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Abstract

GPUs have become increasingly popular in recent
years, in large part due to their potential to offer a
large amount of computational power at low prices.
They offer massive potential speedups in program
performance, but only if an application maps well to
its data parallel programming model. However, it is
unclear how to effectively port programs that do not
map well onto the GPU programming model. The
amount of performance these programs will have on
GPUs is also unclear. If GPUs can be shown to
execute general-purpose programs with high perfor-
mance, then it is possible that a GPU-like, many-
core architecture could provide the next big increase
in general-purpose program performance. In this
project, we implemented four benchmarks from the
PARSEC CMP benchmarks suite on GPUs – stream-
cluster, blackscholes, fluidanimate, and swaptions
– then analyzed their performance and compared
their performance to that of the PARSEC serial and
pthreads versions of the same programs. We also in-
vestigated what general-purpose programming tech-
niques worked well when mapped to a GPU, what
techniques did not work well, and where bottlenecks
occurred. We observed that general-purpose pro-
grams neither mapped uniformly easily nor well to
GPUs in our implementations.

∗Work performed while author was a student at the Univer-
sity of Wisconsin-Madison.

1 Introduction

GPUs are massively parallel architectures that are
becoming increasingly general-purpose, use the data
parallel programming model and offer tremendous
speedups if an applications’ algorithm maps well to
the data parallel programming model. Many scien-
tific workloads map well to the GPU programming
model. However, it is neither clear nor obvious if
other workloads and applications that aren’t data par-
allel also map well to the GPU.

This paper reports on our work in porting four
general-purpose CMP benchmarks from the PAR-
SEC benchmark suite [2, 3] to GPUs using CUDA
SDK 2.3 [1] and evaluated their performance. We
acknowledge that more current CUDA SDK releases
enable some new features for GPUs and note where
these new features may improve performance. The
benchmarks we implemented were streamcluster,
blackscholes, fluidanimate, and swaptions. More de-
tails on these benchmarks and their GPU implemen-
tations are presented in Sections 2 and 3. By port-
ing these PARSEC benchmarks to GPUs, we were
able to examine GPU features in relation to CMP
programs. Specifically, we found what features of
general-purpose programs were well-suited to the
GPU architecture. Perhaps more importantly, we
found the features that hindered high performance
execution on a GPU and the corresponding bottle-
necks that precluded speedups when these features
were present.
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The rest of this paper is as follows. In Section 2
we provide background on the PARSEC benchmark
suite, the benchmarks we implemented, and related
work in the area. In Section 3 we discuss our GPU
implementations of the benchmarks. In Section 4 we
outline our testing methodology and system informa-
tion. In Section 5 we present and analyze our results.
Finally, in Section 6 we conclude.

2 Background and Related Work

We chose to implement benchmarks from the PAR-
SEC suite over other CMP benchmark suites like
SPLASH-2 [18] because recent work has shown that
PARSEC scales significantly better than SPLASH-
2 [4, 8]. While PARSEC also has some scalability
issues, they are less severe than those of SPLASH-2.
Additionally, SPLASH-2 was developed over fifteen
years ago and is no longer representative of work-
loads that future architectures will face, especially
in terms of data set size. Compared to SPLASH-2,
PARSEC also has a much more diverse application
set and contains more emerging workloads. These
features are important because they allow us to ana-
lyze the performance of modern and emerging appli-
cations on GPUs. We chose a CMP benchmark suite
because GPU benchmark suites generally contain
only programs that perform well on GPUs, whereas
we wanted to explore both programs that perform
well and those which might pose problems for a GPU
implementation. Table 1 contains an overview of rel-
evant information about the benchmarks we imple-
mented on GPUs.

