

Computer
Sciences
Department

Solving Multiple Dataflow Queries Using WPDSs

Akash Lal
Thomas Reps

Technical Report #1632

March 2008

Solving Multiple Dataflow Queries Using

WPDSs

Akash Lal1 and Thomas Reps1,2

1 University of Wisconsin; Madison, Wisconsin; USA. {akash, reps}@cs.wisc.edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. A dataflow query asks for the set of reachable (abstract)
states, given a starting set of states. In this paper, we show how to
optimize multiple queries on the same program (each with a different
starting set of states) for better overall running time. After a preprocess-
ing phase, we obtain an asymptotic improvement in answering dataflow
queries. We use weighted pushdown systems as the abstract model of
a program. Our techniques are interprocedural. They are general, yet
provide an impressive speedup. We applied our algorithm to three very
different applications, one based on finding affine relations using linear
algebra, and others for model checking Boolean programs, and obtained
1.5-fold to 7-fold speedups.

1 Introduction

Dataflow analysis is concerned with approximating program behavior. A
dataflow query asks for the set of (abstract) program states (forward or
backward) reachable from a given starting set of states, where a state is
a (program location, data store) pair. One common application of (forward)
dataflow analysis is to pose a single dataflow query from the initial state in which
program execution starts. This produces an over-approximation of all program
states that may arise during its execution. However, in certain situations, multi-
ple dataflow queries need to be posed on the same program, each with a different
starting set of states.

One such need arises in the analysis of concurrent programs, in the method
presented in [14], which tracks program evolution for a bounded number of con-
text switches. Here, a concurrent program consists of a set of threads that com-
municate via shared memory. For a thread t of interest, the environment (con-
sisting of the other threads) is only given control a fixed number of times. Each
time, the environment can change the state of shared memory, thus affecting the
execution of thread t. The analysis of such programs requires multiple dataflow
queries to be posed on t. Whenever the environment changes the state of shared
memory, a new query is posed on t, starting from this state (paired with the
local state of t).

Multiple queries are also useful for program understanding, e.g., to find out
the net effect of executing from one statement to another (to find dependences

between them). Finding a loop summary for each loop is another example. Our
applications (§5), for which we developed the techniques of this paper, are based
on these examples.

Answering multiple queries on the same program independently from each
other usually involves repeated work. The alternative is to do some preprocessing
and compute certain basic facts about the program that can be reused each
time a new dataflow query is posed. In this paper, we exploit this observation
to improve the running time needed for answering multiple dataflow queries on
the same program.

At the intraprocedural level, this work is inspired by our previous result on
speeding up a single dataflow query. In [10], we showed how to use Tarjan’s path
sequence algorithm [24], which computes regular expressions to represent a set
of paths in a graph, to obtain a faster algorithm for the fixpoint computation
needed to answer a single dataflow query. Answering multiple queries poses a
different problem than speeding up a single query: its goal is to avoid repeating
the fixpoint computation for each query. However, this paper shows that the
information computed by the Tarjan’s algorithm is still useful. We use it as a
preprocessing step for speeding up multiple intraprocedural queries.

At the interprocedural level, a set of program paths can no longer be captured
with a regular expression (the set may be a context-free language). We develop
new techniques to address this complication: we show what preprocessing can be
done to avoid recomputation across procedure boundaries, and how to isolate the
intraprocedural computation to be able to use our intraprocedural algorithm.

Overall, with our techniques, the preprocessing is quite efficient, usually faster
than solving two dataflow queries. After preprocessing, we obtain asymptotic
improvements in answering each dataflow query (for programs whose control
structure is mostly reducible), and only require iteration to a fixpoint when
the starting set of states is infinite (i.e., in other cases, we do not need to go
around program loops or recursive procedures). Our experiments show that this
approach is advantageous even if as few as two queries need to be answered.

Our approach applies to any dataflow-analysis problem in which one has
a domain of distributive dataflow-transfer functions closed under composition
[23, 8]. Some examples can be found in [19, 18, 12]. This paper mainly presents
the work using the framework of weighted pushdown systems (WPDSs) [19],
which generalize previous work on interprocedural analysis frameworks [23, 9,
17]. However, we also sketch how variants of the technique can be incorporated
in solvers that work over interprocedural control-flow graphs (ICFGs); see §4
and App. A.

The number of states of a WPDS can be infinite. For this reason, sets of states
are represented symbolically using weighted automata [19]. Our algorithms must
be able manipulate these automata because they are essential for applications
like the one presented in [14], which is the subject of one of our experiments. In
§4, we show how to speed up multiple queries given such automata representing
the starting set of states.

The contributions of this paper can be summarized as follows:

2

– We show how information computed by Tarjan’s path sequence algorithm
can be used to obtain asymptotic improvements in answering multiple in-
traprocedural queries (§3).

– We give a new WPDS reachability algorithm for answering interprocedural
queries that carries over the above asymptotic improvements (§4).

– We sketch variants of the technique that allow the ideas to be applied in
other standard dataflow-analysis frameworks (§4 and App. A).

– We applied our techniques to three different applications (§5), and measured
1.5-fold to 7-fold speedups over previous techniques, including optimized ones
[10].

The rest of the paper is organized as follows: §2 gives background on WPDSs.
§3 presents our algorithm for the intraprocedural case, and §4 generalizes it to
the interprocedural case (WPDSs). §5 reports experimental results. §6 discusses
related work. App. A presents a version of our algorithm that works with ICFGs.
App. B contains a proof of correctness of the algorithm in §4. In this paper, we
focus on forward dataflow queries. The algorithm for backward queries is given
in App. C.

2 Program Model

Definition 1. A pushdown system is a triple P = (P, Γ, ∆) where P is the set
of states or control locations, Γ is the set of stack symbols and ∆ ⊆ P×Γ×P×Γ ∗

is the set of pushdown rules. A configuration of P is a pair 〈p, u〉 where p ∈ P

and u ∈ Γ ∗. A rule r ∈ ∆ is written as 〈p, γ〉 →֒ 〈p′, u〉 where p, p′ ∈ P , γ ∈ Γ

and u ∈ Γ ∗. These rules define a transition relation ⇒ on configurations of P
as follows: If r = 〈p, γ〉 →֒ 〈p′, u〉 then 〈p, γu′〉 ⇒ 〈p′, uu′〉 for all u′ ∈ Γ ∗. The
reflexive transitive closure of ⇒ is denoted by ⇒∗.

Without loss of generality, we restrict PDS rules to have at most two stack
symbols on the right-hand side [22]. The standard approach for modeling pro-
gram control flow with a pushdown system is as follows: P contains a single state
{p}, Γ corresponds to program locations, and ∆ corresponds to transitions in
the interprocedural control-flow graph (ICFG)3: A CFG edge u → v is modeled
by a PDS rule 〈p, u〉 →֒ 〈p, v〉; A call to procedure g at location l that returns
to r as 〈p, l〉 →֒ 〈p, genter r〉; and a return from procedure g as 〈p, gexit〉 →֒ 〈p, ε〉.
(Single-state PDSs are also referred to as context-free processes [4].) In such an
encoding, a PDS configuration 〈p, γ1 γ2 · · · γn〉 stores the value of the program
counter γ1 and the stack of return addresses for unfinished calls as γ2, γ3, · · · , γn

(in order).
A weighted pushdown system is obtained by supplementing a pushdown sys-

tem with a weight domain that is a bounded idempotent semiring [19, 2]. Such
semirings are capable of encoding a number of abstractions [18]. WPDSs can

3 An ICFG is a set of CFGs, one for each procedure, with additional edges going from
a call-site to the entry node of the callee and from its exit node to the return site.

3

encode the IFDS framework [17], and other dataflow analyses; see [19, 10] for
more details.

Definition 2. A bounded idempotent semiring (or “weight domain”) is a
tuple (D,⊕,⊗, 0, 1), where D is a set of weights, 0, 1 ∈ D, and ⊕ (combine)
and ⊗ (extend) are binary operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a ⊗ 0 = 0 = 0 ⊗ a.
4. In the partial order ⊑ defined by ∀a, b ∈ D, a ⊑ b iff a⊕ b = a, there are no

infinite descending chains.

One may think of weights as dataflow transformers, extend as transformer
composition, combine as meet, 0 as the transformer for an infeasible path, and
1 as the identity transformer. For example, if Df is a finite set of dataflow facts,
then the weight domain (2Df×Df ,∪, ◦, ∅, id) can used for dataflow analysis on
those set of facts, as is done in the IFDS framework [17].

