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Abstract
We present a scalable failure recovery model for data aggrega-
tions in large scale tree-based overlay networks (TBŌNs). A
TBŌN is a network of hierarchically organized processes that
exploits the logarithmic scaling properties of trees to provide
scalable data multicast, gather, and in-network aggregation.
TBŌNs are commonly used in debugging and performance
tools, system monitoring, information management systems,
stream processing, and mobile ad hoc networks.

Our recovery model leverages inherent information redun-
dancies in TB̄ON computations. This redundant information
is gathered from non-failed processes to compensate for com-
putation and communication state lost due to failures. This
state compensation strategy is attractive because: (1) it avoids
the time and resource overheads of previous reliability ap-
proaches, which rely on explicit replication; (2) recovery is
rapid and only involves a small subset of the network; and (3)
it applies to many useful, complex computations. In this paper,
we formalize the TB̄ON model and its fundamental properties
to prove that our state compensation model properly preserves
computational semantics across TBŌN process failures. These
properties lead to an efficient implementation of state compen-
sation, which we use to empirically validate and evaluate re-
covery performance. We show that state compensation can re-
cover from failures in extremely large TB̄ONs in milliseconds
rendering practically no application service interruption.

1. Introduction
The demand for powerful HPC systems has lead to signifi-
cant increases in system sizes. Today, there exists many thou-
sand, ten thousand and even a hundred thousand processor sys-
tem, BlueGene/L, and numerous initiatives worldwide for ad-
ditional petaflop scale systems with as many as a million pro-
cessors. At these scales, HPC systems likely will exhibit low
mean times between failures increasing the demand for effi-
cient failure recovery models.

Tree-based overlay networks (TB̄ONs) have been shown
to provide a powerful computation model for tool and ap-
plication scalability. A TB̄ON is a network of hierarchi-
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cally organized processes that exploits the logarithmic scal-
ing properties of trees to provide scalable data multicast,
data gather, and in-network aggregation. As early as 1980,
Ladner and Fischer observed that hierarchical decomposition
in the form of parallel prefix computations can be used for
efficient processing [27]. Today, TB̄ONs are used for scal-
able multicast infrastructures [31], for data aggregation ser-
vices [3, 6, 20, 34], in tools [35, 36, 38], information manage-
ment systems [32, 41], stream processing [5], and mobile ad
hoc networks (MANETs) [29, 42].

Our target domain is extremely large scale TBŌNs with
high throughput, low latency requirements for which current
reliability techniques do not provide scalable solutions. This
work is guided by three key observations. First, explicit data
replication for failure recovery often leads to inefficient, high-
overhead mechanisms. However, a fundamental property of
stateful TBŌN computations is that the computational struc-
ture has inherent redundancies: as information is propagated
from the leaves of the tree toward the root, aggregation state,
which generally encapsulates the history of processed infor-
mation, is replicated at successive levels in the tree. Second,
weak data consistency models are amenable to efficient imple-
mentations and do not overly restrict the types of useful tree-
based computations. Other researchers have proposed weaker
state consistency models, likeeventual consistency[5, 10, 22,
28, 32] andequivalent recovery[22] where post-failure output
is equivalent, but not identical, to the output of a non-failed ex-
ecution. In each of these cases, however, the resulting recov-
ery model still relies on explicit replication. Three, recovery
models that require process coordination or global consensus
are inherently non-scalable. Converselyuncoordinatedproto-
cols like in some checkpointing protocols [] yield good per-
formance; however these protocols still require coordination
to recover to a consistent state. Perhaps due to such recovery
complexities, uncoordinated checkpointing is not common in
practice. We have leveraged these observations to develop a
scalable recovery model, calledstate compensation, which ex-
ploits the inherent TB̄ON information redundancies and weak
consistency models to yield the following features:

• No additional computational, network, or storage overhead
during normal execution,

• Completely distributed failure recovery with no process
coordination amongst the small subset of the entire tree
that participates in recovery, and

• Applicability to broad categories of simple and complex
TBŌN computations

The first sections of this paper contain a theoretical treat-
ment of state compensation, and the latter sections describe



the design, implementation, and evaluation of an implementa-
tion based on the MRNet [34] TB̄ON prototype. We formalize
the general TB̄ON computational model in Section 2 and use
this model to prove that state compensation properly recovers
from failure, completely preserving the semantics of the orig-
inal computation. It is imperative that we base such assertions
on proofs rather than ad hoc reasoning to prove that our fault
tolerance mechanisms indeed guarantee correctness. To this
end, in Section 3, we establish two key theorems: the TBŌN
Output Theorem, which says that the output of a TBŌN com-
putation depends only upon the computational state at the root
process and the in-flight data, and the All-encompassing Leaf
State Theorem, which says that the state at the leaves of any
sub-tree subsume the computational and communication state
throughout the rest of the TB̄ON. The formal model helps us
understand the applicability and limitations of our approach.
The model also provides a road map for an efficient imple-
mentation. Specifically, the combination of the two properties
above results in our recovery model described in Section 4 and
its implementation in Section 5. In Section 6, we empirically
evaluate our state compensation strategy and show that failure
recovery is both efficient and scalable. Finally, after describing
related research in Section 7, we close with our conclusions.

