

Computer
Sciences
Department

Orbital Branching

James Ostrowski
Jeff Linderoth
Fabrizio Rossi
Stefano Smriglio

Technical Report #1641

August 2008

University of Wisconsin, Dept. of Computer Science
Technical Report

James Ostrowski1 · Jeff Linderoth2 · Fabrizio Rossi3 · Stefano Smriglio4

Orbital Branching

August 3, 2008

Abstract. We introduce orbital branching, an effective branching method for integer programs containing a
great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect
to the symmetry remaining in the problem after branching, including symmetry which is not present at the root
node. These groups of equivalent variables, called orbits, are used to create a valid partitioning of the feasible
region which significantly reduces the effects of symmetry while still allowing a flexible branching rule. We
also show how to exploit the symmetries present in the problem to fix variables throughout the branch-and-
bound tree. Orbital branching can easily be incorporated into standard IP software. Through an empirical
study on a test suite of symmetric integer programs, the question as to the most effective orbit on which to
base the branching decision is investigated. The resulting method is shown to be quite competitive with a
similar method known as isomorphism pruning and significantly better than a state-of-the-art commercial
solver on symmetric integer programs.

Key words. Integer programming – symmetry – branch-and-bound algorithms

1. Introduction

In this work, we focus on packing and covering integer programs (IP)s of the form

max
x∈{0,1}n

{eT x | Ax ≤ e} and (PIP)

min
x∈{0,1}n

{eT x | Ax ≥ e}, (CIP)

where A ∈ {0, 1}m×n, and e is a vector of ones of conformal size. Our particular focus
is on cases when (CIP) or (PIP) is highly-symmetric, a concept we formalize as follows.
Let Πn be the set of all permutations of In = {1, . . . , n}. Given a permutation π ∈ Πn

and a permutation σ ∈ Πm, let A(σ, π) be the matrix obtained by permuting the rows
of A by σ and the columns of A by π, i.e. A(σ, π) = PσAPπ , where Pσ and Pπ are the
permutation matrices corresponding to σ and π respectively. The symmetry group G of
the matrix A is the set of permutations

G(A) def= {π ∈ Πn | ∃σ ∈ Πm such that A(σ, π) = A}.

Department of Industrial and Systems Engineering, Lehigh University e-mail: jao204@lehigh.edu
Department of Computer Science, University of Wisconsin-Madison, e-mail: linderoth@wisc.edu
Dipartimento di Informatica, Università di L’Aquila e-mail: rossi@di.univaq.it
Dipartimento di Informatica, Università di L’Aquila e-mail: smriglio@di.univaq.it

2 James Ostrowski et al.

So, for any π ∈ G(A), if x̂ is feasible for (CIP) or (PIP) (or the LP relaxations of (CIP)
or (PIP)), then if the permutation π is applied to the coordinates of x̂, the resulting
solution, which we denote as π(x̂), is also feasible. Moreover, the solutions x̂ and π(x̂)
have equal objective value.

This equivalence of solutions induced by symmetry is a major factor that might
confound the branch-and-bound process. For example, suppose x̂ is a (non-integral) so-
lution to an LP relaxation of PIP or CIP, with 0 < x̂j < 1, and the decision is made
to branch down on variable xj by fixing xj = 0. If ∃π ∈ G(A) such that [π(x̂)]j = 0,
then π(x̂) is a feasible solution for this child node, and eT x̂ = eT (π(x̂)), so the relax-
ation value for the child node will not change. If the cardinality of G(A) is large, then
there are many permutations through which the parent solution of the relaxation can
be preserved in this manner, resulting in many branches that do not change the bound
on the parent node. Furthermore, symmetric solutions appear again and again all over
the tree. Symmetry has long been recognized as a curse for solving integer programs,
and auxiliary (often extended) formulations are often sought that reduce the amount of
symmetry in an IP formulation [1,7,17]. In addition, there is a body of research on valid
inequalities that can help exclude symmetric feasible solutions [12,21,23]. Kaibel and
Pfetsch [9] formalize many of these arguments by defining and studying the properties
of a polyhedron known as an orbitope, the convex hull of lexicographically maximal
solutions with respect to a symmetry group. Kaibel et al. [8] then use the properties of
orbitopes to remove symmetry in partitioning problems.

A different idea, isomorphism pruning, introduced by Margot [13,14] in the con-
text of IP and dating back to Bazaraa and Kirca [2], examines the symmetry group of
the problem in order to prune isomorphic subproblems of the enumeration tree. The
branching method introduced in this work, orbital branching, also uses the symmetry
group of the problem. However, instead of examining this group to ensure that only one
node in the equivalence class of the group will be evaluated, the group is used to guide
the branching decision. At the cost of potentially evaluating isomorphic subproblems,
orbital branching allows for considerably more flexibility in the choice of branching
entity than isomorphism pruning. Furthermore, orbital branching can be easily incorpo-
rated within a standard MIP solver and even exploit problem symmetry that may only
be locally present at a nodal subproblem.

A preliminary version of this work has been published in the conference proceed-
ings of the the Twelfth Conference on Integer Programming and Combinatorial Opti-
mization (IPCO) [20]. The remainder of the paper is divided into six sections. In Sec-
tion 2 we give some mathematical preliminaries. Orbital branching is introduced and
formalized in Section 3. Enhancements to orbital branching are discussed in Section 4,
and a more complete comparison to isomorphism pruning is also presented there. Im-
plementation details are provided in Section 5, and computational results are presented
in Section 6. Conclusions about the impact of orbital branching and future research
directions are given in Section 7.

Orbital Branching 3

2. Preliminaries

Orbital branching is based on elementary concepts from algebra that we recall in this
section to make the presentation self-contained. Some definitions are made in terms of
an arbitrary permutation group Γ , but for concreteness, the reader may consider the
group Γ to be the symmetry group of the matrix G(A).

For a set S ⊆ In, the orbit of S under the action of Γ is the set of all subsets of In

to which S can be sent by permutations in Γ , i.e.,

orb(S, Γ) def= {S′ ⊆ In | ∃π ∈ Γ such that S′ = π(S)}.

In the orbital branching we are concerned with the orbits of sets of cardinality one,
corresponding to decision variables xj in PIP or CIP. By definition, if j ∈ orb({k}, Γ),
then k ∈ orb({j}, Γ), i.e. the variable xj and xk share the same orbit. Therefore, the
union of the orbits

O(Γ) def=
n⋃

j=1

orb({j}, Γ)

forms a partition of In = {1, 2, . . . , n}, which we refer to as the orbital partition of
Γ , or simply the orbits of Γ . The orbits encode which variables are “equivalent” with
respect to the symmetry Γ .

The stabilizer of a set S ⊆ In in Γ is the set of permutations in Γ that send S to
itself.

stab(S, Γ) = {π ∈ Γ | π(S) = S}.

The stabilizer of S is a subgroup of Γ .
Throughout this paper, we display permutations in cyclic notation. The expression

(a1, a2, . . . , ak) denotes a cycle which sends ai to ai+1 for i = 1, . . . , k − 1 and
sends ak to a1. Some permutations may be written as a product of cycles. We will omit
all 1-element cycles from our display.

We characterize a node a = (F a
1 , F a

0) of the branch-and-bound enumeration tree
by the indices of variables fixed to one F a

1 and fixed to zero F a
0 at node a. The set of

free variables at node a is denoted by Na = In \F a
0 \F a

1 . At node a, the set of feasible
solutions to (CIP) or (PIP) is denoted by F(a), and the value of an optimal solution for
the subtree rooted at node a is denoted as z∗(a).

3. Orbital Branching

In this section we introduce orbital branching, an intuitive way to exploit the orbits of
the symmetry group G(A) when making branching decisions. The classical 0-1 branch-
ing variable dichotomy does not take advantage of the problem information encoded in
the symmetry group. To take advantage of this information in orbital branching, instead

4 James Ostrowski et al.

of branching on individual variables, orbits of variables are used to create the branch-
ing dichotomy. Informally, suppose that at the current subproblem there is an orbit of
cardinality k in the orbital partitioning. In orbital branching, the current subproblem is
divided into k +1 subproblems: the first k subproblems are obtained by fixing to one in
turn each variable in the orbit while the (k + 1)st subproblem is obtained by fixing all
variables in the orbit to zero. For any pair of variables xi and xj in the same orbit, the
subproblem created when xi is fixed to one is essentially equivalent to the subproblem
created when xj is fixed to one. Therefore, we can keep in the subproblem list only
one representative subproblem, pruning the (k − 1) equivalent subproblems. This is
formalized below.

3.1. Orbital Branching: Description

Let A(F a
1 , F a

0) be the matrix obtained by removing from the constraint matrix A all
columns in F a

0 ∪ F a
1 and either all rows intersecting columns in F a

1 (CIP case) or all
columns nonorthogonal to columns in F a

1 (PIP case). When we remove columns from
the matrix, we do not change the index on any of the remaining columns. Unfortunatly,
performing this processing at every nodes adds some notational difficulties as the di-
mension of the constraint matrix is always changing. It should be clear that the mapping
φ : (0, 1)n → (0, 1)|N

a| with φ(x)i = xi for all i ∈ Na maps feasible solutions with
respect to A to feasible solutions with respect to A(F a

1 , F a
0). Similarly, any permutation

π ∈ G(A(F a
1 , F a

0)), which permutes only the set of elements Na, can be extended to
permute the set of elements In by, for every i ∈ F a

1 ∪ F a
0 having π map element i to

itself. For this reason as well as the sake of clarity, we will think of all permutations as
acting on the set In and we will not differentiate solutions with are feasible at node a
with solutions feasible with resepect to A(F a

1 , F a
0).