The height H of a weight domain is defined to be the length of the longest
descending chain in the semiring (if it exists). In this paper, we assume the height
to be finite for ease of discussing complexity results. (For cases when the height
of a weight domain is unbounded, the value H in the complexity results can
be interpreted as the length of the longest descending chain that occurs while
solving a particular problem instance, which is always bounded.)

Definition 3. A weighted pushdown system is a triple W = (P ,S, f) where
P = (P, Γ, ∆) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring and f : ∆ → D is a map that assigns a weight to each pushdown rule.

Let σ ∈ ∆∗ be a sequence of rules. Using f , we can associate a value to σ,

i.e., if σ = [r1, . . . , rk], then we define v(σ)
def

= f(r1) ⊗ . . . ⊗ f(rk). Moreover, if
for two configurations c and c′ of P , σ is a rule sequence that transforms c to c′,
we say c ⇒σ c′.

Definition 4. Let W = (P ,S, f) be a WPDS, where P = (P, Γ, ∆), and let
S, T ⊆ P × Γ ∗ be regular sets of configurations. The interprocedural meet-
over-all-paths (IMOP) value IMOP(S, T) is defined as

⊕
{v(σ) | s ⇒σ t, s ∈

S, t ∈ T }.

The IMOP value describes the net transformation that occurs when going
from one set of configurations to another. Sometimes we would write IMOP(s, t)
for IMOP({s}, {t}).

Fig. 1 shows how a program can be encoded using a WPDS. Each ICFG edge
e is encoded as a PDS rule whose weight is the dataflow transformer for e. More
details on encoding programs as WPDSs can be found in [19, 18].

4

n1

n3

n4

w2

n6

n7

n5

n2

bar()

bar()

proc foo proc bar

w1

w3

w4

(1) 〈p, n1〉 →֒ 〈p, n2〉 w2

(2) 〈p, n1〉 →֒ 〈p, n4〉 w1

(3) 〈p, n2〉 →֒ 〈p, n6 n3〉 1
(4) 〈p, n3〉 →֒ 〈p, n4〉 w3

(5) 〈p, n4〉 →֒ 〈p, n6 n5〉 1
(6) 〈p, n6〉 →֒ 〈p, n7〉 w4

(7) 〈p, n7〉 →֒ 〈p, ε〉 1

Fig. 1. A program with two procedures and its corresponding WPDS. Procedure calls
are represented using dashed arrows.

Model Semantics In WPDSs, program states are represented using weighted
configurations, which are configuration-weight pairs. The pair (c, w) describes
the control state of the program as the PDS stack c, and the data state of the
program using the weight w. A set of program states is represented by a function
β : P × Γ ∗ → D, standing for the set {(c, β(c)) | c ∈ P × Γ ∗}. The set of all
forward-reachable states starting from β is the set poststar(β) = {(c′,⊕c{β(c)⊗
IMOP(c, c′)}) | c′ ∈ P × Γ ∗}. In this case, we say that configuration c′ can be
reached with weight poststar(β)(c′) (which is 0 if c′ is not reachable). Backward-
reachable states can be defined similarly.

For example, the initial state of the program in Fig. 1 is (〈p, n1〉, 1). States
reachable from this initial state include (〈p, n6 n3〉, w2) and (〈p, n6 n5〉, w1 ⊕
(w2 ⊗ w4 ⊗ w3)).

3 Solving Multiple Intraprocedural Queries

Our interprocedural algorithm (§4) will need to solve multiple intraprocedural
queries. Thus, we address the latter case first. A directed graph is a special
case of a PDS (no call or return rules). When a weight domain is paired with
a directed graph, we obtain a model for intraprocedural analysis. To simplify
the discussion of intraprocedural algorithms, we specialize some definitions to
weighted graphs.

Definition 5. A weighted graph G is a tuple (V, E, λ), where (V, E) is a di-
rected graph, and λ : E → D is a function that labels each edge with a weight.

For vertices v1, v2 ∈ V , a path σ is defined as a sequence of edges that connect
v1 to v2, in the standard way. In such a case, we say v1 ⇒σ v2. The weight of
a path σ = [e1, e2, · · · , en], written as λ(σ), is defined to be λ(e1) ⊗ λ(e2) ⊗
· · · ⊗ λ(en). For sets of vertices S, T ⊆ V , the meet-over-all-paths (MOP) value
is defined as the combine of weights of all paths that lead from a vertex in S to
a vertex in T : MOP(S, T) =

⊕
{λ(σ) | s ⇒σ t, s ∈ S, t ∈ T }. When S = {s} and

T = {t} are singleton sets, we write MOP[s, t] as a shorthand for MOP(S, T).

5

For weighted graphs, program states are vertex-weight pairs (vertices replace
PDS configurations). Computing reachable states reduces to solving the following
query:

Definition 6. Given a weighted graph G, and a set of vertices S ⊆ V with a
weight assignment µ : S → D, the IntraQ-query is to compute the weights
IntraQG(S, µ)(v) for each v ∈ V , where IntraQG(S, µ)(v) =

⊕
s∈S{µ(s) ⊗

MOP[s, v]}.

IntraQG(S, µ) is the set of reachable states starting from {(s, µ(s)) | s ∈ S}.
We drop the subscript G in IntraQ when it is obvious from the context.

When the graph G is fixed, we can preprocess it to quickly answer subsequent
queries. We now present three different algorithms for solving this query, where
each of them trades off preprocessing time against time required to solve a query.

Alg1: The first algorithm is the standard way of solving such queries using
no preprocessing. It is a saturation algorithm: each vertex v has a weight l(v).
Initially, l(s) = µ(s) for s ∈ S, and 0 for other vertices. Next, the rules l(v) :=
l(v) ⊕ (l(u) ⊗ λ(u, v)) for each edge (u, v) are used to update the weights until
a fixpoint is reached. Then l(v) is the required value for IntraQ(S, µ)(v). This
requires time Os(|E|H), where H is the height of the weight domain, and the
notation Os(.) denotes the asymptotic number of semiring operations. (Because
we consider weights as black boxes, the algorithms in this paper seek to minimize
the number of semiring operations.)

The disadvantage of this method, which our other algorithms will address,
is that it requires a fixpoint computation to be performed; this is reflected in
the cost by the dependence on the height H of the weight domain, which can be
large. For Boolean program verification, the height is exponential in the number
of Boolean variables, and for affine-relation analysis, it is quadratic in the number
of variables.

v1

v2 v3

v4

v5

v6

vk

Fig. 2. A graph

Alg2: The second algorithm does the obvious preprocessing.
It precomputes the values MOP[v1, v2] for each v1, v2 ∈ V

by solving IntraQ({v1}, (v1 7→ 1)) for each v1 using Alg1.
Thus, preprocessing time is Os(|V ||E|H). Once these MOP
values are available, IntraQ(S, µ)(v) can be solved from its
definition in time Os(|S|). Thus, IntraQ(S, µ) can be solved
in time Os(|S||V |), which is independent of H. This may seem
like the most efficient approach, but we show next that one
can do better.

Consider the graph in Fig. 2. Let wij be the weight on
edge (vi, vj). Suppose that S = {v2, v3}, µ(v2) = w2, and
µ(v3) = w3. Then Alg2 would require approximately 2|V |
semiring operations because it considers v2 and v3 separately
from each other. However, notice that vertex v4 dominates all

6

other vertices with respect to v2 and v3, i.e., any path in the graph starting at
v2 or v3 must pass through v4 before reaching vertices v5 to vk (and vertex v1 is
unreachable). Based on this observation, we can prove that IntraQ(S, µ)(vi) =
IntraQ(S, µ)(v4) ⊗ MOP[v4, vi] for vi ∈ {v5, · · · , vk} Therefore, we only need
to compute IntraQ(S, µ)(v4) and other values can follow from this value using
just one operation. This method would only require, approximately, |V | number
of operations.

This observation can be generalized to say that the weight on a vertex should
be computed before the weights on vertices dominated by it are computed. This
has been already captured nicely by Tarjan’s algorithm [24] to solve path prob-
lems on graphs. However, it has only been used in the context of solving a single
query, which we generalize to multiple queries. First, we summarize the essential
details of Tarjan’s algorithm.

