

Computer
Sciences
Department

Packing Multiway Cuts in Capacitated Graphs

Siddharth Barman
Shuchi Chawla

Technical Report #1642

August 2008

Packing multiway cuts in capacitated graphs

Siddharth Barman∗ Shuchi Chawla†

Abstract

We consider the following “multiway cut packing” problem inundirected graphs: we are given a
graphG = (V, E) andk commodities, each corresponding to a set of terminals located at different
vertices in the graph; our goal is to produce a collection of cuts{C1, · · · , Ck} such thatCi is a multiway
cut for commodityi and the maximum load on any edge is minimized. The load on an edge is defined
to be the number of cuts in the solution crossing the edge. In the capacitated version of the problem
edges have capacitiesce and the goal is to minimize the maximumrelative load on any edge – the
ratio of the edge’s load to its capacity. We present constantfactor approximations for this problem in
arbitrary undirected graphs. The multiway cut packing problem arises in the context of graph labeling
problems where we are given a partial labeling of a set of items and a neighborhood structure over them,
and, informally stated, the goal is to complete the labelingin the most consistent way. This problem
was introduced by Rabani, Schulman, and Swamy (SODA’08), who developed anO(log n/ log log n)
approximation for it in general graphs, as well as an improvedO(log2 k) approximation in trees. Heren
is the number of nodes in the graph.

We present an LP-based algorithm for the multiway cut packing problem in general graphs that guar-
antees a maximum edge load of at most8OPT+ 4. Our rounding approach is based on the observation
that every instance of the problem admits a laminar solution(that is, no pair of cuts in the solution
crosses) that is near-optimal. For the special case where each commodity has only two terminals and
all commodities share a common sink (the “common sinks-t cut packing” problem) we guarantee a
maximum load of OPT+ 1. Both of these variants are NP-hard; for the common-sink case our result is
optimal.

∗Computer Sciences Dept., University of Wisconsin - Madison, sid@cs.wisc.edu. Supported in part by NSF grant CCF-
0643763.

†Computer Sciences Dept., University of Wisconsin - Madison, shuchi@cs.wisc.edu. Supported in part by NSF CAREER
Award CCF-0643763.

1 Introduction

We study themultiway cut packingproblem (MCP) introduced by Rabani, Schulman and Swamy [9].In this
problem, we are givenk instances of the multiway cut problem in a common graph, eachinstance being a set
of terminals at different locations in the graph. Informally, our goal is to compute nearly-disjoint multiway
cuts for each of the instances. More precisely, we aim to minimize the maximum number of cuts that any
single edge in the graph belongs to. In the weighted version of this problem, different edges have different
capacities; the goal is to minimize the maximum relative load of any edge, where the relative load of an edge
is the ratio of the number of cuts it belongs to and its capacity.

The multiway cut packing problem belongs to the following class of graph labeling problems. We
are given a partially labeled set ofn items along with a weighted graph over them that encodes similarity
information among them. An item’s label is a string of lengthk where each coordinate of the string is either
drawn from an alphabetΣ, or is undetermined. Roughly speaking, the goal is to complete the partial labeling
in the most consistent possible way. Note that completing a single specific entry (coordinate) of each item
label is like finding what we call a “set multiway cut”—forσ ∈ Σ let Si

σ denote the set of nodes for which
theith coordinate is labeledσ in the partial labeling, then in order to complete the labeling in this coordinate
our goal is to partition the items into|Σ| parts such that all of the items fromSi

σ end up in the same part,
and no two items from different setsSi

σ andSi
σ′ are in the same part. The cost of the labeling for a single

pair of neighboring items in the graph is measured by the Hamming distance between the labels assigned to
them. The overall cost of the labeling can then be formalizedas a certain norm of the vector of (weighted)
edge costs.

Different choices of norms for the overall cost give rise to different objectives. Minimizing thè1 norm,
for example, is the same as minimizing the sum of the edge costs. This problem decomposes into finding
k minimum set multiway cuts. Each set multiway cut instance can be reduced to a minimum multiway cut
instance by simply merging all the items in the same setSσ into a single node in the graph, and can therefore
be approximated to within a factor of1.5 [1]. On the other hand, minimizing thè∞ norm of edge costs
(equivalently, the maximum edge cost) becomes the set multiway cut packing problem. Formally, in this
problem, we are givenk set multiway cut instancesS1, · · · , Sk, where eachSi = Si

1×Si
2×· · ·×Si

|Σ|. The

goal is to findk cuts, with theith cut separating every pair of terminals that belong to setsSi
j1

andSi
j2

with
j1 6= j2, such that the maximum (weighted) cost of any edge is minimized. When|Si

j | = 1 for all i ∈ [k]
andj ∈ Σ, this is the multiway cut packing problem.

To our knowledge Rabani et al. [9] were the first to consider the multiway cut packing problem and
provide approximation algorithms for it. They used a linearprogramming relaxation of the problem along
with randomized rounding to obtain anO(log n

log log n) approximation, wheren is the number of nodes in the

given graph1. This approximation ratio arises from an application of theChernoff bounds to the randomized
rounding process, and improves to anO(1) factor when the optimal load isΩ(log n). When the underlying
graph is a tree, Rabani et al. use a more careful deterministic rounding technique to obtain an improved
O(log2 k) approximation. The latter approximation factor holds alsofor a more general multicut packing
problem (described in more detail below). One nice propertyof the latter approximation is that it is inde-
pendent of the size of the graph, and remains small as the graph grows butk remains fixed. Then, a natural

1Rabani et al. claim in their paper that the same approximation ratio holds for the set multiway cut packing problem that arises
in the context of graph labelings. However their approach ofmerging nodes with the same attribute values (similar to what we
described above for minimizing thè1 norm of edge costs) does not work in this case. Roughly speaking, if nodesu andv have the
sameith attribute, and nodesv andw have the samejth attribute, then this approach merges all three nodes, although an optimal
solution may end up separatingu from w in some of the cuts. We are not aware of any other approximation preserving reduction
between the two problems.

1

open problem related to their work is whether a similar approximation guarantee independent ofn can be
obtained even for general graphs.

Our results & techniques. We answer this question in the positive. We employ the same linear pro-
gramming relaxation for this problem as Rabani et al., but develop a very different rounding algorithm. In
order to produce a good integral solution our rounding algorithm requires a fractional collection of cuts
that is not only feasible for the linear program but also satisfies an additional good property—the cut col-
lection is laminar. In other words, when interpreted appropriately as subsets of nodes, no two cuts in the
collection “cross” each other. Given such an input the rounding process only incurs a small additive loss
in performance—the final (absolute) load on any edge is at most 3 more than the load on that edge of the
fractional solution that we started out with. Of course the laminarity condition comes at a cost – not ev-
ery fractional solution to the cut packing LP can be interpreted as a laminar collection of cuts (see, e.g.,
Figure 7). We show that for the multiway cut problem any fractional collection of cuts can be converted
into a laminar one while losing only a multiplicate factor of8 and an additiveo(1) amount in edge loads.
Therefore, for every edgee we obtain a final edge load of8`OPT

e + 4, where`OPT
e is the optimal load on the

edge.
Our laminarity based approach proves even more powerful in the special case ofcommon-sinks-t cut

packingproblem or CSCP. In this special case every multiway cut instance has only two terminals and all
the instances share a common sinkt. We use these properties to improve both the rounding and laminarity
transformation algorithms, and ensure a final load of at most`OPT

e +1 for every edgee. The CSCP is NP-hard
(see Section 5) and so our guarantee for this special case is the best possible.

In converting a fractional laminar solution to an integral one we use an iterative rounding approach,
assigning an integral cut at each iteration to an appropriate “innermost” terminal. Throughout the algorithm
we maintain a partial integral cut collection and a partial fractional one and ensure that these collections
together are feasible for the given multiway cut instances.As we round cuts, we “shift” or modify other
fractional cuts so as to maintain bounds on edge loads. Maintaining feasibility and edge loads simultane-
ously turns out to be relatively straightforward in the caseof common-sinks-t cut packing – we only need to
ensure that none of the cuts in the fractional or the integralcollection contain the common sinkt. However
in the general case we must ensure that new fractional cuts assigned to any terminal must exclude all other
terminals of the same multiway cut instance. This requires amore careful reassignment of cuts.

Related work. Problems falling under the general framework of graph labeling as described above have
been studied in various guises. The most extensively studied special case, called label extension, involves
partial labelings in which every item is either completely labeled or not labeled at all. When the objective
is to minimize thè 1 norm of edge costs, this becomes a special case of the metric labeling and 0-extension
problems [6, 2, 4, 5]. (The main difference between 0-extension and the label extension problem as described
above is that the cost of the labeling in the former arises from an arbitrary metric over the labels, while in
the latter it arises from the Hamming metric.)

When the underlying graph is a tree and edge costs are given bythe edit distance between the corre-
sponding labels, this is known as the tree alignment problem. The tree alignment problem has been studied
widely in the computational biology literature and arises in the context of labeling phylogenies and evolu-
tionary trees. This version is also NP-hard, and there are several PTASes known [13, 12, 11]. Ravi and
Kececioglu [10] also introduced and studied the`∞ version of this problem, calling it the bottleneck tree
alignment problem. They presented anO(log n) approximation for this problem. A further special case of
the label extension problem under the`∞ objective, where the underlying tree is a star with labeled leaves,
is known as the closest string problem. This problem is also NP-hard but admits a PTAS [7].