We present some brief background information on
the ported benchmarks here:

• Streamcluster is a data mining algorithm that
solves the on-line clustering problem. It re-
quires a heuristic solution since the exact solu-
tion is computationally intractable. Further in-
formation on the algorithm can be found else-
where [14]. Streamcluster was chosen because
it has a moderate amount of parallelism and
lots of synchronization. We expect that stream-

cluster’s low amount of data sharing between
threads will allow it to avoid issues with syn-
chronizing data between GPU threads, which
is important because GPUs lack an efficient
global synchronization mechanism. Finally, we
wanted to explore how an application without
significant amounts of parallelism would per-
form on a GPU, where abundant parallelism
is usually essential for obtaining high perfor-
mance.

• Blackscholes is a financial algorithm that uses
the Black-Scholes partial differential equation
(PDE) to calculate prices for European stock
options. The key idea is that the value of the
option fluctuates over time with the actual value
of the stock. The Black-Scholes PDE calcu-
lates this value over time, but because it has no
closed form solution, it needs to be solved nu-
merically. It has abundant parallelism and uses
the SIMD programming model. Further infor-
mation on the Black-Scholes algorithm can be
found elsewhere [6, 11]. We selected blacksc-
holes because it had abundant amounts of paral-
lelism and uses the SIMD programming model,
which makes it ideal for implementing on a
GPU. Thus, blackscholes represents a good san-
ity check – it should obtain high performance on
GPUs.

• Fluidanimate simulates interactions of an in-
compressible fluid by breaking the fluid into
particles and assigning groups of particles to
cells. In-depth information on the algorithm
can be found elsewhere [13]. Compared to
other PARSEC benchmarks, fluidanimate has
less synchronization. However, fluidanimate
still requires synchronization points between
various stages of its calculations and requires
the use of atomics to update memory, which are
important features of general-purpose applica-
tions that GPUs must be able to execute well.

• Swaptions is a financial analysis program that
calculates prices for a portfolio of swaptions us-
ing a Monte Carlo simulation to compute the
prices. Like blackscholes, swaptions also has
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a PDE that must be solved numerically. Fur-
ther information on the algorithm can be found
elsewhere [10]. A unique feature of swap-
tions is that it has very coarse and limited par-
allelism. We chose swaptions to see how a
program with a limited amount of parallelism
but a large amount of floating-point calcula-
tions would perform on a GPU. While GPUs are
good at floating-point calculations, they gener-
ally needs lots of parallelism in order to perform
well.

Some work on implementing the PARSEC bench-
marks on GPUs has been done previously. Rodinia
implemented a small portion of streamcluster in a
GPU kernel [9]. This kernel was heavily optimized,
and was shown to provide significant speedups. By
implementing only this small portion on the GPU,
they were able to avoid dealing with several issues
our implementation faced. However, their results
only analyzed the speedup of their kernel, as opposed
to measuring the total speedup of the entire program.
Because of this, it was difficult to gauge the impact
of their optimization on the overall program.

Kolb and Pharr implemented blackscholes on a
GPU [12]. However, their implementation differs
significantly in three areas from our implementation.
First, their implementation uses a randomly gener-
ated sequence of stock options instead of reading in
options from an input file as the PARSEC implemen-
tation does. Second, their implementation converts
the arrays that are used in the PARSEC implementa-
tion for risk rate and volatility calculations into con-
stants. Making these arrays constants significantly
reduces the overhead of copying data between the
CPU and GPU and limits their program to only using
a single risk rate and volatility. Third, their program
used a fixed number of thread blocks and threads per
thread block, whereas we have varied these numbers
based on the number of options we are using. It is
possible that they are using a fixed number of thread
blocks and threads per thread block because they
have a fixed number of options per program run, and
thus they found these operating points to be optimal
for their implementation. We incorporated some of

their optimizations that reduced the number of nec-
essary mathematical operations into our implemen-
tation, as we found they provided a significant per-
formance increase.

3 GPU Implementations

In this section we present details on our GPU im-
plementations for all four benchmarks. The results
for all of these implementations can be found in Sec-
tion 5. It is important to note that, in all of our imple-
mentations, we sought to make small modifications
to the current algorithms instead of making whole-
sale algorithmic changes.

