

Computer
Sciences
Department

Document Recovery from Bag-of-Word Indices

Nathanael Fillmore
Andrew B. Goldberg
Xiaojin Zhu

Technical Report #1645

August 2008

Document Recovery from Bag-of-Word Indices

Nathanael Fillmore, Andrew B. Goldberg, Xiaojin Zhu

Department of Computer Sciences

University of Wisconsin-Madison

{nathanae, goldberg, jerryzhu}@cs.wisc.edu

Abstract

Motivated by computer privacy issues, we

present the novel problem of document re-

covery from an index: given only a docu-

ment’s bag-of-words (BOW) vector or other

type of index, reconstruct the original ordered

document. We investigate a variety of index

types, including count-based BOW vectors,

stopwords-removed count BOW vectors, in-

dicator BOW vectors, and bigram count vec-

tors. We formulate the problem as hypothe-

sis rescoring using A∗ search with the Google

Web 1T 5-gram corpus. Our experiments on

five domains indicate that if original docu-

ments are short, the documents can be recov-

ered with high accuracy.

1 Introduction

With the proliferation of text processing software

such as desktop search engines, database systems,

and spam filters, computer users’ personal files are

increasingly being indexed to enable fast searches

and processing. With great popularity comes greater

risk, though: few users know where the index files

are maintained and what security measures are used

to protect them. In this paper, we seek to answer the

following question: if an adversary obtains a doc-

ument’s index, what can it learn about the original

document?

We define the problem of document recovery from

an index as follows: given only a document’s bag-

of-words (BOW) vector or other index, reconstruct

the original ordered document. Our goal is to un-

derstand the extent to which recovery is possible un-

der standard computational means using large-scale

language resources (i.e., the Google Web 1T 5-gram

corpus).

The risk to privacy is real. An adversary may hack

into a machine and gain access to the indices.1 Soft-

ware with such indices include desktop search en-

gines such as Apache Lucene (lucene.apache.org),

some e-mail clients such as sup (sup.rubyforge.org)

and cone (www.courier-mta.org/cone), and database

management systems like MySQL and PostgreSQL.

Even more alarmingly, certain types of text classi-

fiers (e.g., nearest neighbor and kernel machines)

willingly distribute indices with the trained model

to end users (and potentially the adversary). In this

case, the model consists of the prototype training ex-

amples or the support vectors – documents in in-

dex form. The concern is that the training doc-

uments might be confidential or private in nature,

and people should not assume the model is secure.

In fact, the model files produced by both SVMlight

(svmlight.joachims.org) and LIBSVM (www.csie.

ntu.edu.tw/∼cjlin/libsvm) contain the support vec-

tors in a readable ASCII format (even in the case of

linear SVMs). Thus, anyone provided with a model

file has access to a set of index files.

The approach adopted in this paper is similar to

hypothesis rescoring, which has a long history in

NLP. Nonetheless, this work provides several novel

contributions: (1) A formulation of the problem of

document recovery, which we believe is an impor-

tant area for future NLP research. (2) A bench-

mark dataset that simulates domains where doc-

ument recovery could be particularly detrimental

1Throughout this paper, we assume that encryption has been

compromised by the adversary.

(e.g., personal e-mail, government documents, med-

ical records). (3) A comprehensive empirical study

using the Google Web 1T 5-gram corpus and the re-

sulting “stupid backoff” language model (Brants et

al., 2007). (4) A specialized A∗ decoder using novel

search heuristics for document recovery from sev-

eral types of indices.

2 Related work

In the NLP domain, there has been a great deal of

research on hypothesis rescoring. In statistical ma-

chine translation (SMT), various decoding strategies

have been explored (Knight, 1999; Germann, 2003),

including traveling salesman formulation (Germann

et al., 2001), beam search (Hoang and Koehn, 2008;

Crego et al., 2005), and A∗ search (Och et al., 2001).