As mentioned above, the multiway cut packing problem was introduced by Rabani, Schulman and

2

Swamy [9]. Rabani et al. also studied the more general multicut packing problem (where the goal is to
pack multicuts so as to minimize the maximum edge load) as well as the label extension problem with the
`∞ objective. Rabani et al. developed anO(log2 k) approximation for multicut packing in trees, and an
O(log M log n

log log n) in general graphs. HereM is the maximum number of terminals in any one multicut in-
stance. For the label extension problem they presented a constant factor approximation in trees, which holds
even when edge costs are given by a fairly general class of metrics over the label set (including Hamming
distance as well as edit distance).

Another line of research loosely related to the cut packing problems described here considers the prob-
lem of finding the largest collection of edge-disjoint cuts (not corresponding to any specific terminals) in
a given graph. While this problem can be solved exactly in polynomial time in directed graphs [8], it is
NP-hard in undirected graphs, and Caprara, Panconesi and Rizzi [3] presented a2 approximation for it. In
terms of approximability, this problem is very different from the one we study—in the former, the goal is to
find as many cuts as possible, such that the load on any edge is at most1, whereas in our setting, the goal is
to find cuts for all the commodities, so that the maximum edge load is minimized.

2 Definitions and results

Given a graphG = (V,E), acut in G is a subset of edgesE′ the removal of which disconnects the graph into
multiple connected components. Avertex partitionof G is a pair(C, V \ C) with ∅ (C (V . For a setC
with ∅ (C (V , we useδ(C) to denote the cut defined byC, that is,δ(C) = {(u, v) ∈ E : |C ∩{u, v}| =
1}. We say that a cutE′ ⊆ E separates verticesu andv if u andv lie in different connected components in
(V,E\E′). Likewise, the vertex partition defined by setC separatesu andv if the two vertices are separated
by the cutδ(C). Given a collection of cutsE = {E1, · · · , Ek} and capacitiesce on edges, the load̀Ee on an
edgee is defined as the number of cuts that containe, that is,`Ee = |{Ei ∈ E|e ∈ Ei}|. Likewise, given a
collection of vertex partitionsC = {C1, · · · , Ck}, the load`Ce on an edgee is defined to be the load of the
cut collection{δ(C1), · · · , δ(Ck)} on e.

The input to amultiway cut packingproblem (MCP) is a graphG = (V,E) with integral capacities
ce on edges, andk setsS1, · · · , Sk of terminals (called “commodities”); each terminali ∈ Sa resides at a
vertexri in V . The goal is to produce a collection of cutsE = {E1, · · · , Ek}, such that (1) for alla ∈ [k],
and for all pairs of terminalsi, j ∈ Sa, the cutEa separatesri andrj, and (2) the maximum “relative load”
on any edge,maxe `Ee /ce, is minimized.

In a special case of this problem called thecommon-sinks-t cut packingproblem (CSCP), the graphG
contains a special nodet called the sink and each commodity set has exactly two terminals, one of which
resides att. Again the goal is to produce a collection of cuts, one for each commodity such that the maximum
relative edge load is minimized.

Both of these problems are NP-hard to solve optimally (see Section 5), and we present LP-rounding
based approximation algorithms for them. We assume withoutloss of generality that the optimal solution
has a relative load of1. The integer programMCP-IP below encodes the set of solutions to the MCP with
relative load1.

HerePa denotes the set of all paths between any two verticesri, rj with i, j ∈ Sa, i 6= j. In order to be
able to solve this program efficiently, we relax the final constraint toxa,e ∈ [0, 1] for all a ∈ [k] ande ∈ E.
Although the resulting linear program has an exponential number of constraints, it can be solved efficiently;
in particular, the polynomial-size programMCP-LP below is equivalent to it. Given a feasible solution to
this linear program, our algorithms round it into a feasibleintegral solution with small load.

3

∑

e∈P

xa,e ≥ 1 ∀a ∈ [k], P ∈ Pa

∑

a

xa,e ≤ ce ∀e ∈ E

xa,e ∈ {0, 1} ∀a ∈ [k], e ∈ E

(MCP-IP)

da(u, v) ≤ da(u, w) + da(w, v) ∀a ∈ [k], u, v, w ∈ V

da(ri, rj) ≥ 1 ∀a ∈ [k], i, j ∈ Sa
∑

a

da(e) ≤ ce ∀e ∈ E

da(e) ∈ [0, 1] ∀a ∈ [k], e ∈ E
(MCP-LP)

In the remainder of this paper we focus exclusively on solutions to the MCP and CSCP that are collec-
tions of vertex partitions. This is without loss of generality (up to a factor of2 in edge loads for the MCP)
and allows us to exploit structural properties of vertex sets such as laminarity that help in constructing a
good approximation.

In the rest of the paper we use the term “cut” to denote a subsetof the vertices that defines a vertex
partition. A pair of cutsC1, C2 ⊂ V is said to “cross” if all of the setsC1∩C2, C1\C2, andC2\C1 are non-
empty. A collectionC = {C1, · · · , Ck} of cuts is said to belaminar if no pair of cutsCi, Cj ∈ C crosses.
All of our algorithms are based on the observation that both the MCP and the CSCP admit near-optimal
solutions that are laminar. Specifically, there is a polynomial-time algorithm that given a fractional feasible
solution to MCP or CSCP (i.e. a feasible solution toMCP-LP) produces a laminar family of fractional cuts
that is feasible for the respective problem and has small load. This is formalized in Lemmas 1 and 2 below.
We first introduce the notion of a fractional laminar family of cuts.

Definition 1 A fractional laminar cut familyC for terminal setT with weight functionw is a collection of
cuts with the following properties:

• The collection is laminar

• Each cutC in the family is associated with a unique terminal inT . We useCi to denote the sub-
collection of sets associated with terminali ∈ T . EveryC ∈ Ci contains the noderi.

• For all i ∈ T , the total weight of cuts inCi,
∑

C∈Ci
w(C), is 1.

Next we define what it means for a fractional laminar family tobe feasible for the MCP or the CSCP.
Note that condition (2) below is weaker than requiring that for all pairsi, j belonging to the same commodity
every cut inbothCi andCj separatesri from rj .

Definition 2 A fractional laminar family of cutsC for terminal setT with weight functionw is feasible for
the MCP on a graphG with edge capacitiesce and commoditiesS1, · · · , Sk if (1) T = ∪a∈[k]Sa, (2) for all
a ∈ [k] and i, j ∈ Sa, i 6= j, eitherrj 6∈ ∪C∈Ci

C, or ri 6∈ ∪C∈Cj
C, and (3) for every edgee ∈ E, the load

of C on e is no more thance.
The family is feasible for the CSCP on a graphG with edge capacitiesce and commoditiesS1, · · · , Sk

if (1) T = ∪a∈[k]Sa \ {t}, (2) t 6∈ ∪C∈CC, and (3) for everye ∈ E, the load ofC on e is no more thance.

Lemma 1 Consider an instance of the CSCP with graphG = (V,E), common sinkt, edge capacities
ce, and commoditiesS1, · · · , Sk. Given a feasible solutiond to MCP-LP , algorithm Lam-1 produces a
fractional laminar cut familyC that is feasible for the CSCP onG with edge capacitiesce.

4

Lemma 2 Consider an instance of the MCP with graphG = (V,E), edge capacitiesce, and commodities
S1, · · · , Sk. Given a feasible solutiond to MCP-LP , algorithmLam-2produces a fractional laminar cut
familyC that is feasible for the MCP onG with edge capacities8ce + o(1).

Lemmas 1 and 2 are proven in Section 4. In Section 3 we show how to deterministically round a
fractional laminar solution to the CSCP and MCP into an integral one while increasing the load on every
edge by no more than a small additive amount. These rounding algorithms are the main contributions of our
work, and crucially use the laminarity of the fractional solution.

Lemma 3 Given a fractional laminar cut familyC feasible for the CSCP on a graphG with integraledge
capacitiesce, the algorithmRound-1produces an integral family of cutsA that is feasible for the CSCP on
G with edge capacitiesce + 1.

For the MCP, the rounding algorithm loses an additive factorof 3 in edge load.

Lemma 4 Given a fractional laminar cut familyC feasible for the MCP on a graphG with integraledge
capacitiesce, the algorithmRound-2produces an integral family of cutsA that is feasible for the MCP on
G with edge capacitiesce + 3.

Combining these lemmas together we obtain the following theorem.

Theorem 5 There exists a polynomial-time algorithm that given an instance of the MCP with graphG =
(V,E), edge capacitiesce, and commoditiesS1, · · · , Sk, produces a familyA of multiway cuts, one for each
commodity, such that for eache ∈ E, `Ae ≤ 8ce + 4.

There exists a polynomial-time algorithm that given an instance of the CSCP with graphG = (V,E),
edge capacitiesce, and commoditiesS1, · · · , Sk, produces a familyA of multiway cuts, one for each com-
modity, such that for eache ∈ E, `Ae ≤ ce + 1.