3.1 Streamcluster

Because streamcluster has moderate amounts of par-
allelism and a significant amount of inter-thread syn-
chronization, its GPU implementation uses a single
large kernel. On the CPU, the stream of data points
is broken into subsets of 200K points. If there are
more than 200K points, the subsets are run sequen-
tially through the kernel. The GPU kernel is respon-
sible for all of the calculations streamcluster per-
forms to find the centers. The significant number of
inter-thread synchronization points was a major issue
with implementing streamcluster on a GPU because
CUDA does not provide a mechanism to synchronize
across thread blocks (i.e. no global synchronization
mechanism). Thus, our streamcluster implementa-
tion was limited to a single block of threads. Since
we have up to 200K points in a single kernel, each
thread operates on multiple data points.

Our GPU implementation of streamcluster also re-
quired the use of a random number generator on the
GPU. Since CUDA does not provide a standard ran-
dom number generator to use we modified a previous
solution [17]1. This required a significant amount of
time and testing. A second issue we encountered was
CUDA’s lack of kernel support for C++2. To solve

1Nvidia has since created the CURand library to deal with
this issue.

2Nvidia has also improved this over time but it’s still an
issue.
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Benchmark Domain Parallelization Granularity Working Set Size

blackscholes Financial Analysis coarse small
fluidanimate Animation fine large
streamcluster Data Mining medium medium

swaptions Financial Analysis coarse medium

Table 1: Background information on implemented PARSEC CMP benchmarks.

this, we converted all of the C++ code that the kernel
needed to execute into C code. One positive aspect
we found was that it was easier to think about how
to write broadcast and wait global synchronization
mechanisms when writing GPU code. Streamclus-
ter uses broadcast and waits to have a single mas-
ter thread operate on the data points, after which is
signals the others threads that they can now safely
continue to operate on the data. Because we were
using a single block of threads, we could check if
we were the master thread or not, and operate on the
data if and only if we were the master thread. Mean-
while, the other threads simply waited at a barrier for
the master thread to reach them, at which point they
could successfully execute once again. Of course,
this was only possible because we only used one
thread block. Overall, it was much simpler to reason
about and write this code than it was with pthreads.

3.2 Blackscholes

Of the four CMP benchmarks we implemented on
GPUs, blackscholes was best suited to take advan-
tage of the features of GPUs, because it has abun-
dant parallelism without inter-thread synchroniza-
tion. Additionally, it performs a significant number
of floating-point computations per thread, which al-
lows it to effectively hide memory latencies. Our
GPU implementation performs the PDE approxima-
tion in the kernel. Each GPU thread was assigned
to a single stock option. For the maximum data set
size, we had ten million threads, which provides sig-
nificant amortization of memory latency.

Initially, our GPU design for blackscholes copied
all of the data needed to execute blackscholes into
global memory on the GPU. This is inefficient, be-
cause accessing global memory on the GPU is slow.

To optimize our design, we instead placed the data
into the texture cache memory on the GPU. While
this required more overhead to copy the data from
the CPU to the texture memory, it significantly de-
creased memory access time of our GPU code be-
cause we perform caching on the GPU. As men-
tioned in Section 2, we also incorporated Kolb and
Pharr’s optimized mathematical operations to fur-
ther improve performance by performing more fused
multiply-adds and fewer total mathematical opera-
tions [12].

3.3 Fluidanimate

The synchronization points between various stages
of the particle interaction calculations was the major
design feature that we needed to work around in our
fluidanimate GPU implementation. As mentioned
previously, CUDA does not have a mechanism for
synchronizing between thread blocks, so to achieve
good performance it was important to avoid perform-
ing these synchronization points on the GPU. To
get around these interstage synchronization points,
we created multiple kernels, one for each of the six
stages of the particle interaction calculations. Imple-
menting our code in this manner meant that at the
end of each kernel, our code would return from the
GPU to the CPU, creating an implicit synchroniza-
tion point. While there is a cost to returning to the
CPU from the GPU, we were able to avoid synchro-
nizing repeatedly in the kernel.