Tarjan’s Algorithm

Definition 7. A path expression is a regular expression over the edges of a
graph defined using the following grammar: r := ∅ | ε | e | r1.r2 | r1 ∪ r2 | r∗

where e is an edge in the graph. A path expression r is said to represent the
set of paths in the language L(r) of r when interpreted as a regular expression.
Furthermore, a path expression is said to be of type (u, v) if all paths in L(r) go
from vertex u to vertex v.

For example, for the graph in Fig. 2, the expression ((e12.e24 ∪ e13.e34).e45),
where eij is the edge (vi, vj), denotes the set of all paths from v1 to v5, and is
of type (v1, v5).

We extend the weight-evaluation function λ to path expressions as follows:
λ(∅) = 0, λ(ε) = 1, λ(r1.r2) = λ(r1) ⊗ λ(r2), λ(r1 ∪ r2) = λ(r1) ⊕ λ(r2), and
λ(r∗) = λ(r)∗. Here, we define the weight w∗ as the infinite combine 1 ⊕ w ⊕
(w⊗w)⊕(w⊗w⊗w)⊕ ..., which exists because of Defn. 2(item 4). One can show
that w∗ = (1⊕w)H, and calculate it using repeated squaring in time Os(logH).
Consequently, the following lemma holds. (We define |r| to be the length of the
expression.)

Lemma 1. For a path expression r and the evaluation function λ defined as
above, λ(r) =

⊕
{λ(σ) | σ ∈ L(r)}. Moreover, it can be calculated in time

Os(|r| logH).

Tarjan’s algorithm is based on computing path expressions to represent the
set of paths between each pair of vertices. However, instead of computing a
separate path expression for each pair of vertices, it computes a path sequence,
which is a more concise way of representing all paths in a graph.

Definition 8. A path sequence of a directed graph G = (V, E) is a sequence
(r1, u1, v1), (r2, u2, v2), · · · (rk, uk, vk), where ui, vi ∈ V , ri is a path expression
of type (ui, vi) such that for any nonempty path σ in G, there is a sequence of
indices 1 ≤ i1 < i2 < · · · < il ≤ k and a partition of σ into nonempty paths
σ = σ1σ2 · · ·σl and σj ∈ L(rij

) for all 1 ≤ j ≤ l.

7

1: // initialize
2: for all v ∈ V do

3: r[s, v] := ∅
4: end for

5: r[s, s] := ε

6: // solve
7: for i = 1 to k do

8: r[s, vi] := r[s, vi] ∪
(r[s, ui].ri)

9: end for

1: // initialize
2: for all v ∈ V do

3: MOP[s, v] := 0
4: end for

5: MOP[s, s] := 1
6: // solve
7: for i = 1 to k do

8: MOP[s, vi]:=MOP[s, vi]
⊕(MOP[s, ui] ⊗ λ(ri))

9: end for

(a) (b)

Fig. 3. Computing MOP values using the path se-
quence {(ri, ui, vi)}k

i=1.

Fig. 3(a) is an algo-
rithm that uses a path
sequence to create path
expressions r[s, v] that
represent the set of all
paths from s to v, for
each v ∈ V and a
fixed s ∈ V [24]. Us-
ing Lemma 1, we get
MOP[s, v] = λ(r[s, v]).
Equivalently, the path ex-
pressions can be evalu-
ated first and then put to-
gether to get the MOP
weights, as shown in Fig. 3(b).

Tarjan’s algorithm computes a path sequence for a graph in time O(|E| log |V |+
δ), where δ is a term that denotes the irreducibility factor of the graph. For
reducible graphs, δ = 0 and, in general, δ is bounded by |V |3. Because the
graphs we work with come from CFGs of procedures, they are mostly reducible
and the δ term can be ignored (which is confirmed by our experiments). The
computed path expressions have a shared representation with a combined size
bounded by the running time of the entire procedure. The length of the path
sequence also has the same bound. Thus, evaluating all path expressions takes
time Os((|E| log |V |+δ) logH). After that, given a vertex s, solving for MOP[s, v]
for all vertices v requires time Os(|E| log |V | + δ), which is almost linear in the
size of the graph. We ignore the δ term in the rest of the paper.

Alg3: We now show how to use the path sequences computed by Tarjan’s al-
gorithm to solve multiple queries. Suppose that we wish to solve IntraQ(S, µ)
on G = (V, E, λ). Given S, µ and G, we construct a new graph G′ = (V ′, E′, λ′)
by adding a new vertex to G: for some v0 6∈ V , V ′ = V ∪ {v0}, E′ = E ∪
{(v0, s) | s ∈ S}, λ′ = λ ∪ {[(v0, s) 7→ µ(s)] | s ∈ S}. Then, in this graph,
MOPG′ [v0, v] = IntraQG(S, µ)(v). Thus, we need to compute MOP values on
G′. This trick is similar to the standard one of reducing a multi-source reacha-
bility problem to a single-source reducibility problem. The following observation
shows that a path sequence for G′ can be computed from that of G:

Lemma 2. If ps is a path sequence of G, then by concatenating the sequence
{(v0, s, (v0, s)) | s ∈ S} (with any arbitrary order chosen to enumerate vertices
in S) in front of ps, one obtains a path sequence for G′.

The preprocessing step of Alg3 computes a path sequence for G and evalu-
ates the weight of each of its path expressions. Then to solve each query, Alg3

uses the path sequence for G′, constructed using Lemma 2, as input to the
algorithm in Fig. 3(b). This gives us the required weights IntraQG(S, µ)(v)
as MOPG′ [v0, v]. Alg3 requires Os(|E| log |V | logH) preprocessing time and

8

Os(|S| + |E| log |V |) time to solve each query. This is much better than Alg2

because for CFGs, |E| is usually O(|V |).
In essence, Alg3 works better than previous algorithms because it is able

to concisely represent all values in MOP[·, ·] and maintains enough of the graph
structure in path sequences to take advantage of dominators. The above lemma
ensures that path sequences can be reused for different queries. We used Alg3

in our experiments.

4 Solving Multiple Queries on WPDSs

In this section, we develop algorithms for the interprocedural case. For graphs,
the number of vertices is finite, but for WPDSs, the number of configurations
may be infinite (when the program is recursive), or very large (exponential in
the number of procedures when not recursive). For this reason, sets of weighted
configurations (or program states) are represented symbolically using weighted
automata [19].

Definition 9. A weighted automaton A is a finite-state automaton where each
transition is additionally labeled with a weight. The weight of a path in the au-
tomaton is obtained by taking an extend of the weights on the transitions in the
path in the backward direction. The automaton is said to accept a configuration
〈p, u〉 with weight w, denoted by A(〈p, u〉), if w is the combine of weights of all
accepting paths for u starting from state p in A. The set of states of A is assumed
to contain P , the set of PDS states.

A weighted automaton A represents the set of states R(A) = {(c,A(c)) |
A accepts c,A(c) 6= 0}. An important result is that for a weighted automaton
A, the set poststar(R(A)) (as defined in §2) can also be represented by a weighted
automaton [19]. For brevity, we call such an automaton poststar(A). Our goal is
to preprocess a given WPDS so that poststar(A) can be computed quickly for
any given A. We produce the same automaton for poststar(A), as do previous
algorithms [19, 10] (but faster, after the preprocessing stage).

An example is shown in Fig. 4(a). Note how the weight for a configuration
〈p, n7 n3〉 is represented in a compositional way in the automaton. Procedure
bar is analyzed independently of its calling context, resulting in weight w4 for
transition (p, n7, q). The weight w2 at the call site n3 to bar is captured on the
transition (q, n3, acc), resulting in a total weight of w4⊗w2 for 〈p, n7 n3〉. We will
use the fact that procedures are analyzed independently of their calling context
(also customary in most summary-based interprocedural analyses) in our favor.
(As we shall see later, this implies that weights have to be propagated from a
procedure to its callers, but not to procedures that it calls.)

Fix W = (P ,S, f) to be a WPDS and P = (P, Γ, ∆) to be its PDS. Fix Astart

to be the input query automaton, for which we want to compute poststar(Astart).
To simplify the discussion, assume that W was created from a program as de-
scribed in §2, and P = {p} is a singleton set (our implementation handles any
WPDS, however).