3 Rounding fractional laminar cut families

In this section we develop algorithms for rounding feasiblefractional solutions to the MCP and the CSCP
to integral ones while increasing edge loads by a small additive amount. We first demonstrate some key
ideas behind the algorithm and the analysis for the CSCP, andthen extend them to the more general case of
multiway cuts. Throughout the section we assume that the edge capacitiesce are integral.

3.1 The common sink case (proof of Lemma 3)

Our rounding algorithm for the CSCP rounds fractional cuts roughly in the order of innermost cuts first. The
notion of an innermost terminal is defined with respect to thefractional solution. After each iteration we
ensure that the remaining fractional solution continues tobe feasible for the unassigned terminals and has
small edge loads. We useC to denote the fractional laminar cut family that we start outwith andA to denote
the integral family that we construct. Recall that for an edgee ∈ E, `Ce denotes the load of the fractional cut
family C on e, and`Ae denotes the load of the integral cut familyA on e. We call the former the fractional
load on the edge, and the latter its integral load.

We now formalize what we mean by an “innermost” terminal. Forevery vertexv ∈ V , let Kv denote
the set of cuts inC that containv. The “depth” of a vertexv, is the total weight of all cuts inKv: dv =

5

Input: GraphG = (V, E) with capacitiesce, terminalsT with a fractional laminar cut familyC, common sinkt with
t 6∈ ∪C∈CC.
Output: A collection of cutsA, one for each terminal inT .

1. InitializeT ′ = T , A = ∅, andM(v) = {v} for all v ∈ V . Compute the depths of vertices and terminals.

2. While there are terminals inT ′ do:

(a) Leti be a terminal with the maximum depth inT ′. LetAi = M(ri). AddAi toA and removei from T ′.

(b) LetK = K1
ri

. Remove cuts inK ∩ Ci from K, Ci andC. While there exists a terminalj ∈ T ′ with a cut
C ∈ K ∩ Cj , do the following: letw = w(C); removeC from K, Cj andC; remove cuts inCw

i from Ci

and add them toCj (that is, these cuts are reassigned from terminali to terminalj).

(c) If there exists an edgee = (u, v) with `Ce = 0, merge the meta-nodesM(u) andM(v) (we say that the
edgee has been “contracted”).

(d) Recompute the depths of vertices and terminals.

Figure 1: AlgorithmRound-1—Rounding algorithm for common-sinks-t cut packing

∑
C∈Kv

w(C). The depth of a terminal is defined as the depth of the vertex atwhich it resides. Terminals
are picked in order of decreasing depth.

Before we describe the algorithm we need some more notation.At any point during the algorithm we
useSe to denote the set of cuts crossing an edgee. As the algorithm proceeds, the integral loads on edges
increase while their fractional loads decrease. Whenever the fractional load of an edge becomes0, we merge
its end-points to form “meta-nodes”. At any point of time, weuseM(v) to denote the meta-node containing
a nodev ∈ V .

Finally, for a set of fractional cutsL = {L1, · · · , Ll} with L1 ⊆ L2 ⊆ · · · ⊆ Ll and weight functionw,
we useLx to denote the subset ofL containing the innermost cuts with weight exactlyx. That is, letl′ be
such that

∑
a<l′ w(La) < x and

∑
a≤l′ w(La) ≥ x. ThenLx is the set{L1, · · · , Ll′} with weight function

w′ such thatw′(La) = w(La) for a < l′ andw′(Ll′) = x −
∑

a<l′ w(La).
The algorithmRound-1is given in Figure 1. At every step, the algorithm picks a terminal, sayi, with the

maximum depth and assigns an integral cut to it. This potentially frees up capacity used up by the fractional
cuts of i, but may use up extra capacity on some edges that was previously occupied by fractional cuts
belonging to other terminals. In order to avoid increasing edge loads, we reassign to terminals in the latter
set, fractional cuts ofi that have been freed up.

Our analysis has two parts. Lemma 6 shows that the familyC continues to remain feasible, that is it
always satisfy the first two conditions in Definition 2 for theunassigned terminals. Lemma 7 analyzes the
total load of the fractional and integral families as the algorithm progresses.

Lemma 6 Throughout the algorithm, the cut familyC is a fractional laminar family for terminals inT ′ with
t 6∈ ∪C∈CC.

Proof: We prove this by induction over the iterations of the algorithm. The claim obviously holds at the
beginning of the algorithm. Consider a step at which some terminal i is assigned an integral cut. The
algorithm removes all the cuts inK = K1

ri
from C. Some of these cuts belong to other terminals; those

terminals are reassigned new cuts. Specifically, we first remove cuts inK ∩Ci from the cut family. The total

6

weight of the remaining cuts inK as well as the total weight of those inCi is equal at this time. Subsequently,
we successively consider terminalsj with a cutC ∈ K ∩ Cj, and letw = w(C). Then we removeC from
the cut family, and reassign cuts of total weightw in Cw

i to j. Therefore, the total weight of cuts assigned to
j remains1. Furthermore, the newly reassigned cuts contain the cutC, and therefore the vertexrj , but do
not contain the sinkt. Therefore,C continues to be a fractional laminar family for terminals inT ′.

Lemma 7 At any point of time for every edgee ∈ E, `Ae ≤ ce − 1 implies`Ae + `Ce ≤ ce, `Ae = ce implies
`Ce ≤ 1, and`Ae = ce + 1 implies`Ce = 0. Furthermore, fore = (u, v), `Ae = ce implies that eitherKu ∩ Se

or Kv ∩ Se is empty.

Proof: Let e = (u, v). We prove the lemma by induction over time. Note that in the beginning of the
algorithm, we have for all edges̀Ce ≤ ce and`Ae = 0, so the inequalitỳA

e + `Ce ≤ ce holds.
Let us now consider a single iteration of the algorithm and suppose that the integral load of the edge

increases during this iteration. (If it doesn’t increase, since`Ce only decreases over time, the claim continues
to hold.) Leti be the commodity picked by the algorithm in this iteration, thenM(ri) is the same as either
M(u) or M(v). Without loss of generality assume thatri ∈ M(u). Let α denote the total weight of cuts
in Ku ∩ Se andβ denote the total weight of cuts inKv ∩ Se prior to this iteration. Then,α + β = `Ce .
Moreover, all cuts inC \ Se either contain both or neither ofu andv. So we can relate the depths ofv andu
in the following way:dv = du − α + β. Sincei is the terminal picked during this iteration, we must have
du ≥ dv, and therefore,α ≥ β.

We analyze the final edge load depending on the value ofα. Two cases arise: suppose first thatα ≥ 1.
ThenK1

u ⊆ Ku ∩ Se, and the fractional weight ofe reduces by exactly1. On the other hand, the integral
load on the edge increases by1, and so the total load continues to be the same as before. On the other hand,
if α ≤ 1, thenKu ∩ Se ⊆ K1

u, and all the cuts inKu ∩ Se get removed fromSe in this iteration. Therefore
the final fractional load is at mostβ ≤ α ≤ 1, and at the end of the iteration,Ku ∩ Se = ∅. If `Ae ≤ ce − 1,
we immediately get that the total load on the edge is at mostce.

If `Ae = ce, then prior to this iteratioǹA
e = ce − 1, and sò C

e ≤ 1 by the induction hypothesis. Then, as
we argued above,α ≤ `Ce ≤ 1 implies that the new fractional load on the edge is at most1 and at the end of
the iteration,Ku ∩ Se = ∅.

Finally, if `Ae = ce + 1, then prior to this iteration,̀Ae = ce and by the induction hypothesis,β is zero
(asα ≥ β and eitherKu ∩ Se or Kv ∩ Se is empty). Along with the fact thatα ≤ 1 (by the inductive
hypothesis), the final fractional load on the edge isβ = 0.

The two lemmas together give us a proof of Lemma 3. We restate the lemma for completeness.

Lemma 3 Given a fractional laminar cut familyC feasible for the CSCP on a graphG with integraledge
capacitiesce, the algorithmRound-1produces an integral family of cutsA that is feasible for the CSCP on
G with edge capacitiesce + 1.

Proof: First note that for everyi, Ai is set to be the meta-node ofri at some point during the algorithm,
which is a subset of every cut inCi at that point of time. Thenri ∈ Ai, and by Lemma 6,t 6∈ Ai. Second,
for any edgee, its integral load̀ A

e starts out at being0 and gradually increases by at most an additive1 at
every step, while its fractional load decreases. Once the fractional load of an edge becomes zero, both its

7

end points belong to the same meta-node, and so the edge nevergets loaded again. Therefore, by Lemma 7,
the maximum integral load on any edgee is at mostce + 1.

3.2 The general case (proof of Lemma 4)

As in the common-sink case, the rounding algorithm for the MCP proceeds by picking terminals according
to an order suggested by the fractional solution and assigning the smallest cuts possible to them subject to
the availability of capacity on the edges. In the algorithmRound-1, we reassign cuts among terminals at
every iteration so as to maintain the feasibility of the remaining fractional solution. In the case of MCP,
this is not sufficient—a simple reassignment of cuts as in thecase of algorithmRound-1may not ensure
separation among terminals belonging to the same commodity. We use two ideas to overcome this difficulty:
first, among terminals of equal depth, we use a different ordering to pick the next terminal to minimize the
need for reassigning cuts; second, instead of reassigning cuts, we modify the existing fractional cuts for
unassigned terminals so as to remain feasible while paying asmall extra cost in edge load.

