Vulnerabilities with Type Qualifiers. In
Proceedings of the 10th USENIX Security Symposium (Sec
'01), Washington, D.C, August 2001.

G. Sivathanu, S. Sundararaman, and E. Zadok. Type-Safe
Disks. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI ,(#2attle,
Washington, November 2006.

L. Torvalds. “Sparse”.
tree.celinuxforum.org/pubwiki/moin.cgi/Sparse.

J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Us-
ing Model Checking to Find Serious File System Errors.
In Proceedings of the 6th Symposium on Operating Sys-
tems Design and Implementation (OSDI '0&an Fran-
cisco, California, December 2004.

	TECHCOVER.NEW1695
	1695.pdf

