
Scalable Anonymization Algorithms for Large Data Sets

Kristen LeFevre and David DeWitt
University of Wisconsin – Madison
Department of Computer Sciences

Technical Report 1590
March 1, 2007

ABSTRACT
k-Anonymity is a widely-studied mechanism for protecting identity
when distributing non-aggregate personal data. This basic mecha-
nism can also be extended to protect an individual-level sensitive at-
tribute. Numerous algorithms have been developed in recent years
for generalizing, clustering, or otherwise manipulating data to sat-
isfy one or more anonymity requirements. However, few have con-
sidered large-scale input data sets that do not fit in main memory.

This paper proposes two techniques for incorporating (external)
scalability into an existing algorithmic framework. The first tech-
nique is based on ideas from scalable decision tree construction,
and the second technique is based on sampling. In both cases, the
resulting algorithms are guaranteed to produce output data that sat-
isfies the given anonymity requirements. We evaluate the perfor-
mance of each algorithm both analytically and experimentally.

1. INTRODUCTION
Many organizations distribute non-aggregate, individual-level,

data for demographic and medical research. Unfortunately, pub-
lished data sets can often be “linked” with other publicly-available
data to re-identify individuals (and their sensitive attributes). Re-
cently, thek-anonymity model [19, 21], as well as a variety of ex-
tensions, have drawn a lot of attention as mechanisms for limiting
the risk of this kind of attack.

A wide variety of algorithms have been proposed for generaliz-
ing, clustering, or aggregating data to guaranteek-anonymity [1, 2,
3, 5, 6, 7, 10, 12, 16, 19, 20, 22, 24]. However, the vast majority
of proposals assume that the data fits in main memory. For larger
data sets, memory and I/O must be managed explicitly to present
thrashing and performance degradation.

In this paper, we propose two new techniques for scaling an ex-
isting generalization framework, Mondrian [13, 14], to data sets
much larger than the available memory.

1.1 Preliminaries
This paper considers the well-known problem of using general-

ization to publish a single view (R∗) of a single base relation (R),
while limiting the risk of a linking attack. We assume, as in the
majority of previous work, that each attribute inR can be uniquely
characterized by at most one of the following types based on knowl-
edge of the application domain:

• Identifier Unique identifiers, such asSocial Security Number,
are removed entirely from the published data.

• Quasi-Identifier The quasi-identifier is a set of attributesQ1, ..., Qd

that can potentially be used to re-identify individuals when com-
bined with other public data, for example,Age, Sex, andZipcode.

• Sensitive Attribute An attribute, such asDisease, is considered
sensitive if an adversary should not be permitted to uniquely as-
sociate its value with a unique identifier.

k-Anonymity provides a simple and intuitive means for protect-
ing individual identity with respect to linking attacks [19, 21]. It
stipulates that no individual record should be uniquely identifiable
from a group of less thank on the basis of its quasi-identifier val-
ues. (Throughout the paper, we assume bag semantics.) We will
refer to each group of tuples inR∗ with identical quasi-identifier
values as anequivalence class.

k-Anonymity R∗ is k-anonymouswith respect to quasi-identifier
attributesQ1, ..., Qd if every unique tuple(q1, ..., qd) in the pro-
jection ofR∗ onQ1, ..., Qd occurs at leastk times.

Machanavajjhala et al. noted that it is often natural to extend
the k-anonymity model to protect a knownsensitive attributeS
[15]. WhenS is categorical, this idea can be implemented in sev-
eral ways. Letdom(S) denote the domain of attributeS in R.

Recursive(c, `)-Diversity Within a given equivalence class (E),
let xi denote the number of times theith most frequent sensitive
value appears inE. Given a constantc, E satisfies recursive(c, `)-
diversity if x1 < c(x` + x`+1 + ... + x|dom(S)|). TableR∗ satisfies
recursive(c, `)-diversity if each equivalence class satisfies recur-
sive diversity. (Define(c, `)-diversity to be always satisfied.)

For numericS, the same intuition can be extended to require a
minimum level of dispersion ofS within each equivalence class
[14], and we use a variant of this proposal.1 Let V ar(E, S) =
1
|E|
Pm

i=1(si − s)2 denote the variance of values for sensitive at-
tributeS among tuples in equivalence classE. (s denotes the mean
value ofS in E.)

Variance Diversity R∗ is variance diverse with respect to sensi-
tive attributeS if, for each equivalence classE in R∗, V ar(E, S) ≥
v, wherev is the diversity parameter.

1.2 Greedy Partitioning Algorithm
In previous work, we proposed implementing these anonymity

requirements using a partitioning approach [13, 14]. The idea is
to divide thed-dimensional quasi-identifier domain space into non-
overlapping rectangular regions. This partitioning is used to define
aglobal recoding function(φ : dom(Q1)× ..× dom(Qd) → Dd)
that maps each domain tuple to the region in which it is contained.2

1Variance diversity also satisfies the monotonicity property, as de-
scribed in [15]; see Appendix for proof.
2Eachd-dimensional region, in turn, can be represented as a tu-
ple in tabular form through the use of generalization, range values,
summary statistics, etc.

1

Any

Asian European

Chinese Indian Greek French

Figure 1: Generalization hierarchy for Nationality

A partitioning is allowable with respect to a particular input rela-
tion R if the “recoded” relationR∗, resulting from applyingφ to
the quasi-identifier attributes ofR, satisfies all given anonymity re-
quirements.

The proposed algorithm (Mondrian) is based on greedy recur-
sive partitioning [13]. Briefly, the recursive procedure takes as in-
put a (potentially infinite)d-dimensional rectangular domain, and
a set of tuples,R. The algorithm chooses a quasi-identifiersplit at-
tribute (dimension of the domain space). When the split attribute is
numeric, the algorithm also chooses a binary splitthreshold(e.g.,
Age ≤ 40; Age > 40). For categorical attributes, the split is de-
fined by specializing a user-defined generalization hierarchy (e.g.,
Figure 1), as originally proposed by Samarati and Sweeney [19,
20]. We use the notation¹ to indicate a generalization relation-
ship.

The split attribute (and threshold) define a division of the input
domain intom non-overlapping regions that cover the input do-
main. The split also defines a corresponding partitioning of the
input data (R) into disjoint subsets,R1, .., Rm. The split is said
to beallowable if eachRi satisfies the given anonymity require-
ment(s). For example, underk-anonymity, a split is allowable if
eachRi contains at leastk tuples.

