Computer
Sciences
Department

Packing Multiway Cuts in Capacitated Graphs

Siddharth Barman
Shuchi Chawla

Technical Report #1642

August 2008

Packing multiway cuts in capacitated graphs

Siddharth Barman Shuchi Chawla

Abstract

We consider the following “multiway cut packing” problem imdirected graphs: we are given a
graphG = (V, E) and k commodities, each corresponding to a set of terminals dalcat different
vertices in the graph; our goal is to produce a collectioruwtd €C1, - - - , C } such thatC; is a multiway
cut for commaodity; and the maximum load on any edge is minimized. The load on ga iddefined
to be the number of cuts in the solution crossing the edgehdrcapacitated version of the problem
edges have capacities and the goal is to minimize the maximuralative load on any edge — the
ratio of the edge’s load to its capacity. We present congtantbr approximations for this problem in
arbitrary undirected graphs. The multiway cut packing pobarises in the context of graph labeling
problems where we are given a partial labeling of a set ofstand a neighborhood structure over them,
and, informally stated, the goal is to complete the labelinthe most consistent way. This problem
was introduced by Rabani, Schulman, and Swamy (SODA'08) ddveloped a® (logn/loglogn)
approximation for it in general graphs, as well as an imptdaVog” k) approximation in trees. Here
is the number of nodes in the graph.

We present an LP-based algorithm for the multiway cut paggioblem in general graphs that guar-
antees a maximum edge load of at m&GPT+ 4. Our rounding approach is based on the observation
that every instance of the problem admits a laminar solutibat is, no pair of cuts in the solution
crosses) that is near-optimal. For the special case where@anmodity has only two terminals and
all commodities share a common sink (the “common sinkcut packing” problem) we guarantee a
maximum load of OPH 1. Both of these variants are NP-hard; for the common-sink ocas result is
optimal.

*Computer Sciences Dept., University of Wisconsin - Madisard@s. wi sc. edu. Supported in part by NSF grant CCF-
0643763.

fComputer Sciences Dept., University of Wisconsin - Madjsdruchi @s. wi sc. edu. Supported in part by NSF CAREER
Award CCF-0643763.

1 Introduction

We study thenultiway cut packingproblem (MCP) introduced by Rabani, Schulman and Swamyii¢his
problem, we are giveh instances of the multiway cut problem in a common graph, eethnce being a set
of terminals at different locations in the graph. Inforngatbur goal is to compute nearly-disjoint multiwvay
cuts for each of the instances. More precisely, we aim tommge the maximum number of cuts that any
single edge in the graph belongs to. In the weighted verdidhi®problem, different edges have different
capacities; the goal is to minimize the maximum relativallobany edge, where the relative load of an edge
is the ratio of the number of cuts it belongs to and its capacit

The multiway cut packing problem belongs to the followingsd of graph labeling problems. We
are given a partially labeled set afitems along with a weighted graph over them that encodedasityi
information among them. An item’s label is a string of lengtivhere each coordinate of the string is either
drawn from an alphabét, or is undetermined. Roughly speaking, the goal is to cotaphe partial labeling
in the most consistent possible way. Note that completiniggles specific entry (coordinate) of each item
label is like finding what we call a “set multiway cut’—fer € X let S¢ denote the set of nodes for which
theith coordinate is labeled in the partial labeling, then in order to complete the latipin this coordinate
our goal is to partition the items int&| parts such that all of the items frosf. end up in the same part,
and no two items from different se, andS?, are in the same part. The cost of the labeling for a single
pair of neighboring items in the graph is measured by the Hiamglistance between the labels assigned to
them. The overall cost of the labeling can then be formale®d certain norm of the vector of (weighted)
edge costs.

Different choices of norms for the overall cost give rise iffedent objectives. Minimizing thé; norm,
for example, is the same as minimizing the sum of the edges.castis problem decomposes into finding
k minimum set multiway cuts. Each set multiway cut instanae lmareduced to a minimum multiway cut
instance by simply merging all the items in the sameSsdanto a single node in the graph, and can therefore
be approximated to within a factor @f5 [1]. On the other hand, minimizing th&, norm of edge costs
(equivalently, the maximum edge cost) becomes the setwayltcut packing problem. Formally, in this
problem, we are giveh set multiway cut instances!, - - - , S¥, where eacts; = i x S x - - - x S"'z'. The
goal is to findk cuts, with theith cut separating every pair of terminals that belong to Sgtsmdsj2 with
J1 # ja, such that the maximum (weighted) cost of any edge is mirgthiaVhen|S?| = 1 for all i € [k]
andj € X, this is the multiway cut packing problem.

To our knowledge Rabani et al. [9] were the first to consider rtiultiway cut packing problem and
provide approximation algorithms for it. They used a linpesgramming relaxation of the problem along
with randomized rounding to obtain @(bﬁ%) approximation, where is the number of nodes in the
given graph. This approximation ratio arises from an application of@ernoff bounds to the randomized
rounding process, and improves to@fl) factor when the optimal load 8(log n). When the underlying
graph is a tree, Rabani et al. use a more careful deternsini@tinding technique to obtain an improved
O(log? k) approximation. The latter approximation factor holds dtsoa more general multicut packing
problem (described in more detail below). One nice propeftthe latter approximation is that it is inde-
pendent of the size of the graph, and remains small as thé gragvs butt remains fixed. Then, a natural

IRabani et al. claim in their paper that the same approximattio holds for the set multiway cut packing problem thites
in the context of graph labelings. However their approacimefging nodes with the same attribute values (similar totwiea
described above for minimizing tife norm of edge costs) does not work in this case. Roughly spgakinodes. andv have the
sameith attribute, and nodes andw have the samgth attribute, then this approach merges all three noddmwdh an optimal
solution may end up separatingfrom w in some of the cuts. We are not aware of any other approximgtieserving reduction
between the two problems.

open problem related to their work is whether a similar apjpnation guarantee independentsotan be
obtained even for general graphs.

Our results & techniques. We answer this question in the positive. We employ the sansaltipro-
gramming relaxation for this problem as Rabani et al., bueltg a very different rounding algorithm. In
order to produce a good integral solution our rounding dalgar requires a fractional collection of cuts
that is not only feasible for the linear program but alsosfigts an additional good property—the cut col-
lection is laminar. In other words, when interpreted appedply as subsets of nodes, no two cuts in the
collection “cross” each other. Given such an input the ranumgbrocess only incurs a small additive loss
in performance—the final (absolute) load on any edge is at fa%ore than the load on that edge of the
fractional solution that we started out with. Of course thmiharity condition comes at a cost — not ev-
ery fractional solution to the cut packing LP can be intetguleas a laminar collection of cuts (see, e.g.,
Figure 7). We show that for the multiway cut problem any fi@tl collection of cuts can be converted
into a laminar one while losing only a multiplicate factor®&nd an additiver(1) amount in edge loads.
Therefore, for every edgewe obtain a final edge load 6797 + 4, where/9"T is the optimal load on the
edge.

Our laminarity based approach proves even more powerfildrspecial case @ommon-sinks-t cut
packingproblem or CSCP. In this special case every multiway cutimst has only two terminals and all
the instances share a common sinkVe use these properties to improve both the rounding anohéaity
transformation algorithms, and ensure a final load of at #§8t+ 1 for every edge. The CSCP is NP-hard
(see Section 5) and so our guarantee for this special case st possible.

In converting a fractional laminar solution to an integrakeonve use an iterative rounding approach,
assigning an integral cut at each iteration to an appraptiahermost” terminal. Throughout the algorithm
we maintain a partial integral cut collection and a partracfional one and ensure that these collections
together are feasible for the given multiway cut instancks.we round cuts, we “shift” or modify other
fractional cuts so as to maintain bounds on edge loads. Mainyg feasibility and edge loads simultane-
ously turns out to be relatively straightforward in the caBeommon-sinks-t cut packing —we only need to
ensure that none of the cuts in the fractional or the integgliéction contain the common sitk However
in the general case we must ensure that new fractional csitgnasl to any terminal must exclude all other
terminals of the same multiway cut instance. This requiresee careful reassignment of cuts.

Related work. Problems falling under the general framework of graph lalgeds described above have
been studied in various guises. The most extensively stuspecial case, called label extension, involves
partial labelings in which every item is either completedpéled or not labeled at all. When the objective
is to minimize the/; norm of edge costs, this becomes a special case of the naiglirlg and 0-extension
problems [6, 2, 4, 5]. (The main difference between 0-extenand the label extension problem as described
above is that the cost of the labeling in the former arisesifam arbitrary metric over the labels, while in
the latter it arises from the Hamming metric.)