Implementing a kernel for each stage allowed us to
vary the number of threads for each kernel based
on the amount of parallelism present in that stage.
In two of the stages, there were atomic operations
that we could not avoid by returning to the GPU.
In these cases, we implemented a custom mutex us-
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ing an atomic Compare-and-Swap, which was nec-
essary because CUDA atomic operations didn’t sup-
port floating-point atomic operations.3

3.4 Swaptions

While swaptions and blackscholes perform similar
tasks, swaptions has significantly less parallelism
than blackscholes does. Additionally, we didn’t
think that a single large kernel (similar to our stream-
cluster implementation) would work well for three
reasons. First many of swaption’s functions do not
have very many computations. Second, the func-
tions have significant amounts of thread divergence.
Third, the functions require significant amounts of
memory transfer from the host. Effectively, these is-
sues mean that swaptions is less algorithmically able
than blackscholes to hide memory access latency and
keep high SIMD efficiency by avoiding branches.
Thus, we chose to instead implement a smaller kernel
that performed the PDE approximation calculations,
which we felt was best suited to executing on the
GPU. However, swaptions suffered from a general
lack of parallelism. One of these kernels required
the use of a random number generator on the GPU,
so we used the same random number generator that
we used for streamcluster.

4 Methodology

4.1 Verification and Performance Testing

Our first priority in testing the GPU implementations
of the PARSEC benchmarks was ensuring that the
GPU implementations obtained the correct results.
Our primary means of ensuring correctness was via
comparison to the results obtained by the PARSEC
pthreads and serial versions for the same input sizes.
However, in the cases where a random number gener-
ator was used on the GPU, it was not possible to ver-
ify the correctness of our results by comparing them
to the results from PARSEC. To verify that our im-
plementation was correct, we passed in identical con-

3The Nvidia Fermi architecture has added some floating-
point atomic support.

stant numbers (instead of random numbers) to both
the PARSEC implementation and our GPU imple-
mentation, then made sure that the results matched.

To compare the performance of our GPU imple-
mentations to the CPU implementations, we imple-
mented a timing metric in our GPU implementations
to measure execution time of the entire program. We
also measured the execution time of each individual
kernel and the data transfer times, but do not present
those results. To ensure that we were making di-
rect and accurate comparisons with the PARSEC re-
sults, we replaced the PARSEC timing metric with
the same metric we used in our GPU implementa-
tions.

4.2 System Specifications

Our implementations were done in Nvidia’s CUDA
SDK 2.3. To obtain performance results, we ran
our GPU implementation, the PARSEC pthreads im-
plementation, and the PARSEC serial implementa-
tion on the systems in Table 2. The first system
is the Nvidia Quadro FX 580 GPU and Intel Ne-
halem i5 Quad-core CPU. The second system is the
Nvidia Tesla C1060 GPU and 2 Intel Xeon quad-core
CPUs4. Running the tests on two different systems
enabled us to obtain results on the significantly more
powerful Tesla GPU. In addition, the Tesla GPU has
more memory than the FX 580, which allowed us to
run some of the larger experiments that couldn’t be
run on the FX 580. We were also interested in seeing
if our results remained constant over different GPUs
with significantly different computational power.