2. The TBŌN Model
The formal definition of our computational model is derived
from our experiences with the MRNet TB̄ON prototype [1, 2,
34, 35, 37]. For simplicity, we often depict a completely bal-
anced, binary tree, but the model generalizes and only requires
that the tree be connected. We also discuss our model’s gener-
ality by discussing a variety algorithms that are well-suited for
TBŌNs.

2.1 Computational Specification

TBŌN’s are used to execute scalable analyses on continuously
streaming data. As shown in Figure 1, the application back-
ends at the TB̄ON leaves are input data producers, and the ap-
plication front-end at the root is the consumer of computation
output. Root, leaf, and internal processes are calledcommuni-
cation processesand labeledCPi , wherei is a unique identifier.
CP0 is always the TB̄ON root. We presume that all processes
know the TBŌN topology via information relayed during tree
(re)configuration protocols.

Communication processes stream datapackets to each
other via a reliable transport like TCP. Communication pro-
cesses have enumerated input channels; input packets are de-
scribed byinn(CPi , j), which specifies is thenth input toCPi
on its jth channel. Achannel’s stateis its incident vector of
in-transit packets:csm,n(CPi , j) is the vector of in-transit pack-
ets toCPi on its jth channel whenCPi has filteredm packets
from this channel and the channel’s source has sentn packets,
m≤ n:

csm,n(CPi , j) = [inm+1(CPi , j), inm+2(CPi , j), . . . , inn(CPi , j)]
(1)

cs(CPi) represents the union of the state of all ofCPi ’s input
channels. If the channel between two processes is empty, then
we say those two processes aresynchronized. Finally, analo-
gous to input packets,outn(CPi) is CPi ’s nth filter output. Nat-
urally, sets of output, one from each child, become the parent’s
inputs:

{outn(CPj ),outn(CPk)}= {inn(CPi , l), inn(CPi ,m)}= inn(CPi),
(2)

whereCPj andCPk are sources forCPi ’s l th andmth channels;
inn(CPi) denotes theCPi ’s nth set of inputs.

2.2 Data Aggregation

Packet filtersperform data aggregation on application packets.
Filters and packets have type attributes; a filter can only be
applied to similarly typed packets. Specifically, a filter,f , is
a function that takes as input a set of packets and outputs
a single (potentially null-valued) packet. The general TBŌN
model allows multiple outputs, but so far in practice we have
found this unnecessary. We adopt the dataflow model where a
filter executes when an input from every channel is available.
In our model, filters operate on specific data streams. There
can be multiple active streams each with its own filter; we
do not discuss multiple streams of dataflow, but our concepts
readily extend to those cases.

Filter state Stateful aggregations use persistentfilter state
to carry side-effects from one invocation to the next;f sn(CPi)
is CPi ’s state aftern filter invocations. Consider thesub-graph
folding filter [35], which continuously merges sub-graphs (in-
puts) into a single graph (output). Each communication pro-
cess stores the current merged graph encapsulating the history
of sub graphs filtered by that process as persistent state. As
new sub-graphs (inputs) arrive, the filter outputs any updates
to its current merged graph (state). In Section 2.3, we discuss
how these concepts, state as history and inputs/outputs as in-
cremental updates, generally apply to both simple and com-
plex stateful filters.

The filter function Using our notation a filter function,f , is
defined as:

f (inn(CPi), f sn(CPi))→{outn(CPi), f sn+1(CPi)} (3)

That is, a filter inputs a packet from each child and its cur-
rent filter state and produces an output packet while updating
its local state.f , can be abstracted as two operations: a state
join operation,t, which merges states together, and a differ-
ence operation,−, which computes the incremental difference
between two states.

State join The filter uses a function with many properties of
a join to update its current state by merging it with the new
inputs:

inn(CPi)t f sn(CPi)→ f sn+1(CPi) (4)

Based on our experiences, we observe that a join operation
with the following properties is not unduly restrictive and
admits many useful filters:

Commutative : atb = bta

Associative: (atb)tc = at (btc)
Idempotent : ata = a

The relevance of commutativity and associativity has been
noted previously in the application of parallel prefix compu-
tations [27]. These properties enable our relaxed consistency
model and facilitate efficient failure recovery. For example,
since the order and grouping of operands are irrelevant, we
do not have to preserve the original operand order or grouping
post-failure.

We can deduce that at any instant a communication pro-
cess’ filter state is the join of the previous inputs it has filtered:
f s0(CPi) = ∅, and

f sn(CPi) = in0(CPi)t . . .t inn−1(CPi) (5)

whereCPi has filteredn waves of input.
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Figure 1. The TBŌN Computational Model. Application back-ends continuously stream data into the TBŌN. Communication
processes use filters to aggregate this data and propagate analysis results to the front-end.