Automatic speech recognition (ASR) systems also

employ rescoring mechanisms, such as the ROVER

system (Fiscus, 1997). Athanaselis et al. (2006) use

language model to search for reorderings of words

in the context of automatic grammar checking. Our

work differs from all of the above in that we al-

ready know (at least some of) the words that must

appear in the recovered document. While this may

appear to simplify the problem, our problem may in

fact be harder. In SMT, the set of possible permu-

tations of target words is constrained based on the

ordered source language document (Kanthak et al.,

2005; Bangalore et al., 2007). We lack such con-

straints in our task. We also consider decoding indi-

cator vectors and vectors with stopwords removed,

where we must decide how many additional words

to introduce without the guide of a source document.

The current work shares commonality with data

mining and security research that attempts to recover

hidden knowledge from published sources. Stad-

don et al. (2007) study what inferences can be made

when newly published data is combined with ex-

isting information on the Web. David Naccache

and Claire Whelan demoed software at Eurocrypt

2004 that predicted redacted words in a White House

briefing regarding September 11. Although different

than our notion of document recovery, these work

also address questions of privacy leakage from ob-

scured or modified text.

Closer to our problem, Zhu et al. (2008) showed

that using only a large set of BOW vectors, an adver-

sary can learn a simple bigram model and recover

simple documents. In that paper, no external lan-

guage resources were used, but a large set of BOW

vectors was assumed. In the current paper, in con-

trast, we use the state-of-the-art Google Web 1T 5-

gram collection to provide a rich source of back-

ground knowledge for recovering documents from

individual BOWs separately.

Finally, Soricut (2006) uses A∗ search with an ad-

missible heuristic to recover short documents from

BOWs. Soricut uses a different admissible heuristic

than us, only uses a trigram language model based

on the Wall Street Journal corpus, and only recovers

short documents from count BOWs.

3 Problem formulation

Let d = wn
1 be a document with n words. We are

interested in four types of indices:

1. Count BOW. The index is a vector x =
(x1, . . . , xV) ∈ Z

V
+, where xv is the number of

times word v ∈ V occurs in d and V is the vocabu-

lary of length V .

2. Stopwords-removed count BOW. The index

x = (x1, . . . , xV) ∈ Z
V
+, where xv is 0 if v ∈

stopwords, and the number of times v occurs in d

otherwise.

3. Indicator BOW. The index x = (x1, . . . , xV) ∈
{0, 1}V , where xv is 1 if v occurs in d, and 0 other-

wise.

4. Bigram count vector. The index x =
(x11, . . . , xV V) ∈ Z

V 2

+ , where xij is the number of

times the ordered pair vi, vj occurs in d.

For any index x, the feasible set F (x) is de-

fined as the set of documents that are consistent

with x, that is, the set of documents each having

index x: F (x) = {d : x(d) = x}. The doc-

ument recovery problem is to find the best docu-

ment d
∗ in the feasible set given an index x: d

∗ =
arg maxd∈F (x) score(d) for some score function.

For large F (x), d
∗ may be impractical to compute

exactly. In what follows, we define the feasible sets,

score functions, and methods of approximating d
∗

for each index type.

4 Recovery from count BOWs

4.1 A∗ search

For count BOWs, the feasible set F (x) is the set of

permutations on words in x. This set will be large

for indices of even moderate size, so it is impractical

to enumerate documents d ∈ F (x). Instead, we ap-

proximately find the best document using memory-

bounded A∗ search (Russell and Norvig, 2002). A∗

search finds the highest-score path between a start

and goal in a search space. It requires a score g of

the path from the start state to the current state, and a

heuristic estimate h of the score of the best path from

the current state to the goal state. If the estimate h
always overestimates the true score of the best path

to the goal, h is called an admissible heuristic, and

A∗ search is guaranteed to find the maximal-score

path from start to goal.

To find d
∗ using A∗ search, let each state in

the search space represent a partial path wl
1 =

w1, . . . , wl, where l is the length of the partial path.

The start state consists of the start-of-sentence sym-

bol <S>. The “real” goal state is the original docu-

ment, but since this original document is unknown,

the first complete path of length n that is found is

accepted as the goal. In the absence of search error,

this will be the highest-score length-n path.