5 Results and Analysis

All reported speedups are normalized to the execu-
tion time of the PARSEC serial implementation on
that system.For clarity, the results for the first test-
ing system (FX 580 GPU and Nehalem Quad-core
CPU) are labeled with “On FX 580 GPU and Quad-
core CPU” and the results for the second testing
system (Tesla C1060 GPU and Xeon 8-core CPU)

4We refer to this as an eight-core machine hereafter.
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GPUs
Tesla Quadro

GPU Parameter C1060 FX 580
CUDA Capability 1.3 1.1
Streaming Multiprocessors (SMs) 30 4
Streaming Processors per SM (SPs/SM) 8 8
Max Texture Lookups per cycle 80 16
Max # of Registers per thread block 16K 8K
Clock Frequency 1.3 GHz 1.12 GHz
Memory Bandwidth 102 GB/s 25.6 GB/s
Global Memory 4 GB 512 MB
Shared Memory per thread block 16 KB 16 KB

CPUs
2 Xeon Nehalem

Attached CPU Parameter E5345’s i5
# Cores 8 4
Clock Frequency 2.33 GHz 1.2 GHz

Table 2: Systems Used Specifications

are labeled with “On C1060 GPU and 8-core CPU.”
For both systems, the results were averaged over ten
runs. Additionally, the PARSEC pthreads and our
GPU implementations were run for a varied numbers
of threads for the benchmarks that did not use a num-
ber of threads based on the input size. The results
presented here represent the number of threads we
found obtained the best performance for that bench-
mark and system. The results are presented over sev-
eral input sizes (simsmall, simmedium, simlarge, and
native), except for blackscholes, which uses the same
data set sizes, but lists its results by the number of in-
putted options for clarity. These data set sizes vary
per program and increase in size from left to right.
The data sets are explained in detail elsewhere [2, 5].
In the next four subsections, we discuss the results
for each benchmark.

5.1 Streamcluster

Figure 1a contains the results for streamcluster when
it was run on the FX 580 GPU and Nehalem Quad-
core CPU. As the input size increases, the GPU
implementation’s performance continues to increase
through the simlarge input size. The poor perfor-

mance for smaller input sizes occurs because there
are only a few computations being performed per
thread. Since we have numerous synchronization
points, relatively little work gets done per synchro-
nization point when there is little work to do. How-
ever, as the number of data points increase with the
input size, there are more points per thread and more
computations can be done between synchronization
points, which minimizes the impact of the synchro-
nization points, and high performance is obtained for
the simlarge input size. For the native test size, the
FX 580 does not have enough GPU memory so re-
sults for this data point cannot be obtained.

Figure 1b contains the results for streamcluster when
it was run on the Tesla C1060 GPU and Xeon 8-
core CPU. Because the C1060 has more memory
than the FX 580 it is able run the native test size.
The baseline results are also worse than those on the
other systems (not shown). In general, the GPU re-
sults differ significantly than those obtained on the
other system. For the simsmall and simmedium test
sizes, the GPU implementation does not provide a
speedup over the pthreads version. Additionally, for
the simsmall test, the GPU implementation does not
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(a) On FX 580 GPU and Quad-core CPU. The
pthreads results use 4 threads. The GPU results use
256 threads.

(b) On C1060 GPU and 8-core CPU. The pthreads
results use 8 threads. All GPU results use 512
threads except for native, which uses 256 threads.

Figure 1: Streamcluster GPU speedups over serial
CPU implementation.

even provide a performance improvement over the
serial implementation. These results are more in-line
with the results we were expecting as compared to
those obtained on the FX 580, because these small

test sizes do not perform enough work per synchro-
nization point per thread. However, for the simlarge
input size, there is enough work per thread such that a
significant amount of work can be done per synchro-
nization point. This trend does not continue for the
native test, which indicates that the simlarge test size
provides an optimal computation to synchronization
ratio for the GPU. Overall, for streamcluster we con-
clude that the amount of work being done per syn-
chronization point is the key metric.

It is important to note that these results for the FX
580 GPU and Nehalem Quad-core CPU were ob-
tained when X11, the network graphical user inter-
face, was turned on. When X11 was turned off, per-
formance decreased for all input sizes. When X11 is
turned off, GPU performance on the FX 580 system
decreases by roughly 2x. We believe this issue oc-
curred due to modifications needed to make CUDA
SDK 2.3 atomics run correctly with Fedora 12, the
operating system on that machine.