When the underlying graph is a tree and edge costs are givéimebgdit distance between the corre-
sponding labels, this is known as the tree alignment problEme tree alignment problem has been studied
widely in the computational biology literature and arisedhe context of labeling phylogenies and evolu-
tionary trees. This version is also NP-hard, and there arergePTASes known [13, 12, 11]. Ravi and
Kececioglu [10] also introduced and studied the version of this problem, calling it the bottleneck tree
alignment problem. They presented @(log n) approximation for this problem. A further special case of
the label extension problem under thg objective, where the underlying tree is a star with labeésvés,
is known as the closest string problem. This problem is alBehidrd but admits a PTAS [7].

As mentioned above, the multiway cut packing problem wasdhiced by Rabani, Schulman and

Swamy [9]. Rabani et al. also studied the more general nutilpacking problem (where the goal is to

pack multicuts so as to minimize the maximum edge load) abasehe label extension problem with the
(~ Objective. Rabani et al. developed @flog? k) approximation for multicut packing in trees, and an
O(log Mlog’lgogn) in general graphs. Her&f is the maximum number of terminals in any one multicut in-
stance. For the label extension problem they presentedstastdriactor approximation in trees, which holds
even when edge costs are given by a fairly general class ofosietver the label set (including Hamming

distance as well as edit distance).

Another line of research loosely related to the cut packirdplems described here considers the prob-
lem of finding the largest collection of edge-disjoint cutst(corresponding to any specific terminals) in
a given graph. While this problem can be solved exactly irypahial time in directed graphs [8], it is
NP-hard in undirected graphs, and Caprara, Panconesi aad[Bli presented & approximation for it. In
terms of approximability, this problem is very differendin the one we study—in the former, the goal is to
find as many cuts as possible, such that the load on any edgmastl, whereas in our setting, the goal is
to find cuts for all the commadities, so that the maximum edgé is minimized.

2 Definitions and results

Given agraplz = (V, E), acutin G is a subset of edgds’ the removal of which disconnects the graph into
multiple connected components.v&rtex partitionof G is a pair(C, V' \ C) with C C C V. For a seC
with) C C C V, we usej(C) to denote the cut defined Iy, that is,0 (C) = {(u,v) € E : |CN{u,v}| =

1}. We say that a cuk’ C F separates verticasandv if « andv lie in different connected components in
(V,E\ E'). Likewise, the vertex partition defined by €eseparates andv if the two vertices are separated
by the cuts(C). Given a collection of cut§ = {E,--- , E;} and capacities, on edges, the loatf on an
edgee is defined as the number of cuts that contaithat is, /¢ = |{E; € £|e € E;}|. Likewise, given a
collection of vertex partitiong = {C1,--- ,Cy}, the load/S on an edge is defined to be the load of the
cut collection{o(C1),--- ,6(Ck)} one.

The input to amultiway cut packingoroblem (MCP) is a grapli = (V, E) with integral capacities
c. On edges, and setsSy, - - - , .S, of terminals (called “commaodities”); each terminak S, resides at a
vertexr; in V. The goal is to produce a collection of cdts= {E1, - -- , Ex }, such that (1) for alk € [k],
and for all pairs of terminals, j € S,, the cutk, separates; andr;, and (2) the maximum “relative load”
on any edgemax. £< /c., is minimized.

In a special case of this problem called teenmon-sinlks-¢ cut packingproblem (CSCP), the graph
contains a special nodecalled the sink and each commodity set has exactly two tedsyimne of which
resides at. Again the goal is to produce a collection of cuts, one foheammmodity such that the maximum
relative edge load is minimized.

Both of these problems are NP-hard to solve optimally (se#i@e5), and we present LP-rounding
based approximation algorithms for them. We assume witlumst of generality that the optimal solution
has a relative load of. The integer prograrMCP-IP below encodes the set of solutions to the MCP with
relative loadl.

HereP, denotes the set of all paths between any two vertiges with ¢, j € S,, ¢ # j. In order to be
able to solve this program efficiently, we relax the final ¢oaist toz, . € [0,1] for all a € [k] ande € E.
Although the resulting linear program has an exponentiallmer of constraints, it can be solved efficiently;
in particular, the polynomial-size prograWhCP-LP below is equivalent to it. Given a feasible solution to
this linear program, our algorithms round it into a feasintegral solution with small load.

Zx%e >1 Va € [k], P € P, da(u,v) < do(u,w) +da(w,v) Va € [k],u,0,w €V
ecP da(riyry) > 1 Va € [k],1,j € Sq
Zxa,egce Ve e E Zda(e)gce Yee FE
Tae € {0,1} Va € [kl,e € B da(e) € [0,1] Va € [k],ec E
(MCP-1P) (MCP-LP)

In the remainder of this paper we focus exclusively on sohgito the MCP and CSCP that are collec-
tions of vertex partitions. This is without loss of gendsa{up to a factor of in edge loads for the MCP)
and allows us to exploit structural properties of vertexs seich as laminarity that help in constructing a
good approximation.

In the rest of the paper we use the term “cut” to denote a sulisitie vertices that defines a vertex
partition. A pair of cuts”;, Cy, C V is said to “cross” if all of the set§, NCy, C1 \ Cs, andCy \ C; are non-
empty. A collectionC = {C},--- ,C}} of cuts is said to béaminar if no pair of cutsC;, C; € C crosses.
All of our algorithms are based on the observation that bbehMCP and the CSCP admit near-optimal
solutions that are laminar. Specifically, there is a polyr@itime algorithm that given a fractional feasible
solution to MCP or CSCP (i.e. a feasible solutiorME@P-LP) produces a laminar family of fractional cuts
that is feasible for the respective problem and has small [dais is formalized in Lemmas 1 and 2 below.
We first introduce the notion of a fractional laminar familyooits.

Definition 1 A fractional laminar cut familyC for terminal setl” with weight functionw is a collection of
cuts with the following properties:

e The collection is laminar

e Each cutC in the family is associated with a unique terminalin We useC; to denote the sub-
collection of sets associated with terminat T'. EveryC' € C; contains the node;.

e Forall ¢ € T, the total weight of cuts id;, EC’ECZ' w(C),is 1.

Next we define what it means for a fractional laminar famil\btofeasible for the MCP or the CSCP.
Note that condition (2) below is weaker than requiring tlwatll pairsi, j belonging to the same commodity
every cut inboth C; andC; separates; from ;.

Definition 2 A fractional laminar family of cutg€ for terminal setl” with weight functionw is feasible for
the MCP on a graplt: with edge capacities. and commodities’, - - -, S if (1) T' = Uger)Sa, (2) for all
a € [kl andi, j € Sy, i # j, eitherr; ¢ Ucec,C, or r; & Ucec,C, and (3) for every edge € E, the load
of C one is no more thare,.

The family is feasible for the CSCP on a gra@hwith edge capacities, and commoditie$, - - - , Sk
if (1) T' = Uaep)Sa \ {t}, (2t € UcecC, and (3) for every € F, the load ofC on e is no more thar..

Lemma 1 Consider an instance of the CSCP with graph= (V, E), common sink, edge capacities
ce, and commodities, - -- , S,. Given a feasible solutiod to MCP-LP, algorithm Lam-1 produces a
fractional laminar cut familyC that is feasible for the CSCP @r with edge capacities,.

Lemma 2 Consider an instance of the MCP with graph= (V, E), edge capacities., and commodities
S1,-+-,Sk. Given a feasible solutiord to MCP-LP, algorithm Lam-2 produces a fractional laminar cut
family C that is feasible for the MCP o&' with edge capacitie8c, + o(1).

Lemmas 1 and 2 are proven in Section 4. In Section 3 we show badeterministically round a
fractional laminar solution to the CSCP and MCP into an irdegne while increasing the load on every
edge by no more than a small additive amount. These rountljogithms are the main contributions of our
work, and crucially use the laminarity of the fractionaligan.

Lemma 3 Given a fractional laminar cut familg feasible for the CSCP on a graph with integraledge
capacitiesc., the algorithmRound-1produces an integral family of cutd that is feasible for the CSCP on
G with edge capacities, + 1.

For the MCP, the rounding algorithm loses an additive factdyin edge load.

Lemma 4 Given a fractional laminar cut familg feasible for the MCP on a grap& with integraledge
capacitiesc,, the algorithmRound-2produces an integral family of cutd that is feasible for the MCP on
G with edge capacities, + 3.

Combining these lemmas together we obtain the followingrie.