9

p

q

acc

n1, 1 n2, w2
n3, w2w4 n4, w1⊕w2w4w3
n5, (w1⊕w2w4w3) w4

n6, 1
n7, w4

n3, w2

n5, w1⊕w2w4w3

p

q

acc

n2, w0 n3, w0w4
n4, w0w4w3
n5, w0w4w3w4

n6, 1
n7, w4

n3,w0

n5, w0w4w3

(a) (b) (c)

(d) (e) (f)

p q acc
n6, wa

n3, wb

n5, wc

p q acc
n6, wa

n3, wb

n3, wbwaw4

p q acc
n6, wa

n3, wb

n3, wbwaw4

n , w w

n4, wbwaw4w3

p q acc
n6, wa

n3, wb

n3, wbwaw4

n4, wbwaw4w3

p q acc
n5, wc

n5, wcwaw4

acc
n5, wc

n5, wcwaw4 ⊕
wbwaw4w3w4

qbar

n6, 1
n7, w4

n7, waw4

n5, wbwaw4w3

p q acc
n5, wc

n5, wcwaw4 ⊕
wbwaw4w3w4

n7, waw4

Fig. 4. Various automata related to the WPDS of Fig. 1. In all the weighted automata,
juxtaposition of weights denotes their extend, acc is the accepting state, and parallel
transitions have sometimes been collapsed into a single edge. Labels on transitions
are (stack symbol, weight) pairs. (a) An automaton for poststar({(〈p, n1〉, 1)}). (b) An
automaton for poststar({(〈p, n2〉, w0)}). (c) Automaton Astart. (d) Automaton Apop

obtained after running the pop-phase on Astart. (e) Automaton Aint created while
running the growth phase on Apop. (f) The final result of running the growth phase
on Apop.

Next, we give the preprocessing required by our algorithm; then an overview
of how the algorithm would work on non-automata-based representations; then
the algorithm for automata; followed by a discussion of the running-time com-
plexity.

Preprocessing (i) First, we compute a summary for each procedure. (For a
procedure starting at node e, it is defined as IMOP(〈p, e〉, 〈p, ε〉)). Using these
summaries, we construct a weighted graph for each procedure from its CFG:
the call edges (from call site to return site) are replaced with a summary of
the called procedure. For γ ∈ Γ , let Prγ be the procedure that contains γ, Gγ

be the weighted graph for Prγ , eγ its unique entry node, and xγ its unique
exit node. (Note that MOPGγ

[eγ , xγ] also equals the summary for Prγ .) Next,
for each weighted graph G of a procedure, we compute: (ii) its path sequence
(preprocessing for Alg3) and (iii) values MOPG[γ, xγ] and MOPG[eγ , γ] for
each node γ of the procedure.

The procedure summaries can be computed using standard algorithms, af-
ter which the path sequences can be constructed using Tarjan’s algorithm. This
would be an acceptable solution, but we can do better. We use our techniques

10

from [10] to compute both of these at the same time. Briefly, the call-return edge
in the CFG of a procedure is labeled with a variable whose value stands for the
(as yet uncomputed) summary of the called procedure. Then the procedure sum-
mary is represented using a path expression (from entry node to return node)
computed from its path sequence. This expression will have variables standing
for summaries of called procedures. This gives rise to a set of equations whose
solution solves for all summaries. In [10], we showed that this technique provides
up to 5 times speedup over standard algorithms for computing procedure sum-
maries, and we obtain a path sequence as a by-product. The path sequences can
then be used to quickly compute the required MOP values for (iii) [24].

ICFG-version Before describing how our algorithm works with weighted au-
tomata, we give an informal description on how it would work with ICFGs (after
preprocessing). Suppose that we are given a set R of node-weight pairs (start-
ing states), where the nodes may be from multiple procedures, and we want to
calculate the reachable set of node-weight pairs.

One challenge is to isolate the intraprocedural work. An IntraQ query on
a set S = {s1, · · · , sk} can also be solved by making a separate query for each
si and taking a combine of the results, but this is far less efficient than making
a single query on S. Thus, we want to minimize the number of IntraQ queries
made for each procedure. For example, for the program in Fig. 1, suppose R =
{(n6, wa), (n4, wb)}. Then the pair (n6, wa) can produce the pairs (n3, wa ⊗ w4)
and (n5, wa ⊗ w4) inside foo, when bar returns. We would then like to make
just one IntraQ query on foo with S = {n3, n4, n5} (and appropriate weights),
instead of making a query with just n4 first, and then realizing that the procedure
has to be explored again from n3 and n5.

The algorithm proceeds in two phases. The first phase moves across procedure
boundaries: if (n, w) ∈ R then we propagate this weight to the callers of Prn. We
add (r, w⊗MOPGn

[n, xn]) to R for each return site r of calls to Prn (if the pair
(r, w′) was already present in R, then change w′ to w′ ⊕ (w ⊗ MOPGn

[n, xn])).
This continues until saturation. The use of (precomputed) MOP[n, xn] weights
allow us to quickly jump from a procedure to its callers.

The second phase is intraprocedural. If (n1, w1), · · · , (nk, wk) ∈ R and the
ni are from the same procedure, run IntraQ({n1, · · · , nk}, [ni 7→ wi]) to get
weights on all other nodes in the procedure. This is repeated for all procedures.
The resulting node-weight pairs represent all reachable states.4

The extension of these ideas to WPDSs have two complications: First, con-
figurations add extra constraints on how weights get propagated to callers. For
example, starting at configuration 〈p, γ1γ2〉 constrains weight propagation to γ2

when Prγ1
returns (and not to its other return sites). Second, the number of

4 An alternative to this algorithm would be to construct a single graph for the entire
program, consisting of return edges and intraprocedural edges, then compute its
path sequence and use that to process each ICFG query. The disadvantage with
this method is that the graph need not be reducible, even if procedure CFGs were
reducible, leading to a less efficient algorithm.

11

〈p, γ1 γ2 γ3 · · · γn〉 ⇒
σ1 〈p, γ2 γ3 · · · γk+1 γk+2 · · · γn〉

⇒σ2 〈p, γ3 · · · γk+1 γk+2 · · · γn〉
⇒∗ · · ·
⇒σk 〈p, γk+1 γk+2 · · · γn〉
⇒σk+1 〈p, u1 u2 · · ·uj γk+2 · · · γn〉

Fig. 5. A path in the PDS’s transition relation; ui ∈ Γ, j ≥ 1, k ≤ n, σh ∈ ∆∗.

configurations may be infinite, forcing us to use automata-based symbolic rep-
resentations.

The above ICFG version only required at most one IntraQ query per pro-
cedure, which is ideal. The general version for WPDSs requires slightly more
queries: at most |Q| queries per procedure, where Q is the set of states of Astart.
In general, it requires m queries on a procedure if m is the number of states in
Astart that have an incoming transition on a node of the procedure.

WPDS-version Consider a path σ ∈ ∆∗ in the transition relation of a PDS
that starts from a configuration 〈p, γ1γ2 · · · γn〉. It can always be decomposed as
σ = σ1σ2 · · ·σkσk+1 (see Fig. 5), such that 〈p, γi〉 ⇒σi 〈p, ε〉 for 1 ≤ i ≤ k and
〈p, γk+1〉 ⇒σk+1 〈p, u1u2 · · ·uj〉 (or σk+1 is empty when k = n). In other words,
σi, i ≤ k is the rule sequence whose net effect is to pop off γi without looking at
the stack below it, and σk+1 is the rule sequence that does not look below γk+1

but can replace it and add more symbols on top of the stack. We call the part
where symbols are popped (σ1, · · · , σk) the pop phase and the part where the
stack grows (σk+1), the growth phase.

This property holds because PDS rules can only look at the top of the stack.
For σ to touch γ2, it must first pop off γ1. When it does pop it off, this prefix
would be σ1 (and repeat inductively). If it does not pop off γ1, then σ is already
in the growth phase.

We compute poststar(Astart) by separating these two phases: We add tran-
sitions (with weights) to Astart to obtain Apop, which accepts all configurations
reachable after the pop phase. Then we add transitions to Apop to build Afinal,
which accepts all configurations reachable after the growth phase. The former
part is similar to the first phase of the ICFG-version of the algorithm, and the
latter will correspond to the intraprocedural part, where each procedure is ex-
plored independently of others (similar to the second phase of the ICFG-version).
A running example is shown in Fig. 4(c) − (f).