We now define the “cut-inclusion” ordering over terminals. For every terminali ∈ T , let Oi denote the
largest (outermost) cut inCi, that is,∀C ∈ Ci, C ⊆ Oi. We say that terminali dominates (or precedes)
terminalj in the cut-inclusion ordering, writteni >CI j, if Oi ⊂ Oj (if Oi = Oj we break ties arbitrarily
but consistently). Cut-inclusion defines a partial order onterminals. Note that we can pre-process the cut
family C by reassigning cuts among terminals, such that for all pairsof terminalsi, j ∈ T with i >CI j,
and for all cutsCi ∈ Ci andCj ∈ Cj with ri, rj ∈ Ci ∩ Cj, we haveCi ⊆ Cj . We call this property
the “inclusion invariant”. Ensuring this invariant requires a straightforward pairwise reassignment of cuts
among the terminals, and we omit the details. Note that following this reassignment, for every terminali,
every cut ofi is still a subset of (or equal to) the outermost cutOi prior to the reassignment.

As the algorithm proceeds we modify the collectionC as well as build up the collectionA of integral
cutsAi for i ∈ T . For example, we may split a cutC into two cuts containing the same nodes asC and with
weights summing to that ofC. As cuts inC are modified, their ownership by terminals remains unchanged,
and we therefore continue using the same notation for them. Furthermore, if for two cutsC1 andC2, we have
(for example)C1 ⊆ C2 at the beginning of the algorithm, this relationship continues to hold throughout the
algorithm. This implies that the inclusion invariant continues to hold throughout the algorithm. We ensure
that throughout the execution of the algorithm the cut family C continues to be a fractional laminar family for
terminalsT ′. At any point of time, the depth of a vertex or a terminal, as well as the cut-inclusion ordering
is defined with respect to the current fractional familyC. The rounding algorithm is given in Figure 2.

During the course of the algorithm integral loads on edges increase, but fractional loads may increase or
decrease. To study how these edge loads change during the course of the algorithm, we divide edges into five
sets. LetX−1 denote the set of edges with`Ae ≤ ce − 1 and`Ce > 0. Fora ∈ {0, 1}, let Xa denote the set of
edges with̀ A

e = ce +a and`Ce > 0. Y denotes the set of edges with`Ae = ce +2 and`Ce > 0, andZ denotes
the set of edges with̀Ce = 0. Every edge starts out with a zero integral load. As the algorithm proceeds, the
edge goes through one or more of theXas, may enter the setY , and eventually ends up in the setZ. As for
the CSCP, when an edge entersZ, we merge the end-points of the edge into a single meta-node.However,
unlike for the CSCP, edges may get loaded even after enteringZ. When an edge entersY , we avoid loading
it further (Step 3c), and instead load some edges inZ. Nevertheless, we ensure that edges inZ are loaded
no more than once.

As before, letSe denote the set of cuts inC that crosse — Se = {C ∈ C|e ∈ δ(C)}. Recall thatKv

denotes the set of cuts inC containing the vertexv, and of theseK1
v denotes the inner-most cuts with total

weight exactly1.

8

Input: GraphG = (V, E) with capacitiesce on edges, a set of terminalsT with a fractional laminar cut familyC.
Output: A collection of cutsA, one for each terminal inT .

1. Preprocess the familyC so that it satisfies the inclusion invariant.

2. InitializeT ′ = T , A = ∅, Y, Z = ∅, andM(v) = {v} for all v ∈ V .

3. While there are terminals inT ′ do:

(a) Consider the set of unassigned terminals with the maximum depth, and of these leti ∈ T ′ be a terminal
that is undominated in the cut inclusion ordering. LetEi = Y ∩ δ(M(ri)).

(b) If Ei = ∅, let Ai = M(ri).

(c) If Ei 6= ∅ (we say that the terminal has “defaulted” on edges inEi), let Ui denote the set of end-points of
edges inEi that lie inM(ri). If ri ∈ Ui, abort and return error. Otherwise, consider the vertex inUi that
enteredM(ri) first during the algorithm’s execution, call this vertexui. SetAi to be the meta-node ofri

just prior to the iteration whereM(ui) becomes equal toM(ri).

(d) AddAi toA. RemoveCi fromC andi fromT ′. For everyj ∈ T ′ andC ∈ K1
ri
∩Cj , letC = C\{M(ri)}.

(e) If for some edgee, `Ae = ce + 2 and`Ce > 0, adde to Y . If there exists an edgee = (u, v) with `Ce = 0,
merge the meta-nodesM(u) andM(v) (we say that the edgee has been “contracted”.) Add all edgese
with `Ce = 0 to Z and remove them fromY .

(f) Recompute the depths of vertices and terminals.

Figure 2: AlgorithmRound-2—Rounding algorithm for multiway cut packing

For a terminali and edgee, if at the time thati is picked in Step 3a of the algorithme is in δ(M(ri)), we
say thati accesses the edgee. If e ∈ Ei, we say thati defaults one, and ife is in δ(Ai) after this iteration,
then we say thati loads the edgee. As before our analysis has two components. First we show (Lemma 8)
that the cuts produced by the algorithm are feasible. The following lemmas give the desired guarantees on
the edges’ final loads: Lemmas 9 and 10 analyze the loads of edges inXa for a ∈ {−1, 0, 1}; Lemma 11
analyzes edges inY and Lemmas 12 and 13 analyze edges inZ. We put everything together in the proof of
Lemma 4 at the end of this section.

Lemma 8 For all i, ri ∈ Ai ⊆ Oi.

Proof: Each cutAi is set equal to the meta-node ofri at some stage of the algorithm. Therefore,ri ∈ Ai for
all i. Furthermore, at the time thati is assigned an integral cut,Ai ⊆ M(ri) ⊆ Oi.

Next we prove some facts about the fractional and integral loads as an edge goes through the setsXa.
The proofs of the following two lemmas are similar to that of Lemma 7.

Lemma 9 At any point of time, for every edgee ∈ X−1, `Ae + `Ce ≤ ce.

Proof: We prove the claim by induction over time. Note that in the beginning of the algorithm, we have for
all edges̀ C

e ≤ ce and`Ae = 0, so the inequalitỳA
e + `Ce ≤ ce holds.

Let us now consider a single iteration of the algorithm and suppose that the edgee remains in the set
X−1 after this step. There are three events that influence the load of the edgee = (u, v): (1) a terminal

9

at some vertex inM(u) accessese; (2) a terminal atM(v) accessese; and, (3) a terminal at some other
meta-nodeM 6= M(u),M(v) is assigned an integral cut. Let us consider the third case first, and suppose
that a terminali is assigned. SinceAi ⊆ M and thereforee /∈ δ(Ai) its integral load does not increase.
However, in the event thatSe ∩ Ci is non-empty, the fractional load one may decrease (because cuts inCi

are removed fromC). Therefore, the inequality continues to hold.
Next we consider the case where a terminal, sayi, with ri ∈ M(u) accessese (the second case is

similar). Note thatM(ri) = M(u). In this case the integral load of the edgee potentially increases by1 (if
the terminal loads the edge). By the definition ofX−1, the new integral load on this edge is no more than
ce − 1. The fractional load one changes in three ways:

• Cuts inCi ∩ Se are removed fromC, decreasing̀C
e .

• Some of the cuts in(K1
ri
\ Ci) \ Se get “shifted” on toe increasing`Ce (we remove the meta-node

M(ri) from these cuts, and they may continue to containM(v)).

• Cuts in(K1
ri
\ Ci)∩Se get shifted off frome decreasing̀C

e (these cuts initially containM(ri) but not
M(v), and during this step we removeM(ri) from these cuts).

So the decrease iǹCe is at least the total weight ofK1
ri
∩ Se = K1

u ∩ Se, whereas the increase is at most the
total weight ofK1

ri
\ Se = K1

u \ Se.
In order to account for the two terms, letα denote the total weight of cuts inKu ∩ Se, andβ denote the

total weight of cuts inKv ∩ Se. Then,α + β = `Ce . As in the proof of Lemma 7, we havedv = du −α + β,
and thereforedu ≥ dv impliesα ≥ β. Now, suppose thatα ≥ 1. ThenK1

u ⊆ Se. Therefore, the decrease
in `Ce due to the setsK1

u ∩ Se = K1
u is at least1, and there is no corresponding increase, so the sum`Ae + `Ce

remains at mostce.
Finally, suppose thatα < 1. ThenK1

u contains all the cuts inKu ∩Se, the weight ofK1
u ∩Se is exactly

α, and so the decrease in`Ce is at leastα. Moreover, the total weight ofK1
u \ Se is 1 − α, therefore, the

increase iǹ C
e due to the sets inK1

u \ Se is at most1 − α. Since`Ce starts out as being equal toα + β, its
final value after this step is1 − α + β ≤ 1 asβ ≤ α. Noting that`Ae is at mostce − 1 after the step, we get
the desired inequality.