5.2 Blackscholes

Figure 2a contains the results for blackscholes when
it was run on the FX 580 GPU and Nehalem Quad-
core CPU. These graphs match the intuition we had
for blackscholes: as the number of threads increase,
the performance of the unoptimized GPU imple-
mentation increases. As the number of options in-
creases, the number of threads increases proportion-
ately which allows us to hide the latency of access-
ing global memory more effectively. Performance
of the unoptimized GPU implementation is poor for
the smaller input sizes because there are not enough
threads to hide the latency of accessing main mem-
ory. Performance of the unoptimized GPU imple-
mentation overtakes performance of serial between
the 4K and 16K options tests and exceeds it for all
larger input sizes. The performance of the unopti-
mized GPU implementation passes the performance
of pthreads between the 16K and 64K options tests,
and exceeds it for all larger input sizes.

The performance of the optimized texture cache
GPU implementation exceeds that of the serial,
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(a) On FX 580 GPU and Quad-core CPU. The
pthreads results use 4 threads. The number of GPU
threads is proportional to the input size.

(b) On C1060 GPU and 8-core CPU. The pthreads
results use 8 threads. The number of GPU threads
is proportional to the input size.

Figure 2: Blackscholes GPU speedups over serial
CPU implementation.

pthreads, and unoptimized GPU implementations
immediately. This is because we have significantly
decreased our latency to access memory on the GPU
by accessing texture memory instead of global mem-

ory; accessing texture memory is much faster than
accessing global memory because the data is cached
nearby. Thus, using the texture memory like a lookup
table allows us to cache the data we’re accessing
nearby the cores and improve performance. This
use of texture caches that has been explored some-
what previously [16, 19]. However, once the num-
ber of options increases to 64K, the texture cache
starts to have capacity misses, since it can no longer
hold the entire working set and must swap data with
the global texture memory. It also starts to exhibit
thrashing, because all the threads that are accessing
it are requesting different data, data which cannot all
be stored locally at these input sizes. At this point,
the performance of the optimized texture cache im-
plementation decreases significantly, back to the per-
formance of the serial version. Finally, at the largest
input size, the texture cache is no longer able to allo-
cate the amount of texture cache memory necessary
to run the kernel, so it is unable to produce results.
However, for the smaller input sizes, the optimized
GPU implementation performs extremely well, pro-
viding a significant speedup over all other implemen-
tations.

Figure 2b contains the results for blackscholes when
it was run on the Tesla C1060 GPU and Xeon 8-
core system. The results for the unoptimized version
closely mirror those of the unoptimized version on
the other system. As the number of threads increase,
the performance of the unoptimized version also in-
creases, as was seen before. One difference is that
the performance of the unoptimized version does not
exceed the performance of the pthreads version until
after the 64K test.

Similarly, the optimized version outperforms all
other implementations for the smaller sized inputs,
but again is unable to run the largest input size. How-
ever, because the texture memory on the C1060 is
larger than that on the FX 580, the performance does
not decrease until after the 64K test size, because we
can still store all of the requested data locally at that
point. This demonstrates that having a more pow-
erful GPU can increase performance significantly in
some cases. Another interesting result we observed
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for both systems is that the pthreads implementations
achieved their optimal performance when they were
using one thread per core. Having a single hard-
ware thread per core usually utilizes the hardware the
best while providing the lowest overhead, so this re-
sult matched our expectation. Overall, we find that
blackscholes maps well to the SIMD paradigm and
that having many threads helps hide memory laten-
cies and increases performance. Finally, using tex-
tures cache the data and brings it closer to the SPs,
which further improves performance for smaller in-
put sizes.

5.3 Fluidanimate

The fluidanimate results in Figures 3a and 3b only
include the results for pthreads and the GPU imple-
mentation with three to six kernels. We found that
the six kernel implementation had the best perfor-
mance of all of the GPU implementations5. Thus,
in general in this section, it is assumed that the GPU
implementation uses six kernels. For reference, the
graph comparing the performance of the GPU im-
plementations for the varying number of kernels can
also be found in Figure 4.