The procedure is executed recursively on each resulting partition
(Ri), until there no longer exists an allowable split. Informally, a
partitioning is said to beminimal if it satisfies the given anonymity
requirement(s), and there exist no further allowable splits.

Motivated by various target workloads, including classification
and regression, the recursive procedure can use one of several heuris-
tics to choose the split attribute (and threshold):

• Median When there is no known target workload, [13] proposed
choosing the allowable split attribute with the widest (normal-
ized) range of values, and (for numeric attributes) used the me-
dian value as the threshold. Median partitioning is appealing
because (underk-anonymity) if there exists an allowable split
perpendicular to a particular axis, the split at the median is nec-
essarily allowable, and can be found in linear time.

• InfoGain For classification tasks, [14] proposed choosing the
allowable split resulting in maximum information gain with re-
spect to a categorical class label. For numeric attributes, the best
allowable threshold is chosen by sorting the data on the candi-
date split attribute, and then evaluating candidate thresholds.3

• RegressionFor regression tasks, [14] suggested choosing the al-
lowable split minimizing the sum of squared error with respect
to a numeric target attribute. Again, for numeric attributes, the
best allowable threshold is chosen by first sorting the data.

Underk-anonymity, for constant dimensionality (d), the com-
plexity of the Median partitioning algorithm isO(|R| log |R|). For
3For classification and regression tasks, we assume that the class
label or numeric target attribute, respectively, is not also sensitive.

Nationality

Age

European0-40

NationalityAge

Asian0-40

NationalityAge

*41+

NationalityAge

≤ 40 > 40

European� Asian�

Figure 2: Partition tree defining a global recoding function

numeric attributes, all other cases (InfoGain or Regression split-
ting, entropỳ -diversity, and variance diversity) require additional
sorting in order to choose the best allowable thresholds. For this
reason, the complexity of these algorithms isO(|R| log2 |R|).

Following partitioning, the global recoding functionφ can be
defined by the resultingpartition tree. For example, Figure 2 shows
a partition tree for quasi-identifier attributes Age and Nationality.
Notice that the generalized tuples (located in the leaves) cover the
entire domain space.

Alternatively, each leaf can be represented using various sta-
tistics summarizing the set of data tuples contained therein (e.g.,
mean, minimum, maximum, etc.) [3, 13], a technique often used in
the related problem of microaggregation [6].

1.3 Paper Outline
The main contribution of this paper is a pair of simple and ef-

fective algorithmic variations, each of which allows the Mondrian
framework to be applied to data sets larger than main memory. For
clarity, we refer to the scalable variations asRothko.4

Our first scalable algorithm, described in Section 2, is based on
ideas from the RainForest scalable decision tree algorithms [9].
Two main challenges had to be addressed in order to adapt the
RainForest framework to scalable anonymization. First, in order to
choose an allowable split (according to a given split criterion and
anonymity requirement), we need to choose an appropriate set of
count statistics; those used in RainForest are not always sufficient.
Also, we note that in the anonymization problem, as opposed to
the decision tree problem, the resulting partition tree does not nec-
essarily fit in memory, and we propose techniques addressing this
problem.

The second algorithm (Section 3) takes a different approach,
based on sampling. The main idea is to use a sample of the in-
put data setR (that fits in memory), and to build the partition tree
optimistically according to the sample. Any (non-allowable) split
made in error is subsequently undone; thus, the output is guaran-
teed to satisfy all given anonymity requirements. We find that, for
non-trivial sample sizes, this algorithm almost always produces a
minimal partitioning.

Finally, we evaluate the proposed techniques using both a back-
of-the-envelope analysis of I/O behavior (Section 4) and an exten-
sive experimental study (Section 5). We find that, when applied
naively to large data sets, the in-memory algorithms described in
[13, 14] often lead to thrashing, and correspondingly poor perfor-
mance. However, both of the scalability techniques described in

4Mark Rothko (1903-1970) was a Latvian-American painter,
whose late abstract expressionist work was influenced by Piet Mon-
drian, among others.

2

this paper substantially improve performance, and the sampling-
based approach is often fastest.

2. EXHAUSTIVE ALGORITHM
(ROTHKO-T)

Our first algorithm, which we call Rothko-Tree (or Rothko-T),
leverages several ideas originally proposed as part of the RainFor-
est scalable decision tree framework [9]. Like Mondrian, decision
tree construction typically involves a greedy recursive partitioning
of the domain (feature) space. For decision trees, Gehrke et al. ob-
served that split attributes (and thresholds) could be chosen using
a set of count statistics, typically much smaller than the full input
data set [9].

In many cases, allowable splits can be chosen greedily in Mon-
drian using related count statistics, each of which is typically much
smaller than the size of the input data.

• Median / k-Anonymity Under k-anonymity and Median par-
titioning, the split attribute (and threshold) can be chosen using
what we will can anAV group. TheAV setof attributeA for tuple
setR is the set of unique values ofA in R, each paired with an
integer indicating the number of times it appears inR (i.e., SE-
LECT A, COUNT(*) FROM R GROUP BY A). The AV group
is the collection of AV sets, one per quasi-identifier attribute.

• InfoGain / k-Anonymity When the split criterion is InfoGain,
each AV set (group) must be additionally augmented with the
class label, producing anAVC set (group), as described in [9]
(i.e., SELECT A, C, COUNT(*) FROM R GROUP BY A, C.).

• Median / `-Diversity In order to determine whether a candidate
split is allowable under̀ -diversity, we need to know the joint
distribution of attribute values and sensitive values, for each can-
didate split attribute (i.e., SELECT A, S, COUNT(*) FROM R
GROUP BY A, S). We call this theAVS set (group).

• InfoGain / `-Diversity Finally, when the split criterion is Info-
Gain, and the anonymity constraint is`-diversity, the allowable
split yielding maximum information gain can be chosen using
boththe AVC and AVS groups.

Throughout the rest of the paper, when the anonymity require-
ment and split criterion are clear from context, we will interchange-
ably refer to the above asfrequency setsandfrequency groups.

When the anonymity constraint is variance diversity, or the split
criterion is Regression, the analogous summary counts (e.g., the
joint distribution of attributeA and a numeric sensitive attributeS,
or numeric target attributeT) are likely to be prohibitively large.
We return to this issue in Section 3.

In the remainder of this section, we describe a scalable algo-
rithm for k-anonymity and/or̀ -diversity (using Median or Info-
Gain splitting) based on these summary counts. In each case, the
output of the scalable algorithm is identical to the output of the
corresponding in-memory algorithm [13, 14].