Let O = {i1, i2, . . . , i|O|} ⊆ Na be an orbit of the symmetry group G(A(F a
1 , F a

0)).
Given a subproblem a, the disjunction

xi1 = 1 ∨ xi2 = 1 ∨ . . . xiO
= 1 ∨

∑
i∈O

xi = 0 (1)

induces a feasible division of the search space. In what follows, we show that for any
two variables xj , xk ∈ O, the two children a(j) and a(k) of a, obtained by fixing
respectively xj and xk to 1 have the same optimal solution value. As a consequence,
disjunction (1) can be replaced by the binary disjunction

xh = 1 ∨
∑
i∈O

xi = 0, (2)

where h is a variable in O. Formally, we have Theorem 1.

Theorem 1. Let O be an orbit in the orbital partitioning O(G(A(F a
1 , F a

0))), and let
j, k be two variable indices in O. If a(j) = (F a

1 ∪{j}, F a
0) and a(k) = (F a

1 ∪{k}, F a
0)

are the child nodes created when branching on variables xj and xk, then z∗(a(j)) =
z∗(a(k)).

Orbital Branching 5

Proof. Let x∗ be an optimal solution of a(j) with value z∗(a(j)). Obviously x∗ is
also feasible for a. Since j and k are in the same orbit O, there exists a permutation
π ∈ G(A(F a

1 , F a
0)) such that π(j) = k. By definition, π(x∗) is a feasible solution of

a with value z∗(a(j)) such that xk = 1. Therefore, π(x∗) is feasible for a(k), and
z∗(a(k)) = z∗(a(j)). ut

The basic orbital branching method is formalized in Algorithm 1.

Algorithm 1 Orbital Branching
Input: Subproblem a = (F a

1 , F a
0), non-integral solution x̂.

Output: Two child subproblems b and c.

Step 1. Compute orbital partition O(G(A(F a
1 , F a

0))) = {O1, O2, . . . , Op}.
Step 2. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 3. Choose arbitrary k ∈ Oj∗ . Return subproblems b = (F a

1 ∪{k}, F a
0) and c = (F a

1 , F a
0 ∪Oj∗).

The consequence of Theorem 1 is that the search space is limited, but orbital branching
has also the relevant effect of reducing the likelihood of encountering symmetric solu-
tions. Namely, no solutions in the left and right child nodes of the current node will be
symmetric with respect to the local symmetry. This is formalized in Theorem 2.

Theorem 2. Let b and c be any two subproblems in the enumeration tree. Let a be
the first common ancestor of b and c. If a 6= {b, c} then there 6 ∃x ∈ F(b) such that
∃π ∈ G(A(F a

1 , F a
0)) with π(x) ∈ F(c).

Proof. Suppose not, i.e., that there ∃x ∈ F(b) and a permutation π ∈ G(A(F a
1 , F a

0))
such that π(x) ∈ F(c). Let Oi ∈ O(G(A(F a

1 , F a
0))) be the orbit chosen to branch on

at subproblem a. W.l.o.g. we can assume xk = 1 for some k ∈ Oi, that is, b is in the
left branch of a. We have that xk = [π(x)]π(k) = 1, but π(k) ∈ Oi. Therefore, by the
orbital branching dichotomy, π(k) ∈ F c

0 , so π(x) 6∈ F(c). ut

Note that by using the matrix A(F a
1 , F a

0), orbital branching attempts to use symmetry
found at all nodes in the enumeration tree, not just the symmetry found at the root node.
This makes it possible to prune nodes whose corresponding solutions are not symmetric
in the original IP.

3.2. Orbital Branching: An Illustrative Example

Example 1. In order to demonstrate the effects of orbital branching, consider the graph
G = (V,E) of Figure 1 and the associated PIP:

max
∑
i∈V

xi

xi + xj ≤ 1 ∀{i, j} ∈ E,

xi ∈ {0, 1} ∀i ∈ V

which corresponds to computing the stability number of G.

6 James Ostrowski et al.

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

9

10

1

8

Fig. 1. Example

Applying Step 1 of Algorithm 1 at the root subproblem F a
1 = F a

0 = ∅ results in a
group G(A) containing 4096 permutations and an orbital partition O(G(A)) containing
two orbits, namely, O1 = {1,. . . ,8} and O2 = {9, . . . , 24}. Thanks to the structure of
the matrix A, in which each constraint corresponds to an edge of G, the orbits of G(A)
can be intuitively visualized on the graph.

Step 2 of Algorithm 1 selects an orbit on which to base the branching dichotomy.
Suppose the largest orbit O2 is chosen, and the branching index k = 9 ∈ O2 is used.
Then, two subproblems b and c are generated as follows: F b

1 = {9} and F b
0 = ∅;

F c
1 = ∅ and F c

0 = {9, . . . , 24}. The structure of subproblems b and c, where fixed
variables have been removed, is drawn in Figure 2.

The advantage of orbital branching over classical branching on a variable is high-
lighted by completely executing two branch-and-bound algorithms on the PIP of Exam-
ple 1. We assume that a feasible solution of (optimal) value 8 is found at the root node.
In the first algorithm the branching decision is carried out by orbital branching where
Step 2 selects the largest orbit. In the second algorithm, ordinary branching is performed
on the variable corresponding to the vertex of G with maximum degree in the remaining
graph, typically effective for stable set problems [22]. In Figures 3 and 4, the complete
enumeration trees obtained respectively by orbital branching and branching on variable
are drawn. At each node a, we report the variables fixed (F a

1 , F a
0) and the value of the

LP relaxation zLP . Orbital branching results in fewer evaluated subproblems: 21 vs. 49
for the variable-branching dichotomy.

An insightful explanation of orbital branching’s improved performance is obtained
by examining the structure of subproblems. For instance, Figure 5 shows the graphs
remaining at subproblems 9 and 19 of the variable-branching enumeration tree. The

Orbital Branching 7

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

8

2

3

4

56

7

1

8

subproblem b subproblem c

Fig. 2. Child subproblems

graphs are isomorphic, but both subproblems are evaluated when branching on vari-
ables. On the contrary, orbital branching breaks such a symmetry at the root subprob-
lem. The complete catalog of graphs and orbital partitions for each subproblem in the
orbital branching branch-and-bound tree is reported in the Appendix. Looking at the
catalog of subproblems, one can observe that no isomorphic subproblems are evaluated
when orbital branching is used on this example. This is not, however, true in general.

4. Enhancements to Orbital Branching

In this section, we demonstrate how additional variables may be fixed during branch and
bound by considering the implications of symmetry. We also discuss how to perform or-
bital branching by considering a subgroup of the original symmetry group. We compare
orbital branching to a related technique for combating symmetry in integer programs,
isomorphism pruning. The section concludes with a brief discussion on how to most
effectively employ orbital branching on integer programs whose optimal solution has a
large support.

4.1. Orbital Fixing

In orbital branching, all variables fixed to zero and one are removed from the constraint
matrix at every node in the enumeration tree. As Theorem 2 demonstrates, using orbital
branching in this way ensures that any two nodes are not equivalent with respect to the
symmetry found at their first common ancestor. It is possible however, for two child
subproblems to be equivalent with respect to a symmetry group found elsewhere in the
tree. In order to combat this type of symmetry we perform orbital fixing, which works
as follows.

8 James Ostrowski et al.

9

5

1

2

z L
P


11
.5

F
02



 F
12


{9
}

z L
P


4

F
03


{9
,..