State difference The filter function computes its output by
calculating the incremental difference between its previous
and current states:

f sn+1(CPi)− f sn(CPi) = outn(CPi) (6)

We call “−” a contextual inverseof t: If atb= c andc−a=
b′, thenat b = at b′, and we sayb ≡ b′ in the context of
joining with a. Consider the example wheret is set union,
and− is set difference:{1,2,3}t {2,3,4} = {1,2,3,4}, but
{1,2,3,4} − {1,2,3} = {4} 6= {2,3,4}; however{1,2,3} t
{2,3,4}= {1,2,3}t{4}.

2.3 The Generality of the TBŌN Model

Previously, we have discussed the tree-based computing model
as a powerful abstraction for application performance and
scalability [2]. While this previous work did not include a
formal specification of the computational model, it contains a
fuller discussion of current and potential TB̄ON applications.
Here, we summarize how these applications map into our
formal model, focusing on those stateful filter computations
that operate on streams of input (as opposed to a single wave.)

Common stateful data aggregations include simple ones
like historical min, historical max, count, andhistorical
average, which quickly summarize large data sets. In each of
these cases, as new inputs are processed by the filter, they
are merged with the current state. For example,historical
max merges new input by computing the maximum of the new

inputs and the previous maximum. The outputs are then com-
puted by calculating the incremental state change, if any. For
historical max, the previous and new maximums are com-
pared to determine the output update. Such aggregations are
used in distributed tools [7, 20], system monitors [36, 38],
MANETs [14, 29, 30, 42], and information management sys-
tems [5, 32].

More recently, we have been studying more complex data
aggregations like clock synchronization algorithms [34], time-
aligned data aggregation [34], scalable performance analy-
sis [35], and graph analysis algorithms for visualization [35]
and stack trace debugging analysis [1]. Again, these aggrega-
tions follow the model of updating current filter state with new
inputs and propagating the incremental state changes as out-
put. For instance, in the graph analysis algorithms, new input
sub-graphs are folded into the filter’s current graph, and the
filter outputs the updates to its graph structure.

The TBŌN model is also well-suited for large classes of
analysis algorithms that run on large (terascale and petascale)
datasets from scientific and business domains. For instance,
data mining or information extraction, the process of distill-
ing specific facts and features from large quantities of data, is
the basis for many important application areas including Inter-
net information retrieval [24, 40], bio-information [23], intru-
sion detection and threat analysis [8], geographical informa-
tion systems [21], business intelligence [26, 25], and organiz-



ing digital audio collections [39]. These applications can be
mapped into the TB̄ON abstraction in two ways: First, typi-
cally, some data model or statistical analysis is used to group
related elements and distinguish unrelated ones. For dynamic
or learning data models, new inputs are used to update the data
model and changes to the model are output. Second, these
models are used to form data clusters or equivalence classes
of input data objects: new inputs are placed into appropriate
classes and the incremental changes to the object classifica-
tions are output.

3. TBŌN Theories and Proofs
The following theories and proofs show the relationship be-
tween the various filter and channel states throughout the
TBŌN distributed computation. The principle observations
are summarized in Theorem 3.3, which states that for any sub-
tree, the filter states at that sub-tree’s leaf processes contain
information that subsumes the sub-tree’s channel states, and
Theorem 3.4, which states that TB̄ON output is a function
of the root process’ filter state and the set of TBŌN channel
states. These results inspire our state compensation recovery
model, in Section 4, and will be used to prove that this recov-
ery model preserves TB̄ON computational semantics across
failures.

This first theorem shows the equivalence between a filter’s
inputs and its output and is used to support the latter theorems.
Intuitively, data aggregation summarizes relevant feature(s)
of the input set in its output: output can be considered as
the original input minus uninteresting features. For example,
a user may only be interested in the maximum temperature
readings of a set of sensors for the duration of a simulation; a
max aggregation would return this result and filter out the other
uninteresting temperature readings.

THEOREM 3.1 (Input/output equivalence theorem).A filter’s
output is equivalent to its given input in the context of joining
with the filter’s old state.

Proof

(Eqn. 4: int fs = fs’)

inn(CPp)t f sn(CPp) = f sn+1(CPp)

− is inverse oft
inn(CPp) ≡ f sn+1(CPp)− f sn(CPp)

(Eqn. 6: fs’ - fs = output)

inn(CPp) ≡ outn(CPp)

Theorem 3.2 formalizes the inherent information redun-
dancy that occurs during a TB̄ON computation as data prop-
agates from the leaves toward the root. This property will be
extended to show that the state at the leaf processes of a TBŌN
sub-tree contains all the information available in the rest of that
sub-tree.

THEOREM 3.2 (Inherent redundancy theorem).The join of a
communication process’ filter state with its pending channel
state is equal to the join of its children’s states.

Proof Let CPi be an arbitrary communication process with
childCPj andCPk on incoming channelsl andm, respectively.

