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Figure 1: A room scene with complex models computed usinggrhmapping with both an adaptive image plane sampler andiaptiae

hemispheric integral sampler.

Abstract

We present novel samplers and algorithms for Monte Carldeen
ing. The adaptive image-plane sampler selects pixels finere
ment according to a perceptually-weighted variance caitethe
hemispheric integrals sampler learns an importance sagfalinc-
tion for computing common rendering integrals. Both altjoris,
which are unbiased, are derived in the generic Populationt&o
Carlo statistical framework, which works on a populatiorsafm-
ples that is iterated through distributions that are modifieer
time. Information found in one iteration can be used to guide-
sequent iterations. Our results improve rendering effiyidny a
factor of between 2 to 5 over existing techniques. We alsevsho
how both samplers can be easily incorporated into a glolnalare
ing system.
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1 Introduction

Monte Carlo integration methods offer the most generalteniu
to physically accurate lighting simulation. For productiappli-
cations, algorithm efficiency is of primary concern: imagese
(variance) must be low at practical computation times. Vés@nt
sampling techniques that significantly improve renderiffigiency
for image-plane sampling and hemispheric integrals. Bothda-
rived using the Population Monte Carlo (PMC) sampling frame
work, which is a technique that adapts sampling distrimgiover
time and enables sample re-use, all with theoretical gtegaron
error and little computational overhead.

PMC algorithms iterate on a population of samples. In our-sim
plest sampler, for image-plane sampling (PMC-IP), the faijmn

is a set of image-plane locations. The population is in#é in
some way, say using stratified sampling, then PMC-IP geeerat
an initial image. Any information available at this stage ¢hen
be used to adaptkernel functiorthat produces a new population.
Inimage-plane sampling, the perceptually-weighted vesgsn the
intermediate images is used to construct the kernel fumctasult-
ing in more image plane samples in regions of high variande T
procedure is then iterated: sample, adapt, sample,. .. reEudt is
an unbiased adaptive algorithm.




In the case of direct lighting, or hemispheric integrals eneral,
importance sampling [Pharr and Humphreys 2004] is the psima
variance reduction tool. However, a poor choice of impatan
function canincreasevariance, and, moreover, the best importance
function can vary throughout a rendering depending on shiclg$
as surface properties, lighting configurations and theepres of
shadows. For example, the ideal importance function fomai-se
gloss surface depends on whether the primary lobe pointsrtba
light source, or the surface is in shadow, or neither. Theséigu-
rations vary over a surface and they are difficult to discdefore
sampling begins, yet the choice of importance functionsyjs-t
cally made once and remains fixed. PMC for hemispheric iategr
(PMC-HI) improves sampling efficiency by dynamically chivgg
importance functions based on information gathered dugnger-
ing.

Photon mapping and path tracing have been the industrideren
ing algorithms for global illumination. Our two sampling theds,
PMC-IP and PMC-HI can improve the efficiency of these two al-
gorithms with minimal modifications to the rendering systdérar-
thermore, a complete rendering system enables furtherowapr
ments to PMC-HI.

Population Monte Carlo is a general purpose framework wiyn
variants. The challenge in applying it to rendering lieshia small
sample counts, the hard-to-evaluate distributions, aedvibual

sensitivity to noise. Our contribution is two specific tofids ren-

dering that use the framework:

e AnImage-Plane Sampler, PMC-IP, that adapts to guide sam-
ples to perceptually high variance image regions, is cheap t
compute, maintains stratification, and is unbiased.

e An Hemispheric Integral Sampler, PMC-HI, that adjusts
the sampling directions used to evaluate hemisphericralgg
at a point and supports a variety of importance functions act
ing together. We can, for instance, avoid over-samplingt li
source from a surface point within its shadow, or a BRDF
specular lobe that makes no contribution. Furthermore, we
can guide samples toward important illumination direcgion
found by previous samples, without adding bias.

We include results comparing each algorithm to existing ap-
proaches. We find that PMC-based algorithms improve the effi-
ciency in a factor of 2 to 5 over existing methods. We also show
how to incorporate our algorithms into a modern renderirsiesy.
The algorithms are independent of each other. However, onma c
plete rendering system information can be fed from eachtitar

of the image plane sampler back to the PMC-HI sampler to gain
even greater improvement in efficiency.

2 Related Work

Here we focus on two specific areas of related work: adaptive
image-plane sampling, and sampling for hemispheric iafegFor

an overview of Monte Carlo rendering in general, see Phadr an
Humphreys [2004].

Typically, adaptive image-plane algorithms perform a fiests with

a small number of samples per pixel and use the resultingesalu
to label pixels as adequately sampled or in need of furthierae
ment. The algorithm then iterates on the pixels requiringansam-
ples [Glassner 1995; Painter and Sloan 1989; Purgathof&8;19
Mitchell 1987; Bolin and Meyer 1998; Ramasubramanian et al.
1999].