Figure 3a contains the results for fluidanimate when
it was run on the FX 580 GPU and Nehalem Quad-
core CPU. The results obtained for the GPU imple-
mentation show that it provides a modest speedup
over the serial version and the pthreads version for
all input sizes. This shows that, for certain GPUs and
certain programs, using multiple kernels can provide
a performance increase. However, because the per-
formance increase is relatively modest, which may
dissuade programmers from implementing a pro-
gram like fluidanimate on a GPU. It should also be
noted that the performance of pthreads on this system
was very poor, which makes the speedups obtained
for the GPU implementation interesting.

Figure 3b contains the results for fluidanimate when
it was run on the C1060 Tesla and 8-core CPU. The

5In later tests we found that 3 kernels provided the best per-
formance. We note this but do not show the updated results.

(a) On FX 580 GPU and Quad-core CPU. The
pthreads results use 4 threads. The GPU results
use 512 threads.

(b) On C1060 GPU and 8-core CPU. The pthreads
results use 8 threads. The GPU results use 16K
threads.

Figure 3: Fluidanimate GPU speedups over serial
CPU implementation.

results obtained on this system differ significantly
from the results obtained on the other system, but
they match our intuition much better. While the per-
formance of the pthreads version does increase as
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(a) On FX 580 GPU and Quad-core CPU. The
pthreads results use 4 threads.

(b) On C1060 GPU and 8-core CPU. The pthreads
results use 8 threads.

Figure 4: Fluidanimate GPU speedups versus serial
CPU implementation for a varying number of GPU
kernels.

compared to the performance obtained on the other
system, it is still relatively poor, barely better than
the performance of the serial implementation. Addi-
tionally, the speedups seen on the other system for
the GPU implementation are not seen in this case. In

fact, the GPU implementation fails to achieve a per-
formance increase over the serial version for any of
the test sizes.

There are several likely causes for fluidanimate’s
poor performance. GPU optimizations are often spe-
cific to a GPU, and may not perform as well on an-
other GPU, this may be a possible cause here. Ad-
ditionally, this implementation exhibits thread diver-
gence, which significantly decreases performance. It
also has register pressure for some of the larger ker-
nels, which limits the maximum number of threads
we can execute in that kernel. Finally, the decreased
performance on this machine also show that atomic
operations on the GPU are costly, especially for
floating-point numbers. It is likely that these results
are also skewed by the same X11 issue that plagued
the streamcluster results, as fluidanimate exhibited
synergistic behavior with streamcluster in relation to
X11. When X11 is turned off, there are much more
moderate performance increases in performance as
size increases and the GPU performance never ex-
ceeds that of the serial CPU implementation.

5.4 Swaptions

Figure 5a contains the results for swaptions when it
was run on the FX 580 GPU and Nehalem Quad-
core CPU. The GPU implementation results are ex-
tremely poor for all test sizes. This is likely because
swaptions has very limited parallelism due to inher-
ent limitations in the algorithm itself. Additionally,
the GPU implementation suffers from thread diver-
gence, register pressure, and dynamic loop bounds.
Thread divergence is caused by conditional state-
ments being executed on the GPU. Dynamic loop
bounds prevented us from achieving acceptable per-
formance when we implemented other kernels on the
GPU. Register pressure limits the number of threads
we can execute, which decreases the already limited
amount of parallelism even further. Finally, because
we have such limited parallelism, the overhead of
copying data between the CPU and GPU can’t be
amortized effectively. The results for the other ker-
nels we implemented for swaptions only decreased
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(a) On FX 580 GPU and Quad-core CPU. The
pthreads results use 8 threads. The GPU results use
528 threads.

(b) On C1060 GPU and 8-core CPU. The pthreads
results use 32 threads. The GPU results use 528
threads.

