

Computer
Sciences
Department

Advanced Querying for Property Checking

Nicholas Kidd
Akash Lal
Thomas Reps

Technical Report #1621

November 2007

Advanced Querying for Property Checking ?

Nicholas Kidd1, Akash Lal1??, and Thomas Reps1,2

1 University of Wisconsin; Madison, WI; USA. {kidd, akash, reps}@cs.wisc.edu
2 GrammaTech, Inc.; Ithaca, NY; USA.

Abstract. Extended weighted pushdown systems (EWPDSs) are an ex-
tension of pushdown systems that incorporate infinite-state data abstrac-
tions. Nested-word automata (NWAs) are able to recognize languages
that exhibit context-free properties, while retaining many of the decid-
ability properties of finite automata. We study property checking of pro-
grams where the program model is an EWPDS and the property is spec-
ified by an NWA. We show how to combine an NWA A with an EWPDS
E to create an EWPDS EA such that reachability analysis on EA checks
property A on program E . This construction allows us to retain the ca-
pability of running advanced queries on programs modeled as EWPDSs,
such as the ability to (i) find all program nodes that lie on an error
path (via error projections); and (ii) answer context-bounded reachabil-
ity queries for concurrent programs with infinite-state abstractions (via
context-bounded model checking).

1 Introduction

The goal of property checking is to verify that all possible executions of a program
adhere to a property specification. Because the precise answer to this problem
is undecidable in general, software model checkers instead attempt to determine
if a model of the program satisfies the property specification. This technique is
sound so long as the set of behaviors of the model is an over-approximation of
the set of actual behaviors of the program.

Different families of models can be used. One such model is a Boolean pro-
gram. A Boolean program is a program whose variables all have the Boolean
datatype—there are no pointers or heap allocated storage. Both BLAST and
SLAM use predicate abstraction [1] to model a C program as a Boolean pro-
gram. A Boolean program is typically interpreted as a pushdown system (PDS).
PDSs are a natural choice because they are able to accurately model the pro-
gram’s runtime stack, and because the set of reachable program configurations
of a PDS can be computed in polynomial time and space.

Another modeling formalism is affine programs [2]. Affine programs are sim-
ilar to Boolean programs, but with integer-valued variables. The common use of
the affine-program model is to perform affine-relation analysis, where an affine
relation is a linear-equality constraint between integer-valued variables. The goal
? Supported by NSF under grants CCF-0540955 and CCF-0524051.

?? Supported by a Microsoft Research Fellowship.

mailto:kidd@cs.wisc.edu
mailto:akash@cs.wisc.edu
mailto:reps@cs.wisc.edu

2 Nicholas Kidd, Akash Lal, and Thomas Reps

of affine-relation analysis is to find all of the affine relations that hold in the
program. Because affine-relation analysis requires an infinite-state abstraction,
PDSs cannot be used to represent an affine program. Weighted pushdown sys-
tems (WPDSs) [3,4] address this issue by adding a weight to each rule of the
PDS transition system, where weights can describe an infinite set of data points.
Extended WPDSs (EWPDSs) further augment WPDSs by providing a generic
framework that permits program models to track the values of local variables.

The ability to reason about local variables—or distinguish between global
and local state—is also of interest for property checking. Software model checkers
have traditionally required that the property specification be defined as a finite
automaton. This requirement implies that only a limited amount of global and
local state can be distinguished. In the presence of recursion, where the stack is
unbounded, properties specified by a finite automaton are not able to make any
such distinction.

Alur and Madhusudan address the expressibility problem via nested-word
automata (NWAs) [5]. Like EWPDSs, the NWA formalism provides a generic
framework that enables distinguishing between global and local state.

We study property checking where the program is modeled as an EWPDS
and the property is specified by an NWA. The result of our study is the syn-
thesis of several recent threads of research by Alur et al. [5,6] and ourselves
[7,8,9]. Compared to standard approaches to property checking, we show how to
simultaneously check properties

1. stated in a more expressive specification language
2. on program models that support more powerful abstractions
3. while furnishing a broader range of diagnostic information when property

violations are detected.

This is achieved in polynomial time and space for (possibly recursive) sequential
programs, and can be used in a semi-decision procedure for (possibly recursive)
concurrent shared-memory programs [9]. Heretofore it was only known how to
achieve items 2 and 3 simultaneously.

The key is combining an NWA A with an EWPDS E to form an EWPDS EA
such that reachability analysis on EA is able to check property A on E . Besides
more powerful abstractions, an important benefit of modeling the combination
as an EWPDS is that we get for free the ability to answer advanced diagnosis
queries, such as:

A. “What abstract state can the program be in when it violates the property
specification?”

B. “What are the set of program nodes that lie on an error path, and what
abstract states can arise at those nodes on an error path?”

Query A is the direct result of a reachability query on EA. Query B is answered
by computing the error projection [7] of EA.

Briefly, error projections provide (for certain families of abstractions) a way to
achieve simultaneous forwards and backwards analysis. With respect to property

Advanced Querying for Property Checking 3

checking, error projections divide the program statements (or locations) into two
sets: those that potentially lie on an error path to a specified error configuration,
and those that definitely do not. In addition to this, abstract error projections
[7] provide the ability to compute the abstract memory configuration of all error
paths from program entry to a program statement, and hence answer Query B.

This paper makes the following contributions:

– We present two constructions for combining an NWA with a PDS, and one
for combining an NWA with an EWPDS.

– We formally define the nested-word language of a PDS and an EWPDS.
– For each construction, we present a safety query that can be used to verify

that the combined NWA plus (EW)PDS adheres to the property specified
by the NWA. In addition, we show how to solve this query using EWPDS
reachability.

– Because the constructions yield a PDS or EWPDS, they automatically pro-
vide a means to determine the error projection of a program with respect to
a property defined by an NWA. Similarly, the constructions automatically
provide for context-bounded model checking of concurrent programs, where
the property specification is in the form of an NWA.

The remainder of the paper is organized as follows: §2 presents a property
checking example that is expressible as an NWA but not an NFA. §3 and §4
present background material on NWAs and PDSs, respectively. §5 defines the
notion of a nested-word language for a PDS. §6 presents a construction that
leverages PDS reachability to perform property checking. §7 presents definitions
and notations for EWPDSs. §8 presents two constructions that leverage EWPDS
reachability to perform property checking. §9 discusses related work.

2 Verification Example

Suppose that Eve is developing an interactive graphical software application, and
that there are certain interactive requirements that the program must adhere to
(e.g., a minimum frame rate of 30 fps must be maintained). Furthermore, let
us assume that Eve knows that when certain timing-sensitive functions are on
the stack,3 a subsequent call to a potentially blocking function (e.g., one that
performs I/O) should not be performed. Because of the size and complexity of
the code base, Eve has decided to employ a software model checker to verify that
the “blocking” discipline is followed. That is, for a given “sensitive” function f ,
Eve asks the model checker to verify that when f is on the stack, the program
does not invoke a (potentially) blocking function b.

The property that Eve desires must distinguish between program states when
f is on the stack and when it is not. A first attempt would be to model the
property as a state machine that consists of the states Y ES, NO, and ERR;
which signify that f is on the stack, not on the stack, and that b was called when

3 A function that is on the stack is one that has been invoked but not yet completed.

4 Nicholas Kidd, Akash Lal, and Thomas Reps

f was on the stack, respectively. This technique works as long as the function
f is not recursive. When f is recursive, it is not possible to distinguish between
returning to a recursive context and returning to a non-recursive context. To
make this distinction, one requires the ability to inspect the state of the caller
to properly define the property of interest. This can be accomplished by using a
nested-word automaton.

3 Nested Words

A nested word nw is a pair (w, v), where w is a word a1 . . . ak over a finite
alphabet and v, the nesting relation, is a binary relation over the length of the
word w. Formally, v is a subset of {1, 2, . . . , k} × ({1, 2, . . . , k} ∪ {∞}) [5]. The
nesting relation denotes a set of properly nested hierarchical edges of the nested
word nw. For a valid nesting relation, v(i, j) implies i < j, and if both v(i, j)
and v(i′, j′) hold and i < i′, then either j < i′ or j′ < j. For a jump edge v(i, j),
Alur et al. refer to i as the call predecessor for the return position j, and j as
the return successor for the call position i.

Nested words are a natural model for describing a trace of program execution.
The nesting relation v defines the matched calls and returns that arise during
the trace. One can view a program as a nested-word generator, and the set of all
program traces (i.e., the set of generated nested words) defines the nested-word
language (NWL) of the program.

A regular NWL is an NWL that can be modeled by a nested-word automaton
(NWA) [5]. An NWA A is a tuple (Q,Σ, q0, δ, F), where Q is a finite set of states,
Σ is a finite alphabet, q0 ∈ Q is the initial state, F ⊆ Q is a set of final states, and
δ is a transition relation. The transition relation δ consists of three components,
(δc, δi, δr), where:

– δc ⊆ Q×Σ ×Q defines the transition relation for call positions.
– δi ⊆ Q×Σ ×Q defines the transition relation for internal positions.
– δr ⊆ Q×Q×Σ ×Q defines the transition relation for return positions.

Starting from q0, an NWA A reads a nested word nw = (w, v) from left to
right, and performs transitions (possibly non-deterministically) according to the
input symbol and the nesting relation. That is, if A is in state q when reading
input symbol σ at position i in w, then if i is an internal or call position, A makes
a transition to q′ using (q, σ, q′) ∈ δi or (q, σ, q′) ∈ δc, respectively. Otherwise, i is
a return position. Let k be the call predecessor of i, and qc be the state A was in
just before the transition it made on the kth symbol; then A uses (q, qc, σ, q′) ∈ δr
to make a transition to q′. If, after reading nw, A is in a state q ∈ F , then A
accepts nw [5].

We use L(A) to denote the nested-word language that A accepts, and L(A, q)
to denote the nested-word language such that for each nested word nw ∈ L(A, q),
A is left in state q after reading nw. We extend this notion to sets of states in
the obvious way. Thus, L(A) = L(A,F).

Advanced Querying for Property Checking 5

δc δr δi
(q, fenter,�) (q,�, σ,�) (q, σ, q)

(�, benter, err) (q,�, σ,�)
(�, benter,�)

(q, σ, q)

Table 1. NWA for “blocking” disci-
pline.

Verification Example Revisited: Re-
turning to our example, Eve would like to
verify that the potentially blocking func-
tion b is never invoked when the timing-
sensitive function f is on the stack. Let
us assume that the property specification
can refer to the entry point of a function.
For example, functions f and b have en-
try points fenter and benter, respectively.
Additionally, we use � to signify a pro-
gram state where b cannot be called (i.e.,
f is on the stack), and � to signify a program state where b can be called
(i.e., f is not on the stack). Eve can specify the desired propery via the NWA
A = (Q,Σ, q0, δ, F), where Q = {�,�, err}, Σ is the control locations of the
program, q0 = �, F = {err}, and δ is defined in Tab. 1 (note that we use q ∈ Q
and σ ∈ (Σ − {fenter, benter)} as wildcards).