The partial path score g of a partial document

is the log probability of the partial document un-

der a language model: g(wl
1) ≡ log p(wl

1) =
∑l

i=1 log p(wi|w
i−1
1). We use a 5-gram language

model with stupid backoff (Brants et al., 2007) to

approximate the probabilities. Let c(·) be the n-

gram count in the Google Web 1T 5-gram corpus,

and α ∈ [0, 1]. Then the probability of a word wi

given its history wi−1
i−k+1 is as follows:

p(wi|w
i−1
i−k+1) =







c(wi
i−k+1

)

c(wi−1

i−k+1
)

if c(wi
i−k+1) > 0

αp(wi|w
i−1
i−k+2) otherwise

if k > 1, and p(wi) = c(wi)/
∑

v∈V c(v) if k = 1.

We use α = 0.4, as suggested by the original paper.

We present two heuristics for h below: one that is

admissible, and one that is not admissible but empir-

ically performs better.

4.2 An admissible heuristic

We exploit properties of the stupid-backoff language

model to construct an efficient admissible heuristic.

Let s(wi|w
i−1
i−k+1) =

max k
j=1α

k−j







c(wi
i−j+1

)

c(wi−1

i−j+1
)

if j > 1

c(wi)/
∑

v∈V c(v) if j = 1

One can show that s(wi|w
i−1
i−k+1) ≥ p(wi|w

i−1
i−k+1).

Let s∗(w) = maxv4
1
∈V s(w|v4

1) ≥

maxv4
1
∈V p(w|v4

1) be an upper bound on the

probability of the word w ∈ V under all possible 5-

gram histories. Then the following is an admissible

heuristic:

hadm(wl
1) =

∑

w∈x\wl
1

log s∗(w), (1)

where x\wl
1 denotes the “remaining BOW”, in

which the count xv is decremented for each occur-

rence of v in wl
1.

The heuristic hadm can be computed efficiently

for each state, since the quantity s∗ can be computed

once, before A∗ search begins. While computing s∗,

although there are V 4 possible permutations v4
1 ∈

V , we need only consider permutations for which n-

gram counts exist; that is, s∗ can be computed by

scanning the list of n-grams used to construct our

language model.

4.3 An empirical heuristic

Our second heuristic, hemp, was originally pro-

posed by Och et al. (2001) in the context of ma-

chine translation. To construct the heuristic hemp,

we first run A∗ search using hadm. For each state

wl
1 that is evaluated by this first search, we up-

date the best-encountered probability for v = wl:

p∗(v) ← max
(

p∗(v), p(wl|w
l−1
l−4)

)

, where p∗(v)

is initialized to −∞. The second time we run A∗

search, we use these probabilities in the heuristic:

hemp(wl
1) =

∑

v∈x\wl
1
log p∗(v).

The heuristic hemp is not admissible, but it can

give better results than hadm. This is possible be-

cause pruning, described in Section 4.4, nullifies the

optimality guarantee that is otherwise offered by A∗

search with an admissible heuristic. An admissible

heuristic that is far from the true score may result

in serious pruning, while a non-admissible heuris-

tic that is generally closer to the true score may re-

sult in more moderate pruning and hence a better

overall score. In this case, a non-admissible heuris-

tic may perform better than an admissible heuristic.

The heuristic hemp is intended to give a more realis-

tic estimate of the future path cost than hadm does,

and hence is expected to improve results.

4.4 Pruning strategies

Using A∗ search with hadm or hemp, the search

space that needs to be explored is still huge and

memory is frequently exhausted before a solution

is found. In A∗ search, we store states in a prior-

ity queueQ. Memory-bounded A∗ limits the size of

this queue by removing states that look unpromis-

ing. We present three such pruning strategies.

The first strategy is to prune the state wl
1 =

arg minwl
1
∈Q g(wl

1) + h(wl
1) when the priority

queue’s size exceeds a threshold. However, as l in-

creases, g(wl
1) + h(wl

1) tends to increase as well,

so this pruning strategy tends to prune long partial

paths before shorter ones. This introduces a bias

towards short partial paths, and can be undesirable.

We call this first strategy g + h.

A second strategy is to prune based on the normal-

ized score arg minwl
1
∈Q

(

g(wl
1) + h(wl

1)
)

/l when

the threshold is exceeded. This corrects the bias

caused by differences in length among the states. We

call this strategy (g + h)/l.