.,2
4}

 F
13



z L
P


12
 F

01



 F
11



3

4

z L
P


9.
5

F
05


{1
1,

12
,2

3,
24

}

F
15


{9
}

8
6

7

z L
P


11

F
04



F
14


{9
,1

1}

z L
P


9

F
06


{1
1,

12
,

23
,2

4}

F
16


{9
,1

5}

z
L

P


7.
5

F
07


{1
1,

12
,1

5,
16

,

19
,2

0,
23

,2
4

}

F
17


{9
}

z L
P


9

F
09


{1
5,

16
,2

1,
22

}

F
19


{9
,1

1}

z L
P


10
.5

F
08



F
18


{9
,1

1,
15

}

10

12

14

16

11

13

z L
P


10

F
010



F
110


{9
,1

1,
15

,1
9}

 z L
P


9.
5

F
012



F
112


{3
,9

,1
1,

15
,1

9}

z L
P


8.
5

F
011


{1
9,

20
,2

1,
22

}

F
111


{9
,1

1,
15

}

z L
P


7

F
013


{3
,5

,1
3,

14
,1

7,
18

}

F
113


{9
,1

1,
15

,1
9}

15

17

z L
P


7.
5

F
015


{2
1,

22
,2

3,
24

}

F
115


{3
,9

,1
1,

15
,1

9}

z L
P


9

F
014



F
114


{3
,9

,1
1,

15
,1

9,
21

}

z L
P


8.
5

F
016



F
114


{3
,5

,9
,1

1,

15
,1

9,
21

}

z L
P


6

F
017


{5
,1

7,
18

,

23
,2

4}

F
117


{3
,9

,1
1,

15
,1

9,
21

}

18
19

z L
P


8.
5

F
018


{1
5,

16
,

21
,2

2}

F
118


{9
,1

1,
17

}

z L
P


7

F
019


{1
5,

16
,

17
,1

8,
19

,

20
,2

1,
22

}

F
119


{9
,1

1}

20
21

z L
P


8.
5

F
026


{1
1,

12
,

23
,2

4}

F
126


{9
,1

5,
17

}

z L
P


8

F
028


{1
1,

12
,1

7,

18
,2

3,
24

}

F
128


{9
,1

5}

Fig. 3. Enumeration tree with orbital branching

Orbital Branching 9

1

2

4

6

3

7

5

8
9

10
11

12
13

14
15

18
19

20
21

22
23

24
25

16
17

26

28
29

27

32
33

34
35 36

37

44

46
47

45

30
31

39

42
43

48
49

x 1
 =

 1
x 1

 =
 0

x 5
 =

 1
x 5

 =
 0

x 7
 =

 1
x 7

 =
 0 x 7

 =
 1

x 7
 =

 0

x 3
 =

 1
x 3

 =
 0

x 3
 =

 1x 3
 =

 0

x 6
 =

 1
x 6

 =
 0

x 5
 =

 1
x 5

 =
 0

x 7
 =

 1
x 7

 =
 0

x 7
 =

 1
x 7

 =
 0

x 2
 =

 1
x 2

 =
 0

x 2
 =

 1
x 2

 =
 0

x 8
 =

 1
x 8

 =
 0

x 3
 =

 1
x 3

 =
 0

x 2
 =

 1
x 2

 =
 0
x 6

 =
 1

x 6
 =

 0

x 3
 =

 1
x 3

 =
 0

x 4
 =

 1
x 4

 =
 0

38

40
41

x 8
 =

 1

x 2
 =

 1
x 2

 =
 0

x 2
 =

 1
x 2

 =
 0

x 2
 =

 1
x 2

 =
 0

x 8
 =

 1
x 8

 =
 0

x 8
 =

 1
x 8

 =
 0

z L
P =

 1
2

z L
P =

 1
0.

5

z L
P =

 9
z L

P =
 1

0
z L

P =
 1

0

z L
P =

 9
z L

P =
 9

.5
z L

P =
 9

z L
P =

 9
.5

z L
P =

 9

z L
P =

 9

z L
P =

 9

z L
P =

 9
z L

P =
 9

z L
P =

 9

z L
P =

 9
.5

z L
P =

 9
.5

z L
P =

 9
.5

z L
P =

 9
z L

P =
 9

z L
P =

 1
0

z L
P =

 1
0.

5

z L
P =

 1
1

z L
P =

 1
1.

5

x 8
 =

 0

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5

z L

P =
 8

.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5
 z

LP
 =

 8
.5

z L
P =

 8
z L

P =
 8

.5

z L

P =
 8

.5

z L
P =

 8
.5

z L
P =

 8
.5

z L
P =

 8
.5
 z

LP
 =

 8
.5

z L
P =

 8

z L
P =

 8
.5

z L

P =
 8

.5
 z

LP
 =

 8
.5
 z

LP
 =

 8
.5
 z

LP
 =

 8
.5
 z

LP
 =

 8
.5

z L
P =

 8

Fig. 4. Enumeration tree with branching on variable

10 James Ostrowski et al.

12

11

3

13

14

15

16

4

17

1819

20

6
21

22

23

24

12

11

2

3

13

14

15

16

19

20

21

22

23

24

9

10

8

subproblem 9 subproblem 19

Fig. 5. isomorphic subproblems from branching on variable

Consider the symmetry group G(A(F a
1 , ∅)) at node a. If there exists an orbit O in

the orbital partition O(G(A(F a
1 , ∅))) that contains variables such that O ∩ F a

0 6= ∅ and
O ∩Na 6= ∅, then all variables in O can be fixed to zero. In the following theorem, we
show that such variable setting (orbital fixing) excludes feasible solutions only if there
exists a feasible solution of the same objective value to the left of the current node in
the branch and bound tree. (We assume that the enumeration tree is oriented so that the
branch with an additional variable fixed at one is the left branch).

To aid in our development,we introduce the concept of a focus node. For x ∈ F(a),
we call node b(a, x) a focus node of a with respect to x if ∃y ∈ F(b) such that eT x =
eT y and b is found to the left of a in the tree.

Theorem 3. Let {O1, O2, . . . Oq} be an orbital partitioning of G(A(F a
1 , ∅)) at node a,

and let the set

S
def= {j ∈ Na | ∃k ∈ F a

0 and j, k ∈ O` for some ` ∈ {1, 2, . . . q}}

be the set of free variables that share an orbit with a variable fixed to zero at a. If
x ∈ F(a) with xi = 1 for some i ∈ S, then either there exists a focus node for a with
respect to x or x is not an optimal solution.

Proof:
Let S 6= ∅. Then, there exist j ∈ F a

0 and i ∈ S such that i ∈ orb(j,G(A(F a
1 , ∅))),

i.e., there exists a π ∈ G(A(F a
1 , ∅)) with π(i) = j. W.l.o.g., suppose that j is any of

the first such variables fixed to zero on the path from the root node to a and let c be the
first subproblem in which j is fixed. Let ρ(c) be the parent node of c. By our choice of
j as the first fixed variable, {π(i)|∀i s.t.xi = 1 and π ∈ G(A(F a

1 , ∅))} ∩ F
ρ(c)
0 = ∅.

Therefore, π(x) is not feasible in a since it does not satisfy the bounds, but is feasible
in ρ(c) and has the same objective value of x.

The variable xj could have been fixed either (i) as a result of a branching decision,
or (ii) it was deduced that no optimal solution exists with xj = 1 at node ρ(c) (and the
fixing applied to the child nodes), or (iii) by orbital fixing (at ρ).

Orbital Branching 11

– (i) If j was fixed by orbital branching then the left child of ρ(c) has xh = 1 for some
h ∈ orb(j,G(A(F ρ(c)

1 , F
ρ(c)
0))). Let π′ ∈ G(A(F ρ(c)

1 , F
ρ(c)
0)) have π′(j) = h.

Then π′(π(x)) is feasible in the left node with the same objective value of x. The
left child node of ρ(c) is then the focus node of a with respect to x.

– (ii) If it was deduced that no optimal solution feasible at ρ(c) exists with xj = 1,
then, since π(x) is feasible in ρ(c) with xj = 1, and π preserves objective value, x
cannot be an optimal solution.

– (iii) Lastly, j could have been fixed by orbital fixing. This implies that the set S is
nonempty in ρ(c) and the argument can be repeated until the first ancestor d of a is
reached such that F d

0 does not contain variables fixed by orbital fixing. Therefore, a
sequence of permutations π1, . . . , πr have been found such that πrπr−1 . . . π1π(x)
is feasible in d and has the same value of x.
Then, either argument (i) or (ii) can be applied, that is, either there is a focus node
f of d with respect to πrπr−1 . . . π1π(x) (which would also be a focus node for
a with respect to x), or j was fixed by an optimality condition (which implies
πrπr−1 . . . π1π(x) and thus x are not optimal).

There may be elements in S which do not share an orbit with j. One can show that
these elements can also be fixed by adding the fixed variables to F0, updating S, and
repeating the argument. As long as S is non-empty, each iteration will fix at least one
variable.

An immediate consequence of Theorem 3 is that for all i ∈ F a
0 and for all j ∈

orb(i,G(A(F a
1 , ∅))) one can set xj = 0. We update orbital branching to include orbital

fixing in Algorithm 2.

Algorithm 2 Orbital Branching with Orbital Fixing
Input: Subproblem a = (F a

1 , F a
0) (with free variables Na = In \ F a

1 \ F a
0), fractional solution

x̂.
Output: Two child nodes b and c.

Step 1. Compute orbital partition O(G(A(F a
1 , ∅))) = {Ô1, Ô2, . . . , Ôq}. Let S

def
= {j ∈

Na | ∃k ∈ F a
0 and (j ∩ k) ∈ Ô` for some ` ∈ {1, 2, . . . q}}.

Step 2. Compute orbital partition O(G(A(F a
1 , F a

0))) = {O1, O2, . . . , Op}.
Step 3. Select orbit Oj∗ , j∗ ∈ {1, 2, . . . , p}.
Step 4. Choose arbitrary k ∈ Oj∗ . Return child subproblems b = (F a

1 ∪ {k}, F a
0 ∪ S) and c =

(F a
1 , F a

0 ∪ Oj∗ ∪ S).

In orbital fixing, the set S of additional variables set to zero depends on F a
0 . Vari-

ables may appear in F a
0 due to a branching decision or due to traditional methods for

variable fixing in integer programming, e.g. reduced cost fixing or implication-based
fixing. Orbital fixing, then, gives a way to enhance traditional variable-fixing methods
by including the symmetry present at a node of the branch and bound tree.

Example (continued) When orbital branching with orbital fixing is applied to the
PIP of Example 1, it generates the enumeration tree drawn in Figure 6. Orbital fix-
ing is performed at subproblem 6, a node that has F 6

0 = {11, 12, 23, 24} and F 6
1 =

{9, 15}. The group G(A(F 6
1 , ∅)) yields the orbits: {2, 3} {5, 8} {6, 7} {11, 12, 13, 14}

12 James Ostrowski et al.

9

5

1

2

z L
P


11
.5

F
02



 F
12


{9
}

z L
P


4

F
03


{9
,..