A common property of these existing algorithms is that thep s
sampling a given pixel when some image-derived metric is-sat
fied. As Kirk and Arvo [Kirk and Arvo 1991] point out, the eval-
uation of the image metric relies on random samples, so tlkere
some non-zero probability that the threshold is incoryedéitected
and that sampling stops too soon. This introduces bias ifitae
image, which is a problem when physically accurate rendsrare
required. Our algorithm never uses a threshold to stop sagal
pixel, and it is statistically unbiased.

Many metrics have been proposed for the test to trigger iaddit
sampling. Lee et al. [1985] used a sample variance basedcmetr
Dippé and Wold [1985] estimated the change in error as sampl
counts increase. Painter and Sloan [1989] and Purgathtd&6]
used a confidence interval test, which Tamstorf and Jeng9v]1
extended to account for the tone operator. Mitchell [198@ppsed

a contrast based criteria because humans are more setsitive-
trast than to absolute brightness, and Schlick [1991] ohedustrat-
ification into an algorithm that used contrast as its metBalin
and Meyer [1998], Ramasubramanian et al. [1999] and Farugi
and Péroche [2004] used models for human visual percepion
which we use a variant. Most recently, Rigau et al. [2002;3200
introduced entropy-based metrics.

Our algorithm views the image plane as a single sample space
for the purposes of sampling. Dayal et al. [2005] took a simil
view in the context of frameless rendering. They used a naea
based metric to control a kD-tree subdivision where samates
drawn uniformly within each adaptively sized cell of the divi>

sion. Stokes et al. [2004] also took a global approach widirth
perceptual metric.

There is a large body of work on computing hemispheric iragr
(direct lighting), mostly concerned with importance saimgfunc-
tions. Veach’s thesis [1997] provides a description of thsid
methods and analysis of variance. Importance functionsare
monly based on surface BRDFs (see Pharr and Humphreys [2004]
for an overview of these), or light sources [Shirley et aBb@9Agar-
wal et al. 2003]. Recent advances include wavelet-basedrimp
tance functions for environmental lighting [Clarberg et 2005],
and resampling algorithms [Burke et al. 2005; Talbot et 805}
that avoid visibility queries for samples that are likelyb® unim-
portant. However, the former is applicable only to enviremmn
maps, while the latter throws away samples and still requére
priori choice of importance functions. No existing impaorte sam-
pling approach for hemispheric integrals offers adaptailgor-
tance functions.

Work on adaptive PDFs for importance sampling has focused
on path tracing or irradiance caching applications. Dungl
Willems [1994] used piecewise linear functions to detemershoot-

ing directions out of light sources in a particle tracing lagadion.
Dutré and Willems [1995] use piecewise constant functiand
Pietrek and Peter [1999] use wavelets to build adaptive FDFs
sampling gather directions in path tracing. A diffuse scefand
piecewise constant PDF assumption is required to reduceutine

ber of coefficients to a manageable level, and even then vghy h
sample counts are required. It is important to note that aapad
proximation carincreasevariance. Lafortune and Willems [1995]
used a 5D tree to build an approximation to radiance in theesce
and then use it for importance sampling in a path tracing é&am
work. The same problems with sample counts and approxima-
tion errors arise in their work. Our algorithm works with gréary
BRDFs and uses a low-parameter adaptive model to minimize th
sample count required to control adaption.

Adaptive algorithms have also been suggested for shadoywwom
tations. Ward [1991] proposed an algorithm for scenes widimyn



lights, where shadow tests for insignificant lights are aeptl by
probabilistic estimates. Ward’s approach works best witinyn

light sources (tens or hundreds) while our technique woest b
with few sources. Ohbuchi and Aono [Ohbuchi and Aono 1996]

adaptively sampled an area light source (which introducdas)b
They achieved good stratification by employing quasi-Mdzéelo

(QMC) techniques to place the samples, a technique we aéso us

A Sequential Monte Carlo algorithm, similar in spirit to Ribg-
tion Monte Carlo, has recently been applied by Ghosh, Dcaret
Heidrich [2006] to the problem of sampling environment maps
animated sequences. Their work exploits another propéiitgre
ated importance sampling algorithms — the ability to re-s&m-

ples from one iteration to the next — and is complementaryuto o

approach.

3 Population Monte Carlo (PMC)

The Population Monte Carlo algorithm [Cappé et al. 2004]rist-
erated importance sampling scheme. In this scheme, a spople
ulation approximately distributed according to a targstrithution
is generated at each iteration. Then the samples from aitette
tions can be used to form unbiased estimates of integraksruhdt
distribution. It is an adaptive algorithm that calibrathe proposal
distribution to the target distribution at each iterationlearning
from the performance of the previous proposal distribigion

Assume we have a population of samples denoted by

{x{t)7...7x,§‘>}, where t is the iteration number andN is

the population size, and we wish to sample according to the

distribution proportional tof(x). The generic PMC sampling

The weight computed for each samplq(,t), is essentially its im-
portance weight. The resampling step in line 7 is designemitio
candidate samples with low weights and promote high-weigh-
ples. Resampling is not always necessary, particularhyeifiiernel
is not really a conditional distribution. In our two sammgialgo-
rithms, we did not use the resampling step.