Theorem 5 There exists a polynomial-time algorithm that given ananse of the MCP with graply =
(V, E), edge capacities,, and commoditiess, - - - , S, produces a familyd of multiway cuts, one for each
commodity, such that for eaehe F, E;“ < 8ce + 4.

There exists a polynomial-time algorithm that given ananse of the CSCP with grapf = (V, E),
edge capacities., and commodities$, - - - , Sk, produces a family4d of multiway cuts, one for each com-
modity, such that for eache E, A < ¢, + 1.

3 Rounding fractional laminar cut families

In this section we develop algorithms for rounding feasidetional solutions to the MCP and the CSCP

to integral ones while increasing edge loads by a small mddmount. We first demonstrate some key

ideas behind the algorithm and the analysis for the CSCRlemextend them to the more general case of
multiway cuts. Throughout the section we assume that the edgacitieg, are integral.

3.1 The common sink case (proof of Lemma 3)

Our rounding algorithm for the CSCP rounds fractional catgyhly in the order of innermost cuts first. The
notion of an innermost terminal is defined with respect tofthetional solution. After each iteration we
ensure that the remaining fractional solution continuelsetdeasible for the unassigned terminals and has
small edge loads. We ugeto denote the fractional laminar cut family that we startwith and.4 to denote
the integral family that we construct. Recall that for aneedg E, /€ denotes the load of the fractional cut
family C one, and/ denotes the load of the integral cut familyon e. We call the former the fractional
load on the edge, and the latter its integral load.

We now formalize what we mean by an “innermost” terminal. &agry vertexv € V, let K, denote
the set of cuts i€ that containu. The “depth” of a vertex, is the total weight of all cuts iK,: d, =

Input: GraphG = (V, E) with capacities:., terminalsI” with a fractional laminar cut famil¢, common sink with

t & UcecC.
Output: A collection of cutsA4, one for each terminal iff’.

1. InitializeT” =T, A = (), andM (v) = {v} for allv € V. Compute the depths of vertices and terminals.
2. While there are terminals ifi’ do:

(a) Leti be a terminal with the maximum depthTH. Let A; = M (r;). Add A; to A and remove from 7".

(b) LetK = K} Remove cuts ik N C; from K, C; andC. While there exists a termingle 7" with a cut
C € K NCj, do the following: letw = w(C); removeC from K, C; andC; remove cuts irC;” from C;
and add them t@; (that is, these cuts are reassigned from termimaterminaly).

(c) If there exists an edge= (u,v) with ¢ = 0, merge the meta-nodéd (u) and M (v) (we say that the
edgee has been “contracted”).

(d) Recompute the depths of vertices and terminals.

Figure 1: AlgorithmRound-+*Rounding algorithm for common-sirkt cut packing

> cek, w(C). The depth of a terminal is defined as the depth of the vertewah it resides. Terminals
are picked in order of decreasing depth.

Before we describe the algorithm we need some more notafibany point during the algorithm we
useS. to denote the set of cuts crossing an edgés the algorithm proceeds, the integral loads on edges
increase while their fractional loads decrease. Whenéediractional load of an edge becontesve merge
its end-points to form “meta-nodes”. At any point of time, wge M (v) to denote the meta-node containing
anodev € V.

Finally, for a set of fractional cuté = {Ly,--- , L;} with L; C Ly C --- C L; and weight functiono,
we useL” to denote the subset @f containing the innermost cuts with weight exactlyThat is, letl’ be
such thad ,_, w(L,) <zand)_, ., w(L,) > x. ThenL” is the se{ Ly, --- , Ly } with weight function
w’ such thatw'(Lg) = w(L,) fora <" andw'(Ly) =z — >,y w(Ly).

The algorithmRound-1is given in Figure 1. At every step, the algorithm picks a teah sayi, with the
maximum depth and assigns an integral cut to it. This pabytfrees up capacity used up by the fractional
cuts of4, but may use up extra capacity on some edges that was prigvimesupied by fractional cuts
belonging to other terminals. In order to avoid increasidgeeloads, we reassign to terminals in the latter
set, fractional cuts afthat have been freed up.

Our analysis has two parts. Lemma 6 shows that the fathitpntinues to remain feasible, that is it
always satisfy the first two conditions in Definition 2 for theassigned terminals. Lemma 7 analyzes the
total load of the fractional and integral families as theoalklpm progresses.

Lemma 6 Throughout the algorithm, the cut famiyis a fractional laminar family for terminals if” with
t & UcecC.

Proof: We prove this by induction over the iterations of the aldgont The claim obviously holds at the
beginning of the algorithm. Consider a step at which sommitel 7 is assigned an integral cut. The
algorithm removes all the cuts iIf = K}i from C. Some of these cuts belong to other terminals; those
terminals are reassigned new cuts. Specifically, we firsbwencuts ink’ N C; from the cut family. The total

weight of the remaining cuts iRl as well as the total weight of those(@his equal at this time. Subsequently,
we successively consider terminglsvith a cutC' € K N C;, and letw = w(C'). Then we remove’ from
the cut family, and reassign cuts of total weighin C" to j. Therefore, the total weight of cuts assigned to
Jj remainsl. Furthermore, the newly reassigned cuts contain the’cuand therefore the vertex, but do
not contain the sink. ThereforeC continues to be a fractional laminar family for terminal<ih [|

Lemma 7 At any point of time for every edgec E, (A < c, — 1 implies¢4 + (€ < c,, tA = ¢, implies
(€ < 1,and¢A = ¢, + 1 implies¢¢ = 0. Furthermore, fore = (u,v), £ = c. implies that either’,, N S,
or K, N S, is empty.

Proof: Lete = (u,v). We prove the lemma by induction over time. Note that in thgifb@ng of the
algorithm, we have for all edge§ < c. and¢#* = 0, so the inequality* + (¢ < ¢, holds.

Let us now consider a single iteration of the algorithm angpsse that the integral load of the edge
increases during this iteration. (If it doesn't increasess(¢ only decreases over time, the claim continues
to hold.) Let: be the commodity picked by the algorithm in this iteratidrert M (r;) is the same as either
M (u) or M(v). Without loss of generality assume thate M (u). Let o denote the total weight of cuts
in K, N S, and 3 denote the total weight of cuts i, N S, prior to this iteration. Theny + 3 = (€.
Moreover, all cuts ir€ \ S, either contain both or neither afandv. So we can relate the depthswéandu
in the following way:d, = d, — o + (3. Sincei is the terminal picked during this iteration, we must have
d, > d,, and thereforeq > .

We analyze the final edge load depending on the value diwo cases arise: suppose first that 1.
ThenK! C K, N S., and the fractional weight af reduces by exactly. On the other hand, the integral
load on the edge increases hyand so the total load continues to be the same as before.eGnitar hand,
if « <1,thenkK, NS, C K& and all the cuts i<, N S, get removed fronb. in this iteration. Therefore
the final fractional load is at mogt < o < 1, and at the end of the iteratiok, N S, = 0. If 6;4 <c,— 1,
we immediately get that the total load on the edge is at most

If ¢4 = ¢, then prior to this iteratiod! = ¢, — 1, and sa?¢ < 1 by the induction hypothesis. Then, as
we argued abovey < Eg < 1 implies that the new fractional load on the edge is at ma@std at the end of
the iteration,K, N S, = 0.

Finally, if 4 = ¢, + 1, then prior to this iteration* = ¢, and by the induction hypothesis,is zero
(asa > [and eitherK, N S, or K,, N S, is empty). Along with the fact that < 1 (by the inductive
hypothesis), the final fractional load on the edgg is 0. |

The two lemmas together give us a proof of Lemma 3. We redtatiemma for completeness.

Lemma 3 Given a fractional laminar cut familg feasible for the CSCP on a gragh with integraledge
capacitiesc., the algorithmRound-1produces an integral family of cutd that is feasible for the CSCP on
G with edge capacities, + 1.