A third strategy is to prune short states first; that

is, prune arg minwl
1
∈Q λ l + g(wl

1) + h(wl
1). where

λ is large enough that all states of length l − 1 are

pruned before states of length l. (If this condition

is met, the specific value of λ is unimportant.) This

strategy directly exploits the earlier insight that short

partial paths are most likely to be safe to prune. Note

that using strategy λ l+g+h, after the memory limit

has been reached, our A∗ search is similar to beam

search.

4.5 Baseline

We compare our A∗ search procedure with a greedy

baseline. The baseline constructs a document by re-

peatedly drawing a word, without replacement, from

a count BOW and appending it to the partial docu-

ment. At each iteration, the most likely word given

the current partial document is drawn. Formally,

each word wi in the recovered document d is drawn

such that wi = arg max
v∈x\wi−1

1

log p(v|wi−1
i−4),

where wi−1
1 is the current partial document.

5 Recovery from stopwords-removed

count BOWs

In order for a document d to be in the feasible set

F (x) of a stopwords-removed count BOW x, each

word v in the vocabulary must occur xv times in d,

unless v is a stopword. If v is a stopword, it can

occur any number of times in the document. As a

result, we also do not know n, the document length.

This makes A∗ search difficult. For example, a short

document that only uses words in x may have a

higher language model score than a longer docu-

ment that also uses stopwords. Conversely, a long

document that repeats a high-probability phrase of

stopwords like “and in the” may have a higher per-

word score than a moderate-length document that

uses fewer stopwords. In fact, per-word score can in-

crease monotonically with partial document length.

To simplify the problem and reduce the size of the

feasible set, we infer document length from x and

limit the feasible set to documents of that length.

To construct an estimator for document length n,

given a stopwords-removed count BOW, we calcu-

late the average ratio of document length (including

stopwords) to BOW length (excluding stopwords)

β = 1
|D|

∑

di∈D
ni

1⊤xi
on a separate training set D of

documents, where each document di has length ni

and a stopwords-removed BOW xi, and 1 is the all-

one vector. Our document-length estimator, given a

BOW x with unknown n and d, simply scales BOW

length by β: n̂(x) = β1
⊤
x.

To find the best document d
∗ ∈ F (x), we per-

form A∗ search as before, with one difference:

successor states are generated by appending words

drawn from the remaining BOW (without replace-

ment), as before, but also from the stopwords list

(with replacement). The heuristic hadm is still ad-

missible, although it is farther from the true future

path score than before, since hadm does not sum over

stopwords’ s∗ scores.

6 Recovery from indicator BOWs

In order for a document d to be in the feasible set

F (x) of an indicator BOW x, each word v in the

vocabulary where xv = 1 must occur at least once

in d, and each word v where xv = 0 must not occur

in d. As before, document length n is unknown, so

we infer it instead.

We use support vector machine regression to in-

fer document length n̂ from our indicator BOW x.

We will train a function f(x) = n on a training

set D of documents, where each document d has

length n and an indicator BOW x. However, x it-

self is unsuitable as a feature vector: it has too many

dimensions, so our estimator will suffer from data

sparseness if it uses x directly. Instead we create a

“count-count” histogram h ∈ Z
11
+ , where hj is the

number of words types v ∈ x such that cgoogle(v),
the Google 1T 5-gram corpus count of v, has j dig-

its (10j−1 ≤ cgoogle(v) < 10j). The histogram h

has 11 dimensions because no count in the Google

corpus has more than 11 digits. For example, let

x = (1011010 . . .), where the four nonzero word

types are “aardvark”, “an”, “apple”, and “ate”, with

Google counts of 93030, 1369286818, 6878789, and

4763100 respectively. Then h = (00001020010),
since the count of “aardvark” has five digits, the

counts of “apple” and “ate” have seven digits, and

the count of “an” has ten digits. We use h along

with BOW length 1
⊤
x as our feature vector. We use

SVMlight (Joachims, 1998) to train a support vector

machine regression model f̂(h,1⊤
x) with a linear

kernel. To predict document length given a new in-

dicator BOW x, we take the maximum of the pre-

diction and the BOW length:

n̂ = max(round(f̂(h,1⊤
x)),1⊤

x).