At any given iteration, an estimator of the integral of ietgris

/@ F(x)dx= ;iiwi(“ &)

As with importance sampling, this estimator uses the sample

weights to estimate the normalization constahtof the the target
distribution T = %f(x). In practice, we can average over all iter-
ations to improve the estimate, even weighting each itamadif-
ferently if we choose. The detail in proving the unbiasedressd
analyzing the variance of PMC method is given in [Anonymous
2006].

Several steps are required to apply PMC to rendering prablem

e Decide on the sampling domain and population size. Compu-

tational concerns and stratification typically drive theicle

of domain. In the image-plane case, working on a discrete
pixel domain rather than a continuous one makes stratifica-
tion simpler to implement and sampling more efficient. We
discuss the choice of population size in the context of each
algorithm, and later in the discussion.

Define kernel functions and their adaption criteria. Thighes

most important task, and we give examples for our applica-
tions and suggest some general principles in the discussion
For rendering applications two key concerns are the degree t

which the kernel supports stratification and whether it \gork

algorithm is stated in Figure 2. with a small population size (as low as 4 in our hemispheric

1 generate the initial populatioh= 0 integrals sampler).
2 fort= 1t th 1 e Choose the techniques for sampling from the kernel funstion
3 ada}ptK( ) xt=1) and the resampling step. The deterministic sampling we use
4 fori=1,---,N significantly reduces variance much like stratification.
5 enerat&X ! ~ KO (xx )

g(t) e()(t) Aé‘ (t-1) The following sections describe each of our samplers inildeta
6 w = (X)) /KO X ) adaptation of them into a modern rendering system, and a gen-
7 resample according twft) for the new population eral discussion on PMC for rendering problems before weladec

with results.

Figure 2: The generic Population Monte Carlo algorihtm.

4 PMC-IP: Image-Plane Sampling
Line 1 creates the population to jump-start the algorithmny A

method can be used to generate these samples provided yhat aNphysically-based rendering algorithms compute the iitiens
sample with non-zero probability undéican be generated, and the (i, ), of each pixeli, j), by estimating the integrals:

probability of doing so is known.

The outer loop is over iterations. In each iteration of thgoethm,
akernel functionK ) (xV|x(t-1)) is determined (line 3) using in-
formation from the previous iterations. The kernel funetie re-
sponsible for generating the new population, given theerirone.

It takes an existing samplé(i(tfl), as input and produces a candi-

lij :/‘.]V\A_,j(u)L(x,w)du )

where.7 is the image plané) j(u) is the measurement function
for pixel (i, j) — non-zero ifu is within the support of the recon-
struction filter at(i, j) — andL(x,w) is the radiance leaving the
point, x, seen throughu in the direction—w, determined by the
projection function of the camera. We are ignoring, for dision
purposes, depth of field effects, which would necessitategima-
tion over directions out of the pixel, and motion blur, whigbuld
require integration over time.

date new samplé(i(t), as output (line 5). The distinguishing feature
of PMC is that the kernel functions are modified after eacp ste
based on information gathered from prior iterations. Thends
adapt to approximate the ideal importance function basethen
samples seen so far. While this dependent sampling may afipea
introduce bias, it can be proven that the result is eitherasol or
consistent, depending on whether certain normalizingteoits are
known (in our case they are known).

An image-plane sampler selects the image-plane locatioris,
Equation 2. For simplicity, assume we are working with a ray-
tracing style algorithm that shoots from the eye out intodbene.



Adaptive sampling aims to send more rays through imageitmtat
that have high noise, while avoiding bias in the final result.

Taking an importance sampling view, given a set of samples,
{X1,...,Xn} from an importance functiop(x), each pixel is esti-
mated using

L(Xy, @)

B % Xi)

n

®)

The source of bias in most existing adaptive image-plangam
is revealed here. Adaptive sampling without bias must adeil-
sions to terminate sampling at an individual pixel, andaastlook
at the entire image plane to decide where a certain numbesvof n
samples will be cast. Every pixel with non-zero brightnessim
have non-zero probability of being chosen for a sample,riégss
of its estimated error.

We also note the Equation 3 can be broken into many integrals,

one for the support of each pixel. Providp(k) is known in each
sub-domain, the global nature pfx) is not important.

4.1 The PMC-IP Kernel Function

The kernel function is the starting point in creating a PM@oal
rithm for adaptive image-plane sampling. We need a fundtiam
has adaptable parameters, is cheap to sample from, andr&ippo
stratification. This can be achieved witlhnaxture modebf compo-
nent distributionshyp ; ;) (x), one for each pixel:

>

(iLNez

© _
i =1

(iLnez

KLY (x) G((it?j) hip, i, ) (%),

Where(i, j) is the pixel coordinate and? is the set of all pixels
in this image. Each component is uniform over the domain of a
single pixel integral. The parameters to the distributiom @l the
a<<it)j> values, and these change for each iteratioNye achieve an
unbiased result if every((it_)j > g, wheree is a small positive con-
stant (we use 0.01). We enforce this through the adaptiveeps)

and the use o€, rather than 0, provides some assurance that we

will not overlook important contributions (referred to dsfensive
sampling[Hesterberg 1995]).