.,2
4}

 F
13



z L
P


12
 F

01



 F
11



3

4

z L
P


9.
5

F
05


{1
1,

12
,2

3,
24

}
F

15


{9
}

8
6

7

z L
P


11

F
04



F
14


{9
,1

1}

z L
P


7

F
06


{1
1,

12
,1

3,
14

,1
7,

18
,2

3,
24

}

F
16


{9
,1

5}

z
L

P


7.
5

F
07


{1
1,

12
,1

5,
16

,1
9,

20
,2

3,
24

}

F
17


{9
}

z L
P


9

F
09


{1
5,

16
,2

1,
22

}

F
19


{9
,1

1}

z L
P


10
.5

F
08



F
18


{9
,1

1,
15

}

10

12

14

16

11

13

z L
P


10

F
010



F
110


{9
,1

1,
15

,1
9}

 z L
P


9.
5

F
012



F
112


{3
,9

,1
1,

15
,1

9}

z L
P


8.
5

F
011


{1
9,

20
,2

1,
22

}

F
111


{9
,1

1,
15

}

z L
P


7

F
013


{3
,5

,

13
,1

4,
17

,1
8}

F
113


{9
,1

1,

15
,1

9}

15

17

z L
P


7.
5

F
015


{2
1,

22
,2

3,
24

}

F
115


{3
,9

,1
1,

15
,1

9}

z L
P


9

F
014



F
114


{3
,9

,1
1,

15
,1

9,
21

}

z L
P


8.
5

F
016



F
114


{3
,5

,9
,1

1,

15
,1

9,
21

}

z L
P


6

F
017


{5
,1

7,
18

,

23
,2

4}

F
117


{3
,9

,1
1,

15
,1

9,
21

}

18
19

z L
P


7.
5

F
018


{1
3,

14
,1

5,

16
,2

1,
22

}

F
118


{9
,1

1,
17

}

z L
P


7

F
019


{1
5,

16
,1

7,
18

,1
9,

20
,2

1,
22

}

F
119


{9
,1

1}

Fig. 6. Enumeration tree with orbital branching and orbital fixing

Orbital Branching 13

{17, 18, 23, 24} {19, 20, 21, 22}. The orbit {11, 12, 13, 14} contains variables that have
already been set to zero: {11, 12, 13, 14} ∩ F a

0 = {13, 14}. Therefore, the variables
x13 and x14 are fixed to 0 by orbital fixing. In the same way, looking at the orbit
{17, 18, 23, 24}, orbital fixing sets variables x17 and x18 to 0. All the variables fixed to
0 by orbital fixing are underlined in Figure 6.

The effect of orbital fixing is clear at subproblem 6, where the optimal value of the
LP relaxation reduces from 9 to 7, as compared to the algorithm without orbital fixing,
avoiding further branching (see the tree of Figure 3).

The example also helps illustrate the existence of a focus node if orbital fixing is per-
formed (Theorem 3). Define a as the subproblem found at node 6. The set of variables
fixed by orbital fixing is S = {13, 14, 17, 18}. Consider the solution x ∈ F(a): x2 =
x5 = x8 = x9 = x13 = x15 = x19 = x21 = 1, and all other variables set to 0. Follow-
ing the proof of Theorem 3, we have i = 13 and j ∈ orb({i},G(A(F a

1 , ∅)), i.e., j = 12.
A permutation π ∈ G(A(F a

1 , ∅)) such that π(i) = j is: [(2, 3), (12, 13), (11, 14)]. We
have x̄ = π(x), that is, x̄2 = x̄5 = x̄8 = x̄12 = x̄19 = x̄21 = 1, and all other vari-
ables set to 0. Notice that x̄ 6∈ F(a), since x12 = 1. By definition, subproblem 5 is
the subproblem c in the proof of Theorem 3, and subproblem 2 is the subproblem ρ(c).
Then, we have h = 11 and π′ can be defined as: (11, 12). Finally, x̃ = π′(π(x)) is:
x̄3 = x̄7 = x̄9 = x̄11 = x̄15 = x̄17 = x̄19 = x̄23 = 1, and all other variables set to 0.
This is feasible for subproblem 4. Thus, 4 is a focus node for a.

4.2. Using a Subgroup of the Original Symmetry Group

We delay discussion of the computation of the symmetry groups G(A(F a
1 , F a

0)) until
Section 5.1, but we simply note at this point that all known algorithms which compute
the symmetry group of a given graph have exponential running time. Thus, computing
the symmetry group G(A(F a

1 , F a
0)) at each node a may be computationally prohibitive.

We will show via computational results in Section 6 that this is often not the case. In
the case that recomputing the full symmetry group G(A(F a

1 , F a
0)) is too costly, there is

an alternative. Instead, orbital branching can use the symmetry group stab(F a
1 ,G(A))

to create orbits at every node in the tree. In this method, the original, global, symmetry
group G(A) is only computed once, at the root node, and the stabilizers are computed
given the original symmetry group. This is typically more computationally efficient
than re-computing the symmetry groups from scratch. In the following, in order to
distinguish between the two symmetry groups that could be used in orbital branching
at node a, we will refer to branching using stab(F a

1 ,G(A)) as global branching (be-
cause we use only the symmetry group found at the root node), and branching using
G(A(F a

1 , F a
0)) as local branching.

The decreased computational overhead in orbit calculations when using the global
symmetry group comes at a price. As Theorems 4 and 5 demonstrate, the orbits from
the global group stab(F a

1 ,G(A)) are a subdivision of the orbits used for orbital fixing
and orbital branching, so the branching dichotomy and fixing mechanisms are weaker.

Theorem 4. If O ∈ O(stab(F a
1 ,G(A))) and O∩F a

1 = ∅, then ∃O′ ∈ O(G(A(F a
1 , ∅)))

with O ⊆ O′.

14 James Ostrowski et al.

Proof. We prove Theorem 4 by proving the following equivalent statement: if ∃π ∈
stab(F a

1 ,G(A)) with π(i) = j and i, j 6∈ F a
1 , then ∃π′ ∈ G(A(F a

1 , ∅)) with π(i) = j.
Let π ∈ stab(F a

1 ,G(A)) be such that π(i) = j and i, j 6∈ F a
1 . Since π(F a

1) = F a
1

we can restrict π by ignoring its action on F a
1 . Let Ca be the collection of inequalities

which have been removed (become redundant) either at a or any parent of a. Since
π ∈ stab(F a

1 ,G(A)), there exists a σ ∈ Πm such that A(σ, π) = A. Each constraint,
cT x ≥ (≤)1, in Ca contains at least one variable in F a

1 . This constraint gets mapped
to σ(c)T π(x) ≥ (≤)1, a constraint still containing at least one variable in F a

1 , hence a
constraint in Ca. We can then restrict σ by ignoring its action on the constraint set Ca.
Call the pair of restricted permutations π′ and σ′. These permutations act on the same
set of variables and constraints as G(A(F a

1 , ∅)). We also have that A(F a
1 , ∅)(π′, σ′) =

A(F a
1 , ∅), so π′ ∈ G(A(F a

1 , ∅)) with π(i) = j. ut
Orbital fixing does not change the result of Theorem 4. Specifically, if Sa is the set

of indices of variables fixed to zero by orbital fixing at node a, then the orbits from the
group G(A(F a

1 , ∅)) are a subdivision of orbits from the group G(A(F a
1 , F a

0 ∪ Sa)).

Theorem 5. Let Sa be the set of variables fixed to zero by orbital fixing at node a. If
O ∈ O(G(A(F a

1 , ∅))),∃O′ ∈ O(G(A(F a
1 , F a

0 ∪ Sa))) with O ⊆ O′.

Proof. We prove Theorem 5 by proving the equivalent statement that if ∃π ∈
G(A(F a

1 , ∅)) with π(i) = j and i, j 6∈ Sa, then ∃π′ ∈ G(A(F a
1 , F a

0 ∪ Sa)) with
π(i) = j. Let π ∈ G(A(F a

1 , ∅)) with π(i) = j. We can restrict π by ignoring its actions
on the set F a

0 ∪ Sa. Call the restricted permutation π′. Let Ca be the collection of in-
equalities which have been removed (become redundant) either at a or any parent of a.
We know that there exists a σ ∈ Πm−|Ca| such that A(F a

1 , ∅)(π, σ) = A(F a
1 , ∅). Since

A(F a
1 , F a

0) contains the same rows as A(F a
1 , ∅), we have that A(F a

1 , F a
0)(π′, σ) =

A(F a
1 , F a

0). ut

4.3. Comparison to Isomorphism Pruning

The fundamental idea behind isomorphism pruning is that for each node a = (F a
1 , F a

0),
the orbits orb(F a

1 ,G(A)) of the “equivalent” sets of variables to F a
1 are computed.

If there is a node b = (F b
1 , F b

0) elsewhere in the enumeration tree such that F b
1 ∈

orb(F a
1 ,G(A)), then the node a need not be evaluated—the node a is pruned by iso-

morphism. A very distinct and powerful advantage of this method is that no nodes
whose sets of variables fixed to 1 are isomorphic will be evaluated. One disadvantage
of this method is that computing orb(F a

1 ,G(A)) can require significant computational
effort. Further the set orb(F a

1 ,G(A)) may contain many equivalent subsets to F a
1 , and

the entire enumeration tree must be compared against this list to ensure that a is not
isomorphic to any other node b. In a series of papers, Margot offers a way around this
second disadvantage [13,14]. The key idea introduced is to declare one unique repre-
sentative among the members of orb(F a

1 ,G(A)), and if F a
1 is not the unique represen-

tative, then the node a may safely be pruned. The oracle that checks if F a
1 a unique

representative among orb(F a
1 ,G(A) runs in polynomial time. The disadvantage of the

method is ensuring that the unique representative occurs somewhere in the branch and

Orbital Branching 15

bound tree requires a relatively inflexible branching rule. Namely, all child nodes at a
fixed depth must be created by branching on the same variable.