2.1 Algorithm Overview
The recursive structure of Rothko-T follows that of RainForest

[9], and we assume that at least one frequency group will fit in
memory. In the simplest case, the algorithm begins at the root of
the partition tree, and scans the input data (R) once to construct
the frequency group. Using this, it chooses an allowable split at-
tribute (and threshold), according to the given split criterion. Then,
it scansR once more, and writes each tuple to a disk-resident child
partition, as designated by the chosen split. The algorithm proceeds

1

2 3

R1 R2 R3 R4

4

5 6

R5 R6 R7 R8

… … …

R

Figure 3: Example for Rothko-T

recursively, in a depth-first manner, dividing each of the resulting
partitions (Ri) according to the same procedure.

Once the algorithm descends far enough into the partition tree,
it will reach a point where the data in each leaf partition is small
enough to fit in memory. At this point, a sensible implementation
loads each partition (individually) into memory, and continues to
apply the recursive procedure in memory.

When multiple frequency groups fit in memory, the simple al-
gorithm can be improved to take better advantage of the available
memory, using an approach reminiscent of the RainForest hybrid
algorithm. In this case, the algorithm first scansR, choosing the
split attribute and threshold using the resulting frequency group.
Now, suppose that there is enough memory available to (simulta-
neously) hold the frequency groups for all child partitions. Rather
than repartitioning the data across the children, the algorithm pro-
ceeds in a breadth-first manner, scanningR once again to create
frequency groups for all of the children.

Because the number of partitions grows exponentially as the al-
gorithm descends in the tree, it will likely reach a level at which
all frequency groups no longer fit in memory. At this point, it di-
vides the tuples inR across the leaves, writing these partitions to
disk. The algorithm then proceeds by calling the procedure recur-
sively on each of the resulting partitions.5 Again, when each leaf
partition fits in memory, a sensible implementation switches to the
in-memory algorithm.

Example (Rothko-T) Consider input tuple set (R), and suppose
there is enough memory available to hold 2 frequency groups for
R. The initial execution of the algorithm is depicted in Figure 3.

Initially, the algorithm scansR once to create the frequency
group for the root (1) and chooses the best allowable split (pro-
vided that one exists). (In this example, all of the splits are binary.)
Then, the algorithm scansR once more to construct the frequency
groups for the child nodes (2 and 3), and chooses the best allowable
splits for these nodes.

Following this, the four frequency groups for the next level of
the tree will not fit in memory, so the data is divided into partitions
R1, ..., R4. The procedure is then called recursively on each of the
resulting partitions.

2.2 Recoding Function Scalability
Because the decision trees considered by Gehrke et al. were of

approximately constant size, it was reasonable to assume that the

5Note that RainForest proposed additionally caching a set of fre-
quency groups when repartitioning the data [9]. We found that
with modern memory sizes, where many frequency groups fit in
memory, the effects of this additional optimization were small.

3

resulting tree structure itself would fit in memory [9]. Unfortu-
nately, this is often not true of our problem.

Instead, we implemented a simple scalable technique for materi-
alizing the multidimensional recoding functionφ. Notice that each
path from root to leaf in the partition tree defines a rule, and the
set of all such rules defines global recoding functionφ. For exam-
ple, in Figure 2,(Age < 40) ∧ (Nationality ¹ European) →
〈[0− 40], European〉 is one such rule.

The set of recoding rules can be constructed in a scalable way,
without fully materializing the tree. In the simplest case, when
only one frequency group fits in memory, the algorithm works in
a purely depth-first manner. At the end of each depth-first branch,
we write the corresponding rule (the path from root to leaf) to disk.
This simple technique guarantees that the amount of information
stored in memory at any one time is proportional to the height of
the tree, which grows only as a logarithmic function of the data.

When more memory is available for caching frequency groups,
the amount of space is slightly larger, due to the periods of breadth-
first partitioning, but the approach still consumes much less space
than materializing the entire tree in memory.

Finally, note that the tree structure is only necessary if it is used
to define a global recoding function that covers the domain space.
If we instead choose to represent each resulting region using sum-
mary statistics, then the tree structure need not be materialized. In-
stead, the summary statistics can be computed directly from the
resulting data partitions.

3. SAMPLING ALGORITHM (ROTHKO-S)
In this section, we describe a second scalable algorithm, this

time based on sampling. Rothko-Sampling (or Rothko-S) addresses
some of the shortcomings of Rothko-T. Specifically, because splits
are chosen using only memory-resident data, it provides mecha-
nisms both for choosing split attributes using the Regression split
criterion, and for checking variance diversity. The sampling ap-
proach also often leads to better performance.

The main recursive procedure consists of three phases:

1. (Optimistic) Growth Phase The procedure begins by scanning
input tuple setR to obtain a simple random sample (r) that fits
in the available memory. (IfR fits in memory, thenr = R.)
The procedure then grows the tree, using sampler to choose
split attributes (thresholds). When evaluating a candidate split,
it uses the sample to estimate certain characteristics ofR, and
using these estimates, it will make a split (optimistically) if it
can determine with high confidence that the split will not violate
the anonymity requirement(s) when applied to the full partition
R. The specifics of these tests are described in Section 3.1.

2. Repartitioning PhaseEventually, there will be no more splits
that can be made with high confidence based on sampler. If
r ⊂ R, then input tuple setR is divided across the leaves of the
tree built during the growth phase.

3. Pruning PhaseWhenr ⊂ R, there is the possibility that certain
splits were made in error during the growth phase. Given a rea-
sonable testing procedure, this won’t happen often, but when a
node in the partition tree is found to violate (one of) the anonymity
requirement(s), then all of the partitions in the subtree rooted at
the parent of this node are merged. To do this, during the repar-
titioning phase, we maintain certain population statistics at each
node. (Fork-anonymity, this is just a single integer count. For
`-diversity or variance diversity, we construct a frequency his-
togram over the set of unique sensitive values.)

Finally, the procedure is executed recursively on each result-
ing partition,R1, ..., Rm. In virtually all cases, the algorithm will
eventually reach a base case where each recursive partitionRi fits
entirely in memory. (There are a few pathological exceptions, which
we describe in Section 3.2. These cases typically only arise when
an unrealistically small amount of memory is available.)