The use of a mixture as the kernel results D-&ernel PMC [Douc
et al. 2005a] algorithm. Sampling from such a distributien i

achieved by choosing a pixeli, j) according to thea<<| )]) and

then sampling fronhp ; j)(x). The latter can be done with a low-
discrepancy sampler within each pixel, giving sub-pixehtfica-
tion. Stratification across the entire image plane can beweth
through deterministic mixture sampling, which we descgbertly.
The importance functiorp(x) in Equation 3 for a given pixel is
p(x) = hypi j)(X). This can be derived by considering each pixel
as an individual integral and observing that only one mixttom-
ponent has non-zero probability of contributing to eachdral.

Notice that this kernel function is not conditional:
Kip(xV|xt=1y = Kip(x)).  Hence, for image-plane sam-
pling we do not include a resampling step in the PMC algorithm
because no samples are re-used. The knowledge gained fimm pr
samples is instead used to adapt the kernel function.

4.2 Adapting the PMC-IP Kernel

The adaption method is responsible for determining theevalu
eachor<< )]) given the populations from previous iterations and any
information available from them, such as the image compsted
far. We need to to define a<< )) for every pixel, with pixels that

require more samples having higher hlgfi{j) for the component
that covers the pixel. '

An appropriate criteria assignszr((it_)j) proportional to the

perceptually-weighted variance at each pixel. The algoritracks
the sample variance in power seen among samples that adetrib
to each pixel. To account for perception, the result is dididy the
threshold-versus-intensity functiowvi(L ) introduced by Ferweda et
al. [Ferwerda et al. 1996]. Normalization also accountsfor

2
al 0('])
b tvi(Li j))

!
a0 — e (1*8)%)
b Y.inez Ui jn

The first iteration of the algorithm samples uniformly oviee im-
age plane, so this criteria can always be computed. Thenhefjés

in Figure 4 show an example of arl(i?}) map for a given initial
image. The perceptual term in the error image prevents vigty h
errors in both bright regions (a problem with unweightedaraee)

and dark areas (a problem with luminance-weighted varjance

Note thata((it_)j) > &, so there is a non-zero probabbility of gener-

ating a sample at any given image plane location. This méets t
requirement for importance sampling that the importancetion

is non-zero everywhere where the integrand is non-zeroth&ur
more, as the total sample count approaches infinity, thetaiamy
pixel also approaches infinity. Hence, with the correctlynpated
importance weights (Equation 3), the algorithm is unbiased

4.3 Deterministic Mixture Sampling

Randomly sampling from the discrete distribution definedthmy

t . .
a<<i )j) produces excess noise — some pixels get far more or fewer

samples than their expected value. This problem is solved wi
deterministic mixture samplind®MS, which is designed to give
each component (pixel) a number of samples roughly prapuati

toits a<< )) Deterministic mixture sampling is unbiased and always

gives lower variance when compared to random mixture sapli
as proven by Hesterberg [Hesterberg 1995].

The number of samples per iteratiod, (the population size) is
fixed at a small multiple of the number of pixels. We typicallse

4 samples per pixel, which balances between spending toth muc
effort on any one iteration and the overhead of computingva ne
set of kernel parameters For each pixel, the determingstin-
pler computes;\( H= = Na(; j), the target number of samples for that

pixel. It takes[ J samples from each pixél, j)’'s component.

The remaining un allocated samples are sampled fromesidual
distribution with probability n’m) - Ln;i_j)j at each pixel (suitably
normalized). '

Figure 3 summarizes the final PMC-IP algorithm:



Figure 4: A comparison between adaptive and uniform imdgeepsampling on a direct lighting example. Leftmost is thigdl image for

D s

PMC-IP sampling, and thelio) image. The initial image used 2 samples per pixel. The neaganis the result of PMC-IP sampling with two
iterations at 4spp on average. Center is a 10spp image omyfalistributed. The zooms show the shadow near the Budditzas (PMC-IP
top, uniform bottom). To the right are the correspondindgarare images. Note that the variance image for the PMC-IRkarhas few high
variance regions, and has a lower contrast in general, geptieg a more even distribution of error.

Generate the initial image
fort=1---,T
Compute the perceptually-weighted variance image

Computealit) for each pixek

Use DMS to allocate samples accordingxﬁ&

1
2
3
4
5
6 Generate samples from(,t,) (x) and accumulate to image

Figure 3: The PMC-IP Algorithm.