4 Pushdown Systems

This section presents definitions and notation for pushdown systems and reach-
ability queries on pushdown systems. Readers familiar with this material are
encouraged to skip to §5.

Definition 1. A pushdown system (PDS) is a triple P = (P, Γ,∆), where P
is a finite set of states (also known as “control locations”), Γ is a finite set of
stack symbols, and ∆ ⊆ P ×Γ ×P ×Γ ∗ is a finite set of rules. A configuration
of P is a pair 〈p, u〉 where p ∈ P and u ∈ Γ ∗. A rule r ∈ ∆ is written as
〈p, γ〉 ↪→ 〈p′, u〉, where p, p′ ∈ P , γ ∈ Γ , and u ∈ Γ ∗. These rules define a
transition relation post (also denoted by ⇒) on configurations of P as follows:
If r = 〈p, γ〉 ↪→ 〈p′, u′〉, then 〈p, γu〉 ⇒ 〈p′, u′u〉 for all u ∈ Γ ∗. The reflexive
transitive closure of⇒ is denoted by⇒∗. For a set of configurations C, we define
pre∗(C) = {c′ | ∃c ∈ C : c′ ⇒∗ c} and post∗(C) = {c′ | ∃c ∈ C : c⇒∗ c′}, which
are just backward and forward reachability under the transition relation ⇒.

Without loss of generality, we restrict the pushdown rules to have at most two
stack symbols on the right-hand side [10]. A rule r = 〈p, γ〉 ↪→ 〈p′, u〉, u ∈ Γ ∗,
is called a push, step, or pop rule if |u| = 2, |u| = 1, or |u| = 0, respectively. We
use ∆i ⊆ ∆ to denote the set of all rules with i stack symbols on the right-hand
side.

A run of P from a configuration c is a rule sequence ρ = [r1, . . . , rj] that
transforms c into a configuration c′. We denote the transformation by c ⇒ρ c′,
and the set of all runs of P from c by Runs(P, c), or simply Runs(P) if c is
implied from the context.

A PDS naturally models a program’s control flow. The standard approach
is as follows: P contains a single state p, Γ corresponds to the nodes of the
program’s inter-procedural control flow graph (ICFG), and ∆ corresponds to

6 Nicholas Kidd, Akash Lal, and Thomas Reps

Rule Control flow modeled

〈p, n1〉 ↪→ 〈p, n2〉 Intraprocedural edge n2 → n2

〈p, nc〉 ↪→ 〈p, ef rc〉 Call to f from nc that returns to rc

〈p, xf 〉 ↪→ 〈p, ε〉 Return from f at exit node xf

Fig. 1. The encoding of an ICFG’s edges as PDS rules.

edges of the program’s ICFG (see Fig. 1). Let us denote the entry point of a
program’s main function by nmain. The set of all valid paths of the program is
defined by: Runs(P, 〈p, nmain〉).

PDS reachability is a fundamental primitive that is useful for performing
property checking on program models. The goal is to find the set of all reachable
configurations C ′ when starting from a given set of configurations C. Because
the number of configurations of a PDS is unbounded, it is useful to use finite
automata to describe regular sets of configurations.

Definition 2. If P = (P, Γ,∆) is a PDS then a P-automaton is a finite au-
tomaton (Q,Γ,→, P, F), where Q ⊇ P is a finite set of states, →⊆ Q × Γ ×Q
is the transition relation, P is the set of initial states, and F is the set of final
states. We say that a configuration 〈p, u〉 is accepted by a P-automaton if the
automaton can accept u when it is started in the state p (written as p u−→∗ q,
where q ∈ F). A set of configurations is called regular if some P-automaton
accepts it. Without loss of generality, P-automata are restricted to not have any
transitions leading to an initial state.

An important result is that for a regular set of configurations C, both post∗(C)
and pre∗(C) (the forward and the backward reachable sets of configurations, re-
spectively) are also regular sets of configurations [11,12]. The algorithms for
computing post∗ and pre∗, called poststar and prestar, respectively, take a P-
automaton A as input, and if C is the set of configurations accepted by A, they
produce P-automata Apost∗ and Apre∗ that accept the sets of configurations
post∗(C) and pre∗(C), respectively [11,13,14].

5 The Nested-Word Language of a PDS

Our goal is to perform property checking where the program is modeled by a
PDS and the property is specified by an NWA. To achieve our desired result,
we must be able to formally reason about the nested-word language (NWL) of
a PDS. Intuitively, for a PDS P = (P, Γ,∆), if (w, v) is a nested word in the
NWL for P, w consists of the sequence of left-hand-side stack symbols γ1 . . . γj
for a run [r1, . . . , rj] of P from some configuration. (To simplify the notation,
and because for property checking one is usually interested in runs that start
from a distinguished main function and empty stack, we assume that associated
with each PDS is an initial configuration, and all runs of a PDS begin from this
configuration.)

Advanced Querying for Property Checking 7

For reasons that will be clarified in the next section, we slightly augment
our definition of a PDS so that the stack alphabet Γ is composed of two sets,
Γα and Γ β , such that Γα ∩ Γ β = ∅. The two sets distinguish between “actual”
and “bookkeeping” stack symbols. If left unspecified, Γ β = ∅. Additionally, a
bookkeeping symbol can only appear on the left-hand side of a step rule.

For a nested word nw = (w, v) and rule r ∈ ∆, we define the function
post [r]((w, v)) as follows:

post [r]((w, v)) =

(wγ, v) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉, γ ∈ Γα
(w, v) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉, γ ∈ Γ β
(wγ, (v − {〈i,∞〉}) ∪ {〈i, |wγ|〉}) if r = 〈p, γ〉 ↪→ 〈p′, ε〉,

i = max({j | 〈j,∞〉 ∈ v})
(wγ, v ∪ {〈|wγ|,∞〉}) if r = 〈p, γ〉 ↪→ 〈p′, γ′ γ′′〉
(w, v) if r = ε

Using post [r], we define the function NWofRun([r1 . . . rj])4 as follows:

NWofRun([]) = (ε, ∅)
NWofRun([r1, . . . , rj]) = post [rj](NWofRun([r1, . . . , rj−1]))

Definition 3. The effective length of a run ρ = [r1, . . . , rj] is equal to the
length of the word component w of the nested word nw = (w, v) = NWofRun(ρ).
For a run ρ, we denote its effective length by EffLen(ρ).

Note that for a run ρ = [r1, . . . , rj], EffLen(ρ) is equal to the number of rules in
ρ whose left-hand-side stack symbol is in Γα. This follows from the definition of
NWofRun.

Definition 4. For a PDS P, the NWL L(P) = {NWofRun(ρ) | ρ ∈ Runs(P)}.

The set of all nested words that drive P to some state p ∈ P is denoted by
L(P, p). We extend this notion to sets of states in the obvious way. Thus, L(P) =
L(P, P).

6 Property Checking via PDS Reachability

We now present our first construction, Explicit NWA plus PDS, which allows
PDS reachability to be used to perform property checking. The construction
can be viewed as a recasting of Alur and Madhusudan’s formulation of model
checking using NWAs [5] in our vocabulary. It is presented because it provides
insight into the more interesting construction Symbolic NWA plus PDS presented
in §8.
4 post [r](nw) is not always defined because of max; and thus neither is NWofRun.

However, for a run of a PDS from the initial configuration, both will always be
defined.

8 Nicholas Kidd, Akash Lal, and Thomas Reps

Construction 1 [Explicit NWA plus PDS]. A PDS P and an NWA A are
combined to form a new PDS PA = (PA, ΓA, ∆A), where PA ⊆ (P ×Q) ∪ (P ×
(Q × Γ)), ΓA = ΓαA ∪ Γ

β
A, ΓαA = Γ , Γ βA = Γ × Q, and ∆A is defined by the

constructor κ : ∆× δ → 2∆A as follows:

1. For r = 〈p, n1〉 ↪→ 〈p′, n2〉 ∈ ∆1 and t = (q, n1, q
′) ∈ δi, κ(r, t) = 〈(p, q), n1〉 ↪→

〈(p′, q′), n2〉.
2. For r = 〈p, nc〉 ↪→ 〈p′, e rc〉 ∈ ∆2 and t = (qc, nc, q) ∈ δc, κ(r, t) =
〈(p, qc), nc〉 ↪→ 〈(p′, q), e (rc, qc)〉, where (rc, qc) ∈ Γ β .

3. For r = 〈p, x〉 ↪→ 〈p′, ε〉 ∈ ∆0 and t = (qr, qc, x, q) ∈ δr, κ(r, t) =
〈(p, qr), x〉 ↪→ 〈(p′, qxr), ε〉. In addition, κ(r, t) constructs a set of rules of
the form 〈(p′, qxr), (rc, qc)〉 ↪→ 〈(p′, q), rc〉 for each return point rc that occurs
in ∆2.

Let 〈p0, nmain〉 be the initial configuration for P; then the initial configuration
for PA is 〈(p0, q0), nmain〉. Notice the initial state q0 of A is paired with the state
of the initial configuration of P.

It is worth explaining some parts of the construction. First, for composed call
rules (item 2), the return stack symbol (rc, qc), which is a bookkeeping symbol,
encodes both the return point of the PDS rule, rc, as well as the NWA state of
the caller, qc. This is required so that when modeling δr, the state that held at
the call is available (see item 3). This is why we split the stack alphabet Γ into
Γα and Γ β ; i.e., to have the ability to distinguish between the stack alphabet of
P and the “bookkeeping” symbols introduced to model A.

Second, notice that combining a pop rule r ∈ ∆0 with a return transition
t ∈ δr generates a set of PDS rules (item 3). The generated-pop rule pops the
top of the stack and records, via the control location (p′, qxr), that when making
the pop, A was in state qr and the top of stack was x. The generated-step rules
transition PA to the correct return point of P. In doing so, they use the state
(p′, qxr), as well as the return transition t to ensure that the NWA is properly
modeled. In some sense, one can view the pop rule as modeling a multi-state
return function of the callee. The caller then uses the (appropriate) step rule to
coalesce the multiple return points into the single return point encoded in P.

Theorem 1. An NWA A combined with a PDS P results in a new PDS PA
such that L(PA, (p′, q′)) = L(P, p′) ∩ L(A, q′), for any p′ ∈ P and q′ ∈ Q.

Proof. The proof is organized as follows:

1. L(PA, (p′, q′)) ⊆ L(P, p′) by Lem. 3;
2. L(PA, (p′, q′)) ⊆ L(A, q′) by Lem. 4; and
3. L(PA, (p′, q′)) ⊇ L(P, p′) ∩ L(A, q′) by Lem. 5.

�

Corollary 1. L(PA, P ×Q) = L(P, P) ∩ L(A,Q)

Advanced Querying for Property Checking 9

Proof.