To find the best document d
∗ ∈ F (x), we per-

form A∗ search as for count BOWs, but when gener-

ating successor states, we append words drawn from

the remaining BOW with replacement rather than

without replacement. Additionally, we require that

each word type in the BOW be used at least once

in the complete document. The heuristic hadm must

be changed slightly, since our BOW now contains

1s and 0s, not counts: we require the summation in

equation 1 to range over a remaining BOW x\wl
1 in

which each entry is 1 if xv = 1 and v 6∈ wl
1, and

0 otherwise. Since word types that will be reused

in the future partial path are not accounted for in

this version of hadm, this version is farther from the

true future path score than hadm in the case of a

count BOW. Nevertheless, this hadm is still admis-

sible, since repeated word types will only decrease

the future path score.

7 Recovery from bigram count vectors

The feasible set of a bigram count vector is highly

constrained. Document length n can be recovered

exactly: n = 1
⊤
x + 1, since each word token in the

original document except the last token is counted

in the first position of one bigram. Additionally, the

bigram w1, w2 must occur xw1,w2
times in d for all

d ∈ F (x).

We use these constraints to make the problem eas-

ier to solve. To motivate our discussion, suppose that

a bigram count vector x has count 1 for each of “the

dog”, “dog runs”, “runs quickly”, and “runs slowly”.

There is ambiguity: we do not know whether “the

dog runs quickly” or “the dog runs slowly” occurred

in the original document. We do still know that “the

dog runs” occurred.

We call document fragments that are unambigu-

ously determined by the bigram count vector sticks.

Before we start our search procedure proper, we con-

struct a stick ti for each bigram wi1 , wi2 such that

xwi1
,wi2

> 0. We start with ti = wi1 , wi2 . If

we can extend leftward without ambiguity, that is,

if there exists a wi3 such that (a) xwi3
,wi1

> 0, (b)

the bigram wi3 , wi1 will occur no more than xwi3
,wi1

times in the new stick, and (c) xwi4
,wi1

= 0 for

all wi4 ∈ V , wi4 6= wi3 , then we extend ti =
wi3 , wi1 , wi2 . Similarly, if we can extend rightward

without ambiguity, we extend ti = wi1 , wi2 , wi3 . A

single stick can be extended both leftward and right-

ward. We repeatedly extend each stick until an am-

biguity is reached. We extend rightward as far as

possible before extending leftward.

Once we have our sticks, we search for the best

document d
∗ ∈ F (x) using A∗ search without

heuristic. We extend each partial path by append-

ing an unused stick to the partial path, and ignoring

the beginning of the stick if it overlaps with the end

of the partial path.

8 Experiments

8.1 Datasets

We collected a benchmark dataset consisting of 5

domains, each with 20 documents. The dataset sim-

Domain s/d w/d Example

Medical 8 153 She also had some breathlessness .

She also had some breathlessness .

She also had some breathlessness .

We have had some breathlessness .

He was not wearing a helmet and was seen unconscious when paramedics arrived .

He was unconscious when paramedics arrived and was seen not wearing a helmet .

He was not wearing a helmet and was unconscious when paramedics arrived . seen .

He was seen wearing a helmet was not unconscious when paramedics arrived .

CIA 22 487 These regiments are under a divisional headquarters called the 324 B Division .

These are called the B 324 Division regiments under a divisional headquarters .

B Division 324 These are called the regiments under a divisional headquarters .

324 regiments under Division B of A are called the divisional headquarters .

The President had his breakfast during the meeting is [sic] the Situation

Room Conference Room .

The Situation Room is the President had his breakfast meeting during the

Conference Room .

The President had his breakfast . The Situation Room is the meeting

during the Conference .

It is during this meeting that the President had breakfast Situation Room

Conference Room .

Email 11 228 I sincerely wish all of you the best in your future endeavors .

I sincerely wish all of you the best in your future endeavors .

I sincerely wish all of you the best of the best in all your future endeavors .

sincerely wish all the best in future endeavors .

PIRA is coming in May to do their semi - annual energy outlook .

May PIRA is coming in to do their semi - annual energy outlook .