Lemma 10 For any edgee = (u, v), from the time thate entersX0 to the time that it exitsX1, `Ce ≤ 1.
Furthermore suppose (without loss of generality) that during this time in some iteratione is accessed by
a terminal i with ri ∈ M(u), then following this iteration until the next time thate is accessed, we have
Se ∩ Ku = ∅, and the next access toe (if any) is from a terminal inM(v).

Proof: First we note that if the lemma holds the first time an edgee = (u, v) enters a setXa, a ∈ {0, 1}, then
it continues to hold while the edge remains inXa. This is because during this time the integral load on the
edge does not increase, and therefore throughout this time we assign integral cuts to terminals at meta-nodes
different fromM(u) andM(v) — this only reduces the fractional load on the edgee and shrinks the setSe.

Consider the first time that an edgee = (u, v) moves from the setX−1 to X0. Suppose that at this step
we assign an integral cut to a terminali residing at noderi ∈ M(u). Prior to this step,̀Ae = ce − 1, and so
by Lemma 9,̀ Ce ≤ 1. As before defineα to be the total weight of cutsKu ∩Se, andβ to be the total weight
of cutsKv ∩ Se. Then following the same argument as in the proof of Lemma 9, we conclude that the final
fractional weight one is at mostβ + 1 − α ≤ 1. Furthermore, sinceKu ∩ Se ⊆ K1

u, we either remove all
these cuts fromC or shift them off of edgee. Moreover, any new cuts that we shift on toe do not contain
the meta-nodeM(ri) = M(u), and in particular do not contain the vertexu. Therefore at the end of this

10

step,Se ∩ Ku = ∅. This also implies that following this iteration terminalsin M(v) have depth larger than
terminals inM(u), and so the next access toe must be from a terminal inM(v).

The same argument works when an edge moves fromX0 to X1. We again make use of the fact that prior
to the step the fractional load on the edge is at most1.

Lemma 11 During any iteration of the algorithm, for any edgee ∈ Y , the following are satisfied:

• `Ce ≤ 1

• If the edgee = (u, v) is accessed by a terminali with ri ∈ M(u), then following this iteration until
the next time thate is accessed, we haveSe ∩ Ku = ∅, and the next access toe (if any) is from a
terminal inM(v).

• If a terminal i with ri ∈ M(u) accessese = (u, v), thenri 6= u, Ai ∩ {u, v} = ∅, and soi does
not loade. Also, consider any previous access to the edge by a terminalin M(u); then prior to this
access,ri 6∈ M(u).

Proof: The first two parts of this lemma extend Lemma 10 to the case ofe ∈ Y , and are otherwise identical
to that lemma. The proof for these claims is analogous to the proof of Lemma 10. The only difference is
that terminals accessing an edgee ∈ Y default on this edge. However, this does not affect the argument:
when a terminal defaults on the edge, the edge’s fractional load changes in the same way as if the terminal
did not default; the only change is in the way an integral cut is assigned to the terminal. Since these claims
depend only on how the fractional load on the edge changes, they continue to hold while the edge is inY .

For the third part of the lemma, sinceAi ⊆ M(ri) = M(u) andv 6∈ M(u), v 6∈ Ai. Next we show
thatu 6∈ Ai. Consider the iterations of the algorithm during which`Ce ≤ 1. During this time the edge was
accessed at least twice prior to being accessed byi (once whene moved fromX0 to X1, once whene moved
from X1 to Y , and possibly multiple times whilee ∈ Y). Let the last two accesses be by the terminalsj1

andj2, at iterationst1 andt2, t1 ≤ t2. Fora ∈ {0, 1}, let Ma(u) andMa(v) denote the meta-nodes ofu
andv respectively just prior to iterationta, andM(u) andM(v) denote the respective meta-nodes just prior
to the current iteration. Then by Lemma 10 and the second partof this lemma, we haverj1 ∈ M1(u) and
rj2 ∈ M2(v). We claim thati >CI j2 >CI j1. Given this claim, ifri ∈ M1(u) = M1(rj1), then since
i andj1 have the same depth at iterationt1, we get a contradiction to the fact that the algorithm picksj1

beforei in Step 3a. Therefore,ri 6∈ M(u) at any iteration prior tot1, and in particular,ri 6= u. Finally,
sinceu ∈ Ui andUi ∩ Ai = ∅, this also implies thatu 6∈ Ai.

It remains to prove the claim. We will prove thatj2 >CI j1. The proof fori >CI j2 is analogous. In
fact we will prove a stronger statement: between iterationst1 andt2, all terminals with cuts inSe dominate
j1 in the cut-inclusion ordering. We prove this by induction. By Lemma 10, prior to iterationt1, Se does
not contain any cuts belonging to terminals atM(v). Following the iteration,Se only contains fractional
cuts inK1

u that got shifted on to the edgee. Prior to shifting, these cuts containM1(u), and thereforerj1,
but do not belong toj1. Then, these cuts are subsets ofOj, and so by the inclusion invariant, they belong to
terminals dominatingj1 in the cut-inclusion ordering. Therefore, the claim holds right after the iterationt1.
Finally, following the iteration until the next time thate is accessed (byj2), the setSe only shrinks, and so
the claim continues to hold.

In order to analyze the loading of edges inZ, we need some more notation. LetM denote the collection
of sets of vertices that were meta-nodes at some point duringthe algorithm. For any edgee ∈ Z, let Me

denote the meta-node formed whene entersZ; thenMe is the smallest set inM containing both the end
points ofe. Note that the collectionA ∪M is laminar.

11

Lemma 12 An edgee ∈ Z is loaded only if after the formation ofMe a terminal residing at a vertex
in Me defaults on an edge inδ(Me). (Note that this may happen afterMe has merged with some other
meta-nodes.)

Proof: Let i be a defaulting terminal that loads the edgee ∈ Z. Thene ∈ δ(Ai), and therefore,Ai (Me,
andri ∈ Me. Furthermore, sinceAi is a strict subset ofMe, Ui ∩ Me 6= ∅, and therefore,i defaults on an
edgee′ ∈ Y with at least one end-point inMe. But if both the end-points ofe′ are inMe, then we must have
`f
e′ = 0 contradicting the fact thate′ is in Y . Therefore,e′ ∈ δ(Me).

Lemma 13 For any meta-nodeM ∈ M, after its formation, at most one terminal residing at a vertex inM
can default on edges inδ(M) (even afterM has merged with other meta-nodes).

Proof: For the sake of contradiction, suppose that two terminalsi andj, both residing at vertices inM default
on edges inδ(M) after the formation ofM , with i defaulting beforej. Let M1 (M2) denote the meta-node
containingM just beforei (j) defaulted. Note thatM ⊆ M1 ⊆ M2. Consider an edgee ∈ Ej ∩ δ(M)
(recall thatEj is the set of edges thatj defaults on, so this set is non-empty by our assumption). Then
e ∈ δ(M) ∩ δ(M2) ⊆ δ(M1). Therefore, at the time thati defaulted,e was accessed byi, and by the third
claim in Lemma 11,rj 6∈ M1. This contradicts the fact thatrj ∈ M .

Finally we can put all these lemmas together to prove our mainresult on algorithmRound-2.

Lemma 4 Given a fractional laminar cut familyC feasible for the MCP on a graphG with integraledge
capacitiesce, the algorithmRound-2produces an integral family of cutsA that is feasible for the MCP on
G with edge capacitiesce + 3.

Proof: We first note that the third claim in Lemma 11 implies that for all i, ri 6∈ Ui, and therefore the
algorithm never aborts. Then Lemma 8 implies that we get a feasible cut packing. Finally, note that every
edge starts out in the setX−1, goes through one or more of theXa’s, a ∈ {0, 1}, potentially goes through
Y , and ends up inZ. Lemma 11 implies that edges inY never get loaded, and so at the time that an edgee
entersZ, `Ae ≤ ce + 2. After this point the edge stays inZ, and Lemmas 12 and 13 imply that it gets loaded
at most once. Therefore, the final load on the edge is at mostce + 3.

4 Fractional laminar cut packings

We now show that fractional solutions to the programMCP-LP can be converted in polynomial time into
fractional laminar cut families while losing only a small factor in edge load. We begin with the common
sink case.

4.1 Obtaining laminarity in the common sink case

We prove Lemma 1 in this section. Our algorithm involves starting with a solution toMCP-LP , converting
it into a feasible fractionalnon-laminarfamily of cuts, and then resolving pairs of crossing cuts oneat a
time by applying the rules in Figure 4. The algorithm is givenin Figure 3.

12

Input: GraphG = (V, E) with edge capacitiesce, commoditiesS1, · · · , Sk, common sinkt, a feasible solutiond to
the programMCP-LP .
Output: A fractional laminar family of cutsC that is feasible for the given instance.

1. For everya ∈ [k] and terminali ∈ Sa do the following: Order the vertices inG in increasing order of
their distance underda from ri. Let this ordering bev0 = ri, v1, · · · , vn. Let Ci be the collection of cuts
{v0, v1, · · · , vb}, one for eachb ∈ [n], da(ri, vb) < 1, with weightsw({v0, · · · , vb}) = da(ri, vb+1) −
da(ri, vb). Let C denote the collection{Ci}i∈∪aSa

.