Recoding function scalability can be implemented as described
in Section 2.2. In certain cases, we stop the growth phase early,
for one of three possible reasons. First, if we are constructing a
global recoding function, and the tree structure has filled the avail-
able memory, we then write the appropriate recoding rules to disk.
Similarly, we repartition the data if the statistics necessary for prun-
ing (e.g., sensitive frequency histograms) no longer fit in memory.
Finally, notice that repartitioning across a large number of leaves
may lead to a substantial amount of nonsequential I/O if there is
not enough memory available to adequately buffer writes. In order
to prevent this from occurring, the algorithm may repartition the
data while there still exist high-confidence allowable splits.

Example (Rothko-S) Consider an input tuple setR. The algo-
rithm is depicted in Figure 4.

The growth phase begins by choosing sampler from R, and
growing the partition tree accordingly. When there are no more
(high-confidence) allowable splits,R is repartitioned across the
leaves of the tree (e.g., Figure 4(a)).

During repartitioning, the algorithm tracks necessary population
statistics for each node (e.g., total count fork-anonymity). In the
example, suppose that Node 7 violates the anonymity requirement
(e.g., contains fewer thank tuples). In this case, the tree is pruned,
and partitionsR6, R7, R8 combined.

Finally, the procedure is executed recursively on data partitions
R1, ..., R5, R6 ∪R7 ∪R8.

3.1 Estimators & Hypothesis Tests
Rothko-S must often use a sample to check whether a candi-

date recursive split satisfies the given anonymity requirement(s). A
naive approach performs this check directly on the sample. For
example, underk-anonymity, if input dataR containsN tuples,
and we have selected a sample of sizen, the naive implementa-
tion makes a split (optimistically) if each resulting sample partition
contains at leastk

�
n
N

�
tuples.

Unfortunately, we find that this naive approach can lead to an
excessive amount of pruning in practice (Section 5.6). Instead, we
propose to perform this check based on a statistical hypothesis test.
In this section, we outline some preliminary methods for perform-
ing these tests. We find that, while our tests for variance diversity
and`-diversity do not make strong guarantees, these tests produce
quite favorable results in practice. Similarly, the test does not affect
the anonymity of the resulting data because the algorithm always
undoes any split made in error.

In the context of splitting, thenull hypothesis(H0) can be de-
scribed informally as stating that the candidate split isnotallowable
under the given anonymity requirement. An ideal test would reject
H0 if it can determine (using realistic assumptions) that there is
only a small probability (≤ α) of the split violating the anonymity
requirement. During the growth phase, Rothko-S will make a split
(optimistically) if H0 can be rejected with high confidence.

In the following, letR denote the input data (a population of
tuples), and letN denote the size (number of tuples) ofR. Let
r denote a simple random sample ofn tuples, drawn uniformly
without replacement fromR (n ≤ N). Consider a candidate split,
which dividesR into m partitionsR1, ..., Rm. (When applied to
sampler, the split yields sample partitionsr1, ..., rm.)

4

1

2 3

4 5 6

7

R1

R2 R3 R4 R6

R7 R8

R5

R

(a)

1

2 3

4 5 6

7

R1

R2 R3 R4 R6

E7 E8

R5

(b)

1

2 3

4 5R1

R2 R3 R4

R6 R7 R8

R5

(c)

Figure 4: Example for Rothko-S

3.1.1 k-Anonymity
We begin withk-anonymity. Letp = |Ri|/N denote the propor-

tion of tuples fromR that would fall in partitionRi after applying
a candidate split toR. Underk-anonymity,H0 and H1 can be
expressed (forRi) as follows, wherep0 = k/N .

H0 : p = p0

H1 : p ≥ p0

Similarly, letbp = |ri|/n. We use proportionbp to estimatep. Re-
gardless of the underlying data distribution, we know by the cen-
tral limit theorem thatbp is approximately normally distributed (for
large samples) [18]. Thus, we use the following test, rejectingH0

when the expression is satisfied.6

V arH0 =
p0(1− p0)

n

�
N − n

N − 1

�
bp− p0 ≥ zα/m

p
V arH0

There are three important things to note about this test. First,
notice that we are simultaneously testing allm partitions resulting
from the split. That is, we want to construct the test so that the total
probability of accepting anyRi containing fewer thank tuples is
α. For this reason we use the Bonferroni correction (α/m).

Also, it is important to remember that we are sampling from a
finite population of data (R), and the fraction of the population that
fits in memory (and is included in the sample) grows each time the
algorithm repartitions the data. For this reason, we have defined
V arH0 in terms of the sampling process, incorporating a finite pop-
ulation correction. Given this correction, notice that whenN = n
(i.e., the entire partition fits in memory), thenV arH0 = 0.

Finally, as the growth phase progresses (prior to repartitioning),
note that the population (R), and the sample (r), do not change.
The only component of the hypothesis test that changes during a
particular instantiation of the growth phase isbp, which decreases
with each split. Thus, as the growth phase progresses, it becomes
increasingly likely that we will be unable to rejectH0.

3.1.2 `-Diversity
When the anonymity requirement is recursive(c, `)-diversity, we

must use each sample partition (ri) to estimate certain characteris-
tics of the sensitive attributeS within the corresponding population
partition (Ri). Let Ni denote the size of population partitionRi,
and letni denote the size of sample partitionri.

Recursive(c, `)-diversity can be expressed in terms of two pro-
portions. LetXj denote the frequency of thejth most common
sensitive value inRi. Let p1 = X1/Ni andp2 = (X` + ... +

6zα is the number such that the area beneath the standard normal
curve to the right ofzα = α.

X|dom(S)|)/Ni. Using these proportions,

H0 : p1 = c ∗ p2

H1 : p1 < c ∗ p2

We use the sample partition (ri) to estimate these proportions.
Let xj denote the frequency of thejth most common sensitive
value inri, and letbp1 = x1/ni and bp2 = (x`+...+x|dom(S)|)/ni.