Proof: First note that for every, A; is set to be the meta-node of at some point during the algorithm,
which is a subset of every cut @ at that point of time. Then; € A;, and by Lemma 6t ¢ A;. Second,
for any edge, its integral load/A starts out at being and gradually increases by at most an additiat
every step, while its fractional load decreases. Once titifmal load of an edge becomes zero, both its

end points belong to the same meta-node, and so the edgege¢vdénaded again. Therefore, by Lemma 7,
the maximum integral load on any edgés at most, + 1. [|

3.2 The general case (proof of Lemma 4)

As in the common-sink case, the rounding algorithm for theRViEoceeds by picking terminals according
to an order suggested by the fractional solution and asgigthie smallest cuts possible to them subject to
the availability of capacity on the edges. In the algoritRound-1 we reassign cuts among terminals at
every iteration so as to maintain the feasibility of the ranimey fractional solution. In the case of MCP,
this is not sufficient—a simple reassignment of cuts as inctiee of algorithmRound-1may not ensure
separation among terminals belonging to the same commatldyise two ideas to overcome this difficulty:
first, among terminals of equal depth, we use a differentrorgeo pick the next terminal to minimize the
need for reassigning cuts; second, instead of reassignitsy we modify the existing fractional cuts for
unassigned terminals so as to remain feasible while paysmgadl extra cost in edge load.

We now define the “cut-inclusion” ordering over terminalgr Every terminat € T', let O; denote the
largest (outermost) cut i@;, that is,vC € C;, C C O;. We say that terminal dominates (or precedes)
terminalj in the cut-inclusion ordering, written>c; j, if O; C O; (if O; = O; we break ties arbitrarily
but consistently). Cut-inclusion defines a partial ordetemminals. Note that we can pre-process the cut
family C by reassigning cuts among terminals, such that for all mditerminalsi, j € T with i >¢7 j,
and for all cutsC; € C; andC; € C; with r;,r; € C; N C;, we haveC; C C;. We call this property
the “inclusion invariant”. Ensuring this invariant regesr a straightforward pairwise reassignment of cuts
among the terminals, and we omit the details. Note that¥alig this reassignment, for every terminal
every cut ofi is still a subset of (or equal to) the outermost Gytprior to the reassignment.

As the algorithm proceeds we modify the collecti@ras well as build up the collectiod of integral
cutsA; for i € T. For example, we may split a catinto two cuts containing the same nodes’aand with
weights summing to that af'. As cuts inC are modified, their ownership by terminals remains unchénge
and we therefore continue using the same notation for themhé&rmore, if for two cutg’; andCs,, we have
(for example)C; C (5 at the beginning of the algorithm, this relationship coméis to hold throughout the
algorithm. This implies that the inclusion invariant contés to hold throughout the algorithm. We ensure
that throughout the execution of the algorithm the cut farditontinues to be a fractional laminar family for
terminals7”. At any point of time, the depth of a vertex or a terminal, a8l a®the cut-inclusion ordering
is defined with respect to the current fractional fandllyThe rounding algorithm is given in Figure 2.

During the course of the algorithm integral loads on edgeeise, but fractional loads may increase or
decrease. To study how these edge loads change during ttse afthe algorithm, we divide edges into five
sets. LetX_; denote the set of edges witft < c. — 1 and/¢ > 0. Fora € {0, 1}, let X, denote the set of
edges withA = ¢, +a and(C > 0. Y denotes the set of edges with = ¢, 42 and/¢ > 0, andZ denotes
the set of edges witf = 0. Every edge starts out with a zero integral load. As the élgorproceeds, the
edge goes through one or more of thigs, may enter the séf, and eventually ends up in the sét As for
the CSCP, when an edge entegfswe merge the end-points of the edge into a single meta-riddeever,
unlike for the CSCP, edges may get loaded even after ent&rivfhen an edge enteks, we avoid loading
it further (Step 3c), and instead load some edges.iiNevertheless, we ensure that edge& iare loaded
no more than once.

As before, letS. denote the set of cuts i that crose — S, = {C € Cle € §(C)}. Recall thatk,
denotes the set of cuts (hcontaining the vertex, and of thesng denotes the inner-most cuts with total
weight exactlyl.

Input: GraphG = (V, E) with capacities:. on edges, a set of terminalswith a fractional laminar cut familg.
Output: A collection of cutsA4, one for each terminal iff’.

1. Preprocess the familyso that it satisfies the inclusion invariant.
2. InitializeT' =T, A=10,Y,Z = 0, andM (v) = {v} forallv € V.
3. While there are terminals Ifi’ do:
(a) Consider the set of unassigned terminals with the maximepth, and of these léte T’ be a terminal
that is undominated in the cut inclusion ordering. Egt=Y N 6(M (r;)).
(b) IfE;, =0,letA; = M(r;).

(c) If BE; # 0 (we say that the terminal has “defaulted” on edge&ijj let U; denote the set of end-points of
edges inE; that lie in M (r;). If r; € U, abort and return error. Otherwise, consider the verté ithat
enteredM (r;) first during the algorithm’s execution, call this vertex SetA; to be the meta-node of
just prior to the iteration wher#/ (u;) becomes equal td/ (r;).

(d) AddA; to A. Remove’; fromC andi fromT”. Foreveryj € T andC € K] NC;, letC' = C\{M(r;)}.

(e) If for some edge, /A = c. +2 and/C > 0, adde to Y. If there exists an edge= (u, v) with ¢ = 0,
merge the meta-nodéd (v) and M (v) (we say that the edgehas been “contracted”.) Add all edges
with /¢ = 0to Z and remove them fror.

(f) Recompute the depths of vertices and terminals.

Figure 2: AlgorithmRound-2—Rounding algorithm for multiway cut packing

For aterminal and edge;, if at the time that is picked in Step 3a of the algorithenis in 6(M (r;)), we
say thati accesses the edgelf e € E;, we say that defaults ore, and ife is in §(A;) after this iteration,
then we say thatloads the edge. As before our analysis has two components. First we shomiha 8)
that the cuts produced by the algorithm are feasible. THeviolg lemmas give the desired guarantees on
the edges’ final loads: Lemmas 9 and 10 analyze the loads esedd(, for « € {—1,0,1}; Lemma 11
analyzes edges i and Lemmas 12 and 13 analyze edge& inWe put everything together in the proof of
Lemma 4 at the end of this section.

Lemma8 Forall ¢, r; € 4; C O;.

Proof: Each cut4; is set equal to the meta-nodergfat some stage of the algorithm. Thereforec A; for
all 7. Furthermore, at the time thats assigned an integral cut; C M(r;) C O;. []

Next we prove some facts about the fractional and integeddcas an edge goes through the 3éfs
The proofs of the following two lemmas are similar to that eihhma 7.

Lemma 9 At any point of time, for every edgec X_;, A + (€ < c..

Proof: We prove the claim by induction over time. Note that in theibemg of the algorithm, we have for
all edgesC < ¢, and¢A = 0, so the inequality’A + (¢ < c, holds.

Let us now consider a single iteration of the algorithm angpsse that the edgeremains in the set
X_, after this step. There are three events that influence tliedbthe edges = (u,v): (1) a terminal

at some vertex inV/ (u) accesses; (2) a terminal atV/ (v) accesses; and, (3) a terminal at some other
meta-nodeM! # M (u), M (v) is assigned an integral cut. Let us consider the third caste éind suppose
that a terminal is assigned. Sincd; C M and therefore ¢ §(4;) its integral load does not increase.
However, in the event thaf, N C; is non-empty, the fractional load enmay decrease (because cut€jn
are removed fronf). Therefore, the inequality continues to hold.

Next we consider the case where a terminal, sayith », € M (u) accessesg (the second case is
similar). Note thatV (r;) = M (u). In this case the integral load of the edgpotentially increases by (if
the terminal loads the edge). By the definitionof |, the new integral load on this edge is no more than
ce — 1. The fractional load ol changes in three ways:

e CutsinC; N S, are removed frong, decreasinqg.

e Some of the cuts itk \ C;) \ S. get “shifted” on toe increasingl (we remove the meta-node
M (r;) from these cuts, and they may continue to confdifw)).

e Cutsin(K} \ C;) N S, get shifted off frome decreasing® (these cuts initially contaid/ (r;) but not
M (v), and during this step we remowé (r;) from these cuts).

So the decrease ifY is at least the total weight d}. N S. = K! N S., whereas the increase is at most the
total weight of K} \ S. = K7\ \ Se.

In order to account for the two terms, letdenote the total weight of cuts i, N S, and3 denote the
total weight of cuts ink’, N S.. Then,a + 3 = ¢¢. As in the proof of Lemma 7, we havg, = d,, — o + 3,
and thereforel, > d, impliesa > (. Now, suppose that > 1. ThenK& C S.. Therefore, the decrease
in /€ due to the set&} N S, = K is at leastl, and there is no corresponding increase, so the/gtim ¢¢
remains at most..