L(P, P) ∩ L(A,Q) =
⋃
p∈P

L(P, p) ∩
⋃
q∈Q

L(A, q)

=
⋃

p∈P,q∈Q
L(P, p) ∩ L(A, q)

= L(PA, P ×Q)

Notice that the last step above follows from Thm. 1. �

When discussing the nested-word languages for P and PA, we will always
be starting from configuration 〈p0, nmain〉 and 〈(p0, q0), nmain〉, respectively. We
first present the proofs for Lemmas 1 and 2. Lemmas 1 and 2 are helper lemmas
that aid in proving Lemmas 3, 4, and 5.

Lemma 1. For a run [r1, . . . , rj] of PA that generates a nested word nw ∈
L(PA, (p′, q′)), the rule rj is either a step rule or a push rule from ∆A, but not
a pop rule.

Proof. For each nested word nw in L(PA, (p′, q′)), there exists a run ρ of PA
such that nw = NWofRun(ρ). From the definition of L(PA, (p′, q′)), starting
from the configuration 〈p0, nmain〉 and making a transition for each rule r ∈ ρ,
the result is a configuration of the form 〈(p′, q′), u〉,u ∈ Γ ∗, p′ ∈ P, q′ ∈ Q. By
definition, all pop rules in ∆A cause a configuration of the form 〈(p, qr), x u〉 to
make a transition to a configuration of the form 〈(p, qxr), u〉. Because the state
qxr is not in Q, rj must be either a step or push rule. �

Lemma 2. For a nested word nw = (w, v) ∈ L(P, p′)∩L(A, q′), the length j of
the run ρ = [r1, . . . , rj] of P that generates nw is equal to |w|.

Proof. From the definition of post[r], a rule appends its left-hand-side stack
symbol γ only if γ ∈ Γα. For P, Γ β = ∅, and NWofRun([r1, . . . , rj]) will generate
a nested word nw = (w, v) such that |w| = j. �

Lemma 3. L(PA, (p′, q′)) ⊆ L(P, p′).

Proof. We must show that PA is a subset of P; i.e., that Construction 1 did not
introduce behaviors or runs that were not originally a part of P. The intuition
on which the proof is based is that Construction 1 produces a PDS whose set of
runs is a restriction of the set of runs of P. Thus, we prove Lem. 3 by providing a
function that maps each run ρA of PA to a run ρ of P such that NWofRun(ρA) =
NWofRun(ρ). The proof makes use of the deconstructor κ−1

∆ : ∆A → ∆, defined
as follows:

κ−1
∆ (r) =


〈p, n1〉 ↪→ 〈p′, n2〉 if r = 〈(p, q), n1〉 ↪→ 〈(p′, q′), n2〉
〈p, nc〉 ↪→ 〈p′, e rc〉 if r = 〈(p, qc), nc〉 ↪→ 〈(p′, q), e (rc, qc)〉
〈p, x〉 ↪→ 〈p′, ε〉 if r = 〈(p, qr), x〉 ↪→ 〈(p′, qxr), ε〉
ε if r = 〈(p, qxr), (rc, qc)〉 ↪→ 〈(p′, q), rc〉

10 Nicholas Kidd, Akash Lal, and Thomas Reps

We extend the function κ−1
∆ (r) to work on a run as follows:

κ−1
∆ ([]) = []
κ−1
∆ ([r1, . . . , rj]) = κ−1

∆ (r1) :: κ−1
∆ ([r2, . . . , rj])

For a rule r ∈ ∆A and nested word nw = (w, v), post [r](nw) = post [κ−1
∆ (r)](nw).

We show this by a case analysis on the form of the rule r.

1. r = 〈(p, q), n1〉 ↪→ 〈(p′, q′), n2〉, and n1 ∈ ΓαA . By definition, κ−1
∆ (r) =

〈p, n1〉 ↪→ 〈p′, n2〉. Both post [r](nw) and post [κ−1
∆ (r)](nw) append the sym-

bol n1 to the nested word nw, and neither affect the nesting relation.
2. r = 〈(p, q), n1〉 ↪→ 〈(p′, q′), n2〉, and n1 ∈ Γ βA. Because n1 ∈ Γ βA, post [r](nw) =
nw. By definition, κ−1

∆ (r) = ε, and post [κ−1
∆ (r)](nw) = nw.

3. r = 〈(p, qc), nc〉 ↪→ 〈(p′, q′), e (rc, qc)〉. By definition, κ−1
∆ (r) = 〈p, nc〉 ↪→

〈p′, e rc〉. Both post [r](nw) and post [κ−1
∆ (r)](nw) append nc to w and add

〈(|wnc|),∞〉 to v.
4. r = 〈(p, qr), x〉 ↪→ 〈(p′, qxr), ε〉. By definition, κ−1

∆ (r) = 〈p, x〉 ↪→ 〈p′, ε〉. Let
i = max({k | 〈k,∞〉 ∈ v}). Both post [r](nw) and post [κ−1

∆ (rj)](nw) append
x to w, remove 〈i,∞〉 from v, and add 〈i, |wx|〉 to v.

Combining the above case analysis with the definition of NWofRun, we have
shown that

NWofRun([r1, . . . , rj]) = NWofRun([κ−1
∆ (r1), . . . , κ−1

∆ (rj)])

We follow this by showing that [κ−1
∆ (r1), . . . , κ−1

∆ (rj)] is a run of P. We show
this via an inductive argument on the effective length of the run.

Base case: There are two types of runs that have an effective length of zero.

1. j = 0. By definition, [] ∈ Runs(P).
2. Each rule of the run is such that its left-hand-side stack symbol γ ∈ Γ βA.

By the definition of Construction 1, each such rule must be preceded by a
pop rule, and the left-hand-side stack symbol of every pop rule in ∆A is a
member of ΓαA . Thus, this case cannot arise.

Inductive step: Let k be the effective length of the run. Let [r1, . . . , ri−1]
be a prefix of the run such that EffLen([r1, . . . , ri−1]) = k − 1,
and NWofRun([r1, . . . , ri−1]) ∈ L(PA, (p, q)). By the inductive hypothe-
sis we can assume that [κ−1

∆ (r1), . . . , κ−1
∆ (ri−1)] is a run of P and that

NWofRun([κ−1
∆ (r1), . . . , κ−1

∆ (ri−1)] ∈ L(P, p). Note that ri−1 cannot be a pop
rule by Lem. 1. We perform a case analysis on the suffix [ri, . . . , rj] of the run to
prove Lem. 3. In each case, we assume that the prefix [r1, . . . , ri−1] transforms
the configuration 〈(p0, q0), nmain〉 to a configuration 〈(p, q), γ u〉 and the prefix
[κ−1
∆ (r1), . . . , κ−1

∆ (ri−1)] transforms the configuration 〈p0, nmain〉 to the configu-
ration 〈p, γu′〉. Note that u and u′ are related. Namely, for each stack symbol
(rc, qc) ∈ u, u′ has the corresponding stack symbol rc.

Advanced Querying for Property Checking 11

1. The suffix [ri, . . . , rj] has length zero. This case invalidates the inductive
assumptions because it does not increase the effective length of the run by
1.

2. The suffix [ri, . . . , rj] has length one. In this case, ri = rj and there are four
possible forms that the rule rj can have.
(a) rj = 〈(p, q), γ〉 ↪→ 〈(p′, q′), γ′〉, and γ ∈ ΓαA . The configuration 〈(p, q), γ u〉

is transformed to the configuration 〈(p′, q′), γ′ u〉. By definition, κ−1
∆ (rj) =

〈p, γ〉 ↪→ 〈p′, γ′〉, and the configuration 〈p, γ u′〉 is transformed to the
configuration 〈p′, γ′ u′〉.

(b) rj = 〈(p, qc), γ〉 ↪→ 〈(p′, q′), e (rc, qc)〉. The configuration 〈(p, q), γ u〉
is transformed to the configuration 〈(p′, q′), e (rc, qc)u〉. By definition,
κ−1
∆ (rj) = 〈p, γ〉 ↪→ 〈p′, e rc〉, and the configuration 〈p, γ u′〉 is trans-

formed to the configuration 〈p′, e rc u′〉.
(c) rj = 〈(p, q), γ〉 ↪→ 〈(p, q′), γ′〉, and γ′ ∈ Γ βA. This case is not valid because

the effective length of the run [r1, . . . , rj] is k − 1.
(d) rj = 〈(p, qr), γ〉 ↪→ 〈(p′, qxr), ε〉. This case is not valid because a run

cannot end with a pop rule by Lem. 1.
3. The suffix [ri, . . . , rj] has length two. In this case, one of the rules must

have its left-hand-side stack symbol in ΓαA and the other in Γ βA. The
only rules whose left-hand-side stack symbols are in Γ βA are of the form
〈(p′, qxr), (rc, qc)〉 ↪→ 〈(p′, q′), rc〉. For a run of PA, a rule of this form must
be immediately preceded by a pop rule. This follows from Construction 1.
Because ri−1 is not a pop rule, we only need to consider the following case:

[ri, rj] = [〈(p, q), x〉 ↪→ 〈(p′, qxr), ε〉, 〈(p′, qxr), (rc, qc)〉 ↪→ 〈(p′, q′), rc〉]

For the suffix to be valid, the configuration 〈(p, q), γ u〉 must be of the form
〈(p, q), x (rc, qc)u′′〉. In this case, the suffix transforms the configuration into
〈(p′, q′), rc u′′〉. From the inductive hypothesis, the configuration 〈p, γ u′〉 of
P must be of the form 〈p, x rc u′′′〉. Additionally, we have the following:

[κ−1
∆ (ri), κ−1

∆ (rj)] = [〈p, x〉 ↪→ 〈p′, ε〉, ε]

Applying the suffix to the configuration 〈p, x rc u′′′〉 results in the configura-
tion 〈p, rc u′′′〉.

4. The suffix [ri, . . . , rj] has length equal to 3 or more. This case cannot occur
because the suffix would have to contain at least 2 rules that do not change
the effective length of the run. From the definition of Construction 1, each
such rule must be immediately preceded by a pop rule. Thus, the effective
length would increase by more than 1.

�

Lemma 4. L(PA, (p′, q′)) ⊆ L(A, q′).