Notice that these estimates make several implicit assumptions.
First, they assume that the domain of sensitive attributeS is known.
More importantly, they assume that the ordering of sensitive value
frequencies is the same inRi andri. In practice, this leads to a
conservative bias for small sample sizes. Nonetheless, this seems
to be a reasonable rule of thumb for larger samples, and a good
starting point.7

In order to do the test, we need to estimate the sample variance
of c bp2 − bp1. If we assume thatbp1 and bp2 are independent (which
is not true), then

V ar(c bp2 − bp1) = c2V ar(bp2) + V ar(bp1)

An estimator forV ar(bp) is bp(1−bp)
ni−1

�
Ni−ni

Ni

�
, so we estimate the

variance as follows.

c2 bp2(1− bp2) + bp1(1− bp1)

ni − 1

�
Ni − ni

Ni

�
Of course, when choosing a candidate split, we do not knowNi,

the size of theith resulting population partition. Instead, we use
the overall sampling proportion(n

N
) to guide the finite population

correction, which gives us the following estimate.dV arH0 =
c2 bp2(1− bp2) + bp1(1− bp1)

ni − 1

�
N − n

N

�
Finally, we rejectH0 in favor ofH1 when the following expres-

sion is satisfied, again using the Bonferroni correction.

c bp2 − bp1 > zα/m

qdV arH0

3.1.3 Variance Diversity
When the anonymity requirement is variance diversity, we again

use the sample partitionri to estimate certain characteristics ofRi,
namely the variance of sensitive attributeS.

The null and alternative hypotheses (for population partitionRi)
can be expressed as follows.

H0 : V ar(Ri, S) = v

H1 : V ar(Ri, S) ≥ v

7We also considered an alternate definition, entropy`-diversity
[15], and found it equally difficult to develop a precise test with-
out simulatingH0.

5

We use the sample variance ofS within ri to estimate the vari-
ance of the sensitive attribute in population partitionRi.

We use the variance ofS within sample partitionri as an esti-
mate of the variance in population partitionRi.

dV ar(Ri, S) =
1

ni − 1

niX
j=1

(sj − s)2

Recall that if eachsj is an independent normally-distributed ran-
dom variable, then the sample variance ofS follows a chi-square
distribution. Thus, we rejectH0 (for Ri) if the following holds.8

(ni − 1)dV ar(Ri, S)

v
≥ χ2

α/m (ni − 1 df)

In practice, this test may amount to little more than a rule of
thumb becauseS may follow an arbitrary distribution. However,
we stress that the algorithm will undo any split made in error. In
addition, because this estimator does not include a finite population
correction as such, when the overall sampling proportionn

N
= 1

(which means that the algorithm is operating on the full data par-
tition), we instead rejectH0 whenV ar(Ri, S) ≥ v, according to
the definition of variance diversity.

3.2 Discussion
Partitionings produced by Rothko-S are always guaranteed to

satisfy the given anonymity requirement(s), provided that the en-
tire input database satisfies the requirement(s). In virtually all cases
(when the sample size is not extremely small) the resulting parti-
tioning is also minimal (see Section 5). Potential non-minimality
can, however, occur in the following scenario: Suppose the algo-
rithm is operating on only a sample in some recursive instantiation
(that is,R is larger thanTM). If there does not exist a single (high-
confidence) split that can be made during the growth phase, then it
is possible that the resulting partitioning is non-minimal.9 In this
sense, the potential for non-minimality can be roughly equated with
the power of the test. Similarly, if all splits made during the growth
phase are undone during the pruning phase, we stop the algorithm
to avoid thrashing.

There are two other important issues to consider. First, as we
mentioned previously, our application can withstand some amount
of imprecision and bias in the hypothesis test routine because splits
that are made incorrectly based on a sample are eventually undone.
However, it is important for efficiency that this does not happen too
often. We continue to explore this issue in Section 5.6 as part of the
experimental evaluation.

The second important issue to consider is the precision of the
sampling-based algorithm with respect to workload-oriented split-
ting heuristics (InfoGain and Regression). It is clear that the split
chosen using sampler is not guaranteed to be the same as the split
that would be chosen according to the full partitionR. This prob-
lem has been studied in the context of a sampling-based decision-
tree construction algorithm (BOAT) [8], and could be similarly ad-
dressed in the anonymization setting using bootstrapping for splits,
and subsequent refinement.10

8χ2
α (ndf) is the number such that the area beneath the chi-square

density function (withn degrees of freedom) to the right isα.
9Of course, in the rare event that this scenario arises in practice, it
is easily detected. Fork-anonymity,`-diversity, Median and Info-
Gain splitting, a reasonable implementation would simply switch
to Rothko-T for the offending partition.

10The techniques proposed as part of BOAT would also have to be
extended to handle the case where the entire partition tree does not
fit in memory.

|R| Number of disk blocks in input relation R
‖R‖ Number of data tuples in input relation R
TM Number of data tuples that fit in memory
F CACHE Number of frequency groups that fit in memory

(≥ 1)
height Height of the partition tree before each leaf

partition fits in memory

Figure 5: Notation for analytical comparison

From a practical perspective, however, we find that it is less im-
portant in our problem to choose the optimal split (according to
the population) at every step. While decision trees typically seek
to construct a compact structure that expresses an underlying con-
cept, the anonymization algorithm continues partitioning the do-
main space until no allowable splits remain. We return to the issue
of sampling and data quality in the experimental evaluation (Sec-
tion 5.5).

4. ANALYTICAL COMPARISON
In order to lend insight to the experimental evaluation, this sec-

tion provides a brief analytical comparison of the I/O behavior of
Rothko-T and Rothko-S. For simplicity, we make this comparison
for numeric data (binary splits),k-anonymity, and partition trees
that are balanced and complete.11 We use the notation described
in Figure 5, and count the number of disk blocks that are read and
written during the execution of each algorithm.

Rothko-T We begin with Rothko-T. Recall that once each leaf con-
tains≤ TM tuples, we switch to the in-memory algorithm. The
height of the partition tree, prior to this switch, is easily computed.
(We assume thatk ¿ TM .)

height = max

�
0,

�
log2

�‖ R ‖
TM

���
Regardless of the available memory, the algorithm must scan

the full data setheight + 1 times. (The final scan imports the
data in each leaf before executing the in-memory algorithm.) As
F CACHE increases, an increasing number of “repartitions” are
eliminated.12 Thus, the total number of reads and writes (disk
blocks) is as follows:

repartitionsT =

�
height

blog2(F CACHE)c+ 1

�
readsT = |R| ∗ (height + repartitionsT + 1)

writesT = |R| ∗ repartitionsT

It is important to note that, unlike scalable decision trees [9],
Rothko-T does not scale linearly with the size of the data. The rea-
son for this is simple: decision trees typically express a “concept”
of fixed size, independent of the size of the training data. In the

11Obviously, these assumptions do not hold in all cases. Under
Median splitting, the partition tree will be only approximately bal-
anced and complete due to duplicate values; for InfoGain and Re-
gression splitting, the tree is not necessarily balanced and complete.
Under`-diversity or variance diversity, the analysis additionally de-
pends on the distribution of sensitive attributeS. Nonetheless, the
analytical comparison provides valuable intuition for the relative
performance of the two scalable algorithms.