2. While there are pairs of cuts inC that cross, consider any pair of cutsCi, Cj ∈ C belonging to terminalsi 6= j
that cross each other. Transform these cuts into new cuts fori andj according to Figure 4.

Figure 3: AlgorithmLam-1—Algorithm to convert an LP solution for the CSCP into a feasible fractional
laminar family

Lemma 1 Consider an instance of the CSCP with graphG = (V,E), common sinkt, edge capacities
ce, and commoditiesS1, · · · , Sk. Given a feasible solutiond to MCP-LP , algorithm Lam-1 produces a
fractional laminar cut familyC that is feasible for the CSCP onG with edge capacitiesce.

r
i r

i

r
i

r
j r

j

r
j

r
i

r
j

r
i

r
j

r
i

r
j

<

1. 2.

3.

r
i

r
j

Figure 4: Rules for transforming an arbitrary cut family into a laminar one for the CSCP. The solid cuts in
this figure correspond to the terminali, and the dotted cuts to terminalj; t lies outside all the cuts. All the
cuts are labeled by their respective weights.

Proof: We first note that the familyC is feasible for the given instance of CSCP at the end of Step 1,but
is not necessarily laminar. As we tranform the cuts in Step 2,we maintain the property that no cutC ∈ C
contains the sinkt, but every cutC ∈ Ci contains the noderi for terminal i. It is also easy to see from
Figure 4 that the total weight of all cuts inCi is also maintained at1, and the load on every edge stays the
same. Finally, let the “crossing number” of the cut familyC be equal to the sum over all pairs of crossing cuts

13

of the product of the weights of the cuts. Then we claim that the crossing number of the family decreases
at every iteration, and therefore the algorithm terminates. To see this, consider any transformations shown
in Figure 4 where we uncross cutsCi ∈ Ci andCj ∈ Cj, and suppose that another cutCl crosses one or
more of these cuts. Then the total weight of the new cuts assigned toi andj that crossCl is no more than
the previous weight crossing the cut. Futhermore, the crossings between the cuts ofi andj are completely
resolved, so the crossing number decreases by at least the product of the weights of the two cuts.

4.2 Obtaining laminarity in the general case

Obtaining laminarity in the general case involves a more careful selection and ordering of rules of the form
given in Figure 4. The key complication in this case is that wemust maintain separation of every terminal
from every other terminal in its commodity set. We first show how to convert an integral collection of cuts
feasible for the MCP into a feasible integral laminar collection of cuts. We lose a factor of2 in edge loads
in this process (see Lemma 14 below). Obtaining laminarity for an arbitrary fractional solution requires
converting it first into an integral solution for a related cut-packing problem and then applying Lemma 14
(see Figure 6 and the proof of Lemma 2 following it).

Lemma 14 Consider an instance of the MCP with graphG = (V,E)and commoditiesS1, · · · , Sk, and let
C1 = {C1

i }i∈Sa,a∈[k] be a family of cuts such that for eacha ∈ [k] and i ∈ Sa, C1
i containsi but no other

j ∈ Sa. Then algorithmInteger-Lam-2produces alaminarcut collectionC2 = {C2
i }i∈Sa,a∈[k] such that for

eacha ∈ [k] andi 6= j ∈ Sa, eitherC2
i or C2

j separatesi from j, and`C
1

e ≤ 2`C
2

e for every edgee ∈ E.

In the remainder of this section we interpret cuts as sets of vertices as well as sets of terminals residing
at those vertices. The algorithm for laminarity in the integral case is given in Figure 5.

As in the common sink case, the algorithm starts by applying aseries of simple rules to pairs of crossing
cuts while maintaining the invariant that pairs of terminals belonging to the same commodity are always
separated by at least one of the two cuts assigned to them. Certain kinds of crossings of cuts are easy to
resolve while maintaining this invariant (Step 1 of the algorithm resolves these crossings). In Steps 2 and
3, we ignore the commodities that each terminal belongs to, and assign new laminar cuts to terminals while
ensuring that the new cut of each terminal lies within its previous cut (and therefore, separation continues to
be maintained). These steps incur a penalty of2 in edge loads.

The rough idea behind Steps 2 and 3 is to consider the set of all“conflicting” terminals, call itF .
Then we can assign to each terminali ∈ F the cut∩j∈F Ĉj whereĈj is either the cut of terminalj or its
complement depending on which of the two containsri. These intersections are clearly laminar, and are
subsets of the original cuts assigned to terminals. Furthermore, if each terminal gets a unique intersection,
then edge loads increase by a factor of at most2. Unfortunately, some groups of terminals may share the
same intersections. In order to get around this, we assign cuts to terminals in a particular order suggested
by the structure of the conflict graph on terminals (graphG in the algorithm) while explicitly ensuring that
edge loads increase by a factor of no more than2.

We start with a simple observation: throughout the algorithm, every terminal in∪aSa has an integral cut
assigned to it. The proof of Lemma 14 is established in three parts: first, we show (Lemma 15) that when
the algorithm terminates the cut family is laminar, second,for everya ∈ [k] and i 6= j ∈ Sa, eitherCi

or Cj separatesi from j (Lemma 17), and third, the load on every edge increases by a factor of at most2
(Lemma 18).

14

Input: GraphG = (V, E) with edge capacitiesce, commoditiesS1, · · · , Sk, a family of cutsC with one cut for every
terminal in∪aSa, such that the cut for terminali ∈ Sa does not contain any terminalj 6= i in Sa.
Output: A laminar collection of cuts, one for each terminal in∪aSa, such that for alla and for alli, j ∈ Sa, i 6= j,
either the cut fori or the cut forj separatesi from j.

1. While there are pairs of cuts inC that cross, do:

(a) Consider any pair of cutsCi, Cj ∈ C belonging to terminalsi 6= j that cross each other, such that
ri ∈ Ci \ Cj andrj ∈ Cj \ Ci. ReassignCi = Ci \ Cj andCj = Cj \ Ci. Return to Step 1.

(b) Consider any three terminalsi1, i2, i3 with cutsC1, C2 andC3 such thatri1 ∈ C1 ∩ C2 \ C3, ri2 ∈
C2∩C3 \C1, andri3 ∈ C3∩C1 \C2. Then, reassign these respective intersections to the three terminals.
Return to Step 1.

(c) Consider any pair of cutsCi, Cj ∈ C belonging to terminalsi, j ∈ Sa for somea that cross each other,
such thatri ∈ Ci ∩ Cj andrj ∈ Cj \ Ci. ReassignCi = Ci ∩ Cj andCj = Ci ∪ Cj . Return to Step 1.

(d) Consider any pair of cutsCi, Cj ∈ C belonging to terminalsi 6= j that cross each other, such that
ri, rj ∈ Ci ∩ Cj , i ∈ Sa andj ∈ Sb with a 6= b.

• Suppose that there is noi′ ∈ Sa∩Cj with Ci ⊂ Ci′ . Then, reassignCi = Ci∪Cj andCj = Ci∩Cj ;
return to Step 1. Conversely, if there is noj′ ∈ Sb∩Ci with Cj ⊂ Cj′ . Then, reassignCj = Ci∪Cj

andCi = Ci ∩ Cj ; return to Step 1.

• If neither of those cases hold, leti0 = i, and leti1, · · · , ix denote the terminals inSa ∩ Cj with
Ci ⊂ Ci1 ⊂ Ci2 ⊂ · · · ⊂ Cix

. For x′ ≤ x − 2, reassignCi
x′

= (Ci
x′+1

\ Cj) ∪ Ci
x′

, Cix−1
=

Cix
∪Cj , andCix

= Cix
∩Cj \Cix−1

. Reassign cuts toj and terminals inSb ∩Ci likewise. Return
to Step 1.

(e) If none of the above rules match, then go to Step 2.

2. Let G be a directed graph on the vertex set∪aSa, with edges colored red or blue, defined as follows: for
terminalsi 6= j, G contains a red edge fromi to j if and only if Cj ⊂ Ci, and contains a blue edge fromi to j
if and only if rj ∈ Ci, ri 6∈ Cj , andCj \ Ci 6= ∅. We note that since no pair of terminalsi andj matches the
rules in Step 1, wheneverCi andCj intersectG contains an edge betweeni andj.

While there is a directed blue cycle inG, consider the shortest such cyclei1 → i2 → · · · → ix → i1. For
x′ ≤ x, x′ 6= 1, assign toix′ the cutCi

x′
∩ Ci

x′
−1

, and assign toi1 the cutCi1 ∩ Cix
.

3. We show in Lemma 15 that at this stepG is acyclic. For every connected component inG do:

(a) LetT be the set of terminals in the component andA be the set of corresponding cuts. Assign capacities
pe = 2`A

e to edges inG. Let Gp be the graph obtained by merging all pairs of vertices that have an edge
e with pe = 0 between them. We call the vertices ofGp “meta-nodes” (note that these are sets of vertices
in the original graph). At any point of time, letRi denote the meta-node at which a terminali resides.