Proof. The proof of Lem. 4 is similar to the proof of Lem. 3. Specifically, we
provide a function such that for a run [r1, . . . , rj] of PA, the function defines

12 Nicholas Kidd, Akash Lal, and Thomas Reps

a run [t1, . . . , tj] of A, where a run of A is a sequence of transitions that A
can use to read a nested word NW . The proof makes use of the deconstructor
κ−1
δ : ∆A → δ, defined as follows:

κ−1
δ (r) =


(q, n1, q

′) if r = 〈(p, q), n1〉 ↪→ 〈(p′, q′), n2〉
(qc, nc, q′) if r = 〈(p, qc), nc〉 ↪→ 〈(p′, q′), e (rc, qc)〉
ε if r = 〈(p, qr), x〉 ↪→ 〈(p′, qxr), ε〉
(qr, qc, x, q′) if r = 〈(p′, qxr), (rc, qc)〉 ↪→ 〈(p′, q′), rc〉

We extend the function κ−1
δ (r) to work on a run as follows:

κ−1
δ ([]) = []
κ−1
δ ([r1, . . . , rj]) = κ−1

δ (r1) :: κ−1
δ ([r2, . . . , rj])

Let nw ∈ L(PA, (p′, q′)) be the nested word (w, v). By the definition of
L(PA, (p′, q′)), there exists a run [r1, . . . , rj] of PA that generates nw. We show
that A can read nw and end in state q′ using the run κ−1

δ ([r1, . . . , rj]). The proof
is by induction on the effective length of the run. The only cases that need to
be considered are exactly the cases enumerated in the proof of Lem. 3. Hence,
we omit the invalid cases instead of restating why they are invalid.

Base case: The run is empty. In this case, nw = (ε, ∅) and nw ∈ L(PA, (p, q0)).
The corresponding run of A, κ−1

δ ([]), is also empty and nw ∈ L(A, q0).

Inductive step: Let k be the effective length of the run. We assume that Lem. 4
holds for the prefix [r1, . . . , ri−1] of the run whose effective length is k − 1. We
perform a case analysis on the suffix [ri, . . . , rj] of the run to prove Lem. 4. In
each case, we assume that the prefix transforms the configuration 〈(p0, q0), nmain〉
to some configuration 〈(p, q), γu〉.

1. The suffix [ri, . . . , rj] has length one. In this case, ri = rj and there are two
possible forms that the rule rj can have such that it is a valid prefix and
suffix of the run.
(a) rj = 〈(p, q), γ〉 ↪→ 〈(p′, q′), γ′〉, γ ∈ ΓαA . A can make a transition from

state q to state q′ when reading input symbol γ via κ−1
δ (rj).

(b) rj = 〈(p, q), γ〉 ↪→ 〈(p′, q′), γ′γ′′〉. A can make a transition from state q
to state q′ when reading input symbol γ via κ−1

δ (rj).
2. The suffix [ri, . . . , rj] has length two and is of the form:

[ri, rj] = [〈(p′, q), x〉 ↪→ 〈(p′, qxr), ε〉, 〈(p′, qxr), (rc, qc)〉 ↪→ 〈(p′, q′), rc〉]

Because ri is a pop rule and nw is a nested word, there must have been a
rule rc in the run such that rc is a push rule. Furthermore, because rj fired,
it must be the case that rc is of the form 〈(pc, qc), nc〉 ↪→ 〈(pe, qe), e (rc, qc)〉.
From this, we know that when A made its corresponding transition κ−1

δ (rc)
(item 1b), it was in a state qc. Thus, in this case, A can move to state q′ via
the transition κ−1

δ ([ri, rj]) = (qr, qc, x, q′).

Advanced Querying for Property Checking 13

�

Lemma 5. L(PA, (p′, q′)) ⊇ L(P, p′) ∩ L(A, q′)

Proof. Let nw ∈ L(P, p′) ∩ L(A, q′) be the nested word (w, v). By the defini-
tion of L(P, p′), there exists a run [r1, . . . , rj] of P from 〈p0, nmain〉 such that
NWofRun([r1, . . . , rj]) = nw. From Lem. 2, we know that the length j of the run
is equal to |w|. From the definition of L(A, q′), there exists a run [t1, . . . , tm] of
A that reads nw, and leaves A in state q′ ∈ Q. By the definition of NWAs, the
number of transitions m = |w| (each transition reads exactly one character from
the input string). Thus, j = m = |w|. We show that for nw, there exists a run
of PA that simulates both P and A. The proof is via induction on the length j
of the runs of P and A.

Base case: If j = 0, then nw = (ε, ∅), and nw = NWofRun([]). By definition,
nw ∈ L(PA, (p0, q0)).

Inductive step: We assume that PA has successfully simulated the first j−1 rules
of the run of P and the first j − 1 transitions of the run of A. We show that PA
can simulate runs [r1, . . . , rj−1, rj] and [t1, . . . , tj−1, tj] of P and A, respectively.
We prove the inductive step via a case analysis on the rule rj and transition tj .

1. rj ∈ ∆1 and tj ∈ δi. PA simulates the steps of P and A by the rule rj and
transition tj , respectively, via the rule κ(rj , tj) ∈ ∆A.

2. rj ∈ ∆2 and tj ∈ δc. PA simulates the steps of P and A by rj and tj ,
respectively, via the rule κ(rj , tj) ∈ ∆A.

3. rj ∈ ∆0 and tj ∈ δr. Let rj = 〈p, x〉 ↪→ 〈p′, ε〉 and tj = (qr, qc, x, q′). Because
P and A are able to make a transition on rj and tj , respectively, and from
our assumption that PA has simulated P and A through j − 1 steps, one
of the rules ri, 0 ≤ i < j, is a push rule of the form 〈p, nc〉 ↪→ 〈p′, e rc〉.
Additionally, ti must be a transition from δc of the form (qc, nc, q). From
item 2, PA simulates these instructions via the rule κ(ri, ti) = 〈(p, qc), nc〉 ↪→
〈(p′, q), e (rc, qc)〉. Combining these facts with the result of κ(rj , tj), we prove
that PA simulates P and A for this case. In particular, by definition κ(rj , tj)
is a set of rules such that the set contains at least two rules, one of the
form 〈(p, qr), x〉 ↪→ 〈(p′, qxr), ε〉 and another of the form 〈(p′, qxr), (rc, qc)〉 ↪→
〈(p′, q′), rc〉. The former is a direct result of κ(rj , tj). The latter exists because
tj exists and rc is one of the return points from the original PDS P. Thus,
via the application of the two rules, PA simulates P and A.

�

Safety Query Given PA, to ensure that P adheres to the property specified
by A, one checks the following:

∅ =
⋃
p∈P

L(PA, (p, qerr)) (1)

14 Nicholas Kidd, Akash Lal, and Thomas Reps

The following post∗ query checks whether the safety property holds: post∗(PA, C)∩
C ′ = ∅, where C = {〈(p0, q0), nmain〉} and C ′ = {〈(p, qerr), S〉 | p ∈ P, S ∈ Γ ∗A}.

The Explicit-NWA-plus-PDS construction suffers from two major drawbacks.
First, the number of control locations of PA is |P |×|Q|×|Γ |. This is undesirable
because reachability queries on PDSs are quadratic in the number of control
locations [10]. Second, each function is analyzed for each state of the NWA in
which it can be called. Explicit modeling of the state in this way can cause a
simple post∗ query to become infeasible. We will address both of these problems
by applying symbolic techniques to encode the set of control locations.

Roadmap. The focus of the remainder of this paper is the two constructions
Symbolic NWA plus PDS and Symbolic NWA plus EWPDS. Each construc-
tion makes use of extended weighted pushdown systems (EWPDSs), defined
in §7, which are a generalization of PDSs that adds the capability to reason
about infinite-state data abstractions through weights. The first construction
uses weights to encode the transition relation of A. The second construction
extends program models to also include weights. We begin by presenting defini-
tions and notations for EWPDSs. §8 presents the constructions Symbolic NWA
plus PDS and Symbolic NWA plus EWPDS.

7 Weighted Pushdown Systems

A weighted pushdown system (WPDS) is obtained by augmenting a PDS with
a weight domain that is a bounded idempotent semiring [3,4]. We refer to semir-
ing elements as weights. They encode the effect that each statement (or PDS
rule) has on the data state of the program. They can be thought of as abstract
transformers that specify how the abstract state changes when a statement is
executed.

Definition 5. A bounded idempotent semiring (or weight domain) is
a tuple (D,⊕,⊗, 0, 1), where D is a set whose elements are called weights,
0, 1 ∈ D, and ⊕ (the combine operation) and ⊗ (the extend operation) are binary
operators on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and where ⊕
is idempotent. (D,⊗) is a monoid with the neutral element 1.

2. ⊗ distributes over ⊕, i.e., for all a, b, c ∈ D we have
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c) .

3. 0 is an annihilator with respect to ⊗, i.e., for all a ∈ D, a⊗ 0 = 0 = 0⊗ a.
4. In the partial order v defined by ∀a, b ∈ D, a v b iff a⊕ b = a, there are no

infinite descending chains.

Definition 6. A weighted pushdown system is a triple W = (P,S, f),
where P = (P, Γ,∆) is a PDS, S = (D,⊕,⊗, 0, 1) is a bounded idempotent
semiring, and f : ∆→ D is a map that assigns a weight to each rule of P.

Advanced Querying for Property Checking 15

We use the following approach for modeling a program as a WPDS: the
PDS models the control flow of the program, as in Fig. 1. The weight domain
models abstract transformers for an abstraction of the program’s data. Our first
use of weights will be to encode the property automaton’s transition relation
δ. However, to be able to accurately model the NWA’s jump edges, the weight
domain requires the ability to distinguish between global and local states. This
functionality is provided by extended weighted pushdown systems (EWPDSs) [8].

EWPDSs lift WPDSs to handle local states in much the same way that
Knoop and Steffen lifted conventional dataflow-analysis algorithms to handle
local variables [15]: at a call site at which procedure P calls procedure Q, the
local variables of P are modeled as if the current incarnations of P ’s locals are
stored in locations that are inaccessible to Q and to procedures transitively called
by Q—consequently, the contents of P ’s locals cannot be affected by the call to
Q; one uses special merging functions to combine the locals of the caller with
the value returned by Q to create the state after Q returns.5

For a semiring S on domain D, a merging function is defined as follows:

Definition 7. A function m : D × D → D is a merging function with re-
spect to a bounded idempotent semiring (D,⊕,⊗, 0, 1) if it satisfies the following
properties.

1. Strictness. For all a ∈ D, m(0, a) = m(a, 0) = 0.
2. Distributivity. The function distributes over ⊕. For all a, b, c ∈ D,

m(a⊕ b, c) = m(a, c)⊕m(b, c) and m(a, b⊕ c) = m(a, b)⊕m(a, c)

Definition 8. Let (P,S, f) be a weighted pushdown system; let M be the set of
all merging functions on semiring S, and let ∆2 denote the set of push rules of
P. An extended weighted pushdown system is a quadruple E = (P,S, f, g)
where g : ∆2 →M assigns a merging function to each rule in ∆2.

Note that a push rule has both a weight and a merging function associated
with it. Merging functions are used to fuse the local state of the calling procedure
as it existed just before the call with the effects on the global state produced by
the called procedure.