Also, letCPi , CPj , andCPk have filteredn, o, andp waves of
input, respectively;n≤ o,n≤ p.

f sn(CPi)tcsn,o(CPi , l)tcsn,p(CPi ,m)

(Eqn. 5: state = join of input history)

= in0(CPi)t . . .t inn−1(CPi)t
csn,o(CPi ,1)tcsn,p(CPi ,m)

(Eqn. 2: input = join of children’s output)

= (out0(CPj )tout0(CPk))t . . .t
(outn−1(CPj )toutn−1(CPk))t

csn,o(CPi , j)tcsn,p(CPi ,k)

(Eqns. 1 & 2: channel state = channel source output)

= (out0(CPj )tout0(CPk))t . . .t
(outn−1(CPj )toutn−1(CPk))t
outn(CPj )t . . .t (outo(CPj )t
outn(CPk)t . . .t (outp(CPk)

(Commuting the operands) := out0(CPj )t . . .touto(CPj )t
out0(CPk)t . . .toutp(CPk)

(Thm. 3.1: output≡ input)

= in0(CPj )t . . .t ino(CPj )t
in0(CPk)t . . .t inp(CPk)

(Eqn. 5: input history = filter state)

= f so(CPj )t f sp(CPk)

We can now show that the state at the leaf processes of a
sub-tree contains all the information available in the rest of
that sub-tree. This means that should any non-leaf channel or
filter state be lost, the information necessary to regenerate that
state exists at the leaves of any sub-tree that totally contains
the lost components.

THEOREM 3.3 (The All-encompassing Leaf States).The join
of the states at the leaves of a TBŌN sub-tree equals the join
of the state at the sub-tree’s root process and all the TBŌN
in-flight data.

Proof We introduce a new operator,desck, which describes
the set of descendants of a communication processk levels
away:

desc0(CPi) = CPi ;
desc1(CPi , j)→ jth child of CPi ;
desc1(CPi) → {desc1(CPi ,0), . . . ,desc1(CPi ,n− 1)}, n =

fanout ofCPi ;
desc({CPm, . . . ,CPn}) → desc1(CPm)∪ . . .∪ desc1(CPn);

and
desck(CPi),1 < k≤ tree depth→ desc(desck−1(CPi))

When the f s and cs operators are used without a subscript,
they represent the specified process or channel’s current state



based on filtered or incident packets. Similarly, without sub-
scripts,in andout designate the specified process’ input and
output history, respectively. Lastly, when any of these opera-
tors are applied to a set of processes or channels, they return
the join of that operator applied to the individual set’s mem-
bers.

From Theorem 3.2, we deduce:

f s(desc1(CP0)) = f s(desc0(CP0))tcs(desc0(CP0))

f s(desc2(CP0)) = f s(desc1(CP0))tcs(desc1(CP0))
. . .

f s(desck(CP0)) = f s(desck−1(CP0))tcs(desck−1(CP0)).

Substituting the former identities into the latter:

f s(desck(CP0)) =

f s(CP0)tcs(desc0(CP0))t . . .tcs(desck−1(CP0))

Finally, we can show that the TB̄ON computation’s output
stream is solely a function of the root process filter state and
all the TBŌN channel states. The TB̄ON input is the stream of
inputs filtered by the TB̄ON leaf processes:in(desck(CP0)),
wherek is the TBŌN depth. The TB̄ON output is the stream
of outputs produced at the TB̄ON root process. We define the
effective TBŌN output,out(CP0), to be the stream of outputs
produced by the root process if the system input quiesces and
all communication processes become synchronized; that is, the
root and the leaf processes have filtered the same number of
input waves.

Theorem 3.1 shows the equivalence between a communi-
cation process’ input and the aggregated output it produces:
in(CPi) ≡ out(CPi). We can generalize this theorem to state
that the join of the inputs of any level of TB̄ON processes are
equivalent to the join of the outputs produced by those pro-
cesses:in(desck(CP0))≡ out(desck(CP0)). Since output from
levelk becomes input to levelk−1, an induction yields:

in(desck(CP0))≡ out(CP0) (7)

In words, the input to the TB̄ON leaf processes is equivalent
to the aggregated output of the root process.

THEOREM 3.4 (TBŌN Output Theorem).The output of a
TBŌN computation is solely a function of the TBŌN root pro-
cess state and the TB̄ON channel states.

Proof

(Eqn. 7)

out(CP0) ≡ in(desck(CP0))

(Eqn. 5: input history equals filter state)

≡ f s(desck(CP0))

(By Thm. 3.3)

≡ f s(CP0) t cs(desc0(CP0)) t . . .

t cs(desck−1(CP0))

4. State Compensation: A Scalable TB̄ON
Failure Recovery Model

In state compensation, we merge states from non-failed TBŌN
processes to compensate for state lost due to process and chan-
nel failures. After describing our failure model and recovery
guarantees, we definestate composition, the focal compensa-
tion operation in this paper. We use the previous theoretical
results to prove that state composition preserves the semantics
of the original computation.

4.1 Failure Model

Our state compensation strategy tolerates non-transient, fail-
stop failures due to process, node, or network failures assum-
ing we can detect such failures. Performance failures, such as
transmission delays, may be treated as network failures. Our
approach tolerates such failures at root, leaf, or internal TBŌN
processes.