Orbital branching does not suffer from this inflexibility. By not focusing on pruning
all isomorphic nodes, but rather eliminating the symmetry through branching, orbital
branching offers a great deal more flexibility in the choice of branching entity. Another
advantage of orbital branching is that by using the symmetry group G(A(F a

1 , F a
0)),

symmetry introduced as a result of the branching process is also exploited.
Both methods allow for the use of traditional integer programming methodologies

such as cutting planes and fixing variables based on considerations such as reduced
costs and implications derived from preprocessing. In isomorphism pruning, for a vari-
able fixing to be valid, it must be that all non-isomorphic optimal solutions are in agree-
ment with the fixing. Orbital branching does not suffer from this limitation. A powerful
idea in both methods is to combine the variable fixing with symmetry considerations
in order to fix many additional variables. This idea is called orbit setting in [14] and
orbital fixing in this work (see Sec. 4.1).

4.4. Reversing Orbital Branching

One of the advantages of orbital branching is that the “right” branch, in which all vari-
ables in the branching orbit O are fixed to zero, typically changes the optimal value of
the LP relaxation significantly, and the left branch, in which one variable in O is fixed to
one also has a significant impact on the problem. In some classes of PIP or CIP, fixing
a variable to zero can have more impact than fixing a variable to one. This is typically
true in instance in which the number of ones in an optimal solution is larger than 1/2
the number of variables. In such cases, orbital branching would be much more efficient
if all variables were complemented, or equivalently if the orbital branching dichotomy
(2) was replaced by its complement. Margot [14] also makes a similar observation for
his isomorphism pruning algorithm, and he solves the complemented versions of such
instances. In orbital branching, we opt for the former way of exploiting this fact, and the
“left” branch fixes one variable to zero, and orbital fixing fixes variables to one instead
of zero.

5. Implementation

The orbital branching method has been implemented using the user application func-
tions of MINTO v3.1 [19]. The branching dichotomy of Algorithm 1 or 2 is imple-
mented in the appl divide() method, and reduced cost fixing is implemented in
appl bounds(). The entire implementation, including code for all the branching
rules subsequently introduced in Section 5.2 consists of slightly over 1000 lines of code.
All advanced IP features of MINTO were used, including clique inequalities, which can
be useful for instances of (PIP). In this section, we discuss the features of the implemen-
tation that are specific to orbital branching—the computation of the symmetry groups
and orbital branching rules.

16 James Ostrowski et al.

5.1. Computing G(·)

Computation of the symmetry groups required for orbital branching and orbital fixing
is done by computing the automorphism group of a related graph. Recall that the auto-
morphism group Aut(G(V,E)) of a graph G = (V,E), is the set of permutations of V
that leave the incidence matrix of G unchanged, i.e.

Aut(G(V,E)) = {π ∈ Π |V | | {i, j} ∈ E ⇔ {π(i), π(j)} ∈ E}.

The matrix A whose symmetry group is to be computed is transformed into a bipartite
graph G(A) = (N,M,E) where vertex set N = {1, 2, . . . , n} represents the variables,
vertex set M = {n+1, n+2, . . . , n+m} represents the constraints, and edge (i, j) ∈ E
if and only if aij = 1. Under this construction, feasible solutions to (PIP) are subsets of
the vertices S ⊆ N such that each vertex i ∈ M is adjacent to at most one vertex j ∈ S.
In this case, we say that S packs M . Feasible solutions to (CIP) correspond to subsets
of vertices S ⊆ N such that each vertex i ∈ M is adjacent to at least one vertex j ∈ S,
or S covers M . Since applying members of the automorphism group preserves the
incidence structure of a graph, if S packs (covers) M , and π ∈ stab(M,Aut(G(A))),
then there exists a σ ∈ Πm such that σ(M) = M and π(S) packs (covers) σ(M). This
implies that if π ∈ stab(M,Aut(G(A))), then the restriction of π to N must be an
element of G(A), i.e. using the graph G(A), one can find elements of symmetry group
G(A). In particular, we compute the orbital partition of the stabilizer of the constraint
vertices M in the automorphism group of G(A), i.e.

O(stab(M,Aut(G(A)))) = {O1, O2, . . . , Op}.

The orbits O1, O2, . . . , Op in the orbital partition are such that if i ∈ M and j ∈ N , then
i and j are not in the same orbit. We can then refer to these orbits as variable orbits and
constraint orbits. In orbital branching, we are concerned only with the variable orbits.

There are several software packages that can compute the automorphism groups
required to perform orbital branching. The program nauty [16], by McKay, has been
shown to be quite effective [4], and we use nauty in our orbital branching implementa-
tion.

The complexity of computing the automorphism group of a graph is not known to
be polynomial time. However, nauty was able to compute the symmetry groups of our
problems very quickly, generally faster than solving an LP at a given node. One expla-
nation for this phenomenon is that the running time of nauty’s backtracking algorithm is
correlated to the size of the symmetry group being computed. For example, computing
the automorphism group of the clique on 2000 nodes takes 85 seconds, while graphs
of comparable size with little or no symmetry require fractions of a second. The orbital
branching procedure quickly reduces the symmetry group of the child subproblems,
so explicitly recomputing the group by calling nauty is computational very feasible. In
the table of results presented in the Appendix, we state explicitly the time required in
computing automorphism groups by nauty.

Orbital Branching 17

5.2. Branching Rules

The orbital branching rule introduced in Section 3 leaves significant freedom in choos-
ing the orbit on which to base the branching (Step 2 of Algorithm 1). In this section, we
discuss mechanisms for deciding on which orbit to branch. As input to the branching
decision, we are given a fractional solution x̂ and orbits O1, O2, . . . Op (consisting of
all currently free variables) of the orbital partition O(G(A(F a

1 , F a
0))) for the subprob-

lem at node a. Output of the branching decision is an index j∗ of an orbit on which to
base the orbital branching. We tested six different branching rules.
Rule 1: Branch Largest: The first rule chooses to branch on the largest orbit Oj∗ :

j∗ ∈ arg max
j∈{1,...,p}

|Oj |.

Rule 2: Branch Largest LP Solution: The second rule branches on the orbit Oj∗

whose variables have the largest total solution value in the fractional solution x̂:

j∗ ∈ arg max
j∈{1,...,p}

x̂(Oj).

Rule 3: Strong Branching: The third rule is a strong branching rule. For each orbit
j, two tentative child nodes are created and their bounds z+

j and z−j are computed by
solving the resulting linear programs. The orbit j∗ for which the product of the change
in linear program bounds is largest is used for branching:

j∗ ∈ arg max
j∈{1,...,p}

(|eT x̂− z+
j |)(|e

T x̂− z−j |).

Note that if one of the potential child nodes in the strong branching procedure would
be pruned, either by bound or by infeasibility, then the bounds on the variables may be
fixed to their values on the alternate child node. We refer to this as strong branching
fixing, and in the computational results in the Appendix, we report the number of vari-
ables fixed in this manner. As discussed at the end of Section 4.1, variables fixed by
strong branching fixing may result in additional variables being fixed by orbital fixing.

Rule 4: Break Symmetry Left: This rule is similar to strong branching, but instead of
fixing a variable and computing the change in objective value bounds, we fix a variable
and compute the change in the size of the symmetry group. Specifically, for each orbit
j, we compute the size of the symmetry group in the resulting left branch if orbit j
(including variable index ij) was chosen for branching, and we branch on the orbit that
reduces the symmetry by as much as possible:

j∗ ∈ arg min
j∈{1,...,p}

(|G(A(F a
1 ∪ {ij}, F a

0))|) .

Rule 5: Keep Symmetry Left: This branching rule is the same as Rule 4, except that
we branch on the orbit for which the size of the child’s symmetry group would remain
the largest:

j∗ ∈ arg max
j∈{1,...,p}

(|G(A(F a
1 ∪ {ij}, F a

0))|) .

18 James Ostrowski et al.

Name Variables
cod83 256
cod93 512
cod105 1024
cov1053 252
cov1054 2252
cov1075 120
cov1076 120
cov954 126

f5 243
sts45 45
sts63 63
sts81 81

Table 1. Symmetric Integer Programs

Rule 6: Branch Max Product Left: This rule attempts to combine the fact that we
would like to branch on a large orbit at the current level and also keep a large orbit at the
second level on which to base the branching dichotomy. For each orbit O1, O2, . . . , Op,
the orbits P j

1 , P j
2 , . . . , P j

q of the symmetry group G(A(F a
1 ∪{ij}, F a

0)) of the left child
node are computed for some variable index ij ∈ Oj . We then choose to branch on
the orbit j∗ for which the product of the orbit size and the largest orbit of the child
subproblem is largest:

j∗ ∈ arg max
j∈{1,...p}

(
|Oj |(max

k∈{1,...q}
|P j

k |)
)

.

6. Computational Experiments

In this section, we give empirical evidence of the effectiveness of orbital branching,
we investigate the impact of choosing the orbit on which branching is based, and we
demonstrate the positive effect of orbital fixing. The computations are based on the in-
stances whose characteristics are given in Table 1. The instances beginning with cod
are used to compute maximum cardinality binary error correcting codes [11], the in-
stances whose names begin with cov are covering designs [18], the instance f5 is the
“football pool problem” on five matches [6], and the instances sts are used to compute
the incidence width of the well-known Steiner-triple systems [5]. The cov formulations
have been strengthened with a number of Schöenheim inequalities, as derived by Mar-
got [15]. The sts instances typically have roughly 2/3 of the variables equal to one in
an optimal solution, so for these instances, we reverse the orbital branching dichotomy,
as explained in Section 4.4. All instances, save for f5, are available from Margot’s web
site: http://wpweb2.tepper.cmu.edu/fmargot/lpsym.html.