Like for PDSs, a run of an EWPDS E from a configuration c is a rule sequence
ρ = [r1, . . . , rj] that transforms c into a configuration c′. We denote the transfor-
mation by c⇒ρ c′, and the set of all runs from c by Runs(E , c). Using f and g,
we can associate a value to ρ, denoted by v(ρ). To do so, we define several helper
functions. The function v[r]((z, S)) takes a weight and a weight/rule-stack, and
returns a weight and weight/rule-stack as follows:

v[r](z, S) =


(z ⊗ f(r), S) if r = 〈p, γ〉 ↪→ 〈p′, γ′〉
(1, (z, r)||S) if r = 〈p, γ〉 ↪→ 〈p′, γ′γ′′〉
(g(rc)(zc, f(rc)⊗ z ⊗ f(r)), S′) if r = 〈p, γ〉 ↪→ 〈p′, ε〉

and S = (zc, rc)||S′
(z ⊗ f(r), S) if r = 〈p, γ〉 ↪→ 〈p′, ε〉 and S = ∅

5 Note that this model agrees with programming languages like Java, where it is not
possible to have pointers to local variables (i.e., pointers into the stack).

16 Nicholas Kidd, Akash Lal, and Thomas Reps

The function build(ρ) that maps a run to a weight and weight/rule-stack as
follows:

build([]) = (1, ∅)
build([r1, . . . , rj]) = v[rj](build([r1, . . . , rj−1]))

The function flatten(z, S) that “flattens” a weight and weight/rule-stack by using
the semiring extend (⊗) operation:

flatten(z, ∅) = z
flatten(z, (zc, rc)||S′) = flatten(zc ⊗ f(rc)⊗ z, S′)

Given these definitions, v(ρ) = flatten(build(ρ)).
We next prove properties of the functions build, flatten, and v for a run

ρ = [r1, . . . , rj] that are important for proving Thms. 2 and 3.

Lemma 6. flatten(z ⊗ z′, S) = flatten(z, S)⊗ z′.

Proof. The proof is by induction of the size of S.

Base case: If S = ∅, then

flatten(z ⊗ z′, ∅) = z ⊗ z′ = flatten(z, ∅)⊗ z′

Inductive step: Let S = (zc, rc)||S′, and assume that flatten(z ⊗ z′, S′) =
flatten(z, S′)⊗ z′.

flatten(z ⊗ z′, (zc, rc)||S′) = flatten((zc ⊗ f(rc))⊗ (z ⊗ z′), S′)
= flatten((zc ⊗ f(rc)⊗ z)⊗ z′, S′)
= flatten((zc ⊗ f(rc)⊗ z), S′)⊗ z′

�

Lemma 7. For a run [r1, . . . , rj], if rj is a step rule, then v([r1, . . . , rj]) =
v([r1, . . . , rj−1])⊗ f(rj).

Proof. Let (z′, S′) = build([r1, . . . , rj−1]). From Lem. 6 and the definitions of
v[r], build, and flatten, the following holds:

v([r1, . . . , rj−1, rj]) = flatten(build([r1, . . . , rj−1, rj]))
= flatten(v[rj](build([r1, . . . , rj−1])))
= flatten(v[rj](z′, S′))
= flatten(z′ ⊗ f(rj), S′)
= flatten(z′, S′)⊗ f(rj)
= flatten(build([r1, . . . , rj−1]))⊗ f(rj)
= v([r1, . . . , rj−1])⊗ f(rj)

�

Advanced Querying for Property Checking 17

Lemma 8. For a run [r1, . . . , rj], if rj is a call rule, then v([r1, . . . , rj]) =
v([r1, . . . , rj−1])⊗ f(rj).

Proof. Let (z′, S′) = build([r1, . . . , rj−1]). From Lem. 6 and the definitions of
v[r], build, and v, the following holds:

v([r1, . . . , rj−1, rj]) = flatten(build([r1, . . . , rj−1, rj]))
= flatten(v[rj](build([r1, . . . , rj−1])))
= flatten(v[rj](z′, S′))
= flatten(1, (z′, rj)||S′)
= flatten(z′ ⊗ f(rj)⊗ 1, S′)
= flatten(z′ ⊗ f(rj), S′)
= flatten(z′, S′)⊗ f(rj)
= flatten(build([r1, . . . , rj−1]))⊗ f(rj)
= v([r1, . . . , rj−1])⊗ f(rj)

�

Reachability problems on PDSs generalize to EWPDSs as follows:

Definition 9. Let E = (P,S, f, g) be an EWPDS, where P = (P, Γ,∆). For any
two configurations c and c′ of P, let path(c, c′) denote the set of all rule sequences
that transform c into c′. Let S, T ⊆ P × Γ ∗ be regular sets of configurations. If
ρ ∈ path(c, c′), then we say c ⇒ρ c′. The meet-over-all-valid-paths value
MOVP(S, T) is defined as

⊕
{v(ρ) | s⇒ρ t, s ∈ S, t ∈ T}.

A polynomial-time algorithm for computing MOVP is given in [8].

Definition 10. For an EWPDS E, the NWL L(E) is defined as:

L(E) = {NWofRun(ρ) | ρ ∈ Runs(E) ∧ v(ρ) 6= 0 }

Given that the NWL of an EWPDS E involves a calculation on the weighted
valuation of a run ρ of E , we can further restrict L(E) via the notion of ϕ-
acceptance.

Definition 11. For an EWPDS E, we define the ϕ-accepted NWL for an EW-
PDS E and function ϕ : D → B as:

Lϕ(E) = {NWofRun(ρ) | ρ ∈ Runs(E) ∧ v(ρ) 6= 0 ∧ ϕ(v(ρ))}

Note that ϕ-acceptance can only restrict the NWL of an EWPDS. That is, for
any EWPDS E and any function ϕ : D → B, Lϕ(E) ⊆ L(E).

8 Property Checking via EWPDS Reachability

We next present the constructions Symbolic NWA plus PDS and Symbolic NWA
plus EWPDS. Each construction results in an EWPDS, and property checking
is performed via a reachability query on the resulting EWPDS.

18 Nicholas Kidd, Akash Lal, and Thomas Reps

8.1 Symbolic NWA Plus PDS

Recall the two drawbacks of the Explicit NWA plus PDS construction: (i) the
enlarged state space, and (ii) the cost of analyzing a function for each state in
which it may be called. The solution to these problems is to apply symbolic
techniques. The idea is as follows: instead of combining the control locations of
the NWA A (i.e., Q) with the control locations of the PDS P (i.e., P), we encode
the transition relation δ of A using a relational weight domain over Q.

Definition 12. If G is a finite set, then the relational weight domain on
G is defined as (2G×G,∪, ; , ∅, id): weights are binary relations on G, combine is
union, extend is relational composition (“;”), 0 is the empty relation, and 1 is
the identity relation on G. If R is a relation on G and R(s1, s2) holds, then we
write s1 → s2 ∈ R.

By encoding δ using a relational weight domain, we can use binary decision
diagrams [16] to represent the weights that arise. This addresses the desire to
economize on the number of PDS states, and also allows each function to be
analyzed symbolically.

Before presenting this construction, we need to introduce some notation.
First, we define Σε = Σ∪{ε}. The relational weight domain that we will use will
be over the finite set Q×Σε. We denote an element of this domain as (qσi , q

σ
j),

but omit σ when σ = ε.
Second, we define the restriction of δi to σ, denoted by δi|σ, as the relation

with (q, q′) ∈ δi|σ iff (q, σ, q′) ∈ δi. Note that δi|σ can be embedded into (Q ×
Σε) × (Q × Σε) using only states in which q ∈ Q is paired with ε (i.e., qε).
Henceforth, we abuse notation and use δi|σ to mean the version that is embedded
in (Q×Σε)× (Q×Σε). We define δc|σ similarly.

Third, we define the function expand(σ), which takes as input a symbol σ ∈ Σ
and generates the relation {(qε, qσ) | q ∈ Q}. Expand(σ) serves a purpose similar
to pop rule that is generated in Construction 1, item 3.

Fourth, we define δ̂ so that (qσr , qc, q) ∈ δ̂ iff (qr, qc, σ, q) ∈ δr. Notice that δ̂
simply merges the input symbol σ used in δr with the return state. This is used
to allow the weight domain to model the second set of PDS rules generated by
Construction 1, item 3.

Construction 2 [Symbolic NWA plus PDS]. The combination of a PDS P and
an NWA A is modeled by an EWPDS E = (P,S, f, g), where S is a relational
weight domain on (Q×Σ), and f and g are defined as follows:

1. For step rule r = 〈p, n1〉 ↪→ 〈p′, n2〉 ∈ ∆ and (q, n1, q
′) ∈ δi, f(r) = {s1 →

s2 | δi|n1(s1, s2)}.
2. For push rule r = 〈p, nc〉 ↪→ 〈p′, e rc〉 ∈ ∆ and (qc, nc, q) ∈ δc, f(r) = {s1 →
s2 | δc|nc

(s1, s2)} and

g(r)(wc, wx) =

s1 −→ s2 | ∃a, b :

 s1 −→ a ∈ wc
∧ a −→ b ∈ (f(r)⊗ wx)
∧ δ̂(b, a, s2)

 (2)

Advanced Querying for Property Checking 19

3. For pop rule r = 〈p, x〉 ↪→ 〈p′, ε〉 ∈ ∆ and (qr, qc, x, q) ∈ δr, f(r) = {s1 →
s2 | expand(x)(s1, s2)}.

To perform property checking on P with respect to A, we would like to
restrict the language L(E) so that it only inludes the nested words of runs where
the weighted valuation of the run contains a tuple (q0, q) for some q ∈ Q. This
is accomplished by the restricted language Lϕ(E), where ϕ-acceptance of a run
ρ is defined as ϕ(v(ρ)) = ∃q ∈ Q : q0 → q ∈ v(ρ).

Theorem 2. An NWA A combined with a PDS P results in an EWPDS E such
that Lϕ(E) = L(P) ∩ (A,Q)

Proof. The proof is organized as follows:

1. Lϕ(E) ⊆ L(P) by Lem. 9 ;
2. Lϕ(E) ⊆ L(A,Q) by Lem. 10; and
3. Lϕ(E) ⊇ L(A,Q) ∩ L(P) by Lem. 11.

�

Lemma 9. Lϕ(E) ⊆ L(P).

Proof. We prove that L(E) ⊆ L(P). The PDS component of E is P, and every
run of E is a run of P. Thus, by definition, L(E) can only be a restriction on L(P)
due to the non-zero test on v(ρ) for a run ρ of E . By Defn. 11, Lϕ(E) ⊆ L(E),
thus proving Lem. 9. �

Lemma 10. Lϕ(E) ⊆ L(A,Q).

Proof. Let nw = (w, v) be a nested word in L(E), and let [r1, . . . , rj] be a
run of E such that nw = NWofRun([r1, . . . , rj]). Given the weighted valuation
y = v([r1, . . . , rj]) of the run, we prove that for each (q0, q) ∈ y, nw ∈ L(A, q),
which implies Lem. 10. The proof is by induction on the length j of the run.

Base case: If j is equal to 0, then v([]) = 1 by the definition of v. For a relational
weight domain, the weight 1 is the identity relation, which is the set {q → q | q ∈
Q}. Therefore, the only tuple with q0 on the left-hand side in y is q0 → q0. Also,
because j = 0, we know that nw = (ε, ∅), which by the definition of L(A, q) is a
member of L(A, q0).