In large scale environments, there is a legitimate concern
for multiple simultaneous failures caused by high failure rates
or hardware failures, like that of a network switch or multi-
processor node. We collapse multiple simultaneous failures
into failure zones, regions of contiguous failed nodes, shown
in Figure 2, and use state from processes outside the failure
zones for compensation.

For application process failures outside the TBŌN, appli-
cation processes may be viewed as sequential data sources
and sinks amenable to light-weight, individual checkpointing,
which avoids the complexity and cost of distributed protocols.
Certain applications may require only a process restart as op-
posed to a process recovery; for example, a data monitoring
application simply may resume sending updated monitor data
values. In cases where the application processes use communi-
cation channels external to the TB̄ON, distributed checkpoints
may be needed – we have not seen real examples where this is
necessary.

4.2 Consistency Model

State compensation establishes a recovery guarantee similar to
theconvergentrecovery type described by Hwang et al. [22].
Consider the output streams of two identical TBŌNs executing
the same aggregation on the same input stream; one completes
without failure, and the other undergoes failure recovery. In
convergent recovery, intermediate results may be different, but
the final output stream converges to the non-failure case. The
temporary output divergence is due to commutations and dif-
ferent associations of input streams that have been re-routed
to accommodate the failure(s). Note that convergent recovery
preserves all output information, although specific intermedi-
ate output data packets may differ.

4.3 State Composition

In Section 3, we demonstrated that: the effective output of a
TBŌN computation is a function of the TB̄ON root’s filter
state and the TB̄ON channel states; and for any TB̄ON sub-
tree, the filter states at the leaves subsume the rest of the TBŌN
filter and channel states. State composition leverages these two
characteristics to recover from process failures by replacing
lost channel state with the filter state from the orphaned de-
scendants of processes in afailure zone. Specifically, after the
orphans are re-adopted into the tree, they propagate their filter
state as output to their new parent. We call thisstate compo-
sition because the states used for failure compensation form a
composite equivalent to the state that has been lost. The fol-



lowing proof shows that it naturally follows that state compo-
sition preserves a computation’s semantics across failures:

CP0

CP7

CP3

CP8 CP9

CP4

CP10 CP11

CP5

CP12 CP13

CP6

CP14

CP1 CP2

Failure Zone

Recovery Participants

Lost Channel

Figure 2. TBŌN failure zones, regions of contiguous failures,
determine which processes participate in failure recovery.

THEOREM 4.1 (State Composition Theorem).A TBŌN can
tolerate failures without changing the computation’s seman-
tics by re-introducing filter state from the descendants of failed
processes as channel state.

Proof Consider a TB̄ON, T, with a sub-tree rooted at process
CPi , and letCPi ’s mth channel be connected toCPj , as shown
in Figure 3. IfCPj fails, the TBŌN loses the following states:
f s(CPj ), cs(CPj ), andcs(CPi ,m). Since Theorem 3.4 states
the TBŌN computation only depends on the system’s root
and states, we only need to show that re-introducingCPj ’s
children’s state as channel state compensates for the lost states,
cs(CPj ), and cs(CPi ,m), i.e. the composition of the former
states subsume the latter lost states.

Now, only consider the sub-tree rooted atCPi and whose
only leaves are the children ofCPj . Clearly, this sub-tree’s in-
cident channels are the channels lost shouldCPj fail. Theo-
rem 3.3 says that filter states at the sub-tree’s leaves subsume
the states throughout the rest of this sub-tree. Specifically,CPk
andCPl ’s states subsumecs(CPj ) andcs(CPi ,m) and can re-
place those states without changing the computation’s seman-
tics.

During normal system operation, we do not explicitly track
what messages have been filtered and what output has been
transmitted. This means that if the root process fails, we can-
not know what output has already been propagated to the ap-
plication front-end. Therefore, we must act conservatively and
regenerate the entire TB̄ON output stream. If a new TB̄ON
process becomes the root, this works automatically as its ini-
tial filter state will be empty and as it receives the compen-
sated states from the orphaned processes, its incremental up-
date (from the null state) will be the complete join of the com-
pensating states. If an existing TB̄ON process is promoted to
the root, it must propagate its current filter state to the front-
end to guarantee that the updates encapsulated in its state are
transmitted to the front-end.

While state composition does not tolerate the failure of leaf
TBŌN processes, we are studying other compensation opera-
tions like state decomposition, which generates compensatory
states for a failed child byextracting the composition of its

CPi

CPk CPl

CPj

cs( CPj )

cs( CPi , m)

CPj fails!

Failure Zone

Recovery Participants

Lost Channel

fs(CPj )

Figure 3. A TBŌN sub-tree with a failed process. WhenCPj
fails, f s(CPj ), cs(CPj ), andcs(CPi ,m) are lost.

siblings’ states from that of its parent. This approach recovers
the state of a failed child process to a point synchronized with
its parent. However, the recovery of lost in-transit messages
may require explicit duplication, like message logging. State
decomposition also should prove useful to precisely calculate
the (effect of) lost messages and compensate for lost channel
state in non-idempotent computations. This will avoid over-
valuation by only compensating for lost messages, not those
that have been filtered above the failure point. Lastly, our com-
putational model requires that filter functions be commutative
and associative. If a heterogeneous set of filters are composed
into a single computation, as long as the composition of these
filters are commutative and associative, state composition can
be leveraged.