Terminology (i) A transition t with weight w is added to a weighted automaton
A as follows: if t does not exist in A, then insert it with weight w. If it exists
in A with weight w′, then change its weight to w′ ⊕ w. (ii) We say that A
accepts a configuration c with weight at least w if A(c) ⊑ w (Defn. 2, item 4).
Note that all configurations are accepted with weight at least 0. (iii) The pop
and growth phases are saturation procedures. They convert input A to output

12

A′ by adding transitions to A until a fixpoint is reached; the fixpoint is the
desired output A′. Consequently, for all c, A′(c) ⊑ A(c), and thus for all c,
Afinal(c) ⊑ Apop(c) ⊑ Astart(c).

Pop Phase Let wγ be the weight with which γ can be popped, i.e., wγ =
IMOP(〈p, γ〉, 〈p, ε〉) = MOPGγ

[γ, xγ], which has been precomputed. We perform
saturation on Astart: if it accepts a configuration 〈p, γ γ′ u〉, for any u ∈ Γ ∗, with
weight w, we make it accept 〈p, γ′ u〉 with weight at least w ⊗ wγ , and repeat
until a fixpoint is reached. This is done as follows: if (p, γ, q1) and (q1, γ

′, q2) are
transitions in the automaton with weight w1 and w2, respectively, then add the
transition (p, γ′, q2) with weight w2 ⊗ w1 ⊗ wγ to the automaton. This process
terminates because the number of new transitions added is bounded by |T |,
where T is the set of transitions of Astart. (This is because a transition (q1, γ, q2)
in Astart can cause at most a single transition (p, γ, q2) to be added to Apop.)
Defn. 2 (item 4) ensures that weights on them can change at most H times.
Moreover, the running time is bounded by Os(|T |H).

Intuitively, this works as follows: if there was a path in the automaton from
q2 to the final state on u ∈ Γ ∗ with weight w, then the automaton can accept
〈p, γ γ′ u〉 with weight w ⊗ w2 ⊗ w1. After the addition of the new transition,
the automaton can accept 〈p, γ′ u〉 with weight w ⊗ (w2 ⊗ w1 ⊗ wγ). Fig. 4(d)
shows an example. For instance, Astart accepts 〈p, n6n3〉 with weight wb ⊗ wa,
the weight with which n6 can be popped is w4, and Apop accepts 〈p, n3〉 with
weight wb ⊗ wa ⊗ w4.

Growth Phase For the growth phase, we need to consider all configura-
tions reachable from the top symbols of currently accepted configurations,
i.e., if 〈p, γ u〉, u ∈ Γ ∗, is accepted by Apop with weight w, and 〈p, γ〉 ⇒∗

〈p, u′〉, u′ ∈ Γ+ then 〈p, u′ u〉 should be accepted by Afinal with weight at least
w ⊗ IMOP(〈p, γ〉, 〈p, u′〉). This requires identification of the top symbols, but
these are simply the ones on outgoing transitions from p in Apop (nodes n3, n5

and n6 in Fig. 4(d)).
Now we make use of the observation that called procedures are analyzed

independently of their calling context, and reduce this phase to an intraproce-
dural one. For instance, see Fig. 4(b)—the weight w0 need not be propagated to
transitions involving nodes from bar.

The growth phase proceeds in two parts. The first part constructs au-
tomaton Aint such that if Apop accepted configuration 〈p, γ u〉 with weight
w and 〈p, γ〉 ⇒∗ 〈p, γ′〉 then Aint accepts 〈p, γ′ u〉 with weight at least
w ⊗ IMOP(〈p, γ〉, 〈p, γ′〉). This part requires running IntraQ queries. The sec-
ond part constructs Afinal from Aint by adding transitions with preprocessed
weights.

For the first part, note that if 〈p, γ〉 ⇒∗ 〈p, γ′〉, then γ′ must be from the
same procedure as γ (otherwise, the stack length would be different). Then
IMOP(〈p, γ〉, 〈p, γ′〉) = MOPGγ

[γ, γ′]. Hence, it suffices to do the following: if
(p, γ, q) is a transition with weight w in Apop then add transitions (p, γ′, q) to it,

13

for each γ′ in the same procedure as γ, with weight w⊗MOPGγ
[γ, γ′]. This may

add transitions with weight 0 if γ′ is not reachable from γ, but such transitions
can be removed without changing the meaning of a weighted automaton.

The above process can be optimized. Instead of looking at each transition in
isolation, we handle them in bulk. For a state q of Apop, and a procedure Pr,
let SPr

q be the set of nodes s in Pr such that (p, s, q) is a transition in Apop. Let

µPr
q be such that µPr

q (s) is the weight on (p, s, q). Then add transition (p, s′, q)

with weight IntraQ(SPr
q , µPr

q)(s′). It is easy to see that this imitates the above
process, but is more efficient. This results in automaton Aint. The running time
is bounded by that required to answer |Q||Proc| number of IntraQ queries,
where Q is the set of states of Apop (same as those of Astart), and |Proc| is the
number of procedures in the program.

An example is shown in Fig. 4(e): the algorithm invokes
IntraQ

bar
({n6}, [n6 7→ wa]) to add transitions between p and q. Next, it

invokes IntraQ
foo

({n3, n5}, [n3 7→ wb ⊗ wa ⊗ w4, n5 7→ wc ⊗ wa ⊗ w4]) to add
transitions between p and acc.

The second part of the growth phase adds transitions to accept configurations
of called procedures. For each procedure Pr, add a new state qPr to Aint, and let
Called(Pr) be false initially. Now repeat the following: if (p, γ, q) is a transition
with weight w1 and 〈p, γ〉 →֒ 〈p, c r〉 is a WPDS rule with weight w2, then (i) if
Called(Prc) is false, then set it to true and add transitions (p, γ′, qPrc

) with
weight MOPPrc

[c, γ′], for each node γ′ in Prc; (ii) add transition (qPrc
, r, q)

with weight w1 ⊗ w2.
The intuition here is that with σ = 〈p, γ〉 →֒ 〈p, c r〉, 〈p, γ u〉 ⇒σ 〈p, c r u〉

for any u ∈ Γ ∗. Addition of transitions (p, c, qPrc
) and (qPrc

, r, q) ensures that
the latter configuration is accepted (with appropriate weights). Next, c can reach
node γ′ in the same procedure with weight MOPPrc

[c, γ′], for which the tran-
sitions (p, γ′, qPrc

) are added. Note that the weight at the call site (w1 ⊗ w2)
gets stored on the transition (qPrc

, r, q). Thus, Prc is analyzed independently of
this weight and the weights on transitions (p, γ′, qPrc

), for each γ′ in Prc, are
independent of the input query.

This process terminates because only a finite number of states are added. The
trick of bounding the number of states is common in reachability algorithms for
PDSs [19, 22]. The running time is bounded by Os(|Ret||Q|)+O(|Γ |), where Ret
is the set of return sites in the program (only transitions added by (ii) require
weight operations). This running time is subsumed by that of the first part.
Fig. 4(f) shows an example.

Complexity First, we discuss the complexity of solving a query after prepro-
cessing has been completed. Let Q be the set of states of Astart, and T the set
of its transitions. The pop phase has running time Os(|T |H). The growth phase,
when using Alg3 for IntraQ queries, has running time Os(|Q||Proc||E| log |V |),
where |Proc| is the number of procedures in the program, and |E| and |V | are
the average number of nodes per procedure. This gives a total worst-case run-
ning time of Os(|T |H+ |Q||Proc||E| log |V |). The number of nodes per procedure

14

usually remains constant even as program size increases. Treating log |V | as a
constant, and writing |E||Proc| as |∆| (the number of WPDS rules), we get a
total complexity of Os(|T |H + |Q||∆|). This is asymptotically better than the
complexity of previous algorithms [19, 10], which is Os(|T |H+(|Q|+|Proc|)|∆|H)
in each case. Note the reduced dependence on H for our algorithm (hence less
fixpoint computation around loops and recursion).

If the initial set of configurations is finite (i.e., automaton Astart does not
have any cycles), the running time of the pop phase can be bounded by Os(|T |),
resulting in a total running time (after preprocessing) that is completely inde-
pendent of the height of the weight domain (which is not true for any other
WPDS reachability algorithm).

The complexity for preprocessing is dominated by the step that computes
procedure summaries (and path sequences as a by-product). This just requires
a single dataflow query, and its complexity is as mentioned for [10] above with
|T | = 1, |Q| = 2. Using path sequences to compute the other preprocessing
information is fairly quick.