(b) While there are terminals inT , pick any “leaf” terminali (that is, a terminal with no outgoing red or blue
edges inG). Reassign toi the cutRi. Reduce the capacity of every edgee ∈ δ(Ri) by 1. Removei from
T ; removei and all edges incident on it fromG. Recompute the graphGp based on the new capacities.

Figure 5: AlgorithmInteger-Lam-2—Algorithm to convert an integral family of multiway cuts into a laminar
one

15

Lemma 15 The algorithm runs in polynomial time and the cut collectionC produced by AlgorithmInteger-
Lam-2 is laminar.

Proof: As in the previous section define the crossing number of a family of cuts to be the number of pairs of
cuts that cross each other. We first note that in every iteration of Steps 1 and 2 of the algorithm, the crossing
number of the cut familyC strictly decreases. This is because in every step, no new crossings are created,
and the crossings of the two (or more) cuts involved in each transformation are resolved. Therefore, after a
polynomial number of steps, we exit Steps 1 and 2 and go to Step3.

Next, we claim that during Step 3 of the algorithm the graphG is acyclic. This implies that whileG is
non-empty, we can always find a leaf terminal in Step 3; therefore every terminal inG gets assigned a new
cut. It is immediate that the graph does not contain any directed blue cycles or any directed red cycles (the
latter follows because red edges define a partial order over terminals). Suppose the graph contains three
terminalsi1, i2 andi3 with a red edge fromi1 to i2, and a red or blue edge fromi2 to i3, then it is easy to
see that there must be a red or blue edge fromi1 to i3. Therefore, any multi-colored directed cycle must
reduce to either a smaller blue cycle, or a pair of terminalsi andj with an edge fromi to j and one fromj
to i. Neither of these cases is possible (the latter is ruled out by definition), and therefore the graph cannot
contain any multi-colored cycles.

Now consider cuts assigned during Step 3. Leti 6= j be any two commodities that do not belong to the
same component inG, and suppose that we reassign a cut toi beforej. Then, during the iteration that we
assign a cut toi note that the original cut ofj is a subset of some meta-node in the graphGp (if it contains
vertices from more than one meta node, then it must cross at least one cut ini’s component). Therefore,
the new cut assigned toi is laminar with respect toj, and with respect to all the cuts for terminals inj’s
component. Likewise when we assign a new cut toj, i’s new cut is a subset of some meta-node in the
corresponding graphGp, and so remains laminar with respect toj’s cut.

Finally, consider any two cuts assigned during Step 3 of the algorithm and belonging to two terminals in
the same component ofG. Consider the set of all meta-nodes created during this iteration of Step 3. This set
is laminar. Furthermore, the cuts assigned during this iteration are a subset of this laminar family. Therefore,
they are laminar.

Lemma 16 For a commodityi assigned a cut in Step 3 of the algorithm, letC1
i be its cut before this step,

andC2
i be the new cut assigned to it. ThenC2

i ⊆ C1
i .

Proof: In this proof we assume without loss of generality that priorto Step 3 each edge is loaded by at most
one cut; this can be achieved by splitting a multiply-loadededge into many edges.

We prove the lemma by induction over time. Consider any terminal i ∈ T assigned during some iteration
of Step 3b of the algorithm. LetT1 be the set of terminals inT \ Ci that are assigned new cuts prior toi in
this iteration, and letT2 be the set of terminals inT ∩Ci that are assigned new cuts prior toi in this iteration.
We first note that for anyj in T1, the cut ofj prior to this step is disjoint fromCi — specifically, there is no
edge fromj to i (asj is assigned beforei), sori 6∈ Cj, and this along withrj 6∈ Ci implies thatCi andCj

are disjoint. This implies that the new cut ofj (which is a subset ofCj by induction) is also disjoint from
Ci, and therefore cannot load any edge with an end-point inCi.

Now consider any vertexv 6∈ Ci and letP be a shortest simple path fromri to v in Gp (where the length
of an edgee is given bype just prior to wheni is assigned a new cut). We will prove that the length of this
path just prior to wheni is assigned a new cut is at least2. Therefore, the meta-node containingi must lie
inside the cutCi, and the lemma holds. As we argued above, the only new cuts assigned this far in Step 3b
that load edges inP belong to terminals inT2. Furthermore, it is easy to see that there is one such shortest

16

path that crosses each newly assigned cut at most twice – suppose that there are multiple entries and exits
for some cut, then we can “short-cut” the path by connecting the first point on the path inside the cut to the
last point on the path inside the cut via a simple path of length 0 that lies entirely inside the cut.

Now we will analyze the length of this path by accounting for all the newly assigned cuts that load edges
along it. LetSP be the set of all terminals inT2 that load an edge inP , and letj be any terminal in this set.
Since the new cut ofj intersectsP , by the induction hypothesis,Cj should either intersectP or contain the
entire path inside it. IfCj contains the entire pathP , thenCj \ Ci 6= ∅, and furthermoreri, rj ∈ Ci ∩ Cj.
This implies that eitherCi ⊂ Cj and there is a directed red edge fromj to i, or Ci \ Cj 6= ∅, that is,Ci

andCj cross and should have matched the rule in Step 1d of the algorithm. Both possibilities lead to a
contradiction. Therefore,Cj must intersectP .

Finally, the original total length of the path (prior to Step3b) is at least2|SP |+2, because each terminal
in SP contributes two units towards its length, and another two units is contributed byCi. Out of these up
to 2|SP | units of length is consumed by terminals inSP . Therefore, at the time thati is assigned a cut, at
least2 units remain.

Lemma 17 For everya ∈ [k] andi 6= j ∈ Sa, eitherCi or Cj separatesi from j.

Proof: We claim that for everya ∈ [k] and i 6= j ∈ Sa, at every time step during the execution of the
algorithm, |Ci ∩ Cj ∩ {ri, rj}| ≤ 1. Then since by Lemma 15 the final solution is laminar, the lemma
follows. We prove this claim by induction over time. First, if during any iteration of the algorithm, we
“shrink” the cut of any terminal (that is, reassign to the terminal a cut that is a strict subset of its original
cut), then the claim continues to hold for that terminal, because intersections of the terminal’s cut only shrink
in that step. Note that cuts of terminals expand only in Steps1c and 1d of the algorithm (by construction
and by Lemma 16).

Suppose that during some iteration we apply the transformation in Step 1c to terminalsi andj, reassign-
ing Cj = Ci ∪ Cj, and the claim fails to hold for terminalj. Specifically, suppose that for somej′ ∈ Sa,
after the iteration we haverj, rj′ ∈ Cj ∩ Cj′ . Then,rj ∈ Cj′ , and thereforeCj′ intersectedCj prior to
the iteration, and by the induction hypothesisrj′ ∈ Ci \ Cj prior to the iteration. Ifri ∈ Cj′ , then prior
to the iteration,i andj′ contradicted the induction hypothesis. Otherwise,i, j andj′ satisfy the conditions
in Step 1b of the algorithm, and this contradicts the fact that we apply the transformation in Step 1c at this
iteration.

Next suppose that during some iteration we apply the transformation in the first part of Step 1d to
terminalsi andj, reassigningCj = Ci ∪ Cj, and the claim fails to hold for terminalj; in particular, for
somej′ ∈ Sa, after the iteration we haverj , rj′ ∈ Cj ∩ Cj′ . Then, sincerj ∈ Cj′ and the pair of terminals
did not match the criteria in Step 1c, it must be the case thatCj ⊂ Cj′ prior to the iteration. Furthermore,
rj′ ∈ Ci prior to the iteration and this contradicts the fact that we applied the transformation in the first part
of Step 1d.

Finally, suppose that during some iteration we apply the transformation in the second part of Step 1d.
Then the cut assigned to everyix′ for x′ ≤ x is a subset of the previous cut ofix′+1, but does not contain the
latter terminal, and so by the arguments presented for the previous cases, once again the induction hypothesis
continues to hold for those terminals, while the cut assigned to ix is a subset of its original cut. The same
argument holds for thejy′ terminals.

Lemma 18 For the cut collection produced by AlgorithmInteger-Lam-2the load on every edge is no more
than twice the load of the integral family of cuts input to thealgorithm.

17

Input: GraphG = (V, E) with edge capacitiesce, commoditiesS1, · · · , Sk, a feasible solutiond to the pro-
gramMCP-LP .
Output: A fractional laminar family of cutsC that is feasible forG edge capacities8ce + o(1).

1. For everya ∈ [k] and every terminali ∈ Sa do the following: Order the vertices inG in increasing or-
der of their distance underda from ri. Let this ordering bev0 = ri, v1, · · · , vn. Let C1

i be the collection
of cuts {v0, v1, · · · , vb}, one for eachb ∈ [n] with da(ri, vb) < 0.5, with weightsw1({v0, · · · , vb}) =
2(min{da(ri, vb+1), 0.5} − da(ri, vb)). LetC1 denote the collection{C1

i }i∈∪aSa
.

2. LetN =
∑

a |Sa|. Round up the weights of all the cuts inC1 to multiples of1/N2, and truncate the collection
so that the total weight of every sub-collectionC1

i is exactly1. Furthermore, split every cut with weight more
than1/N2 into multiple cuts of weight exactly1/N2, assigned to the same commodity. Call this new collection
C2 with weight functionw2. Note that every cut in this collection has weight exactly1/N2.