The computations were run on machines with AMD Opteron processors clocked at
1.8GHz and having 2GB of RAM. The COIN-OR software Clp was used to solve the
linear programs at nodes of the branch and bound tree. For each instance, the (known)
optimal solution value was set a priori to aid pruning and reduce the random impact of
finding a feasible solution in the search. Nodes were searched in a depth-first fashion.
When the size of the maximum orbit in the orbital partitioning is less than or equal to

Orbital Branching 19

two, nearly all of the symmetry in the problem has been eliminated by the branching
procedure, and there is little use in performing orbital branching. In this case, we use
MINTO’s default branching strategy [10]. If orbital branching is not performed at a
node, then there is little likelihood that it will be effective at the node’s children. In this
case, we save the computational overhead of re-computing the symmetry group, and
simply allow MINTO to choose a branching variable. The CPU time was limited in all
cases to four hours.

Table 2 shows the results of an experiment designed to compare the performance of
the six different orbital branching rules introduced in Section 5.2. In this experiment,
reduced cost fixing, orbital fixing, and the local symmetry group G(A(F a

1 , F a
0)) were

used, and the CPU time required (in seconds) for orbital branching to solve each in-
stance in the test suite for the six different is reported. A complete table showing the
number of nodes, CPU time, CPU time computing automorphism groups, the number
of variables fixed by reduced cost fixing, orbital fixing, and strong branching fixing,
and the deepest tree level at which orbital branching was performed for a variety of
parameter settings is shown in Table 6 in the Appendix.

Instance Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
cod83 11 4 5 6 8 5
cod93 1677 1557 2368 3269 242 399
cod105 239 238 345 255 424 229
cov954 5 4 24 8 17 5
cov1053 103 617 768 346 105 90
cov1054 14400 14400 14431 14400 181 14400
cov1075 69 50 216 14400 210 128
cov1076 14400 14400 14400 14400 1560 14400

f5 64 80 668 42 34 64
sts45 8 8 95 8 8 8
sts63 93 91 1132 1630 161 137
sts81 127 164 13465 3423 434 3371

Table 2. CPU Time for Orbital Branching Using Local Symmetry Group

In order to succinctly present many of our computational results, we use perfor-
mance profiles of Dolan and Moré [3]. A performance profile is a relative measure of
the effectiveness of one solution method in relation to a group of solution methods on
a fixed set of problem instances. A performance profile for a solution method m is
essentially a plot of the probability that the performance of m (measured in this case
with CPU time) on a given instance in the test suite is within a factor of β of the best
method for that instance. Methods whose corresponding profile lines are the highest
are the most effective. Figure 7 shows a performance profile of the results of the first
experiment, the CPU times in Table 2.

The most effective branching method is Rule 5—the method that keeps the size of
the symmetry group large on the left branch. (This method gives the “highest” line in
Fig. 7). In fact, this branching method is the only one that is able to solve all of the in-
stances in the test suite within the four hour time limit. This result is somewhat surpris-
ing. Anecdotally, symmetry has long been thought to be a significant hurdle for solving

20 James Ostrowski et al.

branch−max−product−left

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

branch−largest
branch−largest−lp

strong−branch
break−symmetry−left
keep−symmetry−left

 0

Fig. 7. Performance Profile of Branching Rules

integer programs. One might expect that methods in which symmetry was removed as
quickly as possible would have been the most effective. Our results go counter to this
intuition. Instead, if effective methods for exploiting problem symmetry (like those in
orbital branching) are present, the results indicate that one should attempt to keep a
large amount of symmetry in the subproblems.

A second experiment was aimed at measuring the impact of using the local symme-
try group G(A(F a

1 , F a
0)) instead of the global symmetry group stab(F a

1 ,G(A)) (dis-
cussed in Section 4.2) when making a branching decision. Table 3 shows the CPU time
(in seconds) orbital branching, equipped with reduced cost fixing and orbital fixing, re-
quired on the instances in the test suite, for the different branching rules employing the
global symmetry group.

Instance Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6
cod83 10 3 5 1 1 5
cod93 1677 1556 2361 166 167 396
cod105 237 237 359 234 242 237
cov954 5 4 23 13 6 5
cov1053 103 619 761 280 240 89
cov1054 14400 14400 14405 14400 179 14400
cov1075 55 42 202 14400 152 95
cov1076 14400 14400 14404 14400 1415 14400

f5 64 79 664 44 45 64
sts45 8 8 50 8 8 8
sts63 104 90 101 20 20 81
sts81 29 28 73 39 39 3383

Table 3. CPU Time for Orbital Branching Using Global Symmetry Group

Orbital Branching 21

Again, branching Rule 5 that keeps symmetry on the left child node, was by far the
most effective. A side-by-side comparison of Tables 2 and 3 indicates that in general
using the global symmetry group is more effective than attempting to exploit symmetry
that may only be locally present at a node. Figure 8 shows a performance profile com-
paring the CPU time required to solve the instances using branching Rule 5 with both
the local and global symmetry groups. Surprisingly, the improved performance of the
global symmetry group comes not only from improved efficiency of the branching cal-
culations, but in many cases the number nodes is reduced, as shown in Table 4. These
computational results run counter to Theorem 4, which states that orbits from the global
symmetry group are a subdivision of orbits from the local group. Since the orbits of the
local group are no smaller, one would expect that orbital branching’s enumeration tree
would also be smaller in this case.

local

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8

global

 0

Fig. 8. Performance Profile of Local versus Global Symmetry Groups

A third comparison worthy to note is the impact of performing orbital fixing, as
introduced in Section 4.1. Using branching Rule 5, each instance in Table 1 was run
both with and without orbital fixing. Figure 9 shows a performance profile comparing
the results in the two cases. The results shows that orbital fixing has a significant positive
impact.

The final comparison we make here is between orbital branching (using branching
Rule 5 and the global symmetry group), the isomorphism pruning algorithm of Margot,
and the commercial solver CPLEX version 10.1, which has features for symmetry de-
tection and handling. Table 5 summarizes the results of the comparison. The results for
isomorphism pruning are taken directly from the paper of Margot using the most so-
phisticated of his branching rules “BC4” [14]. The paper [14] does not report results on
f5. The CPLEX results were obtained on an Intel Pentium 4 CPU clocked at 2.40GHz.

22 James Ostrowski et al.

Instance Local Symmetry Global Symmetry
cod83 195 25
cod93 1577 1361
cod105 23 11
cov954 449 249
cov1053 3139 9775
cov1054 1249 1249
cov1075 381 381
cov1076 31943 31943

f5 717 1125
sts45 4507 4709
sts63 9993 5533
sts81 83961 6293

Table 4. Number of Nodes in Orbital Branching Enumeration Tree with Different Symmetry Groups

no−orbital−fixing

 0.2

 0.4

 0.6

 0.8

 1

 1 2

orbital−fixing

 0

Fig. 9. Performance Profile of Impact of Orbital Fixing

Since the results were obtained on three different computer architectures and each used
a different LP solver for the child subproblems, the CPU times should be interpreted
appropriately.

The results show that the number of subproblems evaluated by orbital branching
and CPU times required to solve the instances are quite comparable. Orbital branching
proves to be faster than CPLEX in all but one case, while in all cases the number of
evaluated nodes is remarkably smaller.

7. Conclusions

In this work, we presented a simple way to capture and exploit the symmetry of an
integer program when branching. We showed through a set of experiments that the new

Orbital Branching 23

Orbital Branching Isomorphism Pruning CPLEX v10.1
Instance Time Nodes Time Nodes Time Nodes
cod83 1 25 19 33 391 32077
cod93 167 1361 651 103 fail 488136
cod105 242 11 2000 15 1245 1584
cov954 6 249 24 126 9 1514
cov1053 240 9775 35 111 937 99145
cov1054 179 1249 130 108 fail 239266
cov1075 152 381 118 169 141 10278
cov1076 1415 31943 3634 5121 fail 1179890

f5 45 1125 - - 1150 54018
sts45 8 4709 31 513 24 51078
sts63 20 5533 120 1247 3414 4974655
sts81 39 6293 68 199 fail 12572533

Table 5. Comparison of Orbital Branching, Isomorphism Pruning, and CPLEX v10.1

method, orbital branching, outperforms CPLEX, a state-of-the-art solver, when a high
degree of symmetry is present. Orbital branching also seems to be of comparable quality
to the isomorphism pruning method of Margot [14]. Further, we feel that the simplicity
and flexibility of orbital branching make it an attractive candidate for further study.
Continuing research includes techniques for further reducing the number of isomorphic
nodes that are evaluated and on developing branching mechanisms that combine the
child bound improvement and change in symmetry in a meaningful way.

Acknowledgments

The authors would like to thank Kurt Anstreicher and François Margot for inspiring
and insightful comments on this work. In particular, the name orbital branching was
suggested by Kurt. Author Linderoth would like to acknowledge support from the US
National Science Foundation (NSF) under grant DMI-0522796, by the US Department
of Energy under grant DE-FG02-05ER25694, and by IBM, through the faculty part-
nership program. A majority of this work was completed while author Linderoth was
a faculty member at Lehigh University. Author Ostrowski is supported by the NSF
through the IGERT Grant DGE-9972780.