For observed running times, the experiments reported in the next section
show that the algorithms in this paper provide a speedup when running at least
two queries.

5 Experiments

We refer to the implementation of the algorithm in this paper as SWPDS
(Summary-WPDS). We compare against saturation-based [19] and optimized
[10] approaches for solving WPDS queries, of which we pick the better running
time and refer to it as OWPDS (Old-WPDS).

We carried out experiments on WPDSs obtained from three different applica-
tions. The first application is affine-relation analysis (ARA) of x86 programs [1].
A WPDS is produced from the x86 program using the weight domain for ARA
described in [13]. The goal is to discover affine relationships (linear equalities)
between machine registers.

The first experiment is to find out loop invariants (where loops are discov-
ered by Bourdoncle’s decomposition technique [3]). For outermost loops in a pro-
cedure, a loop summary is obtained as the weight IMOP(〈p, head〉, 〈p, head〉),
where head is the head of the loop. This can be calculated by computing
A = poststar({(〈p, head〉, 1)}), and A(〈p, head〉). Loop invariants can be cal-
culated easily from these summaries. These invariants give the conditions that
hold at the head of the loop and are re-established after each iteration of the
loop. We use common Windows executables, including code for the called li-
braries, and ran the experiments on a 3.2 GHz P4 processor with 3.3GB RAM
running Windows XP.

A conventional way to solve these queries would be to compute the procedure
summaries, plug them at the call-sites and then solve each loop as an intrapro-
cedural problem. We call this technique OWPDS2. It uses Alg1 to solve each
loop. Tab. 1 reports the following timings: the time taken to answer each query

15

independently (OWPDS); the time taken by OWPDS2 (after procedure sum-
maries have been computed); the preprocessing time for SWPDS (Setup); and
the time taken to answer all queries using SWPDS, after preprocessing. We make
two comparisons: (SWPDS+Setup) versus OWPDS, for which we are about 17
times faster (not shown in the table), and SWPDS versus OWPDS2, for which
we are 1.5 times faster. We do not take the setup times into account in the second
comparison because SWPDS preprocessing only computes procedure summaries
(other preprocessing is unnecessary for this application).

Tab. 1 also shows a distribution of the obtained loop invariants. Loop invari-
ants that indicate that a register remains unchanged after each loop iteration
(even though it may get modified inside the loop) are reported separately from
other kinds of invariants. The last eight columns show the number of loops that
have a certain number of constant registers or affine invariants. For example, in
latex, 53 loops do not have any constant registers, and 31 loops have 2 linearly
independent invariants. These invariants can be beneficial to other analysis (e.g.,
they identify loop-induction variables).

Time (s) Constant Registers Other Invariants

Prog Insts Procs Loops OWPDS OWPDS2 Setup SWPDS Speedup 0 1-3 4-6 7-8 0 1 2 ≥ 3

latex 63711 609 280 168 5.7 28 4.3 1.3 53 44 152 31 124 125 31 0
attrib 103473 964 537 290 8.3 46 5.1 1.7 97 114 271 55 227 254 56 0
ftp 130352 1271 634 731 13.5 26 8.7 1.6 130 126 320 58 290 280 64 0
notepad 167430 1609 749 597 12.1 43 8.2 1.5 162 156 369 62 325 336 87 1
cmd 192579 1783 869 3415 24.1 64 18.0 1.3 256 156 391 66 431 355 80 3

Table 1. ARA experiments. The speedup is reported for SWPDS versus OWPDS2.

The second application is Boolean program verification using Moped [22].
Boolean programs are converted to WPDSs, and dataflow analysis is used for
proving properties of the program. Boolean programs can also be represented
using PDSs, but using WPDSs is advantageous because it allows symbolic ma-
nipulation of data using BDDs (which is essential for the scalability of Moped).
In our experiments, the Boolean programs were obtained as a result of predicate
abstraction. The following experiments were run on a 3GHz P4 processor with
2GB RAM running Linux, and the results are reported in Tab. 2.

We ran queries starting from the set of configurations (nRet∗), where n is
a program node and Ret is the set of return-site nodes. Such queries are useful
for finding out the net effect in going from one program statement to another
(for finding dependencies between the two). After the setup time, SWPDS was
4 times than OWPDS on forward reachability queries, and 7 times faster on
backward reachability. This experiment also shows that two dataflow queries are
enough to recover the SWPDS preprocessing time.

The third application (also based on Moped, running on the same Linux
platform), considers context-bounded model checking (CBMC) [14], which aims
to find all reachable states of a concurrent program under a bound on the number
of context switches. Because we lack a front-end to abstract concurrent programs,

16

Forward Reach. Backward Reach. CBMC

Prog Nodes Procs Setup SWPDS OWPDS Speedup SWPDS OWPDS Speedup SWPDS OWPDS Speedup

bugs5 36971 291 11.9 4.2 18.4 4.4 1.4 8.4 5.8 98 183 1.7

unified-serial 38234 291 15.4 5.3 24.5 4.7 1.7 12.1 7.1 129 238 1.6

slam 7161 97 3.5 2.7 14.2 5.3 0.4 2.1 6.0 87 115 1.3

iscsiprt1 4803 82 0.6 0.27 0.84 3.1 0.06 0.36 6.0 6.3 12 1.7

ufloppy13 5679 64 1.5 0.6 2.0 3.1 0.07 0.7 10.3 12 20 1.5

Table 2. Experiments on Boolean programs: (i) Forward and backward reachability
from the set of configurations n Ret∗. The node n was chosen randomly, and running
times, reported in seconds, were averaged across 5 queries. The speedup is reported per
query, ignoring the setup time. (ii) Simulated CBMC queries. The speedup reported
takes the setup time into account.

we performed simulated experiments on sequential programs. We assume that
the global variables of the program are shared with an environment that can
randomly change their value, and the environment itself does not possess any lo-
cal state. We ran one branch of CBMC along which control is transferred to the
environment 5 times. Essentially, this requires the following: for random global
states g1, · · · , g5, if A0 describes the initial configuration of the (sequential) pro-
gram, then compute A1 = poststar(A0) and Ai+1 = poststar(Modify(Ai, gi))
for i = 1 to 5. Here, Modify(A, g) is an automaton that represents the same
set of states as A, but with the shared state changed to g. Because the result
of running poststar is a bigger automaton than the original one, we report the
total time taken to run all the queries. The average speedup was 1.6 times.

The varying amount of speedups in the different applications seem to be
related to the size of S in IntraQ(S, µ) queries. For the ARA experiments, |S|
was always 1 (maximum speedup over OWPDS); for the second application, S

was usually the set of return sites in a procedure; for CBMC, S consisted of all
nodes in a procedure (least amount of speedup). Worst-case complexity does not
predict this effect; this is an observation about measured behavior.

6 Related Work

The goal of incremental program analysis [5, 15, 11, 21, 6] is to reuse as much
information as possible from previous fixpoint computations to calculate a new
fixpoint when a small change is made to the program. Our work has aspects
that resemble incremental computing in that we avoid recomputing the same
information in response to changes in the query. However, we have a single pre-
processing step to compute summaries and path sequences; this information is
used by multiple dataflow queries, but there is no additional information tab-
ulated during one query for use by a later query. This is because we do not
look into the weights (and avoid caching computations over them), and base our
optimizations only on the program control structure.

Another closely related category of work is that on demand-driven dataflow
analysis [16, 20, 7]. There the focus is to do only as much work as is required to
solve a query, and not redo it in a subsequent query. However, these techniques

17

assume a particular form for the weights, and do look inside them (to work
with exploded CFGs). We make fewer assumptions about the weights. These
techniques would not be applicable to the weight domains we considered in
our first application or be able to work with BDDs, as required by the other
applications.

Technically, the most closely related piece of work is our previous work on
speeding up a single dataflow query [10] called FWPDS. It used Tarjan’s al-
gorithm at the intraprocedural level to compute regular expressions for solving
MOP values, and combined it with techniques like incremental computation of
regular expressions to extend it for interprocedural analysis. In this paper, we
use Tarjan’s algorithm to compute path sequences. We combine it with a new
WPDS reachability algorithm that shows how to summarize and reuse infor-
mation at the interprocedural level. Moreover, FWPDS required the starting
set of configurations to be in hand before it built the graphs on which it ran
Tarjan’s algorithm (these graphs need not be CFGs from the program). Thus,
it would build different graphs for different queries, preventing it from sharing
information between them. SWPDS outperforms FWPDS (included as OWPDS
in §5).