5. Failure Recovery Implementation
Our failure recovery has three components: failure detection,
process tree reconstruction to accommodate the failure, and
lost state compensation. We have developed a fault-tolerant
MRNet prototype [34] by adding implementations of these
components. An additional outcome of our extensions is that
MRNet now supports dynamic changes to its process organiza-
tion: previously, the MRNet process tree was fixed at startup.

5.1 Event Detection Service

We extended MRNet with an Event Detection Service (EDS)
running as a thread within each MRNet process. The EDS’
primary purpose is failure detection, however the EDS is also
responsible for dynamically establishing new children connec-
tions as in the tree reconstruction protocol (discussed in the
next section.) In addition, the EDS accepts a special protocol
message signaling it to terminate the process. This feature is
used to inject failures into the TB̄ON for recovery performance
evaluation as described in Section 6.1.

Failure detection in distributed systems comprises compo-
nent failure detection and failure information dissemination.
For component failure detection, we use a lightweight protocol
where the EDS at each TB̄ON process monitors that process’
peers for failures. This approach is scalable as the number of
peers that each process monitors is constrained by the process
tree’s fan-out. In our current implementation, the EDSs at peer
processes establish an extra TCP connection used solely for
component failure detection. A premature termination of this



connection, for instance due to a host/process crash or a link
failure, results in the non-failed kernel aborting the connec-
tion, and we deem this a failure of the remote peer. Timeli-
ness of the current detection mechanism depends on the cause
of failures: process failures are immediately detected by re-
mote peers. Node failures that prevent the kernel from explic-
itly aborting connections can be detected via TCP keep-alive
probes. Keep-alive probes have a two hour minimum default
period that generally can only be lowered on a system-wide
basis by privileged users [43]. Heartbeat protocols [] could be
used for more responsive node failure detection.

Since each process is monitored by multiple peer EDSs,
multiple EDSs will detect the failure of each component. Any
EDS that detects a component failure propagates that informa-
tion to its surviving peers: an EDS that detects that its parent
has failed sends that information to its children, and an EDS
that detects that one of its children have failed sends that in-
formation to its parent and surviving children. Upon receiving
failure data, an EDS propagates that data its peers except the
one from which it received that data. In this fashion, we lever-
age the structure of the TB̄ON for scalable failure information
dissemination. In the future, we will do a comparative study of
TBŌN-based protocols for information dissemination versus
other scalable protocols like epidemic data dissemination [33].

5.2 Tree Reconstruction

Upon failure detection, disconnected subtrees must be recon-
nected into the main process tree. For tree reconstruction, we
consider three things. First, increases in tree depth leads to in-
creases in communication latencies, so we favor connecting
disconnected subtrees such that the overall depth of the tree
is not increased. Second, overloading parent processes with
new subtrees may lead to load imbalances resulting in poor
performance, so we desire a mechanism to evenly distribute
orphaned processes among adopting parents in the main tree.
Third, the TBŌN may have been organized to place processes
according to the physical network, so orphans should favor
adoption by parents closer in the virtual topology.

We implement a simple tree reconstruction protocol that
adheres to the above issues and can be executed in parallel by
each orphaned process. The protocol assumes each orphan has
complete topology information but can tolerate outdated infor-
mation. For each potential adopting process,CPi , in the main
tree, an orphan computes anadoption weight, wi that factors
the new tree depth if that process were to adopt that orphan
and the proximity of the two processes in the original tree.
Adoption weights are positive real numbers, and processes
with higher adoption weights are favored for adoption. In a
balanced tree when a process fails, orphaned children likely
will compute similar adoption weights for the parents in the
main tree, since the disconnected subtrees would have similar
depths and similar proximities to the potential adopters. This
would lead to all orphans favoring the same set of potential
adopters and undesired tree imbalances. To mitigate this phe-
nomenon without orphan coordination, we use the adoption
weights to perform a weighted random sampling as described
by Efraimidis and Spirakis [16]. Briefly, we sort the vector of

potential adopters using a key,ki = r
1
wi
i , wherer i is a random

number uniformly distributed in[0,1]. For any two keyski and
k j , P[ki > k j ] = wi

wi+w j
. Each orphan iteratively tries to connect

to the nodes in the sorted vector until it succeeds in establish-
ing a new parent-child relationship. This allows the protocol
to tolerate failures that occur during the recovery process.

After reconstruction, recovery information is disseminated
throughout the TB̄ON in a fashion similar to that used for fail-
ure reports. A failure report contains the rank of the failed pro-
cess. A recovery report contains the ranks of the previously
orphaned process and its new parent. Since disconnected sub-
trees remain intact, this information is sufficient for recipi-
ents to properly update their topology information. For cor-
rectness, we must address both timeliness and consistency is-
sues of our dissemination protocol. As discussed above, or-
phaned processes tolerate stale topology information by itera-
tively connecting to potential adopters until this task succeeds.
Furthermore, the randomness in our tree reconstruction algo-
rithm helps to mitigate cases where stale data might otherwise
lead to overloading a parent process with new children.