Inductive step: We assume that for length j−1, nw′ = NWofRun([r1, . . . , rj−1]),
y′ = v([r1, . . . , rj−1]), and for each q0 → q′ ∈ y′, nw′ ∈ L(A, q′). We now consider
the possible forms of rule rj .

1. rj = 〈p, n1〉 ↪→ 〈p′, n2〉. From Lem. 7, y = y′ ⊗ f(rj). From Construction 1,
f(rj) = δi|n1 . By the definition of δi|n1 , for each q′ → q ∈ f(rj), the NWA
A can make a transition from state q′ to state q when reading input symbol
n1. By the definition of y′ ⊗ f(rj), for each q0 → q′ ∈ y′ and q′ → q ∈ f(rj),
the weight y contains the tuple q0 → q. Thus, nw ∈ L(A, q)

20 Nicholas Kidd, Akash Lal, and Thomas Reps

2. rj = 〈p, nc〉 ↪→ 〈p′, e rc〉. From Lem. 8, y = y′⊗ f(rj). From Construction 1,
f(rj) = δc|nc

. By the definition of δc|nc
, for each q′ → q ∈ f(rj), the NWA

A can make a transition from state q′ to state q when reading input symbol
nc. By the definition of y′ ⊗ f(rj), for each q0 → q′ ∈ y′ and q′ → q ∈ f(rj),
the weight y contains the tuple q0 → q. Thus nw ∈ L(A, q).

3. rj = 〈p, x〉 ↪→ 〈p′, ε〉. Because nw is a nested word and by the definition of
NWofRun (i.e., NWofRun is undefined for the case where a pop rule does
not have a matching push rule), there must exist a matching push rule rc
for rj in the run. Therefore, build([r1, . . . , rj−1]) must return a pair of the
form (yx, (yc, rc)||S′). From our assumptions, the following must hold:

y′ = v([r1, . . . , rj−1])
= flatten(build([r1, . . . , rj−1]))
= flatten(yx, (yc, rc)||S′)
= flatten((yc ⊗ f(rc)⊗ yx), S′)
= flatten({q′′ → q′ | ∃a : yc(q′′, a) ∧ (f(rc)⊗ yx)(a, q′)}, S′)

The last line replaces the weight equation with its corresponding relational
equation. A similar breakdown for y is as follows:

y = v([r1, . . . , rj−1, rj])
= flatten(build([r1, . . . , rj−1, rj]))
= flatten(v[rj](build([r1, . . . , rj−1])))
= flatten(v[rj]((yx, (yc, rc)||S′)))
= flatten(g(rc)(yc, f(rc)⊗ yx ⊗ f(rj)), S′)

= flatten({g′′ → q | ∃a, b : yc(q′′, a) ∧ (f(rc)⊗ yx)(a, q′) ∧ f(rj)(q′, b) ∧ δ̂(b, a, q)}, S′)

The last line in the equation above replaces the weighted equation with its
corresponding relational equation. The underlined section highlights the re-
lationship between v([r1, . . . , rj−1]) and v([r1, . . . , rj−1, rj]). Notice the ad-
ditional use of δ̂(b, a, q) and f(rj). By the definition of E , we know that
f(rj) = expand(x), where x is the left-hand-side stack symbol of rj . Ad-
ditionally, we know that when the modeling of A was in a state q′, then
the state b must be equal to q′x. Thus, the two derivations prove that if
q0 → q′ ∈ y′ and nw′ ∈ L(A, q′), then q0 → q ∈ y and nw ∈ L(A, q) for pop
rule rj .

�

Lemma 11. Lϕ(E) ⊇ L(A,Q) ∩ L(P)

Proof. Let nw = (w, v) be a nested word in L(A,Q)∩L(P). By the definition of
L(P), there must exist a run [r1, . . . , rj] of P such that NWofRun([r1, . . . , rj]) =
nw. Additionally, by Lem. 2, j = |w|. Likewise, by the definition of L(A,Q),
there must exist a run [t1, . . . , tj] of A. The proof is a simulation proof and is
performed by induction on the length j.

Advanced Querying for Property Checking 21

Base case: If j = 0, then nw = (ε, ∅), and nw ∈ Lϕ(E).

Inductive step: We assume that E has successfully simulated the initial j − 1
steps of the runs of both P and A. Let nw′ = NWofRun([r1, . . . , rj−1]) ∈ Lϕ(E)
and y′ = v([r1, . . . , rj−1]) 6= 0, where the valuation is computed using f and g of
E as defined by Construction 2. Additionally, let q′ be the state that A ends up in
after making the transitions [t1, . . . , tj−1]. From our assumptions, q0 → q′ ∈ y′.
The remainder of the proof is a case analysis on rj and tj . (We note that in each
case, E can simulate P because P is the PDS component of E .)

1. rj = 〈p, n1〉 ↪→ 〈p′, n2〉 and tj = (q′, n1, q). From Lem. 7, y = v([r1, . . . , rj]) =
y′ ⊗ f(rj). By Construction 2, f(rj) = δi|n1 . By the definition of δi|n1 ,
q′ → q ∈ f(rj). Thus, q0 → q ∈ y and E simulates A’s move on tj .

2. rj = 〈p, nc〉 ↪→ 〈p′, e rc〉 and tj = (q′, nc, q). From Lem. 8, y = v([r1, . . . , rj]) =
y′ ⊗ f(rj). By Construction 2, f(rj) = δc|nc

. By the definition of δc|nc
,

q′ → q ∈ f(rj). Thus, q0 → q ∈ y and E simulates A’s move on tj .
3. rj = 〈p, x〉 ↪→ 〈p′, ε〉 and tj = (q′, qc, x, q). Let y = v([r1, . . . , rj]). Because
nw is a nested word and by the definition of NWofRun (i.e., NWofRun is
undefined for the case where a pop rule does not have a matching call rule),
there must exist a matching push rule rc for rj in the run. Thus,

flatten(build([r1, . . . , rj−1])) = flatten(yx, (yc, rc)||S)
= flatten(yc ⊗ f(rc)⊗ yx, S)
= flatten(1⊗ (yc ⊗ f(rc)⊗ yx), S)
= flatten(1, S)⊗ (yc ⊗ f(rc)⊗ yx) (3)

From the definition of v[rj], we know that

flatten(build([r1, . . . , rj])) = flatten(v[rj](build([r1, . . . , rj−1])))
= flatten(v[rj](yx, (yc, rc)||S))
= flatten(g(rc)(yc, (f(rc)⊗ yx ⊗ f(rj))), S)
= flatten(1⊗ (g(rc)(yc, (f(rc)⊗ yx ⊗ f(rj)))), S)
= flatten(1, S)⊗ g(rc)(yc, (f(rc)⊗ yx ⊗ f(rj)))

(4)

Notice that in Eqns. (3) and (4), the left-hand side of the extend is the same
(i.e., flatten(1, S)). Hence it contributes the same value in both cases. Let
yj−1 = yc⊗f(rc)⊗yx and yj = g(rc)(yc, (f(rc)⊗yx⊗f(rj))). We show that
q′′ → q′ ∈ yj−1 =⇒ q′′ → q ∈ yj .

yj−1 = yc ⊗ f(rc)⊗ yx
= {q′′ → q′ | ∃a : yc(q′′, a) ∧ (f(rc)⊗ yx)(a, q′)}

yj = g(rc)(yc, (f(rc)⊗ yx ⊗ expand(x)))

=
{
q′′ → q | ∃a, b, c : yc(q′′, a) ∧ (f(rc)⊗ yx)(a, b) ∧ f(rj)(b, c) ∧ δ̂(c, a, q)

}

22 Nicholas Kidd, Akash Lal, and Thomas Reps

Notice that yj−1 is the underlined computation in the derivation of yj . Be-
cause f(rj) = expand(x), it must be the case that for each q′′ → q′ ∈ yj−1,
q′′ → q′x ∈ (yj−1 ⊗ f(rj)). (This is precisely what is computed by the con-
junction yj−1(q′′, b) ∧ f(rj)(b, c).) Additionally, tj , along with the definition
of δ̂, imples that δ̂(q′x, qc, q) holds. Thus, we have proved that q′′ → q′ ∈
yj−1 =⇒ q′′ → q ∈ yj . From this and the fact that both equations begin
with flatten(1, S), it follows that for each q0 → q′ ∈ y′, q0 → q ∈ y.

�

Safety Query To verify that P adheres to the property specified by A, one
checks that the following holds for E :

Lϕerr(E) = ∅,where ϕerr(y) = q0 → qerr ∈ y (5)

The idea is that the nested word for a run is only in the language if it drives
the property automaton A to the error state qerr. Eqn. (5) can be answered
via a reachability query on the gererated EWPDS E . That is, Eqn. (5) can
be computed by the following: {(q0, qerr)} /∈ MOVP({〈p0, nmain〉},U), where
U = {〈p, S〉 | p ∈ P, S ∈ Γ ∗}.

8.2 Symbolic NWA Plus EWPDS

We now present our final construction, Symbolic NWA plus EWPDS. This con-
struction extends Symbolic NWA plus PDS by modeling the program as an EW-
PDS instead of a PDS. This allows one to answer new queries with respect to
property checking. For example, it is natural to ask, “What abstract state can
the program be in when the property automaton can be in error state qerr?”

We define Symbolic NWA plus EWPDS by extending the relations used by
Symbolic NWA plus PDS to be weighted relations.

Definition 13. A weighted relation on a set S, weighted with semiring
(D,⊕,⊗, 0, 1), is a function from (S×S) to D. The composition of two weighted
relations R1 and R2 is defined as (R1;R2)(s1, s3) = ⊕{w1⊗w2 | ∃s2 ∈ S : w1 =
R1(s1, s2), w2 = R2(s2, s3)}. The union of the two weighted relations is defined
as (R1∪R2)(s1, s2) = R1(s1, s2)⊕R2(s1, s2). The identity relation is the function
that maps each pair (s, s) to 1 and others to 0. The reflexive transitive closure
is defined in terms of these operations, as before. If R is a weighted relation and
R(s1, s2) = z, then we write s1

z−→ s2 ∈ R.

Definition 14. If S is a weight domain with set of weights D and G is a finite
set, then the relational weight domain on (G,S) is defined as (2G×G→D,∪, ; , ∅, id):
weights are weighted relations on G and the operations are the corresponding ones
for weighted relations.

This weight domain can be symbolically encoded using techniques such as alge-
braic decision diagrams [17].