References

1. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance. Branch and Price:
Column generation for solving huge integer programs. Operations Research, 46:316–329, 1998.

2. M. S. Bazaraa and O. Kirca. A branch-and-bound heuristic for solving the quadratic assignment problem.
Naval Research Logistics Quarterly, 30:287–304, 1983.

3. Elizabeth Dolan and Jorge Moré. Benchmarking optimization software with performance profiles. Math-
ematical Programming, 91:201–213, 2002.

4. P. Foggia, C. Sansone, and M. Vento. A preformance comparison of five algorithms for graph isomor-
phism. Proc. 3rd IAPR-TC15 Workshop Graph-Based Representations in Pattern Recognition, pages
188–199, 2001.

5. D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter. Two computationally difficult set covering problems
that arise in computing the 1-width of incidence matrices of Steiner triples. Mathematical Programming
Study, 2:72–81, 1973.

24 James Ostrowski et al.

6. H. Hamalainen, I. Honkala, S. Litsyn, and P. Östergård. Football pools—A game for mathematicians.
American Mathematical Monthly, 102:579–588, 1995.

7. S. Holm and M. Sørensen. The optimal graph partitioning problem: Solution method based on reducing
symmetric nature and combinatorial cuts. OR Spectrum, 15:1–8, 1993.

8. V. Kaibel, M. Peinhardt, and M.E. Pfetsch. Orbitopal fixing. In IPCO 2007: The Twelfth Conference on
Integer Programming and Combinatorial Optimization. Springer, 2007. To appear.

9. V. Kaibel and M.E. Pfetsch. Packing and partitioning orbitopes. Mathemathical Programming, 2007. To
appear.

10. J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies in mixed integer
programming. INFORMS Journal on Computing, 11:173–187, 1999.

11. S. Litsyn. An updated table of the best binary codes known. In V. S. Pless and W. C. Huffman, editors,
Handbook of Coding Theory, volume 1, pages 463–498. Elsevier, Amsterdam, 1998.

12. E. M. Macambira, N. Maculan, and C. C. de Souza. Reducing symmetry of the SONET ring assign-
ment problem using hierarchical inequalities. Technical Report ES-636/04, Programa de Engenharia de
Sistemas e Computação, Universidade Federal do Rio de Janeiro, 2004.

13. F. Margot. Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94:71–90, 2002.

14. F. Margot. Exploiting orbits in symmetric ILP. Mathematical Programming, Series B, 98:3–21, 2003.

15. F. Margot. Small covering designs by branch-and-cut. Mathematical Programming, 94:207–220, 2003.

16. B. D. McKay. Nauty User’s Guide (Version 1.5). Australian National University, Canberra, 2002.

17. I. Méndez-Dı́az and P. Zabala. A branch-and-cut algorithm for graph coloring. Discrete Applied Mathe-
matics, 154(5):826–847, 2006.

18. W. H. Mills and R. C. Mullin. Coverings and packings. In Contemporary Design Theory: A Collection
of Surveys, pages 371–399. Wiley, 1992.

19. G. L. Nemhauser, M. W. P. Savelsbergh, and G. C. Sigismondi. MINTO, a Mixed INTeger Optimizer.
Operations Research Letters, 15:47–58, 1994.

20. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio. Orbital branching. In IPCO 2007: The Twelfth
Conference on Integer Programming and Combinatorial Optimization, volume 4517 of Lecture Notes in
Computer Science, pages 104–118. Springer, 2007.

21. E. Rothberg. Using cuts to remove symmetry. Presented at the 17th International Symposium on Math-
ematical Programming.

22. E. C. Sewell. A branch-and-bound algorithm for the stability number of a sparse graph. INFORMS
Journal on Computing, 10:438–447, 1998.

23. H. D. Sherali and J. C. Smith. Improving zero-one model representations via symmetry considerations.
Management Science, 47(10):1396–1407, 2001.

Orbital Branching 25

Fixed # Fixed #Fixed Deepest
Instance Branching Rule Time Nodes Nauty Time by RCF by OF by SBF Orbital Level
cod105 Break Symmetry 254.52 17 14.984722 0 1020 0 7
cod105 Keep Symmetry 423.92 23 21.618711 216 1228 0 8
cod105 Branch Largest LP Solution 237.95 7 4.165367 0 0 0 2
cod105 Branch Largest 239.25 9 6.418025 0 0 0 3
cod105 Max Product Orbit Size 229.46 9 6.118071 1 960 0 3
cod105 Strong Branch 344.67 7 4.183364 0 1024 1532 2
cod83 Break Symmetry 6.15 143 1.256809 325 548 0 15
cod83 Keep Symmetry 8.19 195 2.266657 251 942 0 18
cod83 Branch Largest LP Solution 3.58 57 0.548917 328 864 0 7
cod83 Branch Largest 10.57 193 0.431934 233 588 0 7
cod83 Max Product Orbit Size 4.77 105 0.612906 69 642 0 11
cod83 Strong Branch 5.33 21 0.354945 16 762 412 6
cod93 Break Symmetry 3268.83 37297 58.355112 106725 6202 0 26
cod93 Keep Symmetry 242.49 1577 32.926999 11473 2422 0 44
cod93 Branch Largest LP Solution 1557.11 14461 1.917708 201292 348 0 7
cod93 Branch Largest 1677.35 16439 2.212663 205636 1060 0 7
cod93 Max Product Orbit Size 398.91 3503 6.821963 41907 704 0 25
cod93 Strong Branch 2367.93 161 8.245748 437 2400 13478 15

cov1053 Break Symmetry 345.82 15321 28.748629 0 2418 0 35
cov1053 Keep Symmetry 105.41 3139 18.710157 0 1696 0 31
cov1053 Branch Largest LP Solution 616.70 20725 2.074679 0 988 0 19
cov1053 Branch Largest 103.47 3437 1.902710 0 1094 0 17
cov1053 Max Product Orbit Size 90.22 2859 2.476628 0 1466 0 20
cov1053 Strong Branch 768.40 777 14.072857 0 2834 16462 43
cov1054 Break Symmetry 14400 110116 0.199969 0 0 0 0
cov1054 Keep Symmetry 181.26 1249 18.497186 0 454 0 15
cov1054 Branch Largest LP Solution 14400 104126 1.055841 56 88 0 5
cov1054 Branch Largest 14400 105500 1.710738 0 0 0 7
cov1054 Max Product Orbit Size 14400 104172 2.030689 0 176 0 8
cov1054 Strong Branch 14400 846 79.314951 0 220 12846 57
cov1075 Break Symmetry 14400 408822 0.837873 862268 0 0 0
cov1075 Keep Symmetry 209.74 381 189.816146 413 962 0 15
cov1075 Branch Largest LP Solution 49.78 495 23.338451 1400 520 0 9
cov1075 Branch Largest 68.56 461 44.260274 1333 900 0 13
cov1075 Max Product Orbit Size 128.41 543 102.014486 1028 1090 0 21
cov1075 Strong Branch 215.54 71 37.435308 126 92 1858 10
cov1076 Break Symmetry 14400 496533 0.735888 720913 0 0 0
cov1076 Keep Symmetry 1559.87 31943 656.975116 21902 960 0 20
cov1076 Branch Largest LP Solution 14400 498573 15.820595 631691 222 0 7
cov1076 Branch Largest 14400 504396 33.967836 495631 388 0 9
cov1076 Max Product Orbit Size 14400 498258 110.187249 638795 532 0 18
cov1076 Strong Branch 14400 4989 2327.428166 2798 1256 71682 27
cov954 Break Symmetry 8.41 237 4.447316 423 272 0 11
cov954 Keep Symmetry 17.27 449 11.000322 677 948 0 15
cov954 Branch Largest LP Solution 3.83 153 0.664898 638 0 0 6
cov954 Branch Largest 5.26 249 1.183821 818 304 0 12
cov954 Max Product Orbit Size 4.85 217 1.091832 699 132 0 11
cov954 Strong Branch 23.99 63 1.904713 65 160 1724 11

f5 Break Symmetry 42.46 995 2.473627 3515 1356 0 14
f5 Keep Symmetry 34.50 717 1.529766 2102 598 0 14
f5 Branch Largest LP Solution 79.76 2573 0.596910 7660 252 0 8
f5 Branch Largest 64.08 1829 0.626903 9710 430 0 11
f5 Max Product Orbit Size 64.28 1835 0.694894 9678 418 0 13
f5 Strong Branch 668.16 123 1.096838 169 736 8610 15

sts45 Break Symmetry 7.59 4571 0.719893 1 0 0 4
sts45 Keep Symmetry 8.14 4507 1.288806 2 0 0 6
sts45 Branch Largest LP Solution 7.85 4683 0.609907 3 0 0 3
sts45 Branch Largest 8.12 4917 0.393939 1 0 0 2
sts45 Max Product Orbit Size 8.13 4917 0.396940 1 0 0 2
sts45 Strong Branch 94.53 1417 42.961484 0 0 7984 16
sts63 Break Symmetry 1630.34 666623 6.867958 720 126 0 43
sts63 Keep Symmetry 160.85 9993 135.706374 12 0 0 11
sts63 Branch Largest LP Solution 91.37 32627 12.596084 7 0 0 9
sts63 Branch Largest 92.68 33785 9.120613 19 0 0 7
sts63 Max Product Orbit Size 136.77 31261 57.272287 48 0 0 10
sts63 Strong Branch 1132.09 3157 913.579109 0 0 16858 24
sts81 Break Symmetry 3422.66 1000000 2.360643 235 0 0 4
sts81 Keep Symmetry 434.08 83961 128.024537 8 0 0 15
sts81 Branch Largest LP Solution 164.01 25739 68.663563 5 0 0 13
sts81 Branch Largest 126.96 11323 84.573144 0 0 0 13
sts81 Max Product Orbit Size 3370.85 1000000 0.134980 200 0 0 0
sts81 Strong Branch 13465.36 11291 12074.918282 1 0 62098 30