May . PIRA is coming in to do their semi - annual energy outlook .

PIRA is a semi - annual energy outlook for this coming May .

Stock 13 400 Our quality systems are ISO/TS16949 (2002 version) certified .

Our quality systems are certified ISO/TS16949 (2002 version) .

ISO/TS16949 Our quality systems are certified version) (2002) .

ISO/TS16949 quality systems are certified to the 2002 and version () .

This department operates under the name of Stock Yards Trust Company .

This department operates under the name of Trust Stock Yards Company .

This department operates under the name of the Trust . Stock Yards Company .

Trust in the Stock Yards Company operates under the name department .

SW 111 1771 B : uh - huh um - hum

B : huh uh - um - hum .

B : uh huh um - hum .

Go to : A - B - um uh huh hum .

A : halfway there so that ’s good .

A halfway there : so that ’s good .

A : halfway there so that ’s good .

so good : it ’s halfway there .

Table 1: Statistics and example sentences from each domain. s/d = sentences per document; w/d = word tokens per

document. The fourth column lists (1) the original document, (2) the document recovered from a count BOW, (3) the

document recovered from an indicator BOW, and (4) the document recovered from a stopwords-removed count BOW.

ulates a collection of sensitive documents that an ad-

versary might be interested in. The domains are:

1. Medical records: anatomy case stud-

ies from the University of Michigan’s medical

school at http://medical.med.umich.edu/courseinfo/

clinical index.html.

2. CIA: declassified CIA documents from Gale’s

Declassified Documents Reference System at

http://galenet.galegroup.com/servlet/DDRS.

3. Email: messages from the Enron email corpus

at http://www.cs.cmu.edu/∼enron/.

4. Stock: annual reports aggregated by Investor-

Calendar at http://investorcalendar.ar.wilink.com.

5. Switchboard (SW): telephone conversa-

tion transcripts from LDC online’s free section of

Switchboard.

Table 1 presents statistics and examples of each

domain.

8.2 Experimental procedure

Document recovery is a difficult problem, and re-

sults are sensitive to the length of the documents.

In order to compare our methods more effectively,

we created synthetic documents of varying lengths

N from each original document and tested on these

synthetic documents. Each synthetic document is

comprised of N contiguous real sentences from one

original document, starting at a random sentence in

the original. If the original document had fewer

than N sentences, we took the entire document; for

N = 20, this occurred 65 out of 100 times.

To evaluate the results of document recovery on

each set of synthetic documents, we use BLEU4

(Papineni et al., 2001), comparing the recovered

documents to the synthetic documents. Of course,

BLEU4 is not the only possible metric. However,

since our goal is to recover the exact document,

BLEU4 seems to be a good choice for several rea-

sons: (a) BLEU4 compares test documents with ref-

erence documents in terms of 4-gram precision. This

correlates well with our goal to exactly recover each

original document word-for-word. (b) BLEU4 pe-

nalizes recovered documents that are shorter than

the originals. This is important in the case of indica-

tor and stopwords-removed BOWs, where we need

to recover the document’s length as well as its con-

tents. (c) BLEU4 is a standard metric for machine

translation, and at the point of evaluation, machine

translation and document recovery are quite similar.

In both cases, we have a gold standard and want to

measure how close our result is to the gold standard.

A high BLEU4 score is, strictly speaking, neither

necessary nor sufficient for a human to extract infor-

mation from the recovered document; yet the same

is also true in the case of machine translation, where

BLEU4 has proved a useful metric.

All reported BLEU4 scores are averages within a

set of synthetic documents for a single N and do-

main. In all our experiments, we set α = 0.4 and

λ = 1000. We use the small stopword list in (Man-

ning and Schütze, 1999), which has 114 word types,

57 uppercase and 57 lowercase.

8.3 Results

Examples of a few recovered N = 1 documents are

shown in Table 1. Tables 2 and 3 show the results of

our experiments on different combinations of index

types, heuristics, pruning strategies, domains, and

document lengths, in terms of the BLEU4 scores.

We make the following observations:

1. The results show two conditions under which

we can recover documents with good success: (i)

if the original document is short (Table 2, “N = 1”

row), or (ii) if the index is a bigram count vector (Ta-

ble 2, “bigram” column). Long documents, given a

unigram BOW, are much more difficult to recover.