Finally, suppose that < 1. ThenK! contains all the cuts i, N S, the weight ofK’! N S. is exactly
a, and so the decrease #f is at leasta. Moreover, the total weight ok} \ S, is 1 — a, therefore, the
increase S due to the sets ii(} \ S, is at mostl — . Sincef¢ starts out as being equal to+ £, its
final value after this step is— o + 3 < 1 asf8 < . Noting that¢# is at mostc, — 1 after the step, we get
the desired inequality. [|

Lemma 10 For any edge: = (u,v), from the time that enters X to the time that it exits\;, /¢ < 1.
Furthermore suppose (without loss of generality) that dgrihis time in some iteration is accessed by
a terminali with »; € M (u), then following this iteration until the next time thais accessed, we have
S. N K, = 0, and the next access tq(if any) is from a terminal inV/ (v).

Proof: First we note that if the lemma holds the first time an edge(u, v) enters a sek,, a € {0, 1}, then

it continues to hold while the edge remainsXp. This is because during this time the integral load on the

edge does not increase, and therefore throughout this teressign integral cuts to terminals at meta-nodes

different fromM (u) and M (v) — this only reduces the fractional load on the edged shrinks the sef..
Consider the first time that an edge= (u, v) moves from the seX_; to X,. Suppose that at this step

we assign an integral cut to a termiriaksiding at node; € M (u). Prior to this stepfs' = c. — 1, and so

by Lemma 9/¢ < 1. As before define to be the total weight of cut&’, N S., and;3 to be the total weight

of cuts K, N S.. Then following the same argument as in the proof of Lemmae¢anclude that the final

fractional weight ore is at most3 + 1 — a < 1. Furthermore, sinc&’,, N .S, C K&, we either remove all

these cuts front or shift them off of edge.. Moreover, any new cuts that we shift ondao not contain

the meta-nodé/ (r;) = M (u), and in particular do not contain the vertex Therefore at the end of this

10

step,S. N K,, = (. This also implies that following this iteration terminats/ (v) have depth larger than
terminals inM (u), and so the next accessdonust be from a terminal in/ (v).

The same argument works when an edge moves fgrto X;. We again make use of the fact that prior
to the step the fractional load on the edge is at niost [|

Lemma 11 During any iteration of the algorithm, for any edge= Y, the following are satisfied:
e <1

e If the edgee = (u,v) is accessed by a terminawith »; € M (u), then following this iteration until
the next time that is accessed, we hav& N K, =), and the next access to(if any) is from a
terminal in M (v).

e If a terminali with ; € M (u) accesses = (u,v), thenr; # u, A; N {u,v} = 0, and soi does
not loade. Also, consider any previous access to the edge by a ternmngl(«); then prior to this
accessy; ¢ M(u).

Proof: The first two parts of this lemma extend Lemma 10 to the cage=ol”, and are otherwise identical
to that lemma. The proof for these claims is analogous to thefpf Lemma 10. The only difference is
that terminals accessing an edge Y default on this edge. However, this does not affect the aeguim
when a terminal defaults on the edge, the edge’s fractia@al thanges in the same way as if the terminal
did not default; the only change is in the way an integral swssigned to the terminal. Since these claims
depend only on how the fractional load on the edge changeg ctimtinue to hold while the edge isih

For the third part of the lemma, sincg C M (r;) = M(u) andv ¢ M(u), v ¢ A;. Next we show
thatu ¢ A;. Consider the iterations of the algorithm during whi¢h< 1. During this time the edge was
accessed at least twice prior to being accesseddyce where moved fromX, to X, once where moved
from X; to Y, and possibly multiple times while € Y). Let the last two accesses be by the terminals
andjs, at iterationst; andtq, t1 < to. Fora € {0,1}, let M*(u) andM“(v) denote the meta-nodes of
andwv respectively just prior to iteratioty,, and M (u) and M (v) denote the respective meta-nodes just prior
to the current iteration. Then by Lemma 10 and the secondopdnis lemma, we have;, € M*(u) and
rj, € M*(v). We claim thati >¢ j2 >c¢r ji. Given this claim, ifr; € M*(u) = M'(rj,), then since
1 andj; have the same depth at iteration we get a contradiction to the fact that the algorithm pigks
beforei in Step 3a. Therefore; ¢ M (u) at any iteration prior td;, and in particulary; # u. Finally,
sinceu € U; andU; N A; = (), this also implies that, ¢ A;.

It remains to prove the claim. We will prove that >¢; j1. The proof fori >c; jo is analogous. In
fact we will prove a stronger statement: between iterattgramdt,, all terminals with cuts irb, dominate
j1 in the cut-inclusion ordering. We prove this by inductiony Bemma 10, prior to iteration,, S, does
not contain any cuts belonging to terminalsid{v). Following the iteration,S. only contains fractional
cuts in K that got shifted on to the edge Prior to shifting, these cuts contai! (), and therefore;,,
but do not belong tg;. Then, these cuts are subsetgf and so by the inclusion invariant, they belong to
terminals dominatingy in the cut-inclusion ordering. Therefore, the claim holght after the iteratiort; .
Finally, following the iteration until the next time thatis accessed (bys), the setS, only shrinks, and so
the claim continues to hold. |

In order to analyze the loading of edgesdnwe need some more notation. L&t denote the collection
of sets of vertices that were meta-nodes at some point dtmm@lgorithm. For any edge € Z, let M,
denote the meta-node formed wheentersZ; then M, is the smallest set itM containing both the end
points ofe. Note that the collectiod U M is laminar.

11

Lemma 12 An edgee € Z is loaded only if after the formation ¥/, a terminal residing at a vertex
in M, defaults on an edge in(M,.). (Note that this may happen aftdf, has merged with some other
meta-nodes.)

Proof: Let: be a defaulting terminal that loads the edge Z. Thene € §(A;), and therefored; C M.,
andr; € M.. Furthermore, sincel; is a strict subset oi/., U; N M, # (), and therefore; defaults on an
edgee’ € Y with at least one end-point i/,. But if both the end-points af are in,, then we must have

KZ, = 0 contradicting the fact that isinY". Thereforeg’ € 6(M.). n

Lemma 13 For any meta-nodé/ < M, after its formation, at most one terminal residing at a egrin A/
can default on edges (M) (even afterM has merged with other meta-nodes).

Proof: For the sake of contradiction, suppose that two terminaitalj, both residing at vertices i default

on edges i (M) after the formation of\/, with i defaulting beforej. Let M; (M3) denote the meta-node
containingM just beforei (j) defaulted. Note thad/ C M; C M,. Consider an edge € E; N §(M)
(recall thatE; is the set of edges thatdefaults on, so this set is non-empty by our assumption).nThe
e € 6(M)Nd(My) C 6(My). Therefore, at the time thatdefaulted e was accessed by and by the third
claimin Lemma 11y; ¢ M;. This contradicts the fact that € M. |

Finally we can put all these lemmas together to prove our mesualt on algorithmRound-2

Lemma 4 Given a fractional laminar cut familg feasible for the MCP on a grap&y with integraledge
capacitiesc,, the algorithmRound-2produces an integral family of cutd that is feasible for the MCP on
G with edge capacities, + 3.

Proof: We first note that the third claim in Lemma 11 implies that fbriar; ¢ U;, and therefore the
algorithm never aborts. Then Lemma 8 implies that we get siiEacut packing. Finally, note that every
edge starts out in the sét_;, goes through one or more of tB&,’s, a € {0, 1}, potentially goes through
Y, and ends up it¥. Lemma 11 implies that edges ¥hnever get loaded, and so at the time that an edge
entersZ, (4 < c. + 2. After this point the edge stays i, and Lemmas 12 and 13 imply that it gets loaded
at most once. Therefore, the final load on the edge is at mest3. [|

4 Fractional laminar cut packings

We now show that fractional solutions to the progr&f@P-LP can be converted in polynomial time into
fractional laminar cut families while losing only a smaltfar in edge load. We begin with the common
sink case.

4.1 Obtaining laminarity in the common sink case

We prove Lemma 1 in this section. Our algorithm involveststgrwith a solution taViCP-LP, converting
it into a feasible fractionahon-laminarfamily of cuts, and then resolving pairs of crossing cuts ana
time by applying the rules in Figure 4. The algorithm is giwefrigure 3.

12

Input: GraphG = (V, E) with edge capacities., commoditiesSy, - - - , S, common sink, a feasible solutiod to
the progranMCP-LP.
Output: A fractional laminar family of cut€ that is feasible for the given instance.