Figure 5: Swaptions GPU speedups versus serial
CPU implementation.

performance further, so they have been omitted.

Figure 5b contains the results for swaptions when it
was run on the C1060 Tesla and 8-core CPU. These

GPU results mirror the results obtained on the other
system nearly exactly. The only difference is that
pthreads scales slightly better. This is likely due
to this system having more cores, which means the
threads do not need to compete for resources on the
same cores.

6 Conclusion

In general, we found that the PARSEC CMP bench-
marks do not port very well to GPUs. The no-
table exception is blackscholes, due to it is embar-
rassingly parallel nature. The use of texture mem-
ory in blackscholes provided further increases in
performance by allowing data to be accessed lo-
cally instead of being accessed from main memory.
The performance of our streamcluster implementa-
tion improved as the number of data points increased
(through the simlarge input size), because the syn-
chronization point to computation ratio improved.
The performance is maximized on both systems in
the simlarge case, a behavior that is also exhibited by
the PARSEC pthreads implementation, which signi-
fies that this input size maximizes the computation to
synchronization points ratio. Fluidanimate’s perfor-
mance was improved through the use of multiple ker-
nels, which took advantage of the host as an implicit
synchronization point, but suffered because GPU
floating-point atomics perform very poorly. Addi-
tionally, other issues like thread divergence and reg-
ister pressure also contribute to fluidanimate’s over-
all poor performance. The large gap in performance
obtained on the two systems also shows the instabil-
ity of GPU optimizations when applied to different
GPUs. Finally, swaptions performed poorly across
all input sizes. This is likely due to the low amount
of parallelism it has, as well as the its high cost of
transferring memory between the CPU and GPU and
the high cost of accessing GPU global memory when
there aren’t sufficient threads to hide the latency of
accessing memory. In addition, swaptions suffers
from thread divergence, register pressure, and dy-
namic loop bound issues.

Some of the bottlenecks we encountered seemed to
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stem from fundamental limitations of the algorithms,
which cause our GPU implementations to perform
poorly. Many of these algorithms were designed to
operate with only a few threads, whereas GPUs op-
erate best when there are thousands of threads to
hide the latency of memory accesses. Thus, our
approach of incrementally modifying the PARSEC
benchmarks to execute on GPUs may not have been
the ideal approach. It may be the case that we would
be able to achieve better performance by starting
from scratch and designing a heavily multithreaded
algorithm that fits the problem specifications would
be a better approach.

Additionally, the poor performance we obtained are
partially due to implementation-specific issues in
CUDA, such as the lack of global synchronization
and how memory transfers between the CPU and
GPU are structured. Because CUDA does not offer a
way to pipeline memory transfers such that one could
be transferring data to one part of a buffer while read-
ing from a different part of the same buffer, this is
a roadblock to increasing performance. However,
there are some cases where writing code for a GPU
was simpler than writing the same code on a CPU,
such as using a broadcast-and-wait when a single
thread block is used.

Overall, we found that, in general, CMP benchmarks
do not map uniformly well to GPUs. While getting
code to return functionally correct answers was not
extremely difficult, significant optimizations are of-
ten required to achieve high performance GPU pro-
grams, especially for programs that aren’t explicitly
data parallel. Unfortunately, we found that this pro-
cess is often non-trivial and sometimes non-intuitive.
Ryoo, et. al. report similar conclusions from their
study [15]. CMP benchmarks represent a potential
new use for GPUs, but they are unable to execute ef-
ficiently on current GPUs. There are two approaches
that can help address this problem. First, we can
make changes to the GPU architecture to help alle-
viate the bottlenecks of these applications. Blem et
al. have used these benchmarks to help identify what
features of the GPU need to change in order to enable
GPUs to execute CMP benchmarks with high perfor-

mance [7]. Second, significant algorithmic changes
can help execute applications like this on GPUs with
high performance.
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