This makes intuitive sense: when the original doc-

ument is short or the index preserves ordering con-

straints, the feasible set is small, which makes re-

covery easier.

2. Among unigram BOWs, the index type affects

the recovery rate. It is easiest to recover documents

from count BOWs, somewhat harder to recover from

indicator BOWs, and hardest of all from stopwords-

removed count BOWS (Table 2, “counts, stopwords,

indicator” columns). The fact that we must infer the

document length from the BOW contributes to the

difficulty of the latter two index types; when we ar-

tificially substitute the true original document length

for our estimated document length, recovery im-

proves, especially for short documents where each

word is relatively more important (Table 2, “n” vs.

“n̂” columns).

3. The domains vary in difficulty of recovery. The

medical and stock domains seem the easiest (rows

in Table 2). This may be because they are both

more similar to general Web text than, for example,

Switchboard, and our language model is trained on

Web text.

4. Finally, Table 3 shows that our choice of

heuristic and pruning strategy affects recovery. The

empirical heuristic performs consistently better than

the admissible heuristic. As for pruning strategies,

g + h is substantially the worst, but the other two

strategies, λ l + g + h and (g + h)/l, yield more or

less equally good results. However, it is worth not-

ing that A∗ search is much faster using λ l + g + h
than it is using (g + h)/l. For example, producing

the third column of Table 3 took about an hour, while

the second column took over a day.

9 Conclusion and Discussions

We have formulated the document recovery prob-

lem, constructed several initial attempts to solve it,

and produced a benchmark test dataset which we

plan to share with the research community after re-

view. Our results for all conditions improve on the

greedy baseline. Most importantly, we have shown

that if original documents are short or the index is

a bigram count vector, documents can be recovered

from indices with high BLEU4 scores. This has im-

portant implications in security and privacy.

In future research, we would like to explore syn-

tactic constraints to limit the feasible set and to im-

prove our score function. We would also like to treat

other types of indices, such as TF-IDF vectors or

BOWs with stemming.

References

Theologos Athanaselis, Stelios Bakamidis, and Ioannis

Dologlou. 2006. A fast algorithm for words reorder-

ing based on language model. In Artificial Neural Net-

works - ICANN 2006.

Srinivas Bangalore, Patrick Haffner, and Stephan Kan-

thak. 2007. Statistical machine translation through

global lexical selection and sentence reconstruction.

In ACL.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och,

and Jeffrey Dean. 2007. Large language models in

machine translation. In EMNLP-CoNLL.

Josep M. Crego, José Mariño, and Adrià Gispert. 2005.

An ngram-based statistical machine translation de-

coder. In Interspeech.

J. Fiscus. 1997. A post-processing system to yield re-

duced word error rates: Recognizer output voting error

reduction (ROVER). In IEEE Workshop on Automatic

Speech Recognition and Understanding.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel

Marcu, and Kenji Yamada. 2001. Fast decoding and

optimal decoding for machine translation. In ACL.

Ulrich Germann. 2003. Greedy decoding for statistical

machine translation in almost linear time. In NAACL.

Hieu Hoang and Philipp Koehn. 2008. Design of the

Moses decoder for statistical machine translation. In

Software Engineering, Testing, and Quality Assurance

for Natural Language Processing.

T. Joachims. 1998. Making large-scale support vector

machine learning practical. In A. Smola B. Schölkopf,

C. Burges, editor, Advances in Kernel Methods: Sup-

port Vector Machines. MIT Press, Cambridge, MA.

Stephan Kanthak, David Vilar, Evgeny Matusov, Richard

Zens, and Hermann Ney. 2005. Novel reordering ap-

proaches in phrase-based statistical machine transla-

tion. In ACL Workshop on Building and Using Parallel

Texts.

Kevin Knight. 1999. Decoding complexity in word-

replacement translation models. Computational Lin-

guistics, 25(4).

Christopher D. Manning and Hinrich Schütze. 1999.

Foundations of Statistical Natural Language Process-

ing. The MIT Press, Cambridge, Massachusetts.