For consistency, we must address missing, duplicate, and
out-of-order data. Missing data is untimely data with an in-
finite latency, and the above discussion of timeliness holds.
Duplicate reports can be received by a process if its subtree is
moved multiple times to different branches of the tree due to
multiple failures, and it receives reports from both branches.
Applications of failure and recovery reports are idempotent:
they amount to a reiteration that a process is still dead or that
a child has is still adopted by its parent. Failure reports signal
process terminations and therefore cannot contain conflicting
information. Out-of-order failure reports then become a time-
liness problem and only lead to stale information. On the other
hand, multiple recovery reports from multiple failures regard-
ing the same orphan can conflict. If processed in the wrong or-
der, topology information will become incorrect. We adopt the
concept ofincarnation versionsto address this problem. Each
TBŌN process maintains an incarnation number. After each
recovery, an orphan’s incarnation version is incremented and
propagated with the recovery report. Processes disregard re-
covery reports regarding orphans for whom they have received
a report with a higher incarnation number.

5.3 Compensating for Lost State

The complete recovery process is implemented as shown in
Figure 4: a parent process that detects a child failure removes
the failed channel from its list of pending input channels and
continues normal operation. Children processes that detect the
failure of their parent can no longer propagate filter output to-
ward the TB̄ON root. In the current implementation, orphaned
processes temporarily halt new input processing until they are
re-integrated into the main tree. Alternatively, orphaned chil-
dren could continue to fetch and filter new input and buffer its
output until it is reconnected to the rest of the tree. Further-
more, since the child process’ filter state, which will be prop-
agated toward the root upon child reconnection, would sub-
sume all its channel output, we could continue input filtering
and discard all output until failure recovery is complete.

Once the new TB̄ON organization is known, orphaned pro-
cesses establish a connection with their new parent. After a
new parent/child relationship is established, the newly adopted
child propagates its current filter state for all active streams
as input to the new parent. After this state is re-introduced as
channel state, compensation for lost output is complete, and
the child process resumes normal input processing.

Failures that occur during the recovery process are easily
accommodated. If new failures are detected during the deter-
mination of the new tree topology, recovery can be restarted to
account for the new failures. If a child is unsuccessful in trying
to reconnect to its new parent, it updates its data structures and
tries the next process in its sorted potential adopters vector.



1: if detect child failure
2: remove failed child from input list
3: continue filtering from non-failed children
4: endif

5: if detect parent failure
6: do
7: determine and connect to new parent
8: while failure to connect
9: propagate filter state to parent

10:endif

Figure 4. Failure Recovery Algorithm

6. Evaluation
Without failures, our state compensation recovery model in-
curs no overhead. Our evaluation empirically validates the cor-
rect operation of state compensation when failures occur and
qualifies recovery performance. We perform our tests on a
cluster of 3.0 GHz Pentium IV nodes with 1-2GB RAM on
a 100Mbit Ethernet.(Comment: Reviewers: We are setting up on
Thunder, LLNL’s 1,024 node Itanium cluster, to run the larger exper-
iments. We expect them to follow the trends of the smaller experi-
ments.)

6.1 Failure Injection

We have implemented a failure injection service (FIS) that in-
jects failures into the MRNet process tree. The FIS connects to
a victim process’ EDS and passes it aterminate self event,
recording the time the failure was injected. After failure re-
covery, previously orphaned processes notify the FIS that they
have completed recovery. The time the FIS receives recovery
information from the last orphan can be used conservatively
to compute recovery latencies. This computation is conser-
vative because the latency comprisesterminate self and
recovery complete message transmission latencies. Fur-
thermore, recovery information is received sequentially at the
FIS allowing for additional serialization overheads.

6.2 Validating the Recovery Model

To verify that state compensation preserves computational se-
mantics across failures, we use an integer union computation.
In this computation, application back-ends randomly generate
integer elements and propagate them toward the application
front-end. Parent processes propagate the unique integers in
their input stream filtering out duplicates. Filters at each pro-
cess keep the set of previously processed integers as persistent
state to filter subsequent input. The final output at the applica-
tion front-end should be the complete set of integers input by
the back-ends. The back-ends record their generated data ele-
ments to files for comparison with the set output to the front-
end. We use the integer union computation as its output is eas-
ily verifiable, and this computation is representative of more
complex aggregations. For example, the sub-graph folding al-
gorithm [35] used in the Paradyn tool is in essence this com-
putation operating on graph data instead of integral data and
using graph merge and graph difference operations instead of
integer set union and integer set difference.

After verifying correctness in the absence of failures, we
used the FIS to inject failures into running instances of this
computation and inspected the result. As expected, the final
set generated at the front-end equaled the union of the sets
generated by the back-ends. Had data been lost due to the

injected failures, the output set at the front-end would be a
proper subset of the union of the input sets.