12For simplicity, we assume that the size of a frequency group is
approximately constant for a given data set. In reality, the number
of unique values per partition decreases as we descend in the tree.

6

anonymization algorithm, however, the height of the partition tree
grows as a function of the input data and parameterk. For Median
partitioning, the height of the full partition tree is approximately�
log2

� ‖R‖
k

��
.

Rothko-S In the case of Rothko-S, the number of repartitions is
instead a function of the estimator (rather thanF CACHE). The
following recursive function counts the number of times the full
data set is repartitioned underk-anonymity:

repartitionsS(N)
if (N ≤ TM)
return 0

else
p0 = k/N
n = min(TM, N)

levels = max

�
x ∈ Z : 1

2x − p0 ≥ zα/2

q
p0(1−p0)

n

�
N−n
N−1

��
if (levels > 0)
return 1+ repartitionsS

�
N

2levels

�
else// non-minimal partitioning
return 0

The data is scanned once to obtain the initial sample. Each time
the data is repartitioned, the entire data set is scanned, and the new
partitions written to disk. Then, each of the resulting partitions is
scanned to obtain the random sample. Thus, the total number of
reads and writes (disk blocks) is as follows:

readsS = |R| ∗ (2 ∗ repartitionsS(‖ R ‖) + 1)

writesS = |R| ∗ repartitionsS(‖ R ‖)
In practice, we observe that for reasonably largeTM (large sam-

ple size), the total number of repartitions is often just 1. In this case,
the entire data set is read three times, and written once.

5. EXPERIMENTAL EVALUATION
We conducted an analytical and experimental evaluation, intended

to address the following high-level problems:

• Need for Scalable AlgorithmWe first seek to demonstrate the
need to explicitly manage memory and I/O when anonymizing
large data sets. (Section 5.2)

• Evaluate and Compare Algorithms One of our main goals is
to evaluate and compare the our scalable algorithms (Rothko-T
and Rothko-S). To this end, we perform an extensive experimen-
tal comparison of I/O behavior (Section 5.3) and total execution
time (Section 5.4).

• Sampling and Data Quality When using a sample, the splits
chosen according to the InfoGain and Regression split heuristics
may not be identical to those chosen using the entire data set.
Section 5.5 evaluates the practical implications.

• Evaluate Hypothesis TestsOur final set of experiments (Sec-
tion 5.6) evaluates the effectiveness of the optimistic hypothesis-
based splitting approach using a sample. By measuring the fre-
quency of pruning, we show that the approach is quite effec-
tive. Also, though just rules of thumb, the tests described in
Section 3.1 work quite well.

CentOS Linux (xfs file system)
512 MB memory
Intel Pentium 4 2.4 GHz processor
40 GB Maxtor IDE hard drive
(measured 54 MB/sec sequential bandwidth)
gcc version 3.4.4

Figure 6: Experimental system configuration

5.1 Experimental Setup
We implemented each of the scalable algorithms using C++. In

all cases, disk-resident data partitions were stored as ordinary files
of fixed-width binary-encoded tuples. File reads and writes were
buffered into 256K blocks. Figure 6 describes our hardware/software
configuration. In each of the experiments, we used a dedicated ma-
chine, with an initially cold buffer cache.

Our performance experiments used a synthetic data generator
based on the generator of Agrawal et al. [4]. The quasi-identifier
attributes were generated following the data distributions described
in Figure 7, and when necessary, target attributes were generated as
a function of these attributes. Functions C2 and C7 were used for
classification tasks, while Functions R7 and R10 were used for re-
gression tasks. Each quasi-identifier was treated as numeric (with-
out user-defined generalization hierarchies), and each tuple was 44
bytes.

For the synthetic data, the size of an AV group (Median splitting)
was approximately 8.1 MB. Because the class label attribute has
two distinct values, the size of an AVC group (InfoGain splitting)
was approximately 16.2 MB Also, for the sampling-based algo-
rithm, we fixedα = 0.05 throughout the experimental evaluation.

In addition to the synthetic data, our data quality experiments
(Section 5.5) make use of the Census database, which contains sev-
eral categorical attributes (and corresponding generalization hierar-
chies) [14].

5.2 Need for a Scalable Algorithm
When applied naively to large data sets, the Mondrian algorithms

[13, 14] will often lead to thrashing, and the expected poor perfor-
mance. To illustrate the need to explicitly manage memory and
I/O, we performed a simple experiment. We ran our in-memory
implementation (also in C++), allowing the virtual memory system
to manage memory and I/O. Figures 8 and 9 show I/O behavior
and runtime performance, respectively, for Median splitting andk-
anonymity (k = 1000). As expected, the system begins to thrash
for data sets that do not fit entirely in memory. These figures show
performance for data sets containing up to 10 million records; in the
remainder of this section, we will show that the scalable algorithms
are easily applied to much larger data sets.

5.3 Counting I/O Requests
We begin the experimental comparison by focusing on the I/O

incurred by each of the two proposed algorithms. Each of the ex-
periments in this section uses Linux/proc/diskstats to count
the total number of I/O requests (in 512 byte blocks) issued to the
disk. We also compare the experimental measurements to the val-
ues predicted in Section 4.

All of the experiments in this section use Median partitioning
andk-anonymity. The first two experiments each used50 million
input tuples, andk = 1000. For Rothko-T, we fixedTM =
2 million, and varied parameterF CACHE. The results are
shown in Figure 10. As expected, increasingF CACHE reduces
the number of I/O requests. However, the marginal improvement

7

Attribute Distribution
salary Uniform integer in [20,000, 150,000]
commission If salary≥ 75,000, then 0

Else Uniform integer in [10,000, 75,000]
age Uniform integer in [20,80]
elevel Uniform integer in [0, 4]
car Uniform integer in [1, 20]
zipcode Uniform integer in [1, 9]
hvalue zipcode *h * 100,000

whereh uniform in [0.5, 1.5]
hyears Uniform integer in [1, 30]
loan Uniform integer in [0, 500,000]

Target Function T
C2 if ((age < 40) ∧ (50K ≤ salary ≤ 100K))∨

((40 ≤ age < 60) ∧ (75K ≤ salary ≤ 125K))∨
((age ≥ 60) ∧ (25K ≤ salary ≤ 75K))
then T = A
elseT = B

C7 disposable = 0.67× (salary + commission)
−0.2× loan− 20K

if disposable > 0 then T = A
elseT = B

R7 T = 0.67× (salary + commission)
−0.2× loan− 20K

R10 if hyears < 20 then equity = 0
elseequity = 0.1× hvalue× (hyears− 20)
T = 0.67× (salary + commission)

−5000× elevel + 0.2× equity − 10K

Figure 7: Synthetic data generator

Figure 8: In-Memory Mondrian I/O

Figure 9: In-Memory Mondrian time

obtained from each additional frequency group is decreasing. In
some cases, the observed number of disk reads is smaller than ex-
pected due to file system buffering.