Advanced Querying for Property Checking 23

Construction 3 [Symbolic NWA plus EWPDS]. The combination of an EW-
PDS E = (P,S, f, g) and an NWA A = (Q,Σ, δ) is modeled by an EWPDS EA
that has the same underlying PDS as E , but with a new weight domain and
new assignments of weights and merge functions to rules: EA = (PA,SA, fA, gA),
where PA = P, SA = (DA,⊕A,⊗A, 0A, 1A) is a weighted relation on the set
Q × Σ and semiring S, and fA and gA are defined as follows (marked items
signify extensions to Construction 2):

1. For rule r = 〈p, n1〉 ↪→ 〈p′, n2〉 ∈ ∆ and (q, n1, q
′) ∈ δi, fA(r) = {s1

f(r)−−−→
s2 | δi|n1(s1, s2)}.

2. For push rule r = 〈p, nc〉 ↪→ 〈p′, e rc〉 ∈ ∆ and (qc, nc, q) ∈ δc, fA(r) =
{s1

f(r)−−−→ s2 | δc|nc
(s1, s2)} and

gA(r)(wc, wx) =s1 z−→ s2 | ∃a, b :

 s1
z1−−→ a ∈ wc

∧ a z2−−→ b ∈ (fA(r)⊗ wx)
∧ δ̂(b, a, s2)

 , z = g(r)(z1, z2)

(6)

3. For pop rule r = 〈p, x〉 ↪→ 〈p′, ε〉 ∈ ∆ and (qr, qc, x, q) ∈ δr, fA(r) =
{s1

f(r)−−−→ s2 | expand(x)(s1, s2)}.

As for Construction 2, we are again interested in a restriction of L(EA), and
again we rely on ϕ-acceptance. That is, our target language is Lϕ(EA), where
for a run ρ of EA such that z = v(ρ), ϕ(z) = ∃q ∈ Q : q0

y−→ q ∈ z, and y 6= 0.

Theorem 3. An NWA A combined with an EWPDS E results in an EWPDS
EA such that Lϕ(EA) = L(A,Q) ∩ L(E).

Proof. The proof is organized as follows:

1. Lϕ(EA) ⊆ L(E) by Lem. 13;
2. Lϕ(EA) ⊆ L(A,Q) by Lem. 14; and
3. Lϕ(EA) ⊇ L(A,Q) ∩ L(E) by Lem. 15.

�

For a run ρ, we use the notation vE(ρ), flattenE ,buildE ,and vE [r] to signify
the weighted valuation of ρ using S,f , and g as defined by E ; and we use the
notation vEA

(ρ), flattenEA
,buildEA

,and vEA
[r] to signify the weighted valuation of

ρ using SA,fA,and gA as defined by EA. Additionally, we use 0, 1, and y (and its
variants) to denote weights from S; and we use 0A, 1A, and z (and its variants)
to denote weights from SA.

Lemma 12. Let ρ = [r1, . . . , rj] be a run of E and EA such that: nw =
NWofRun(ρ), nw ∈ L(E), nw ∈ L(EA), y = vE(ρ), and z = vEA

(ρ). If y 6= 0,
then for all q y′−−→ q′ ∈ z such that y′ 6= 0, y′ = y. Otherwise if y = 0, then
z = 0A.

Proof. The proof is by induction on the length j of the run. We first handle the
case where y 6= 0.

24 Nicholas Kidd, Akash Lal, and Thomas Reps

Base case: If j = 0, then vE([]) = 1 and vEA
([]) = 1A. By definition, 1A = {q 1−→

q | q ∈ Q}.

Inductive step: We assume that Lem. 12 holds for ρ′ = [r1, . . . , rj−1], and prove
that it holds for ρ by a case analysis of rj . By our assumption, we have the
following:

– vE(ρ′) = y′.
– vEA

(ρ′) = z′, and for all q y′′−−→ q′ ∈ z′ where y′′ 6= 0, y′′ = y′.

Let vE(ρ) = y and vEA
(ρ) = z.

1. rj = 〈p, n1〉 ↪→ 〈p′, n2〉. By Lem. 7, y = y′ ⊗ f(rj). By definition, fA(rj) =
{q′ f(rj)−−−−→ q′′ | q′ → q′′ ∈ δi|n1}. From Lem. 7, the following holds:

vEA
(ρ) = vEA

([r1, . . . , rj−1, rj])
= vEA

([r1, . . . , rj−1])⊗ fA(rj)
= vEA

(ρ′)⊗ fA(rj)
= z′ ⊗ fA(rj)
= z′ ⊗ {q′ f(rj)−−−−→ q′′ | q′ → q′′ ∈ δi|n1}
= {q y′⊗f(rj)−−−−−−→ q′′ | q y′−−→ q′ ∈ z′ ∧ q′ f(rj)−−−−→ q′′ ∈ fA(rj)}
= {q y−→ q′′ | q y′−−→ q′ ∈ z′ ∧ q′ f(rj)−−−−→ q′′ ∈ fA(rj)}

2. rj = 〈p, nc〉 ↪→ 〈p′, e rc〉. The same argument as above applies here, simply
replace Lem. 7 with Lem. 8 and fA(rj) = {q′ f(rj)−−−−→ q′′ | q′ → q′′ ∈ δc|nc

}.
3. rj = 〈p, x〉 ↪→ 〈p′, ε〉. Because nw is a nested word and by the definition of

NWofRun (i.e., NWofRun is undefined for the case where a pop rule does
not have a matching push rule), there must exist a matching push rule rc
for rj in the run. Thus, with respect to vE , the following holds:

vE([r1, . . . , rj−1]) = flattenE(buildE([r1, . . . , rj−1]))
= flattenE(yx, (yc, rc)||S)
= flattenE(yc ⊗ f(rc)⊗ yx, S)
= flattenE(1⊗ (yc ⊗ f(rc)⊗ yx), S)
= flattenE(1, S)⊗ (yc ⊗ f(rc)⊗ yx) (7)

vE([r1, . . . , rj]) = flattenE(buildE([r1, . . . , rj]))
= flattenE(vE [rj](buildE([r1, . . . , rj−1])))
= flattenE(vE [rj](yx, (yc, rc)||S))
= flattenE(g(rc)(yc, f(rc)⊗ yx ⊗ f(rj)), S)
= flattenE(1⊗ (g(rc)(yc, f(rc)⊗ yx ⊗ f(rj))), S)
= flattenE(1, S)⊗ g(rc)(yc, f(rc)⊗ yx ⊗ f(rj)) (8)

Advanced Querying for Property Checking 25

Similar for vEA
, the following holds:

vEA
([r1, . . . , rj−1]) = flattenEA

(buildEA
([r1, . . . , rj−1]))

= flattenEA
(zx, (zc, rc)||S)

= flattenEA
(zc ⊗ fA(rc)⊗ zx, S)

= flattenEA
(1A ⊗ (zc ⊗ fA(rc)⊗ zx), S)

= flattenEA
(1A, S)⊗ (zc ⊗ fA(rc)⊗ zx) (9)

vEA
([r1, . . . , rj]) = flattenEA

(buildEA
([r1, . . . , rj]))

= flattenEA
(vEA

[rj](buildEA
([r1, . . . , rj−1])))

= flattenEA
(vEA

[rj](zx, (zc, rc)||S))
= flattenEA

(gA(rc)(zc, fA(rc)⊗ zx ⊗ fA(rj)), S)
= flattenEA

(1A ⊗ (gA(rc)(zc, fA(rc)⊗ zx ⊗ fA(rj))), S)
= flattenEA

(1A, S)⊗ gA(rc)(zc, fA(rc)⊗ zx ⊗ fA(rj))
(10)

Because both Eqns. (7) and (8) contain flattenE(1, S) on the left-hand side
of the extend (⊗), it contributes the same value in both cases. We denote
the right-hand sides of the extend of Eqns. (7) and (8) by yj−1 and yj ,
respectively. Likewise, both Eqns. (9) and (10) contain flattenEA

(1A, S) on
the left-hand side of the extend, and thus it contributes the same value in
both cases. Similarly, we denote the right-hand side of the extend of Eqns. (9)
and (10) by zj−1 and zj , respectively. From our assumptions, we have the
following:

zj−1 =

q yj−1−−−→ q′

∣∣∣∣∣∣∃a, b :

 q
yc−−→ a ∈ zc

∧ a f(rc)−−−−→ b ∈ fA(rc)
∧ b yx−−→ q′ ∈ zx

 , yj−1 = yc ⊗ f(rc)⊗ yx


Notice that the right-hand side of the extend in Eqn. (7) annotates the tuples
in zj−1. From the definition of gA (Eqn. (6)), the following holds:

zj =

q
yj−−→ q′

∣∣∣∣∣∣∣∣∣∣
∃a, b, c, d :


q

yc−−→ a ∈ zc
∧ a f(rc)−−−−→ b ∈ fA(rc)
∧ b yx−−→ c ∈ zx
∧ c f(rj)−−−−→ d ∈ fA(rj)
∧ (d, a, q′) ∈ δ̂

 , yj = g(rc)(yc, f(rc)⊗ yx ⊗ f(rj))


Notice that the right-hand side of Eqn. (8) annotates the tuples in zj . Thus,
we have proved the inductive step.

We next handle the case where y = 0. This case, namely that z = 0A, follows
from the above argument. That is, for each q y−→ q′ ∈ z, y = 0 and thus z = 0A.
�

Lemma 13. Lϕ(EA) ⊆ L(E).

26 Nicholas Kidd, Akash Lal, and Thomas Reps

Proof. We prove Lem. 13 by showing that L(EA) ⊆ L(E). Because both EA and
E have the same underlying PDS P, a run of EA is a run of E . Specifically, for a
run ρ = [r1, . . . , rj], ρ ∈ Runs(EA) and ρ ∈ Runs(E). The NWL for an EWPDS
is defined in terms of runs and the weighted valuation for a run. Thus, we need
only show that vE(ρ) = 0 =⇒ vEA

(ρ) = 0A, which follows from Lem. 12. From
Defn. 11, Lϕ(EA) ⊆ L(EA), which proves Lem. 13. �

Lemma 14. Lϕ(EA) ⊆ L(A,Q).

Proof. For a nested word nw ∈ L(EA), let [r1, . . . , rj] be a run that generates
nw, and let z = vEA

([r1, . . . , rj]) be the weighted valuation of the run. We show
that for each q0

y−→ q ∈ z such that y 6= 0, nw ∈ L(A, q). Lem. 14 follows from
this.

Lem. 12 proves that for a run ρ = [r1, . . . , rj] of EA, the weighted valuation
z = vEA

(ρ) of the run conceptually consists of two parts. The first part is the
relational part of the weighted relation, which models the NWA A. The second
part is the weighted part of weighted relations, which models E . We take ad-
vantage of this fact by observing that if we mask off the second part, then the
weight domain resembles an ordinary relational weight domain like that used in
Construction 2. In fact, relations are a degenerate form of weighted relations,
where the weight domain is the Boolean semiring ({1B, 0B},⊕B,⊗B, 0B, 1B). From
this observation, we follow the approach depicted in Fig. 2. We first define an
operation called reduce, which performs the masking referred to above. We use
this operation to show that the two paths that join at point (i) in Fig. 2 produce
the same output, ER. Second, we show that the path from EA → ER → A denotes
a chain of language inclusions.