References

1. G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
CC, 2004.

2. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL, 2003.

3. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In FMPA,
1993.

4. O. Burkart and B. Steffen. Model checking for context-free processes. In CONCUR,
1992.

5. J. Cai and R. Paige. Program derivation by fixed point computation. SCP, 11(3),
1989.

6. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards. Incremental algo-
rithms for inter-procedural analysis of safety properties. In CAV, 2005.

7. E. Duesterwald, R. Gupta, and M. L. Soffa. Demand-driven computation of inter-
procedural data flow. In POPL, 1995.

8. S. Graham and M. Wegman. A fast and usually linear algorithm for global flow
analysis. J. ACM, 23(1), 1976.

9. J. Knoop and B. Steffen. The interprocedural coincidence theorem. In CC, 1992.
10. A. Lal and T. Reps. Improving pushdown system model checking. In CAV, 2006.
11. Y. A. Liu, S. D. Stoller, and T. Teitelbaum. Static caching for incremental com-

putation. TOPLAS, 20(3), 1998.
12. M. Müller-Olm and H. Seidl. Precise interprocedural analysis through linear alge-

bra. In POPL, 2004.
13. M. Müller-Olm and H. Seidl. Analysis of modular arithmetic. In ESOP, 2005.
14. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.

In TACAS, 2005.
15. G. Ramalingam and T. W. Reps. A categorized bibliography on incremental com-

putation. In POPL, 1993.

18

16. T. Reps. Solving demand versions of interprocedural analysis problems. In CC,
1994.

17. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, 1995.

18. T. Reps, A. Lal, and N. Kidd. Program analysis using weighted pushdown systems.
In FSTTCS, 2007.

19. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. In SCP, volume 58, 2005.

20. S. Sagiv, T. Reps, and S. Horwitz. Precise interprocedural dataflow analysis with
applications to constant propagation. Theor. Comput. Sci., 167(1&2), 1996.

21. D. Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs.
In ICLP, 2003.

22. S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Technical Univ. of
Munich, Munich, Germany, July 2002.

23. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In
Program Flow Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

24. R. E. Tarjan. Fast algorithms for solving path problems. J. ACM, 28(3):594–614,
1981.

A Optimizing Multiple Queries on ICFGs

This section shows how multiple queries on ICFGs can be sped up. The difference
with WPDS-based queries is that these queries do not manipulate automata.
Here, a program state is simply a program node paired with a weight, where the
node may be from any procedure. Given a set of such states, a dataflow query
on ICFG asks for the set of reachable states in the same form. Let Rstart be
the set of starting states. For each program node n, let Cn ⊆ Ret∗ be the set of
valid return contexts for n. The set Cn is generated by the non-terminal XPrn

in the grammar that has the following production for each a, b, and r such that
procedure a calls procedure b with return site r:

Xb → ε | rXa

This grammar enforces the constraint that when a procedure returns, control
goes to one of the return sites from where it was called. The set Rstart represents
the set of weighted configurations Wstart = {(〈p, n u〉, w) | (n, w) ∈ Rstart, u ∈
Cn}. If Wfinal = poststar(Wstart), then an ICFG query asks for the set Rfinal

consisting of all pairs (n, w) where w = ⊕u{wu | (〈p, n u〉, wu) ∈ Wfinal}.
As is standard, a path in an ICFG that starts at the program entry is defined

as one that follows the matched-parentheses grammar with unbalanced open
parenthesis, as defined by non-terminal S1 in Fig. 6. This enforces the property
that a procedure return must go to the most recent call-site, and the path may
make calls that do not have a corresponding return (for unfinished calls).

Paths that may start at an arbitrary program node have to follow a grammar
whose language consists of all substrings of words from the language for S1. This
is defined by the non-terminal S2 in Fig. 6. It is a language of matched parenthesis

19

with unbalanced closed parenthesis on the left and unbalanced open parenthesis
on the right.

If we add an edge, labeled with the terminal em, from a call-site directly to
the matching return-site (representing a summary edge for the called procedure),
the grammar for valid paths is changed to one that uses the non-terminal M ′

instead of M , and the starting non-terminal is S2. This can be concisely written
as ((M ′]i)

∗ M ′ ([i M ′)∗ M ′). Note that the brackets [] are no longer matched
in this grammar because such occurrences are replaced with summary edges.

We process all valid paths in the ICFG by first considering ones generated by
(M ′]i)

∗. We call this phase the return phase because the only interprocedural
edges considered are return edges labeled with]i (similar to the pop phase for
PDSs). Next, we consider paths generated by (M ′ ([i M ′)∗ M ′) and call this
phase the call phase because the interprocedural edges considered are call edges
(similar to the growth phase for PDSs).

M → ε | e

| [i M]i
| M M

Uc → ε

| M Uc

| [i Uc

Ur → ε

| M Ur

|]i Ur

S1 → Uc

S2 → Ur Uc

M ′ → ε | e

| em

| M ′ M ′

Fig. 6. Grammars for interprocedurally valid paths in an ICFG. Edges in the ICFG
are labeled as follows: all intraprocedural edges are labeled with the terminal e, and
the matching procedure call and return edges for call site i as [i and]i, respectively.

The preprocessing for the ICFG algorithm is the same as that for the WPDS
version. The return phase has to consider paths (M ′]i) repeatedly. These paths
connect a node n to one of the valid return sites for Prn. Hence, the return
phase saturates the set Rstart as follows: For every pair (n, w), add (r, w ⊗
MOPGn

[n, xn]) to the set, for each return site r of calls to Prn (if the pair
(r, w′) is already present, then change w′ to w′⊕ (w⊗MOPGn

[n, xn])). The run-
ning time of this phase is bounded by Os(|Rstart|+ (|Ret|H)). Call the resulting
set of states Rreturn. Note that |Rreturn| ≤ |Rstart| + |Ret|.

The call phase proceeds as follows: First, it considers paths generated by M ′.
This requires intraprocedural propagation. If (n1, w1), · · · , (nk, wk) ∈ Rreturn

and the ni are from the same procedure, add (n, IntraQ({n1, · · · , nk}, [ni 7→
wi])(n)) to the set, and repeat for all procedures. Call the resultant set Rint.
This is similar to the construction of the automaton Aint in the WPDS version.
It requires at most one IntraQ query per procedure. While the WPDS version
did not have to do much work beyond this step, the ICFG version still requires
a fixpoint operation. This is because weighted automata represent weights of
configurations in a compositional way, and hence weights did not have to be
propagated from callers to their callees. This is not the case with the ICFG
version. For example, for the program in Fig. 1, if Rstart = {(n4, wa)} then we
must have the pair (n7, wa⊗w4) in the final set of reachable states. In the WPDS
version, this could be done without requiring any weight operations because the

20

result is represented using two transitions that together accept the configuration
〈p, n7 n5〉.

Next, we perform saturation on the set Rint to consider all paths generated
by ([i M ′)∗ M ′, which is the same as [i (M ′ [i)

∗) M ′ because empty paths can
be ignored. Any path generated by (M ′ [i) connects a node n to the entry node
of one of the callees of Prn. The saturation is performed using the following two
rules: (i) for a pair (n, w) such that n is a call site to a procedure starting at
node e, add (e, w ⊗ wc) to the set; (ii) for a pair (e, w), such that e is the entry
node of a procedure, add (n, w ⊗ MOPGe

[e, n]) to the set for each n that is a
call site. Because the number of call sites is bounded by |Ret|, this saturation
requires time Os(|Ret|H). Call the resulting set of states R′

int.

Next, we need to propagate weights intraprocedurally again (for the last
M ′). If (n1, w1), · · · , (nk, wk) ∈ R′

int and the ni are from the same procedure,
add (n, IntraQ({n1, · · · , nk}, [ni 7→ wi])(n)) to the set, and repeat for all pro-
cedures. This requires at most one IntraQ query per procedure. The resulting
set is Rfinal, as required.

The complexity of the entire algorithm described above is Os(|Rstart| +
(|Ret|H) + |∆| log |V |), where |∆| is the number of edges in the ICFG and |V | is
the average number of nodes per procedure.

B Proofs

In this section, we give a proof of correctness of the algorithm in §4. We have to
prove that Afinal indeed represents the set of all forward reachable states from
the ones represented by Astart. The proof is most easily presented using the
correctness of the forward-reachability algorithm from [19]. Hence, we first recall
some details of that algorithm, which we call Alg4. We refer to the algorithm
from §4 as Alg5.