Image | Method | #SPP | T(s) | Err P-Eff
Buddha| Uniform 10 58.1| 0.625| 0.027
PMC-IP | 2+4+4 | 62.4 | 0.116 | 0.138
Box Uniform 16 163 | 0.545| 0.011
Uniform 32 328 | 0.255| 0.012
PMC-IP | 4+6+6 | 169 | 0.182 | 0.033

Table 1: Measurements comparing PMC-IP and uniform image-
plane sampling, for equal total sample counts. The Buddizaém
computed direct lighting with the MIS method, with a total &f
lighting samples for each pixel sample. PMC-IP samplingroaps

the perceptual-based RMS error by a factor of 5.4 over umifor
sampling with only 7.5% more computation time. It corresgg®n

to an improvement in efficiency of 5.01. The Cornell Box imaige
use path tracing to compute global illumination includirgistics.
Comparing with images of 16ssp, PMC-IP improves the effiyien
by a factor of 2.65.

4.4 PMC-IP Results

Adaptive image-plane sampling can be used in many situation
where pixel samples are required and an iterative algordhmbe
employed. We have implemented it in the contexts of diregttti

ing using a Multiple Importance Sampler (MIS) and globalrifii-
nation with path tracing, and as part of a complete photonpingp
system, which we discuss in Section 6.

Figure 4 shows the Buddha direct lighting example. The serfa
is diffuse with an area light source. Each pixel sample usi#id-8
mination samples, and the images were rendered at 258, with
statistics presented in Table 1. We introduce the percéptoased
mean squared efficiency (P-Eff) metric for comparing algponis,
computed as:

whereeis the difference in intensity between a pixel and the ground
truth value and is the running time of the algorithm on that image.
P-Eff is a measure of how much longer (or less) you would need t
run one algorithm to reach the perceptual quality of ancfkarr
and Humphreys 2004].

The final adaptive image shown is the unweighted average®é th
sub-images (initial and two iterations). While weightirech sub-
image may be helpful, in this context it is not clear that theples
from one iteration are any better than those from anotheauser
they all used the same per-sample parameters. We obtained mo
samples in places that needed it, but not better samples.

The path tracing algorithm differs from a standard versioly in
how pixel locations are chosen. The improvement due to PRIC-I
sampling is more pronounced in this situation because soess a
of the image (the caustic, for instance) have a much highéanee
than others due to the difficulty of sampling such paths. Wa-co
pare the results in two aspects. First, we compare themlisua
Working toward a target image quality, we would continuestig
the PMC-IP sampler until we were satisfied with the overatl-va
ance. In Fig. 5, we show the final result of the Cornell box and
the comparison between a set of snapshots of the caustinriegi
tween the general PT algorithm and our adaptive algorithecsvi
see that the result of 16th (equivalent to 64 spps) is evearitaan
the result of 256 spps. We also notice that even at diffusiemsg
our method converges more quickly than the general PT dfgori

Second, we compare the efficiencies of our algorithm and he P
algorithm. In this Table 1, we see that PMC-IP sampling with a
total of 16spp improves the efficiency by a factor of 3 to thé un
form sampling with 16 spps and 32 spps. In this result, we tan o
examples for a fixed number of iterations (bounded by contipma
time). Note that because the PMC-IP sampler evenly spresils v
ance over the image, an overall image error bound is verkelgli

to leave any high-error pixels.



Figure 5: A Cornell Box image computed using the PMC-IP algo-
rithm. The top image is the final result using PMC-IP algarith
with 64 iterations, with each iteration averaging 4 sppss #asier
to find converged values in diffuse regions than in the causti
gion. Thus, we compare the results by focusing on this redgibe
images in the second row, from left to right, are the croppegijes

of the caustic region computed using non-adaptive patimyaeith

16, 32, 64 and 128 spps. The images in the third row, from deft t
right, are intermediate results from the adaptive algonitit 4, 8,
16 and 32 iterations when computing the top image. The last ro
demonstrates that our adaptive sampler produces bettaal vis-
sults at lower sample counts: on the left is the result fro® s,
un-adapted, and on the right image is the result of 16 adafen
ations at an average of 4 spps per iteration.

5 PMC-HI: Adaptive Inte-

grals Sampling

Hemispheric

Hemispheric samplers generate incoming directias,at a sur-
face point,x. One application is in direct lighting, which assumes
that the light leaving a surface poirit(x, w) can be evaluated by
the following integral, composed of terms for light emittedm
and reflected at:

L(x, @) = Le(x, 00) + /Q F(x, @, ' )daf )

whereLe(X, w) is light emitted atx, Q is the hemisphere of direc-
tionsout of x and f (x, w, /) is the light reflected at from direc-
tion —«' into directionw:

f(X, 0, w) = Lin(X, - ) fr (x, 0, w')| cog 8')|

©)

where L(x,—«/) is the light arriving atx from direction o/,
fr (X, w, ) is the BRDF, and’ is the angle betweew’ and the
normal atx.

A standard importance sampling algorithm fdx, w) samples di-
rections,{wgw..?%}, out of x according to an importance func-
tion, p, and computes the estimate:

R 18 fxwq)
L(X’w)iﬁi; p(a))

The variance of this estimator improves@sore closely approxi-
matesf, and is zero wheip is proportional tof .