Const. 2

E

P ER

EA

(i) =

A

Const. 3

re
d

u
ce

re
d

u
ce

(ii) L(EA) ⊆ L(A)

Fig. 2. Outline for the proof of Lem. 14. The paths that join at (i) both produce
ER, and hence they commute. The path denoted by (ii) signifies a chain of
language inclusions.

For any nontrivial semiring S (i.e., one in which 0 6= 1), we can define a
function αB : S → SB that maps each non-zero weight of S to 1B and the zero

Advanced Querying for Property Checking 27

element of S to 0B. Note that αB(S) is an abstraction of S.

⊗S 0S ¬0S
0S 0S 0S
¬0S 0S {¬0S , 0S}

⊗B 0B 1B

0B 0B 0B
1B 0B 1B

⊕S 0S ¬0S
0S 0S ¬0S
¬0S ¬0S ¬0S

⊕B 0B 1B

0B 0B 1B
1B 1B 1B

This is because for any two weights z1 and z2 in S such that z1 6= 0S and z2 6= 0S ,
the following holds: αB(z1)⊗BαB(z2) = 1B; however, z1⊗z2 = 0S is possible (e.g.,
suppose that z1 and z2 are non-empty relations and their relational composition
results in the empty relation).

The operation reduce that produces P from EWPDS E = (P,S, f, g) de-
fines a new EWPDS EB = (P,SB, fB, gB), where fB(r) = αB(f(r)), and gB(r) =
λw1.λw2.w1 ⊗B w2. Interestingly, P = EB. This is easy to see as all runs of EB
have the weight 1B, which simply indicates reachability. This is precisely what
a run of P represents. Notice that L(P) ⊇ L(E) because of the argument made
above. Finally, we apply Construction 2 to produce the EWPDS ER.

The operation reduce that produces ER from EWPDS EA = (P,SA, fA, gA)
also makes use of the αB function. That is, ER = (P,SR, fR, gR), where SR is
the relational weight domain defined by Construction 2, fR(r) = {q αB(y)−−−−→ q′ |
q

y−→ q′ ∈ fA(r)}, and gR(r) is the merging function defined by Eqn. (2). Notice
that fR(r) is exactly the weight that is defined in Construction 2 ; i.e., for a
step rule 〈p, n1〉 ↪→ 〈p′, n2〉, fR(r) = δi|n1 . This is the result of the usage of αB
to “mask off” the weights from the weighted relations. Notice that the merging
function defined by Eqn. (2) is an abstraction of the merging function defined by
Eqn. (6). This follows from the argument used above for αB. Finally, reducing
weighted relations to be relations has the effect of reducing the ϕ-function of
Construction 3 to the ϕ-function of Construction 2. Thus, the two paths that
join at (i) in Fig. 2 produce the same EWPDS ER.

To complete the proof, we need to show that Lϕ(EA) ⊆ Lϕ(ER). This follows
from Lem. 12. That is, Lem. 12 tells us that for a run of an EWPDS where the
weight domain is a weighted relation, one can view the weighted valuation of the
run as having two parts, the relation and the weight. For EWPDSs ER and EA,
the relational part is the same and the weighted part of a weighted valuation of
a run of ER overapproximates the weighted part of the weighted valuation of the
same run of EA, and hence Lϕ(EA) ⊆ Lϕ(ER).

From Lem. 10, we know that Lϕ(ER) ⊆ L(A,Q), and hence Lϕ(EA) ⊆
L(A,Q).

�

Lemma 15. Lϕ(EA) ⊇ L(A,Q) ∩ L(E)

28 Nicholas Kidd, Akash Lal, and Thomas Reps

Proof. Let nw = (w, v) be a nested word in L(A,Q) ∩ L(E) such that |w| = j.
From the definition of L(A,Q), there must exist a run [t1, . . . , tj] that A can
use to read nw. For the PDS component P of E and EA, Γ β = ∅. From the
definition of L(E) and by Lem. 2, there must exist a run [r1, . . . , rj] of E such that
NWofRun([r1, . . . , rj]) = nw. The proof is a simulation proof and is performed
by induction on the length j. That is, we show that there exists a run of EA such
that the run simultaneously models the runs [t1, . . . , tj] of A and [r1, . . . , rj] of
E .

Base case: If j = 0, then the runs of A and E are empty (i.e., []), and thus
nw = (ε, ∅). By definition, NWofRun([]) = (ε, ∅), and the empty run of EA
generates nw. Consequently, nw ∈ L(EA).

Inductive step: We assume that EA has simulated the initial j − 1 steps of the
runs of both E and A. Specifically, let

– nw′ = NWofRun([r1, . . . , rj−1]) ∈ L(E) ∩ L(A,Q).
– y′ = vE([r1, . . . , rj−1]) 6= 0.
– y = vE([r1, . . . , rj]) 6= 0.
– z′ = vEA

([r1, . . . , rj−1]) 6= 0A.
– z = vEA

([r1, . . . , rj]) 6= 0A.
– q′ be the state of A after making j − 1 transitions.
– q be the state of A after making j transitions.

Because EA and E have the same underlying PDS, we know that any run of E is
a run of EA. We now need to show that for each q0

y′−−→ q′ ∈ z′ such that y′ 6= 0,
we have q0

y−→ q ∈ z. The fact that the weight on the weighted relation is y
follows from Lem. 12. The existence of q0

y−→ q ∈ z follows from the fact that
weighted relations are generalizations of relations. Thus, the proof for Lem. 11
applies.

�

Safety Query To verify that E adheres to the property specified by A, we
slightly modify Eqn. (5):

Lϕerr(EA) = ∅,where ϕerr(z) = q0
y−→ qerr ∈ z ∧ y 6= 0 (11)

Similar to Eqn. (5), we are only interested in nested words that drive A
to the error state qerr. However, Eqn. (11) modifies the function ϕerr from
Eqn. (5) by also taking into account the weighted valuation of a run. Again,
we can solve Eqn. (11) by computing a reachability query on EA as follows:
MOVP({〈p0, nmain〉},U)(q0, qerr) = 0, where U = {〈p, S〉 | p ∈ P, S ∈ Γ ∗}.

Notice that in solving the safety query, we have computed more informa-
tion than simple reachability—we have computed the set of abstract states
that the program can be in when the propery specification is violated. That
is, y = MOVP({〈p0, nmain〉},U)(q0, qerr) is a weight from the original EWPDS
abstraction. By returning z to the program analyst (or client analyzer), we are
able to provide more information than had we only computed reachability.

Advanced Querying for Property Checking 29

8.3 Observations

Observe that when combining E and A, one might be inclined to use a “paired”
weight domain for EA. A paired weight domain would have weights of the form
(d,w), where d models A and w is a rule’s weight from E . The problem with this
weight domain is that it loses the correlation between the runs. Consider two
runs ρ1 and ρ2 such that

– c⇒ρ1 c′ and c⇒ρ2 c′

– nw1 = NWofRun(ρ1) ∈ L(A, qerr) and y1 = vE(ρ1) = 0
– nw2 = NWofRun(ρ2) /∈ L(A), and y2 = vE(ρ2) 6= 0

Notice that neither nw1 nor nw2 are in L(A)∩L(E). However, the paired weight
domain would cause an EWPDS reachability query to overapproximate the result
of the intersection. This is because an EWPDS reachability query coalesces runs
that reach the same configuration. The weight computed by EA at configuration
c′ for runs ρ1 and ρ2 would be: (q0 → qerr, 0) ⊕ (∅, y2) = (q0 → qerr, y2). Thus,
EA would incorrectly (though soundly) state that there exists a run of E that
drives A to the error state.

In contrast, with weighted relations, the valuation of ρ1 and ρ2 by EA main-
tains the correlation. Specifically, q0

0−→ qerr ∈ vEA
(ρ1) and q0

0−→ qerr ∈ vEA
(ρ2).

Thus, using weighted relations allows EA to simultaneously model both E and
A.

9 Related Work

We presented three constructions for property checking: Explicit NWA plus PDS,
Symbolic NWA plus PDS, and Symbolic NWA plus EWPDS, where each con-
struction is an extension of the former. Compared to standard approaches to
property checking, Symbolic NWA plus EWPDS allows one to simultaneously
check properties

1. stated in a more expressive specification language
2. on program models that support more powerful abstractions
3. while furnishing a broader range of diagnostic information when property

violations are detected.

BLAST [18] and SLAM [19] proved the feasibility of performing property
checking on software. They model a program as a Boolean program, and the
property is specified by a finite automaton. Thus, they do not support items 1
and 2.

Alur and Madhusudan [5] propose that both the program and the property
should be expressed as NWAs. While this provides for item 1, NWAs do not
support item 2. Furthermore, it is not clear how to accomplish item 3 without
first transforming an NWA into an EWPDS.

Visibly pushdown automata [20] are another formalism that has been pro-
posed for property checking of programs. According to Alur and Madhusudan,
they exhibit the same properties as NWAs [5], and thus do not support items 2
and 3.

30 Nicholas Kidd, Akash Lal, and Thomas Reps

References

1. Graf, S., Säıdi, H.: Construction of abstract state graphs with PVS. In: CAV,
London, UK, Springer-Verlag (1997) 72–83

2. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.
In: POPL. (2004)

3. Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. SCP (2005)

4. Bouajjani, A., Esparza, J., Touili, T.: A generic approach to the static analysis of
concurrent programs with procedures. In: POPL. (2003)

5. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: DLT. (2006)
6. Chaudhuri, S., Alur, R.: Instrumenting C programs with nested word monitors.

In: SPIN. (2007)
7. Lal, A., Kidd, N., Reps, T., Touili, T.: Abstract error projection. In: SAS. (2007)
8. Lal, A., Reps, T., Balakrishnan, G.: Extended weighted pushdown systems. In:

CAV. (2005)
9. Lal, A., Touili, T., Kidd, N., Reps, T.: Interprocedural analysis of concurrent

programs under a context bound. Technical Report TR-1598, Univ. of Wisconsin
(July 2007)

10. Schwoon, S.: Model-Checking Pushdown Systems. PhD thesis, TUM (2002)
11. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:

Application to model-checking. In: Proc. CONCUR. (1997)
12. Büchi, J.: Finite Automata, their Algebras and Grammars. Springer-Verlag (1988)

D. Siefkes (ed.).
13. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for

model checking pushdown systems. In: CAV. (2000)
14. Finkel, A., B.Willems, Wolper, P.: A direct symbolic approach to model checking

pushdown systems. Elec. Notes in Theor. Comp. Sci. (1997)
15. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: CC. (1992)
16. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE

Trans. on Comp. (1986)
17. Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., Somenzi, F.:

Algebraic decision diagrams and their applications. In: CAD. (1993)
18. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL.

(2002)
19. Ball, T., Rajamani, S.: Automatically validating temporal safety properties of

interfaces. In: SPIN. (2001)
20. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: STOC. (2004)