6.3 Micro-benchmarking Failure Recovery

Recall that only orphaned processes (and adopting parents)
participate in failure recovery. In this experiment, we study
how increased numbers of orphans impact failure recovery la-
tencies. During failure recovery, orphaned processes record
the following data: the time to compute its new parent, the
time to connect to its new parent, the time to propagate fil-
ter state for compensation, and the overall recovery latency.
These local measures along with the conservative global re-
covery estimates computed by the FIS,GOverall, are shown
in Figure 5 for increasing TB̄ON fan-outs. Our previous MR-
Net experiences suggest that typical fanouts range from 16 to
32. We (will) test extreme fanouts up to 128 since hardware
constraints can force such situations. For instance, LLNL’s
BlueGene/L prototype enforces a 1:128 fanout from its 1,024
I/O nodes to its 65,536 dual-core compute nodes. A TBŌN of
a depth 3 and a fanout of 64 would be twice the size of this su-
percomputer. Resource constraints do not allow us to test bal-
anced trees with these large fan-outs, so we organize the test
trees such that processes to be killed have the large fan-outs.

In Figure 5, we show the average across all orphans for
the locally computed metrics. Since our recovery algorithm
does not require coordination and executes in parallel at each
orphan, increasing the number of orphans does not increase
the time it takes for disconnected sub-trees to be re-integrated
into the main TB̄ON tree. In fact, even if we consider the
conservative estimate of overall recovery latency computed by
the FIS, these latencies of just over 60 milli-seconds for our
largest fanout practically constitute no service interuption.

7. Related Work
Reliability protocols can be categorized as fail-over, rollback-
recovery, and multi-path data transmission. We include the lat-
ter as a state recovery scheme since in aggregation networks,
computational state and output data can be synonymous, and
thus output-replicating protocols can replicate process state.

In fail-over based schemes, hosts or processes periodically
synchronize their states with backup replicas, which replace
failed primary components [9, 11, 12]. Component synchro-
nization and high resource utilization during normal opera-
tion limit the scalability of such schemes. For example, at a
minimum (one backup per primary), fail-over protocols reduce
available computational resources by 50%.

In rollback recovery protocols, processes periodically
checkpoint their state to persistent storage. Upon failure, the
system rolls back the intermediate state in the checkpoint [17].
The common variant of distributed rollback-recovery is coor-
dinated checkpointing, which requires process coordination to
record a consistent checkpoint [13, 18]. A recent evaluation of
checkpointing for systems projected to be available by 2010
concludes that such protocols will require dedicated resources
and that poorly chosen checkpoint intervals may lead to over-
loaded network and storage resources [19].

In multi-path data transmission protocols, data is dissemi-
nated along multiple paths to increase availability should fail-
ures occur. This strategy is used ingossiping protocols[4, 15,
33] and for multi-path routing protocols in MANETs [14, 30].
Gossip protocols provide probabilistic transmission guaran-
tees with good scalability but are not suitable for applications
with high throughput and timeliness requirements. For exam-
ple, Astrolabe [32], a gossip-based data management system,



Figure 5. Failure Recovery Micro-benchmark Results.GOverall, is a conservative overall recovery estimate recorded by the
failure injection service.Overall is the average of the total recovery latency recorded by each orphan.New Parent, Connection,
andSend State are averages of latencies recorded by each orphan to choose a new parent, connect to the new parent, propagate
filter state for compensation, respectively. Note:Overall includes other activities like updating local data structures not accounted
for in the fine-grained breakdowns.

is designed to provide propagation latencies on the order of
tens of seconds and messages are expected to be hundreds of
bytes or less. In multi-path routing, the redundant processing
of data on different paths can mitigate scalability. The TBŌN’s
logarithmic scaling is due to the controlled branching degree;
multi-path routing degenerates to a less scalable, though more
reliable, lattice structure. Furthermore, with redundant pro-
cessingover-countingmust be addressed [30].

In contrast, state compensation provides a scalable solution
for TBŌN computations with deterministic, high throughput
data delivery without constraining message sizes or perturbing
application performance. Furthermore, failure recovery is fast
and only a small subset of processes are interrupted.

8. Conclusion
In response to demands for large scale HPC system reliabil-
ity, we have developed state compensation, a scalable recov-
ery model for data aggregation in extremely large TBŌN en-
vironments. State compensation exploits the inherent infor-
mation redundancies in computational states from non-failed
processes to generate compensatory states for failed processes
avoiding explicit state duplication mechanisms. Furthermore,
our recovery protocol does not require process coordination
and runs completely independently at orphaned processes. Us-
ing our formal model, we have mapped state compensation to
a large solution space of important algorithms, and our evalu-
ation shows that we can recover from failures in TBŌNs with
extreme fan-outs representative of terascale and petascale sys-
tems in milliseconds. As researchers and developers continue
to leverage TB̄ON infrastructures for scalable tools and appli-
cations, we believe that no (and low) overhead recovery mod-
els like state compensation will prove invaluable. Our plan is
to expand this solution space by exploring new compensation
operations and studying how current ones apply to extensions
of our TBŌN model. We also plan further investigations of
our tree reconstruction process to determine the performance
impact of recovered trees and comparisons of TBŌN informa-

tion propagation protocols with other protocols for large scale
information dissemination.
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