For Rothko-S, we varied the sample size, and the results are
shown in Figure 11. Notice that for this wide range of sample
sizes, the data was repartitioned just once, meaning that the algo-
rithm read the entire data set 3 times, and wrote it once. Also, the
total amount of I/O is substantially less than that of Rothko-T.

Finally, we performed a scale-up experiment, increasing the data
size, and fixingTM = 2 million, k = 1000. The total number
of I/O requests (reads and writes) are shown in Figure 12. Again,
Rothko-T is able to exploit the buffer cache to some extent, but the
total amount of I/O is substantially more than Rothko-S.

5.4 Runtime Performance
Perhaps most importantly, we evaluated the runtime performance

of both proposed algorithms. All of the experiments in this section
usek-anonymity as the anonymity requirement. In each case, we
break down the execution time into three components: (1) User
space CPU time, (2) Kernel space CPU time, and (3) I/O wait time.
These statistics were gathered from the system via/proc/stat .
Note that in all cases, the experiments in this section produced min-
imal partitionings.

We begin with Median partitioning. The first set of experiments
measured scale-up performance, fixingTM = 2 million, and
k = 1000. Figures 13 and 14 show the results for Rothko-T,
with F CACHE = 1 and8, respectively. Figure 15 shows the
results for Rothko-S. As expected, the sampling-based algorithm
was faster, both in terms of total execution time and CPU time.
Additionally, each of the algorithms goes through periods where
execution is I/O-bound. Interestingly, the I/O wait times are simi-
lar for Rothko-T (F CACHE = 8) and Rothko-S. However, this
is deceptive. Although Rothko-T does more I/O, it also performs
more in-memory calculations, thus occupying the CPU while the
file system flushes the buffer cache asynchronously.

The second set of experiments considered the effects of para-
meterk. Results for these experiments are shown in Figures 16,
17, and 18. As expected, a decreasing value ofk leads to more
computation. However, because the algorithms all switch to the in-
memory algorithm after some number of splits, this additional cost
falls to the CPU.

Finally, we compared scale-up performance using the InfoGain
split criterion, again fixingTM = 2 million, andk = 1000.
For these experiments, we used label function C2 to generate the
class labels. Figures 19 and 20 show the results for Rothko-T
(F CACHE = 1, 4). Figure 15 shows the results for Rothko-S.
As expected, the CPU cost incurred by these algorithms is greater
than Median partitioning, particularly due to the extra cost of find-
ing allowable numeric thresholds that maximize information gain.
However, Rothko-S consistently outperforms Rothko-T.13

5.5 Effects of Sampling on Data Quality
In Section 3.2, we discussed some of the potential shortcomings

of the sampling-based algorithm, and we noted that one primary
concern is imprecision with respect to the InfoGain and Regression
split criteria. In this section, we evaluate the effects of sampling
with respect to data quality. For reasonably large sample sizes, we
find that in practice the effect is often minimal.

13For efficiency, the recursive partitioning procedure switched to
Median partitioning when the information gain resulting from a
new split dipped below a 0.01. We note that continuing the In-
foGain splitting all the way to the leaves is very CPU-intensive,
particularly for numeric attributes, because of the required sorting.

8

Figure 10: Rothko-T I/O Figure 11: Rothko-S I/O Figure 12: Scale-up I/O

Figure 13: Rothko-T (F CACHE = 1)
Median Splitting

Figure 14: Rothko-T (F CACHE = 8)
Median Splitting

Figure 15: Rothko-S Median Splitting

Figure 16: Rothko-T (F CACHE = 1)
Median Splitting

Figure 17: Rothko-T (F CACHE = 8)
Median Splitting

Figure 18: Rothko-S Median Splitting

Figure 19: Rothko-T (F CACHE = 1)
InfoGain Splitting

Figure 20: Rothko-T (F CACHE = 4)
InfoGain Splitting

Figure 21: Rothko-S InfoGain Splitting

9

Figure 22: C2 Figure 23: C7 Figure 24: Census Classification

Figure 25: R7 Figure 26: R10 Figure 27: Census Regression

There are a number of different ways to measure data quality.
In the interest of simplicity, in these experiments, when using Info-
Gain splitting, we measured the quality of the resulting anonymized
data using the conditional entropy of the class label (C), with re-
spect to the partitioning [14]. For Regression splitting, we measure
the root mean squared error (RMSE) that would result if a data re-
cipient used the mean value in each equivalence class to estimate
the values of a numeric target attributeT . Both of these measures
relate directly to the respective greedy split criteria.

RMSE(T) =

vuut 1

|R|
mX

i=1

|Ri| ∗ V ar(Ri, T)

We performed experiments using both synthetic and real-life data.
Results for synthetic data and InfoGain splitting are shown in Fig-
ures 22 and 23. Results for Regression splitting are shown in Fig-
ures 25 and 26. For each experiment, we generated 10 data sets
(each containing 100,000 records), and we increased the sample
size. The reported results are averaged across the ten data sets. In
the figure, we circled partitionings that are potentially non-minimal.

Increasing the sample size does lead to small improvement in
quality (decreased entropy or error). However, for reasonably large
sample sizes, the difference is very small. In all of our experi-
ments the sample size had a much smaller impact on quality than
the anonymity parameterk.

We also conducted a similar experiment using the Census data-
base [14]. Results are shown in Figures 24 and 27, for InfoGain
and Regression splitting, respectively, again denoting potentially
non-minimal partitionings with an additional circle. Again, the
improvement in quality gained from increasing the sample size is
small.

5.6 Hypothesis Tests and Pruning
One of the important components in the design of the sampling-

based algorithm is choosing an appropriate means of checking each
anonymity requirement(k-anonymity,`-diversity, and variance di-
versity) using a sample. Although the algorithm will always undo
splits made in error, it is important to have a reasonable procedure
in order to avoid excessive pruning.