(6)

In the local direct lighting situation, one common choice fois

proportional toLin(x,— ') fr (X, w,w)|cog8’)| or a normalized
approximation to it. An alternative is to break the integrdab a

sum over individual light sources and sample points on thletdi
to generate directions [Pharr and Humphreys 2304,1]. In an
environment map lighting situation, the wavelet produgtrapch
of Clarberg et al. [2005] currently provides the best wayhoase
p. However, none of these individual importance functiorisadves
well in all cases.

Figure 6 demonstrates the various difficult cases for ingyme
sampling. The floor consists of a checker pattern with défaad
glossy squares (with two types of gloss settings). Therevaoe
lights, one large and one small. In pixels that image difagéares,
an importance function based on the lights is best. In highdgsy
pixels that reflect the large light, BRDF sampling is best. gfossy
pixels that do not reflect light, sampling from the light isheand
rough glossy pixels benefit from both BRDF and light sampling
but we have no way of knowing this a-priori, and most praatiti
ers would use BRDF sampling. In rough glossy regions thagcefl
only one light, sampling from the other light is wastefult bgain
most algorithms would sample equally or according to tataitted
power.

Multiple Importance Sampling (MIS) and Bidirectional Inmpence
Sampling address many of these problems, by trying sevagin-
tance functions and combining their results. While thissdeery
well at reducing variance, it is wasteful in cases where dritbe
importance functions is much better than the others andddoell
used alone. Other technigues assume knowledge of whidegjra
will dominate where.

PMC-HI is a sampler that generates directions out of a pomt b
adapting a kernel function to match the integrand of interes

Figure 6: A scene constructed to demonstrate how the optiamat
pling strategy varies over an image. The checkers contéffusel
and glossy squares, with near-pure specular toward the dradk
rougher toward the front. There are two light sources.



Lin(x,—&/) fr (X, 0, /)| cog 8’)] in the direct lighting case. For ex-
ample, the lower images in Figure 7 indicate the relativéulisess
of different importance functions at each pixel. Furtherepdhe
PMC framework enables important samples from one itergtion
guide sampling in subsequent iterations.

5.1 The PMC-HI Kernel Function

Each direct lighting estimate takes place at a single serfaint
and is only one small step in a larger computation. The sanfecsu
point, and hence the same target functifin,essentially never re-
appears. We choose to adapt on a per-estimate basis, wihicis av
the need to store information about the adaptation stateeagur-
face points and interpolate to find information at new poirtsnce,
the number of samples on which to base adaption is low, ogytai
less than 100 and less than 10 in some of our examples.

A mixture distribution of a few candidate importance funas is

a good starting point. At least one such component is likely t
be a good approximation tf, and we expect to adapt to use that
function most often. To catch cases where good samplingtdires
are hard to find, we include a compondmfne that samples based
on important sample directions from the previous iteratfeor one
light, the mixture is

Kl (0V]d®, g0) asgoeheror(w) 7)

+ ghy Pigne (@)
+ aéto)né‘lcone(wm |d(t> ) B(t))

There is one term for the BRDF-based importance functioe, on
for a light (or one per light for multiple lights) and the copertur-
bation function. The cone function samples a directionarnify
within a cone of directions with axi$®) and half-anglg8®), which

is set based on the population in the previous iteratiors iairtic-
ularly useful for situations like partial shadowing when@\pous
samples that found visible portions of the light generateensam-
ples that also reach the light.

The population in PMC-HI is a set of sample directions outhaf t
surface point we are estimating. The population size mutdrige

enough to obtain reasonable estimates forafgté values at each
iteration but not so large as to increase computation timesces-
sarily. We typically uséN = 2m, wheremis the number of mixture
components. This is a sufficient size to see the benefits ptiada

as the results in Figure 7 demonstrate.

5.2 Adapting for PMC-HI

An initial population ofN samples,{ng)

using aég%e: 0 and the otheorliO> equal and summing to one. A

deterministic mixture sampling is used to select the nurnbsam-

ples from each component. Each sample is tagged with the mix-
ture component that was used to generate it, and their iaupoet
weights are computed:

0 _ f(x,w,a)

w ) =
I KI<I(?)) (@)

,...,Qﬁ?}, is generated

(8)

There is no resampling step for direct lighting. The samizeis so
small that resampling tends to unduly favor high-weighediions
at the expense of others, thus reducing the degree to whigblisey

Figure 7: These maps show how the mixture component weights
for PMC-HlI vary over the image, after two iterations. Brigh¢ans

high weight. From left to rightnﬁ), the left light's weight;alg),

the right light's weight;aéngDF; and aé?ne which in this image

is of limited use. The large light dominates in regions wheoe
light is seen in a glossy reflection, while the right light &véred

in nearby diffuse squares. The BRDF component is favored onl
when the large light is specularly reflected at a pixel. Thages
are quite noise-free for such small sample counts (16 tataptes
per estimate), indicating that the adaption mechanismerges to

a consistent result.