Franz Josef Och, Nicola Ueffing, and Hermann Ney.

2001. An efficient A* search algorithm for statistical

machine translation. In Data-Driven Machine Trans-

lation Workshop.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

Jing Zhu. 2001. Bleu: a method for automatic evalua-

tion of machine translation. In ACL.

Stuart J. Russell and Peter Norvig. 2002. Artificial Intel-

ligence: A Modern Approach (2nd Edition). Prentice

Hall.

Radu Soricut. 2006. Natural language generation us-

ing an information-slim representation. Ph.D. thesis,

University of Southern California.

Jessica Staddon, Philippe Golle, and Bryce Zimny. 2007.

Web-based inference detection. In USENIX-SS.

Xiaojin Zhu, Andrew B. Goldberg, Michael Rabbat, and

Robert Nowak. 2008. Learning bigrams from uni-

grams. In ACL.

N domain counts baseline stopwords, n stopwords, n̂ indicator, n indicator, n̂ bigram

1

medical 0.5774 0.0821 0.3998 0.3427 0.5590 0.3971 0.9294

CIA 0.3704 0.1338 0.2525 0.2178 0.3541 0.2584 0.8515

email 0.4845 0.1340 0.3639 0.2575 0.4242 0.3393 0.8122

stock 0.5329 0.1023 0.4279 0.4282 0.4099 0.3329 0.8247

SW 0.4793 0.1280 0.2866 0.2314 0.4341 0.3534 0.8522

2

medical 0.4389 0.0972 0.2957 0.2521 0.3683 0.2885 0.7336

CIA 0.3348 0.0867 0.2334 0.2148 0.2689 0.2187 0.7438

email 0.4366 0.1949 0.3595 0.3304 0.3634 0.3216 0.7566

stock 0.4768 0.1125 0.3522 0.3240 0.3671 0.3313 0.7415

SW 0.3882 0.0700 0.2163 0.1923 0.2900 0.2751 0.6570

5

medical 0.3363 0.0876 0.2413 0.2254 0.1997 0.2001 0.6902

CIA 0.2381 0.0630 0.1803 0.1845 0.1631 0.1644 0.6710

email 0.2822 0.0934 0.1894 0.1742 0.1982 0.2021 0.6519

stock 0.3570 0.0787 0.2826 0.2624 0.2002 0.1896 0.6782

SW 0.1904 0.0815 0.1293 0.1135 0.0983 0.0965 0.6018

10

medical 0.2852 0.0835 0.2216 0.2038 0.1514 0.1543 0.6739

CIA 0.1835 0.0682 0.1570 0.1427 0.1048 0.1050 0.6027

email 0.2239 0.1104 0.1738 0.1621 0.1501 0.1513 0.6254

stock 0.2713 0.0891 0.2190 0.2129 0.1291 0.1192 0.6331

SW 0.1352 0.0617 0.1075 0.0997 0.0493 0.0449 0.4910

20

medical 0.2823 0.0839 0.2200 0.2003 0.1531 0.1479 0.6687

CIA 0.1737 0.0771 0.1515 0.1355 0.0866 0.0736 0.5513

email 0.1928 0.1005 0.1556 0.1458 0.1155 0.1181 0.5697

stock 0.2533 0.0878 0.2015 0.2090 0.1024 0.1148 0.6126

SW 0.1239 0.0602 0.0989 0.0937 0.0285 0.0189 0.4365

Table 2: BLEU4 scores for synthetic subsets of the all domains and for each index type. In all cases, heuristic hemp

and pruning strategy λ l + g + h are used.

N Admissible h Empirical h
g + h (g + h)/l λ l + g + h g + h (g + h)/l λ l + g + h

1 0.3302 0.5714 0.5971 0.4120 0.5975 0.5936

2 0.2149 0.4267 0.3861 0.2708 0.4673 0.4804

4 0.2099 0.2575 0.2264 0.2099 0.3586 0.3369

16 0.1510 0.1934 0.1858 0.1847 0.2729 0.2970

Table 3: BLEU4 scores for synthetic subsets of the medical domain, with count BOW, for each heuristic and pruning

strategy presented in Section 4. These synthetic subsets are a different random sample than those in Table 2.