1. For everya € [k] and terminaki € S, do the following: Order the vertices i@ in increasing order of
their distance undei, from r;. Let this ordering beyy = r;,v1,--- ,v,. LetC; be the collection of cuts
{vo,v1, -, v}, ONe for eachh € [n], da(ri,vp) < 1, with weightsw({vo, -+ ,v}) = da(ri, v611) —
d,(ri,vp). LetC denote the collectioiC; }icu, s, -

2. While there are pairs of cuts ththat cross, consider any pair of cdts, C; € C belonging to terminals # j
that cross each other. Transform these cuts into new cuisafudtj according to Figure 4.

Figure 3: AlgorithmLam-X—Algorithm to convert an LP solution for the CSCP into a feésifractional
laminar family

Lemma 1 Consider an instance of the CSCP with grapgh= (V, E), common sink, edge capacities
ce, and commoditiesy, - -- , S,. Given a feasible solutiod to MCP-LP, algorithm Lam-1 produces a
fractional laminar cut familyC that is feasible for the CSCP d@r with edge capacities,.

a<pP

Figure 4: Rules for transforming an arbitrary cut familyara laminar one for the CSCP. The solid cuts in
this figure correspond to the terminaland the dotted cuts to terminglt lies outside all the cuts. All the
cuts are labeled by their respective weights.

Proof: We first note that the familg is feasible for the given instance of CSCP at the end of Stdqutl,

is not necessarily laminar. As we tranform the cuts in Stepemaintain the property that no cit € C
contains the sink, but every cutC' € C; contains the node; for terminali. It is also easy to see from
Figure 4 that the total weight of all cuts {f) is also maintained at, and the load on every edge stays the
same. Finally, let the “crossing number” of the cut fandilige equal to the sum over all pairs of crossing cuts

13

of the product of the weights of the cuts. Then we claim thatdiossing number of the family decreases
at every iteration, and therefore the algorithm terminafl@ssee this, consider any transformations shown
in Figure 4 where we uncross cut§ < C; andC; € C;, and suppose that another cijtcrosses one or
more of these cuts. Then the total weight of the new cuts meditp: andj that cross’; is no more than
the previous weight crossing the cut. Futhermore, the grgs$etween the cuts efand;j are completely
resolved, so the crossing number decreases by at leastothecpof the weights of the two cuts. [|

4.2 Obtaining laminarity in the general case

Obtaining laminarity in the general case involves a morefcselection and ordering of rules of the form
given in Figure 4. The key complication in this case is thatnmest maintain separation of every terminal
from every other terminal in its commodity set. We first shawlto convert an integral collection of cuts
feasible for the MCP into a feasible integral laminar cdil@t of cuts. We lose a factor @ in edge loads
in this process (see Lemma 14 below). Obtaining laminaotyain arbitrary fractional solution requires
converting it first into an integral solution for a related-packing problem and then applying Lemma 14
(see Figure 6 and the proof of Lemma 2 following it).

Lemma 14 Consider an instance of the MCP with graph= (V, E)and commodities, - - - , Sy, and let
C' = {C}}ies, acpi) be a family of cuts such that for eaehe [k] andi € S,, C} containsi but no other
j € S,. Then algorithminteger-Lam-2produces daminarcut collectionC? = {Ciz}iesa,ae[k] such that for

eacha € [k] andi # j € S,, eitherC? or C‘]? separates from j, andES1 < 2@52 for every edge € F.

In the remainder of this section we interpret cuts as setexices as well as sets of terminals residing
at those vertices. The algorithm for laminarity in the im@gase is given in Figure 5.

As in the common sink case, the algorithm starts by applyiseriees of simple rules to pairs of crossing
cuts while maintaining the invariant that pairs of termsbElonging to the same commaodity are always
separated by at least one of the two cuts assigned to thentairCkinds of crossings of cuts are easy to
resolve while maintaining this invariant (Step 1 of the aitjon resolves these crossings). In Steps 2 and
3, we ignore the commaodities that each terminal belongsi agsign new laminar cuts to terminals while
ensuring that the new cut of each terminal lies within its/jines cut (and therefore, separation continues to
be maintained). These steps incur a penalty iofedge loads.

The rough idea behind Steps 2 and 3 is to consider the set &faflicting” terminals, call itF'.
Then we can assign to each terminat F the cutn;cC; whereC; is either the cut of terminal or its
complement depending on which of the two contaths These intersections are clearly laminar, and are
subsets of the original cuts assigned to terminals. Furtbes, if each terminal gets a unique intersection,
then edge loads increase by a factor of at n2ost/nfortunately, some groups of terminals may share the
same intersections. In order to get around this, we assignteuerminals in a particular order suggested
by the structure of the conflict graph on terminals (grépin the algorithm) while explicitly ensuring that
edge loads increase by a factor of no more than

We start with a simple observation: throughout the algarjtbvery terminal inu, S, has an integral cut
assigned to it. The proof of Lemma 14 is established in thezespfirst, we show (Lemma 15) that when
the algorithm terminates the cut family is laminar, secdiod.everya € [k] andi # j € S,, eitherC;
or C; separates from j (Lemma 17), and third, the load on every edge increases bgtar faf at most2
(Lemma 18).

14

Input: GraphG = (V, E) with edge capacities., commoditiesSy, - - - , S, a family of cutsC with one cut for every
terminal inU, S, such that the cut for terminale S, does not contain any terminak£ ¢ in S,,.

Output: A laminar collection of cuts, one for each terminalipS,, such that for alk and for alli, j € S,, i # 7,
either the cut foi or the cut for; separatesfrom j.

1. While there are pairs of cuts ¢hthat cross, do:

(a) Consider any pair of cutS;,C; € C belonging to terminal$ # j that cross each other, such that
ri € C; \ C; andr; € C; \ C;. ReassigrC; = C; \ C; andC; = C; \ C;. Return to Step 1.

(b) Consider any three terminals, is, i3 with cutsCy, Co andCs such that;, € C; N Cy \ Cs, 1y, €
CyNC5\ Cy, andr;, € C5NCy \ Cs. Then, reassign these respective intersections to the tianainals.
Return to Step 1.

(c) Consider any pair of cutS;, C; € C belonging to terminals, j € S, for someq that cross each other,
such that; € C; N Cj andr; € C; \ C;. ReassigrC; = C; N C; andC; = C; U C;. Return to Step 1.

(d) Consider any pair of cuts’;, C; € C belonging to terminal$ # j that cross each other, such that
ri,r; € C;NCy, 1 €8, andj € Sy with a # b.

e Suppose thatthere is ioe S, NC; with C; C Cyr. Then, reassigi; = C;UC; andC; = C;NCY;
return to Step 1. Conversely, if there is floe SyNC; with C; € Cjr. Then, rea55|gﬂ7 = C;UC;
andC; = C; N Cy; return to Step 1.

o If neither of those cases hold, lgt = 4, and leti,, - - - , i, denote the terminals if, N C; with
C; CCy CCyy C--- CCy. Fora’ <z —2,reassignC;, = (C;,,, \Cj)UGC;,,Ci, , =
C;, UC;, andC;, = C;, NC;\ C;, . Reassign cuts tpand terminals ir6, N C; likewise. Return
to Step 1.

(e) If none of the above rules match, then go to Step 2.

2. Let G be a directed graph on the vertex sgtS,,, with edges colored red or blue, defined as follows: for
terminalsi # j, G contains a red edge frofrto j if and only if C; C C;, and contains a blue edge frano j
if and only ifr; € C;, r; & C;, andC; \ C; # (. We note that since no pair of terminaland; matches the
rules in Step 1, whenevér; andC; mtersectg contains an edge betweéandj.

While there is a directed blue cycle §h consider the shortest such cyéle— i — --- — i, — i;. For
x' <z, 2" # 1, assign ta, the cutC; , N C;_, , and assign te; the cutC;, N Cj, .

3. We show in Lemma 15 that at this stégs acyclic. For every connected componengido:

(a) LetT be the set of terminals in the component ahte the set of corresponding cuts. Assign capacities
pe = 202 to edges inG. LetG,, be the graph obtained by merging all pairs of vertices thet lam edge
e with p. = 0 between them. We call the vertices@f “meta-nodes” (note that these are sets of vertices
in the original graph). At any point of time, |ét; denote the meta-node at which a terminadsides.

(b) While there are terminals ifi, pick any “leaf” terminal (that is, a terminal with no outgoing red or blue
edges ing). Reassign to the cutR;. Reduce the capacity of every edge 6(R;) by 1. Removei from
T; removei and all edges incident on it frog. Recompute the grapH, based on the new capacities.

Figure 5: Algorithminteger-Lam-2—Algorithm to convert an integral family of multiway cutstoa laminar
one

15

Lemma 15 The algorithm runs in polynomial time and the cut collectibproduced by Algorithninteger-
Lam-2is laminar.