Image | Method | #SPP]| T(s) | Err P-Eff
Checks MIS 12 46 | 0.379 | 0.057
MIS 48 183 | 0.153 | 0.035

PMC-HI 12 54 | 0.146 | 0.127

Plant MIS 27 53 | 0.403 | 0.047

PMC-HI 27 64 | 0.128| 0.122

Table 2: Measurements comparing PMC-HI sampling with MIS,
for equal total sample counts. In all cases we used a singgetdi
lighting estimate for each pixel. For the Checks scene, RMI®a-
prove the efficiency by a factor 2.21, which takes four timesen
samples for uniform MIS to reach the approximately sameggerc
tual based variance (Err). The efficiency gain for the Plaahs is
2.60.

explores the domain. Instead, the cone mixture componerstid
to incorporate the information from previous samples.

The new component weighta,i”, can now be determined, along

with the d and BV parameters fohcond P |d®, V). The
cone directiond® is found by taking a weighted average of the

t = 0 population samples, with weigm«7(0>. The cone size is set
to the standard deviation of those samples. The componéghtse
are set based on the sample importance weights:

-1

L0 SieAW' 1)
t7

Z',L1W§ )

9)

where.% is the set of samples that were generated using compo-
nentk. In the first iteration there is no sample from the cone pertur
bation, so we seméé)ne: 0.2 and adjust the other’s by a factor of

0.8 to make them all sum to one.

We now begin the next iteration. A new set of samples is
generated using deterministic mixture sampling from thenéde

K\ (w®[d®, 1), weights are computed, and the kernel function
is updated based on the weights. To form the estimate, weqise E

tion 1, with each sampl@im, weighted bywi(t) from Equation 8.

5.3 Adaptive Direct Lighting Results

We present results on two examples of PMC-HI for direct liggt
the checker scene (Figure 6) and a plant rendering with acampl



Figure 8: An image involving complex soft shadows and glossy
surfaces. The top is PMC-HI sampling, while the middle is MIS
with equal total sample count. Note the significant improgatn

in the soft shadows achieved with PMC-HI, shown in the zoomed
images at the bottom (PMC-HI left, MIS right).

Sample (=0 mera
Sample Gensrator GGenerale =)

] [ Intersect ] Material ]
Ray RayT l Infersection / BSDF
Hemispheric Direct
Lighting Estimaior
Indirect Lighting
Estimator

|

|

—————————————————— PMC-IR Estimator
Component Weights for the First Level

Figure 9: A block diagram of a plug-in style Monte Carlo rerde
ing system, following Pharr and Humphreys [2004]. The PN&C-I
sampler replaces a uniform sample generator with the addaf

a feedback path from the sample accumulator in order to leaécu
the perceptual variance. The PMC-HI estimator replacesliteet
lighting estimator. We can feed information from one itemaback
to the next one to provide initial values for the next iterati

Figure 10: Blown up images of the upper right portion of themo
scene from Figure 1. The image was generated with a standard
photon shooting phase. On the left is the result of a finalagath
with 4 PMC-IP iterations, with each iteration averaging mpées

per pixel and using the PMC-HI direct lighting sampler augted

with the feedback mechanism. PMC-HI uses 2 iterations anol ea
iterations has 16 shadow rays to estimate direct lightinghRs

the result of a standard photon mapping gather using 16 spgps a

Ray, BSDF,

A

Rendering Loop
{Trace all samples)

shadows and glossy BRDFs (Figure 8). The timing and the error ysing 16 shadow rays per light to estimate direct lightingteNthe

comparisons with MIS (the best of several existing algonghwe
tried on these scenes) appear in Table 2. The checkers irasge r
lution is 500<500 and the plant image is at 72005.

The checker scene clearly demonstrates that adaption i&bke st
process that finds a good kernel function, or evenly weighgs t
components if no component dominates (Figure 7). The come co
ponent is not particularly helpful in this case because thibility

is simple. The results show that PMC-HI gains an improvenrent
rendering efficiency by a factor of about 3. The plant scemeate
strates the usefulness of the cone function in partiallgeivad re-
gions. It results in a major improvement in the soft shadowriab
aries on the table.

6 Integrating Samplers into a Rendering

System

The combined use of both PMC-IP and PMC-HI in a single ren-
dering pipeline allows us to further improve the renderirifi- e
ciency. Figure 9 shows a modern plug-in style Monte Carle ren

significant reducitomn in noise with our methods.

dering framework. The only core framework modification rieed
to support adaptive sampling is the addition of a feedbattkfopam
the output image generator back to the samplers, requirpdds
information from one sampling iteration back to the sangpfer
the next iteration. For the PMC-IP sampler, this feedbackiges
the variance map required to determine pixel sampling wsigh
addition, we can improve the performance of the PMC-HI sampl
through feedback.