3. Construct a new instance of MCP in the same graphG as follows. For eacha ∈ [k], constructN2 new
commodities with terminal sets identical to that ofSa (that is the terminals reside at the same nodes). For every
new terminal corresponding to an older terminali, assign to the new terminal a unique cut fromC2

i with weight
1. Call this new collectionC3, and the new instanceI.

4. Apply algorithmInteger-Lam-2from Figure 5 to the familyC3 to obtain familyC4.

5. For everya ∈ [k] and everyi ∈ Sa, let C5
i be the set ofN2/2 innermost cuts2 in C4 assigned to terminals in

the new instanceI that correspond to terminali. Assign a weight of2/N2 to every cut in this set. Output the
collectionC5.

Figure 6: AlgorithmLam-2—Algorithm to convert an LP solution into a feasible fractional laminar family

Proof: We first claim that edge loads are preserved throughout Steps1 and 2 of the algorithm. This is easy to
see via a case-by-case analysis by noting that in every transformation of these steps, the number of new cuts
that an edge crosses is no more than the number of old cuts thatthe edge crosses prior to the transformation.
It remains to analyze Step 3 of the algorithm. We claim that weonly lose a factor of2 in edge loads during
this step of the algorithm. This is easy to see. Letτ be the set of all terminals that belong to any non-
singleton component inG before the start of this step. All these terminals are reassigned new cuts. LetpT

denote the vector of edge capacities during the iteration ofStep 3 in which we assign cuts to terminals in set
T . We note that for every edgee,

∑
T⊂τ pT

e ≤ 2`Cτ
e , whereCτ is the family of cuts belonging to terminals

in τ prior to Step 3. Moreover, in each iteration of the step, we only load an edgee to the extent ofpT
e .

Therefore the lemma follows.

Proof of Lemma 14:The proof follows immediately from Lemmas 15, 17 and 18.

Given this lemma, algorithmLam-2in Figure 6 converts an arbitrary feasible solution forMCP-LP into
a feasible fractional laminar family.

Lemma 2 Consider an instance of the MCP with graphG = (V,E), edge capacitiesce, and commodities
S1, · · · , Sk. Given a feasible solutiond to MCP-LP , algorithmLam-2produces a fractional laminar cut
familyC that is feasible for the MCP onG with edge capacities8ce + o(1).

18

Proof: Note first that the cut collectionC1 satisfies the following properties: (1) For everya ∈ [k] andi ∈ Sa,
every cut inC1

i containsri, but notrj for j ∈ Sa, j 6= i; (2) The total weight of cuts inC1
i is 1; (3) For every

edgee, `C
1

e ≤ 2
∑

a da(e) ≤ 2ce. The familyC2 also satisfies the first two properties, however loads the
edges slightly more thanC1. Any edge belongs to at mostN cuts, and therefore the load on the edge goes up
by an additive amount of at most1/N . Therefore, for everye `C

2

e ≤ 2ce + 1/N . Next, the collectionC3 is
a feasible integral family of cuts for the new instanceI with `C

3

e = N2`C
2

e . Therefore, applying Lemma 14,
we get thatC4 is a feasible laminar integral family of cuts forI with `C

4

e ≤ 2N2(2ce + 1/N). Finally, in
family C5, every terminali ∈ Sa gets assignedN2/2 fractional cuts, each with weight2/N2. Therefore,
the total weight of cuts inC5

i is 1. Now consider any two terminalsi, j ∈ Sa with i 6= j. Then, in all theN2

commodities corresponding toSa in instanceI, either the cut assigned toi’s counterpart, or that assigned to
j’s counterpart separatesi from j. Say that among at leastN2/2 of the commodities inI ′, the cut assigned
to i’s counterpart separatesi from j. Then, the innermostN2/2 cuts assigned toi in C5 separatei from j.
Therefore, the familyC5 satisfies the first two conditions of feasibility as given in Definition 2. Finally, it is
easy to see that on every edgee, `C

5

e ≤ 2/N2`C
4

e ≤ 4(2ce + 1/N).

5 NP-Hardness

We will now prove that CSCP and MCP are NP-hard. Since edge loads for any feasible solution to these
problems are integral, the result of Theorem 5 is optimal forthe CSCP assuming P6=NP. The reduction in
this theorem also gives us an integrality gap instance for the CSCP.

Theorem 19 CSCP and MCP are NP-hard. Furthermore the integrality gap ofMCP-LP is at least2 for
both the problems.

Proof: We reduce independent set to CSCP. In particular, given a graph G and a targetk, we produce an
instance of CSCP such that the load on every edge is at most1 if and only if G contains an independent set
of size at leastk. Letn be the number of vertices inG. We constructG′ by adding a chain ofn− k + 1 new
vertices toG. Let the first vertex in this chain bet (the common sink) and the last bev. We connect every
vertex ofG to the new vertexv, and place a terminali at every vertexri in G (therefore, there are a total of
n sources). We claim that there is a collection ofn edge-disjointri − t cuts in this new graphG′ if and only
if G contains an independent set of sizek.

One direction of the proof is straightforward: ifG contains an independent set of sizek, sayS, then
for each vertexri ∈ S, consider the cut{ri}, and for each of then − k source not inS, consider the cuts
obtained by removing one of then − k chain edges inG′. Then all of thesen cuts are edge-disjoint.

Next suppose thatG′ contains a collection of edge-disjoint cutsCi, with ri ∈ Ci andt 6∈ Ci for all i.
Note that the number of cutsCi containing any chain vertex is at mostn − k because each of them cuts at
least one chain edge. Next consider the cuts that do not contain any chain vertex, specificallyv, and letT ′

be the collection of terminals for such cuts. These are at least k in number. Note that any cutCi, i ∈ T ′,
cuts the edges(u, v) for u ∈ Ci. Therefore, in order for these cuts to be edge-disjoint, it must be the case
thatCi ∩ Cj = ∅ for i, j ∈ T ′, i 6= j. Finally, for two such cutsCi andCj, edge-disjointness again implies
thatri andrj are not connected. Therefore the verticesri for i ∈ T ′ form an independent set inG of size at
leastk.

For the integrality gap, letG be the complete graph andk ben/2. Then, there is no integral solution
with load1 in G′. However, the following fractional solution is feasible and has a load of1: let the chain

19

Figure 7: Each edge in the MCP instance has capacity1. There are two commodities with terminal sets
{a0, a1, a2} and{b0, b1, b2}.

of vertices added toG bev = v1, v2, · · · , vn/2+1 = t; assign to every terminali, i ∈ [n], the cut{ri} with
weight1/2, and the cutV ∪ {v0, · · · , vbi/2c} with weight1/2.

6 Concluding Remarks

Given that our algorithms rely heavily on the existence of good laminar solutions, a natural question is
whether every feasible solution to the MCP can be converted into a laminar one with the same load. Figure 7
shows that this is not true. The figure displays one integral solution to the MCP where the solid edges
represent the edges in the cut for commoditya, and the dotted edges represent the edges in the cut for
commodityb. However, it is easy to see that no fractional laminar solution to this instance with load1 on
every edge exists.

References

[1] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for multiway cut.
Journal of Computer and System Sciences, 60(3):564–574, 2000.

[2] G. Calinescu, H. Karloff, and Y. Rabani. Approximation algorithms for the 0-extension problem.SIAM
Journal on Computing, 34(2):358–372, 2004.

[3] A. Caprara, A. Panconesi, and R. Rizzi. Packing cuts in undirected graphs.Networks, 44(1):1–11,
2004.

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear programming formulation and approximation
algorithms for the metric labeling problem.SIAM J. on Discrete Mathematics, 18(3):608–625, 2004.

[5] A. Karzanov. Minimum 0-extensions of graph metrics.European J. of Combinatorics, 19(1):71–101,
1998.

[6] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise rela-
tionships: metric labeling and Markov random fields.Journal of the ACM, 49(5):616–639, 2002.

20

[7] M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal of the ACM,
49(2):157–171, 2002.

[8] C. L. Lucchesi and D. H. Younger. A minimax theorem for directed graphs.J. London Math. Soc.,
17:369–374, 1978.

[9] Y. Rabani, L. Schulman, and C. Swamy. Approximation algorithms for labeling hierarchical tax-
onomies. InACM Symp. on Discrete Algorithms, pages 671–680, 2008.

[10] R. Ravi and J.Kececioglu. Approximation algorithms for multiple sequence alignment under a fixed
evolutionary tree.Discrete Applied Mathematics, 88:355–366, 1998.

[11] L. Wang and D. Gusfield. Improved approximation algorithms for tree alignment.Journal of Algo-
rithms, 25(2):255–273, 1997.

[12] L. Wang, T. Jiang, and D. Gusfield. A more efficient approximation scheme for tree alignment.SIAM
Journal on Computing, 30(1):283–299, 2000.

[13] L. Wang, T. Jiang, and E. Lawler. Approximation algorithms for tree alignment with a given phylogeny.
Algorithmica, 16(3):302–315, 1996.

21