B.1 Algorithm Alg4

This algorithm is also a saturation procedure. Let A be the weighted automa-
ton representing starting set of states, and Apost∗ the result of running this
algorithm.

Let Q be the states of A. Then p ∈ Q (where p is the only PDS state, which
is also the initial state of A) and, without loss of generality, we restrict A to
not have any transitions leading to state p. The automaton Apost∗ has states
Q∪Qmid, where Qmid is defined to be the set of states containing a state qe for
each procedure entry node e

The saturation algorithm starts by adding transitions (p, e, qe) to A with
weight 1 for each procedure entry e. Next, the algorithm proceeds by repeatedly
applying the rules shown in Fig. 7, in any order. When a fixpoint is reached,
transitions on ε are removed. The resultant automaton Apost∗ represents all
forward reachable from A.

21

1. For each pop rule 〈p, γ〉 →֒ 〈p, ε〉 with weight w1 and transition (p, γ, q) with
weight w2, add transition (p, ε, q) with weight w1 ⊗ w2.

2. For each rule 〈p, γ〉 →֒ 〈p, γ′〉 with weight w1 and transition (p, γ, q) with
weight w2, add transition (p, γ′, q) with weight w1 ⊗ w2.

3. For each call rule 〈p, γ〉 →֒ 〈p, γ′γ′′〉 with weight w1 and transition (p, γ, q)
with weight w2, add transition (qγ′ , γ′′, q) with weight w1 ⊗ w2.

4. For transitions (p, ε, q) with weight w1 and (q, γ, q′) with weight w2, add the
transition (p, γ, q′) with weight w2 ⊗ w1.

Fig. 7. Saturation rules for Alg4.

B.2 Correctness of Alg5

We subscript IMOP with the WPDS over which it is computed. Recall that W
is the WPDS for which reachability has to be performed, and its stack alphabet
is Γ .

Pop Phase Let W ′ be the WPDS with rules 〈p, γ〉 →֒ 〈p, ε〉 with weight wγ =
IMOPW({〈p, γ〉}, {〈p, ε〉}) for each γ ∈ Γ . The algorithm for pop-phase runs in
the same fashion as running Alg4 on Astart using W ′ (only the saturation rules
1 and 4 can fire from Fig. 7). Hence, Apop represents all forward reachable states
from Astart under W ′. This means: Apop(c) =

⊕
c′{Astart(c

′)⊗ IMOPW′(c′, c)}.
The weight IMOPW′(c′, c) is exactly the weight with which the pop phase

on W can take c′ to c. The above equality shows that for all configurations c′,
Apop accepts configuration c with weight at least Astart(c

′) ⊗ IMOPW′(c′, c).

Growth Phase Let W ′′ be the WPDS with the same rules as W but without
the pop rules of W . For each call rule 〈p, γ〉 →֒ 〈p, γ′ γ′′〉 with weight w in W ,
add the rule 〈p, γ〉 →֒ 〈p, γ′′〉 with weight w⊗ IMOPW({〈p, γ′〉}, {〈p, ε〉}). Hence,
W ′′ is the WPDS with return rules removed and procedure calls replaced with
summary edges (but the call rules remain in W ′′).

It is easy to see that the WPDS W ′′ captures the growth phase of any
path in W : the value IMOPW(〈p, γ〉, 〈p, u〉), when u ∈ Γ+ equals the value
IMOPW′′(〈p, γ〉, 〈p, u〉). This holds because W ′′ can short-circuit a procedure
call and its subsequent return using the summary rule. Conversely, because W ′′

is not allowed to pop, it cannot look below the top-most element of the stack
and must always grow the stack.

Now we show that running the growth phase of Alg5 on Apop using W results
in the same automaton as the one obtained by running Alg4 on Apop using W ′′

(provided the check for Called(Pr) being false in Alg5 is removed—this is
just a small optimization irrelevant for the correctness of the algorithm).

Consider the execution of Alg4. Let Qmid be the new states added by Alg4.
Because we have the freedom to apply saturation rules of Alg4 in any order,
choose the order in which saturation rule 2 from Fig. 7 is used repeatedly until
saturation, and then saturation rule 3 is used until saturation, and the process is

22

repeated. Note that W ′′ has a non-call rule for each edge in the weighted graph
of each procedure.

First, the repeated application of saturation rule 2 on outgoing transitions
from p that go to a state not in Qmid mimics the construction of Aint by Alg5.
When a fixpoint is reached, Alg4 would have changed Apop to Aint.

Second, the repeated application of saturation rule 2 on outgoing transitions
from p that go to a state in Qmid until a fixpoint mimics the addition of transi-
tions (p, γ, qe) with weight MOPGe

[e, γ] in Alg5.
These are all the transitions that saturation rule 2 can affect. Next, saturation

rule 3 is used on call rules. This mimics the second phase of the growth phase of
Alg5, when transitions leading out from Qmid are added. Because rule 3 does
not affect any transition used by rule 2, the saturation procedure of Alg4 stops
here. Hence Alg4 does not do anything more than Alg5. This proves that the
following holds:

Afinal(c) =
⊕

c′

{Apop(c′) ⊗ IMOPW′′(c′, c)}

The above results can be combined to obtain the following:

Afinal(c) =
⊕

c′,c′′

{Astart(c
′′) ⊗ IMOPW′(c′′, c′) ⊗ IMOPW′′(c′, c)}

The fact that every WPDS path can be decomposed into a pop phase
followed by a growth phase can be stated formally as: IMOPW(c′′, c) =
⊕c′{IMOPW′(c′′, c′) ⊗ IMOPW′′(c′, c)}. Hence, we get:

Afinal(c) =
⊕

c′′

{Astart(c
′′) ⊗ IMOPW(c′′, c)}

This proves that Afinal indeed represents the set of forward reachable states
from Astart.

C Optimizing Multiple Backward Dataflow Queries

In this section, we give the algorithm for optimizing multiple backward dataflow
queries on WPDSs. Given a set β of states (weighted configurations), the set of
backward reachable states is defined as the set prestar(β) = {(c′,⊕c{IMOP(c′, c)⊗
β(c)}) | c′ ∈ P × Γ ∗}.

The standard algorithm for solving backward reachability can be found in
[19]. The algorithm operates on weighed automata that are slighty different from
those defined in Defn. 9. The difference is that the weight of an accepting path
in the automaton is computed by taking the extend of the weights associated
with the transitions in the forwards direction.

Let BIntraQ(S, µ) be the backward version of IntraQ(S, µ). It can be
solved efficiently by computing a path sequence of the graph and then using an
algorithm similar to the one shown in Fig. 3(b) to compute BIntraQ(S, µ)(v) =
⊕s∈SMOP[v, s] ⊗ µ(s) for each vertex v in the graph.

23

The preprocessing phase remains the same as described in §4. A query is
solved by first going backwards through the growth phase, and then backwards
through the pop phase. Let A0 be the starting set of states (the query).

Let wγ = MOPGγ
[γ, xγ] be the pop-weight for γ. Let W ′ be the WPDS

consisting of the rules 〈p, eγ〉 →֒ 〈p, γ〉 with weight MOPGγ
[eγ , γ] for each γ ∈ Γ .

Moreover, for each call rule 〈p, γ〉 →֒ 〈p, e γ′〉 with weight w in W , add the rule
〈p, γ〉 →֒ 〈p, γ′〉 with weight w ⊗ we.

The algorithm proceeds as follows: First, perform backward reachability on
A0 using the WPDS W ′ and the standard algorithm from [19]. Let the result
be A1. This part corresponds to going backward across procedure calls (from
callee to caller). Second, perform BIntraQ queries. For each state q in A1 and
procedure Pr, suppose that {(p, γi, q)|1 ≤ i ≤ n, γi ∈ Pr} is the set of all the
transitions in A1 with nodes from Pr. Let S = {γ1, · · · , γn} and µ(γi) be the
weight on (p, γi, q). Solve BIntraQ(S, µ) and add transition (p, γ, q) with weight
BIntraQ(S, µ)(γ) to the automaton. This completes the growth phase. Next,
add transition (p, γ, p) with weight wγ , for each γ ∈ Γ ∗, to complete the pop
phase. The resultant automaton represents prestar(A0).

24