6.1 Improving the PMC-HI with Feedback

In Figure 9 we show the PMC-HI estimator replacing the direct
lighting estimator. However, it can be used in any situatidgrere

the estimation of an integral over the hemisphere is redquite
radiance caching would benefit from the PMC-HI estimatothia t
computation of each cache value. Photon mapping can alsa use
PMC sampler in the final gathering phase.



The PMC-HI sampler of Section 5 was presented in the confext o
single integral estimate. On the first iteration it uses a&default

weights for each mixture componen{%o). In a complete rendering
system, we are able to record the final adapted weights frobm al
the direct lighting integrals done during one image-plaamaing

iteration. The recorded weights can then be used to irrgate
PMC-HI alﬁt) values for the next round of sampling.

Consider a single pixel sample at image plane iteratioh direct
lighting estimate is made for the first surface point seenubh
the pixel location. This direct lighting estimate uses thédRHI
sampler to adapt a set of mixture weights, which we pass Hanga
with the estimate itself and accumulate in an auxiliary imaQther
estimates may also be made for indirect illumination, butie@ot
record the weights from those.

At the next image-plane iteration, any direct lighting estie re-
quired at a pixel looks to the auxiliary image to find startimgjghts

for the PMC-HI adaption process. This avoids wasting PMC-HI
iterations with un-adapted initial parameters, which iaves our
rendering efficiency.

Photon mapping is an industry standard method for glohahitha-
tion, and we implemented the above method for the gatheioport
of a photon mapping implementation. Figure 1 shows a roomesce
computed with the final system. Looking at the blown-up insage
of right wall by the lamp, in Figure 10, we can see that our algo
rithm converges more rapidly to a smooth image. This is bezau
PMC-HI obtains a better estimate of the direct lighting, &MC-

IP puts more samples in this region because of its high vegian
nature. Both improve the efficiency of the final result.

7 Discussion

The most important variable parameter in a PMC algorithnhés t
population size. Assuming a fixed total rendering budgetnalls
population reduces the number of samples per iteratiorgivdives
more flexibility in the total sample count in an algorithm t loal-
atively more time is then spent adapting mixture parameteuns-
thermore, the quality of the adapted functions is lower beedhey
are derived from less information. Hence, we use small Eamurls
only for the hemispheric integrals case, where we aim to kbep
total number of samples per estimate low and the kernel ifomct
has a very small number of parameters. Larger populatiandtre
in more robust adaptation and less overhead, and in genersd a
be favored. However, if the population is too large, the fiese
of adaption are lost as relatively more samples are drawrguesi
mal-adapted importance function during the early iteratio

In Equation 8 we use the full mixture distribution as the imipnce
function,K(a{). This is a form of Rao-Blackwellization, which re-
duces variance but at the expense of additional computafibe
algorithm remains correct if we use only the mixture compane
from which the sample caméy(w/()), and we need not compute
the other mixture functions. In some cases, the resultidgation
in computation may exceed the increase in noise, but in remgle
the greatest cost is usually in obtaining a sample, rattzer ¢valu-
ating its probabilities.

The most notable limitation of PMC is the high sample couets r
quired when the kernel has many adaptable parameters. fhis p
cludes, for instance, using one component per light where thie
many lights. Such a strategy would be appealing for effiyent
sampling in complex shadow situations (some componentddwou
see the lights, others would not), but the sample count redui
to adequately determine the mixture component weights avbel

too large. Instead we use a single mixture component fohall t
lights and rely on the cone perturbation component to faugir v
ble lights. This does not work well if the illumination soescare
widely spaced.

In Section 6 we presented an image space method for sharing
adapted parameters across different estimates. An akeam
proach for integrating functions defined on surfaces isacesthe
mixture component weights in a surface map and interpoletes
amortizes the cost of adapting over many surface points. id/e d
not explore this possibility, but it offers potential foretimulti-light
problem or cases where many light transport paths must be con
structed through a scene, such as bi-directional patmtyawipho-

ton mapping.

8 Conclusion

We have shown how algorithms for adaptive image-plane sam-
pling and hemispheric integral computations can be derivigain

a PMC framework. In each case the algorithm learns an eftecti
sampler based on the results from early iterations. Thévialles
one of the greatest problems in Monte Carlo rendering: tléceh

of importance functions and other parameters.

The image-plane sampler and direct lighting integrator cama-
mon components in many rendering algorithms. PMC-IP sargpli
could be used as a plugin component for essentially any igigor
that forms light paths through the eye, including the gafitease

of photon-mapping, bi-directional path tracing, irradiarcaching,
and so on. The PMC-HI sampler could be used in any situation
where estimates of an integral over the hemisphere areregtjui
Irradiance caching would benefit greatly from a PMC sampter i
the computation of each cached value. We have shown howphoto
mapping can use PMC samplers in the final gathering phase.

PMC is just one approach from the family of iterated impoc&n
sampling algorithms [Robert and Casella 2004]. The Kalniger fi

is another well-known example. Common to these technigsies i
the idea of sample reuse through resampling and the adapftion
sampling parameters over iterations. Computer graphidaioty
offers further opportunities to exploit these properties.
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