Proof: As in the previous section define the crossing number of ayawhcuts to be the number of pairs of
cuts that cross each other. We first note that in every iteratf Steps 1 and 2 of the algorithm, the crossing
number of the cut family strictly decreases. This is because in every step, no nesgiogs are created,
and the crossings of the two (or more) cuts involved in eaafsfiormation are resolved. Therefore, after a
polynomial number of steps, we exit Steps 1 and 2 and go toStep

Next, we claim that during Step 3 of the algorithm the grépis acyclic. This implies that whil§ is
non-empty, we can always find a leaf terminal in Step 3; tloeesvery terminal iy gets assigned a new
cut. It is immediate that the graph does not contain any ticeblue cycles or any directed red cycles (the
latter follows because red edges define a partial order everinals). Suppose the graph contains three
terminalsiy, i3 andis with a red edge from, to i, and a red or blue edge frofn to i3, then it is easy to
see that there must be a red or blue edge fipriw i3. Therefore, any multi-colored directed cycle must
reduce to either a smaller blue cycle, or a pair of terminalsd j with an edge from to j and one fromy
to 7. Neither of these cases is possible (the latter is ruled patefinition), and therefore the graph cannot
contain any multi-colored cycles.

Now consider cuts assigned during Step 3. 1€t j be any two commaodities that do not belong to the
same component i, and suppose that we reassign a cut beforej. Then, during the iteration that we
assign a cut te note that the original cut of is a subset of some meta-node in the graph(if it contains
vertices from more than one meta node, then it must crossast te cut in’s component). Therefore,
the new cut assigned tois laminar with respect tg, and with respect to all the cuts for terminals;ia
component. Likewise when we assign a new cuj,td's new cut is a subset of some meta-node in the
corresponding grap&y,, and so remains laminar with respectjte cut.

Finally, consider any two cuts assigned during Step 3 of lgpgrithm and belonging to two terminals in
the same component ¢f Consider the set of all meta-nodes created during thiatiter of Step 3. This set
is laminar. Furthermore, the cuts assigned during thiatitem are a subset of this laminar family. Therefore,
they are laminar. [|

Lemma 16 For a commaodity assigned a cut in Step 3 of the algorithm, d&t be its cut before this step,
and C? be the new cut assigned to it. Th€f C C.

Proof: In this proof we assume without loss of generality that prioBtep 3 each edge is loaded by at most
one cut; this can be achieved by splitting a multiply-loaddde into many edges.

We prove the lemma by induction over time. Consider any teahic 7" assigned during some iteration
of Step 3b of the algorithm. L&, be the set of terminals i \ C; that are assigned new cuts prior:tm
this iteration, and |15 be the set of terminals ' N C; that are assigned new cuts prioritio this iteration.
We first note that for any in T3, the cut of; prior to this step is disjoint frond’; — specifically, there is no
edge fromj to ¢ (asj is assigned befor§, sor; ¢ C;, and this along withr; & C; implies thatC; andC};
are disjoint. This implies that the new cut p{which is a subset of’; by induction) is also disjoint from
C;, and therefore cannot load any edge with an end-poi6t;in

Now consider any vertex ¢ C; and letP be a shortest simple path framto v in G, (where the length
of an edge is given byp, just prior to wheri is assighed a new cut). We will prove that the length of this
path just prior to wheri is assigned a new cut is at le&stTherefore, the meta-node containingiust lie
inside the cut’;, and the lemma holds. As we argued above, the only new cutpassthis far in Step 3b
that load edges i® belong to terminals iff,. Furthermore, it is easy to see that there is one such shortes

16

path that crosses each newly assigned cut at most twice -eseipipat there are multiple entries and exits
for some cut, then we can “short-cut” the path by connectirgfirst point on the path inside the cut to the
last point on the path inside the cut via a simple path of lefghat lies entirely inside the cut.

Now we will analyze the length of this path by accounting fibtree newly assigned cuts that load edges
along it. LetSp be the set of all terminals i, that load an edge i, and letj be any terminal in this set.
Since the new cut of intersectsP, by the induction hypothesis;; should either intersed® or contain the
entire path inside it. If; contains the entire patR, thenC; \ C; # 0, and furthermore;,r; € C; N Cj.
This implies that eithe€’; C C; and there is a directed red edge frgnio 4, or C; \ C; # @, that is,C;
and C; cross and should have matched the rule in Step 1d of the igoriBoth possibilities lead to a
contradiction. Therefor&,’; must intersect’.

Finally, the original total length of the path (prior to St&p) is at leas®|Sp| + 2, because each terminal
in Sp contributes two units towards its length, and another twitsus contributed byC;. Out of these up
to 2|Sp| units of length is consumed by terminalsSip. Therefore, at the time thatis assigned a cut, at
least2 units remain. |

Lemma 17 For everya € [k] andi # j € S,, eitherC; or C; separates from j.

Proof: We claim that for everys € [k] andi # j € S,, at every time step during the execution of the
algorithm, |C; N C; N {r;,r;}| < 1. Then since by Lemma 15 the final solution is laminar, the lemm
follows. We prove this claim by induction over time. First,during any iteration of the algorithm, we
“shrink” the cut of any terminal (that is, reassign to thentaral a cut that is a strict subset of its original
cut), then the claim continues to hold for that terminal,duese intersections of the terminal’s cut only shrink
in that step. Note that cuts of terminals expand only in Sfepand 1d of the algorithm (by construction
and by Lemma 16).

Suppose that during some iteration we apply the transféomat Step 1c to terminalsandj, reassign-
ing C; = C; U Cj, and the claim fails to hold for terminal Specifically, suppose that for sonjec S,
after the iteration we have;,ry € C; N Cy. Then,r; € Cy, and thereforel;, intersected”; prior to
the iteration, and by the induction hypothesjs € C; \ C; prior to the iteration. Ifr; € Cj, then prior
to the iteration; and;’ contradicted the induction hypothesis. Otherwisg,and;’ satisfy the conditions
in Step 1b of the algorithm, and this contradicts the fact W apply the transformation in Step 1c at this
iteration.

Next suppose that during some iteration we apply the tramsftion in the first part of Step 1d to
terminals: and j, reassigning”; = C; U C;, and the claim fails to hold for terminagt in particular, for
somej’ € S,, after the iteration we have;, r; € C; N Cj:. Then, since; € Cj and the pair of terminals
did not match the criteria in Step 1c, it must be the case@hat C) prior to the iteration. Furthermore,
rj € C; prior to the iteration and this contradicts the fact that weli@d the transformation in the first part
of Step 1d.

Finally, suppose that during some iteration we apply thesfiaamation in the second part of Step 1d.
Then the cut assigned to every for 2/ < x is a subset of the previous cut®f, ;, but does not contain the
latter terminal, and so by the arguments presented for theéqurs cases, once again the induction hypothesis
continues to hold for those terminals, while the cut asgigoe,. is a subset of its original cut. The same
argument holds for thg,, terminals. |

Lemma 18 For the cut collection produced by Algorithinteger-Lam-2he load on every edge is ho more
than twice the load of the integral family of cuts input to #igorithm.

17

Input: GraphG = (V, E) with edge capacities,, commoditiesSy,--- ,S;, a feasible solutionl to the pro-
gramMCP-LP.
Output: A fractional laminar family of cut€ that is feasible foz edge capacitie’c, + o(1).

1. For everya € [k] and every terminal € S, do the following: Order the vertices i in increasing or-
der of their distance undetf, from r;. Let this ordering beyy = 7;,v1,--- ,v,. LetC} be the collection
of cuts {vp,v1,- -+ , v}, one for eachh € [n] with d,(r;,v) < 0.5, with weightsw! ({vg,--- ,vp}) =
2(min{d, (r;,vp11),0.5} — da(ri, vp)). LetC! denote the collectiofiCl}icu, s, -

2. LetN =" |S,|. Round up the weights of all the cuts@ to multiples ofl /N2, and truncate the collection
so that the total weight of every sub-collectiGhis exactlyl. Furthermore, split every cut with weight more
than1/N? into multiple cuts of weight exactly/N?, assigned to the same commodity. Call this new collection
C? with weight functiomw?. Note that every cut in this collection has weight exagiyv 2.