Table 6. Performance of Orbital Branching Rules (Local Symmetry) on Symmetric IPs

26 James Ostrowski et al.

Fixed # Fixed # Fixed Deepest
Instance Branching Rule Time Nodes Nauty Time by RCF by OF by SBF Orbital Level
cod105 Break Symmetry 234.13 11 7.124916 0 1020 0 4
cod105 Keep Symmetry 242.48 11 7.141914 0 1020 0 4
cod105 Branch Largest LP Solution 237.18 7 3.612450 0 0 0 2
cod105 Branch Largest 237.32 9 5.472168 0 0 0 3
cod105 Max Product Orbit Size 237.46 9 5.337189 1 960 0 3
cod105 Strong Branch 359.10 7 3.611451 0 1024 1532 2
cod83 Break Symmetry 1.33 25 0.326951 37 906 0 7
cod83 Keep Symmetry 1.34 25 0.327950 37 906 0 7
cod83 Branch Largest LP Solution 3.42 57 0.356948 328 864 0 7
cod83 Branch Largest 10.39 193 0.309953 233 588 0 7
cod83 Max Product Orbit Size 4.62 105 0.428935 69 642 0 11
cod83 Strong Branch 5.23 21 0.265958 16 762 412 6
cod93 Break Symmetry 165.69 1361 8.448719 7397 3378 0 14
cod93 Keep Symmetry 167.16 1361 8.438727 7397 3378 0 14
cod93 Branch Largest LP Solution 1555.70 14461 1.529769 201292 348 0 7
cod93 Branch Largest 1677.24 16439 1.702739 205636 1060 0 7
cod93 Max Product Orbit Size 395.66 3503 4.070383 41907 704 0 25
cod93 Strong Branch 2361.04 161 3.825411 437 2400 13478 15

cov1053 Break Symmetry 280.49 11271 23.658413 0 3454 0 33
cov1053 Keep Symmetry 240.18 9775 4.668290 0 724 0 25
cov1053 Branch Largest LP Solution 619.27 20903 1.084832 0 988 0 19
cov1053 Branch Largest 102.56 3437 1.234820 0 1094 0 17
cov1053 Max Product Orbit Size 89.23 2859 1.578751 0 1466 0 20
cov1053 Strong Branch 760.98 777 7.565862 0 2830 16464 43
cov1054 Break Symmetry 14400 110307 0.178972 0 0 0 0
cov1054 Keep Symmetry 178.78 1249 15.193699 0 454 0 15
cov1054 Branch Largest LP Solution 14400 104161 0.906862 56 88 0 5
cov1054 Branch Largest 14400 105846 1.449778 0 0 0 7
cov1054 Max Product Orbit Size 14400 104184 1.711737 0 176 0 8
cov1054 Strong Branch 14400 846 52.745968 0 220 12846 57
cov1075 Break Symmetry 14400 410572 0.769883 865517 0 0 0
cov1075 Keep Symmetry 152.18 381 132.985777 413 962 0 15
cov1075 Branch Largest LP Solution 41.87 495 15.746605 1400 520 0 9
cov1075 Branch Largest 54.65 461 30.613345 1333 900 0 13
cov1075 Max Product Orbit Size 95.19 543 69.173483 1028 1090 0 21
cov1075 Strong Branch 201.61 71 23.901366 126 92 1858 10
cov1076 Break Symmetry 14400 495919 0.708892 719961 0 0 0
cov1076 Keep Symmetry 1414.99 31943 516.150545 21902 960 0 20
cov1076 Branch Largest LP Solution 14400 496393 13.137002 628579 222 0 7
cov1076 Branch Largest 14400 504849 26.244011 496164 388 0 9
cov1076 Max Product Orbit Size 14400 497593 86.502848 637905 532 0 18
cov1076 Strong Branch 14400 5280 1692.859650 2971 1288 76298 27
cov954 Break Symmetry 12.67 373 7.068934 632 524 0 13
cov954 Keep Symmetry 6.20 249 1.926707 748 48 0 11
cov954 Branch Largest LP Solution 3.65 153 0.516923 638 0 0 6
cov954 Branch Largest 4.99 249 0.930857 818 304 0 12
cov954 Max Product Orbit Size 4.57 217 0.837871 699 132 0 11
cov954 Strong Branch 23.46 63 1.335799 65 160 1724 11

f5 Break Symmetry 44.49 1125 4.553311 2983 2994 0 17
f5 Keep Symmetry 44.62 1125 4.565308 2983 2994 0 17
f5 Branch Largest LP Solution 79.49 2573 0.389942 7660 252 0 8
f5 Branch Largest 63.75 1829 0.440937 9710 430 0 11
f5 Max Product Orbit Size 63.94 1835 0.516921 9678 418 0 13
f5 Strong Branch 664.39 123 0.412933 169 736 8610 15

sts45 Break Symmetry 7.89 4709 0.750886 0 0 0 6
sts45 Keep Symmetry 7.81 4709 0.748884 0 0 0 6
sts45 Branch Largest LP Solution 7.81 4683 0.517921 3 0 0 3
sts45 Branch Largest 8.10 4917 0.372943 1 0 0 2
sts45 Max Product Orbit Size 8.12 4917 0.370943 1 0 0 2
sts45 Strong Branch 49.91 1287 3.219508 0 148 7150 16
sts63 Break Symmetry 20.15 5533 5.517160 1 308 0 11
sts63 Keep Symmetry 20.06 5533 5.550147 1 308 0 11
sts63 Branch Largest LP Solution 90.08 36579 1.722739 19 32 0 9
sts63 Branch Largest 103.76 43349 1.678746 17 32 0 7
sts63 Max Product Orbit Size 81.08 30133 4.614296 47 176 0 8
sts63 Strong Branch 101.43 1377 10.535395 0 676 6710 24
sts81 Break Symmetry 39.06 6293 14.333820 0 670 0 17
sts81 Keep Symmetry 38.87 6293 14.287827 0 670 0 17
sts81 Branch Largest LP Solution 27.87 5649 5.967096 0 562 0 14
sts81 Branch Largest 28.87 5823 5.698133 0 410 0 14
sts81 Max Product Orbit Size 3382.52 1000000 0.133979 200 0 0 0
sts81 Strong Branch 73.45 573 19.796985 0 1112 2514 22

Table 7. Performance of Orbital Branching Rules (Global Symmetry) on Symmetric IPs

Orbital Branching 27

Fig. 10. Example 1: Structure of Subproblems and Orbits in Orbital Branching.

1

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

9

10

1

8

{1, 2, 3, 4, 5, 6, 7, 8}
{9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24}

2

12

11

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

8

3

2

3

4

56

7

1

8

{2, 8}{3, 7}{4, 6}{5} {1, 2, 3, 4, 5, 6, 7, 8}
{11, 12, 23, 24}{13, 14, 21, 22}
{15, 16, 19, 20}{17, 18}

4

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

23

24

8

5

2

3

13

14

15

16

4

5

17

1819

20

6

7

21

22

8

{3, 8}{4, 7} {5, 6} {2, 8}{3, 7}{4, 6}{5}
{13, 14, 23, 24} {13, 14, 21, 22}{15, 16, 19, 20}
{15, 16, 21, 22}{17, 18, 19, 20} {17, 18}

28 James Ostrowski et al.

6

2

3

13

14

5

17

1819

20

6

7

21

22

8

7

2

3

13

14

4

5

17

18

6

7

21

22

8

{2}{3}{5}{8}{6, 7} {2, 8}{3, 7}{4, 6}{5}
{13, 14}{17, 18}{19, 20, 21, 22} {13, 14, 21, 22}{17, 18}

8

3

13

14

5

17

1819

20

6

7

21

22

23

24

8

9

3

13

14

4

5

17

1819

20

6

7

23

24

8

{3, 13, 14}{5, 8}{6, 7} {3, 8}{4, 7} {5, 6}
{17, 18, 23, 24}{19, 20, 21, 22} {13,14,23,24}{17,18,19,20}

10

3

13

14

5

17

18

7

21

22

23

24

8

11

3

13

14

5

17

18

6

7

23

24

8

{3, 13, 14, 5, 17, 18}{7, 8} {3, 13, 14}{5, 8}{6, 7}
{21, 22, 23, 24} {17,18,23,24}

Orbital Branching 29

12

5

17

18

7

21

22

23

24

8

13

7

21

22

23

24

8

{5, 17, 18}{7, 8} {7, 8}
{21, 22, 23, 24} {21, 22, 23, 24}

14

5

17

18

23

24

8

15

5

17

18

7

8

{5, 17, 18, 23, 24} {5, 17, 18}{7, 8}

16

23

24

8

17

{8, 23, 24}

30 James Ostrowski et al.

18

3

13

14

4

19

20

6

7

23

24

8

19

3

13

14

4

56

7

23

24

8

20

2

3

13

14

5

17

18

7

21

22

8

21

2

3

13

14

5

17

18

6

7

21

22

8