3. Construct a new instance of MCP in the same gr@pas follows. For eacl € [k], constructN? new
commodities with terminal sets identical to that%f (that is the terminals reside at the same nodes). For every
new terminal corresponding to an older terminalssign to the new terminal a unique cut fréfwith weight
1. Call this new collectior€?, and the new instance

4. Apply algorithminteger-Lam-Zrom Figure 5 to the family?? to obtain familyC*.

5. For everya € [k] and everyi € S, letC? be the set 0ofV2/2 innermost cut$ in C* assigned to terminals in
the new instancé that correspond to terminal Assign a weight o2/N? to every cut in this set. Output the
collectionC®.

Figure 6: AlgorithmLam-2—Algorithm to convert an LP solution into a feasible fract# laminar family

Proof: We first claim that edge loads are preserved throughout $tepd 2 of the algorithm. This is easy to
see via a case-by-case analysis by noting that in everyfforamstion of these steps, the number of new cuts
that an edge crosses is no more than the number of old cuthéhetige crosses prior to the transformation.
It remains to analyze Step 3 of the algorithm. We claim thabwlg lose a factor of in edge loads during
this step of the algorithm. This is easy to see. tdie the set of all terminals that belong to any non-
singleton component i before the start of this step. All these terminals are rgassi new cuts. Let”
denote the vector of edge capacities during the iteratid@®tey 3 in which we assign cuts to terminals in set
T. We note that for every edge > ;. pl < 2(67, whereC, is the family of cuts belonging to terminals
in 7 prior to Step 3. Moreover, in each iteration of the step, wiy twad an edge: to the extent ofp! .
Therefore the lemma follows. |

Proof of Lemma 14The proof follows immediately from Lemmas 15, 17 and 18. [|

Given this lemma, algorithrham-2in Figure 6 converts an arbitrary feasible solution¥6CP-LP into
a feasible fractional laminar family.

Lemma 2 Consider an instance of the MCP with graph= (V, E), edge capacities., and commodities
S1,---,Sk. Given a feasible solutiord to MCP-LP, algorithm Lam-2 produces a fractional laminar cut
family C that is feasible for the MCP o&' with edge capacitie8c, + o(1).

18

Proof: Note first that the cut collectiofi! satisfies the following properties: (1) For every [k] andi € S,
every cutinC} containsr;, but notr; for j € S,, j # 4; (2) The total weight of cuts it} is 1; (3) For every
edgee, Kgl < 23", da(e) < 2c.. The familyC? also satisfies the first two properties, however loads the
edges slightly more tha@'. Any edge belongs to at moat cuts, and therefore the load on the edge goes up
by an additive amount of at mosf N. Therefore, for every é‘f < 2¢. + 1/N. Next, the collectiorC? is

a feasible integral family of cuts for the new instarceith €§3 = N2€§2. Therefore, applying Lemma 14,
we get thalC* is a feasible laminar integral family of cuts férwith /€* < 2N2(2¢, + 1/N). Finally, in
family C°, every terminali € S, gets assignedv?/2 fractional cuts, each with weighly N2. Therefore,

the total weight of cuts i€? is 1. Now consider any two terminaisj € S, with i # j. Then, in all thelV2
commodities corresponding &), in instancel, either the cut assigned i counterpart, or that assigned to
j's counterpart separatégrom j. Say that among at least? /2 of the commodities i’, the cut assigned

to i’s counterpart separatégrom j. Then, the innermos¥?2/2 cuts assigned toin C° separate from ;.
Therefore, the family® satisfies the first two conditions of feasibility as given iaflition 2. Finally, it is
easy to see that on every edge®’ < 2/N2(¢" < 4(2¢. + 1/N). N

5 NP-Hardness

We will now prove that CSCP and MCP are NP-hard. Since edgi#sléa any feasible solution to these
problems are integral, the result of Theorem 5 is optimaktier CSCP assumingANP. The reduction in
this theorem also gives us an integrality gap instance ®Q8CP.

Theorem 19 CSCP and MCP are NP-hard. Furthermore the integrality gapM@P-LP is at least2 for
both the problems.

Proof: We reduce independent set to CSCP. In particular, givenghgraand a targek, we produce an
instance of CSCP such that the load on every edge is at mbanhd only if G contains an independent set
of size at leask. Letn be the number of vertices . We constructz’ by adding a chain of. — k£ + 1 new
vertices toGG. Let the first vertex in this chain bie(the common sink) and the last be We connect every
vertex ofG to the new vertex, and place a terminalat every vertex; in G (therefore, there are a total of
n sources). We claim that there is a collectioma$dge-disjoint-; — ¢ cuts in this new grapl’ if and only

if G contains an independent set of size

One direction of the proof is straightforward: ¢f contains an independent set of sizesay S, then
for each vertex; € S, consider the cufr;}, and for each of the — k source not inS, consider the cuts
obtained by removing one of the— k chain edges ii&’. Then all of these: cuts are edge-disjoint.

Next suppose that’ contains a collection of edge-disjoint cuf§, with r; € C; andt ¢ C; for all 7.
Note that the number of cuts; containing any chain vertex is at most- k& because each of them cuts at
least one chain edge. Next consider the cuts that do notinaartg chain vertex, specifically, and letT”
be the collection of terminals for such cuts. These are at lean number. Note that any cu;, i € 7",
cuts the edgesu, v) for u € C;. Therefore, in order for these cuts to be edge-disjoint,usinbe the case
thatC; N C; = 0 fori,j € TV, i # j. Finally, for two such cut€’; andC}, edge-disjointness again implies
thatr; andr; are not connected. Therefore the vertiegfor ¢ € 7/ form an independent set (& of size at
leastk.

For the integrality gap, letz be the complete graph aridbe n/2. Then, there is no integral solution
with load 1 in G’. However, the following fractional solution is feasibledanas a load of: let the chain

19

f.)-g e / a1
-~
ag, bo

Figure 7: Each edge in the MCP instance has capdcityhere are two commodities with terminal sets
{ao, ai, ag} and{bo, bl, bg}.

of vertices added t6/ bev = vy, va,- -+ , v, /241 = t; @ssign to every terminal i € [n], the cut{r;} with
weight1/2, and the culV” U {vo, - - - , v|;/9) } With weight1/2.]

6 Concluding Remarks

Given that our algorithms rely heavily on the existence obdyéaminar solutions, a natural question is
whether every feasible solution to the MCP can be conventigdsi laminar one with the same load. Figure 7
shows that this is not true. The figure displays one integrltion to the MCP where the solid edges
represent the edges in the cut for commodityand the dotted edges represent the edges in the cut for
commodityb. However, it is easy to see that no fractional laminar sotutd this instance with loatl on
every edge exists.

References

[1] G. Calinescu, H. Karloff, and Y. Rabani. An improved apgmation algorithm for multiway cut.
Journal of Computer and System Scien&X3):564-574, 2000.

[2] G. Calinescu, H. Karloff, and Y. Rabani. Approximatioigarithms for the 0-extension problei8IAM
Journal on Computing34(2):358—-372, 2004.

[3] A. Caprara, A. Panconesi, and R. Rizzi. Packing cuts idinected graphs.Networks 44(1):1-11,
2004.

[4] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear pamgming formulation and approximation
algorithms for the metric labeling probler8IAM J. on Discrete Mathematic$8(3):608-625, 2004.

[5] A. Karzanov. Minimum 0-extensions of graph metrié&uropean J. of Combinatoric49(1):71-101,
1998.

[6] J. Kleinberg and E. Tardos. Approximation algorithms dtassification problems with pairwise rela-
tionships: metric labeling and Markov random fieldsurnal of the ACM49(5):616—-639, 2002.

20

[7] M. Li, B. Ma, and L. Wang. On the closest string and sulbgfrproblems. Journal of the ACM
49(2):157-171, 2002.

[8] C. L. Lucchesi and D. H. Younger. A minimax theorem foregited graphs.J. London Math. Soc.
17:369-374, 1978.

[9] Y. Rabani, L. Schulman, and C. Swamy. Approximation alfpons for labeling hierarchical tax-
onomies. INPACM Symp. on Discrete Algorithmgages 671-680, 2008.

[10] R. Ravi and J.Kececioglu. Approximation algorithms foultiple sequence alignment under a fixed
evolutionary treeDiscrete Applied Mathematic88:355—-366, 1998.

[11] L. Wang and D. Gusfield. Improved approximation alduorits for tree alignmentJournal of Algo-
rithms, 25(2):255-273, 1997.

[12] L. Wang, T. Jiang, and D. Gusfield. A more efficient appmation scheme for tree alignmerglAM
Journal on Computing30(1):283-299, 2000.

[13] L. Wang, T. Jiang, and E. Lawler. Approximation algbrits for tree alignment with a given phylogeny.
Algorithmicag 16(3):302-315, 1996.

21