In this section, we evaluate the effectiveness of the hypothesis-
based approach described in Section 3.1. As mentioned previously,
our hypothesis tests for̀-diversity and variance diversity are just
“rules of thumb”. Nonetheless, we find that the approach of using
a hypothesis test, as well as the specific tests outlined in Section 3.1,
actually work quite well in practice.

We again used the synthetic data generator (Figure 7), and the
Median split criterion. For each experiment, we used an input of
100,000 tuples, and varied the sample size. For each experiment,
we repartitioned the data automatically when the height of the tree
reached 8 (due to memory limitations for storing sensitive value
histograms under variance diversity).

We conducted experiments usingk-anonymity,`-diversity, and
variance diversity, each as the sole anonymity requirement in the
respective experiment. For`-diversity, we usedzipcodeas the sen-
sitive attribute, and fixedc = 1. For variance diversity, we used
salary as the sensitive attribute. In addition to the uniform salary
distribution, we also considered a normal distribution. (The pop-
ulation variance of the uniformsalary is approximately 1.4e9; the
population variance of the normalsalary is approximately 1.1e8.)

Figure 28 shows our results. Each entry indicates the total num-
ber of nodes that were pruned during the algorithm’s entire execu-
tion. The numbers in parentheses indicate the number of nodes that
are pruned when we use a naive approach that does not incorpo-
rate hypothesis tests (see Section 3.1). An “x” indicates that the
resulting partitioning was (potentially) non-minimal, as described

10

k
n 10 100 1000 10000

100 68 (1384) x (x) x (x) x (x)
250 30 (1110) 7 (97) x (x) x (x)
500 11 (419) 12 (55) x (x) x (x)

1000 0 (0) 5 (6) x (x) x (x)
2500 0 (0) 2 (1) 1 (3) x (x)
5000 0 (0) 0 (0) 1 (4) x (x)

10000 0 (0) 0 (0) 0 (0) x (x)
25000 0 (0) 0 (0) 0 (0) 0 (0)

(a) k-Anonymity

`
n 2 4 6 8

100 97 (631) x (x) x (x) x (x)
250 65 (87) x (x) 8 (67) x (x)
500 2 (763) x (111) 2 (32) x (x)

1000 112 (91) 1 (170) 1 (33) x (16)
2500 0 (0) 0 (2) 1 (0) 0 (2)
5000 0 (0) 0 (2) 0 (0) 0 (9)

10000 0 (0) 0 (1) 0 (0) 0 (0)
25000 0 (0) 0 (1) 0 (0) 0 (0)

(b) `-Diversity

v
n 1.1e9 1.2e9 1.3e9

100 x (x) x (x) x (x)
250 x (510) x (x) x (x)
500 x (443) x (434) x (x)

1000 0 (456) x (372) x (x)
2500 0 (0) 0 (87) x (146)
5000 0 (0) 0 (0) 0 (47)

10000 0 (0) 0 (0) 0 (5)
25000 0 (0) 0 (2) 0 (7)
(c) Variance Diversity (Uniform S)

v
n 7e7 8e7 9e7

100 x (x) x (x) x (x)
250 x (396) x (x) x (x)
500 x (599) x (457) x (x)

1000 0 (402) 0 (405) x (278)
2500 0 18) 0 (66) x (169)
5000 0 (0) 0 (0) 0 (6)

10000 0 (0) 0 (0) 0 (13)
25000 0 (0) 0 (0) 0 (17)

(d) Variance Diversity (Normal S)

Figure 28: Pruning and non-minimality in Rothko-S

in Section 3.2.
There are two important things to note from these results. First

and foremost, the estimates are reasonably well-behaved, and do
not lead to an excessive amount of pruning, even for small samples.
Similarly, although our hypothesis tests are just rules of thumb,
they provide for much cleaner execution (less pruning) than the
naive approach of using no hypothesis test.

As expected, the incidence of both non-minimality and pruning
decreases with increased sample size.

6. RELATED WORK
In recent years, numerous algorithms have been proposed fork-

anonymous generalization [2, 5, 7, 10, 12, 16, 19, 20], and the
related problems of anonymous clustering and microaggregation
[1, 3, 6, 24], but few have considered data sets larger than main
memory.

The Incognito algorithm operated on external (disk-resident) data
[12]. However, the complexity of the algorithm was exponential
in the size of the attribute schema, making it impractical in many
situations. Additionally, an empirical study indicates that the full-
domain recoding technique may produce lower-quality data in prac-
tice [13].

In order to providek-anonymity in the context of location-based
services, Mokbel et al. proposed using a scalable grid-based struc-
ture [17]. They describe two algorithms: a batch algorithm (which
operates bottom-up), and an algorithm for incremental updates.
Neither of the algorithms was designed to incorporate additional
anonymity requirements (e.g.,`-diversity) or workload-oriented split-
ting heuristics (e.g., InfoGain splitting). The proposed techniques
were also designed to handle 2-dimensional spatial data, and it is
not immediately clear how they would scale to data with higher
dimensionality.

To the best of our knowledge, all of the other proposed algo-
rithms were designed to handle only memory-resident data, and
none has been evaluated with respect to data substantially larger

than the available memory. Nonetheless, many interesting algorith-
mic approaches have been considered, including optimal search in
cube space [12, 19], optimal search in a more flexible space of gen-
eralizations [5], genetic algorithms [10], approximation algorithms
[2, 16], and greedy heuristic search [7, 13, 14, 20, 22, 24].

There have also been a number of recent extensions and vari-
ations of thek-anonymity model, including̀ -diversity [15], de-
scribed in Section 1.1. Additionally, Xiao and Tao proposed gen-
eralizing sensitive values, and allowing individuals to determine at
what level of granularity these attributes are exposed [23]. Finally,
Kifer and Gehrke proposed releasing multiple (generalized) mar-
ginal tables, the schema of which forms a decomposable graph, as
a technique for combating high dimensionality [11]. Future work
might consider techniques for integrating these and other exten-
sions into the scalable framework described in this paper.

7. CONCLUSION & FUTURE WORK
This paper considered scaling an existing generalization-based

anonymization framework (Mondrian [13, 14]) to data sets that are
much larger than main memory, and proposed two separate tech-
niques. The first, Rothko-T, is based on ideas from the RainFor-
est framework for scalable decision tree construction [9]. Given
modern memory sizes, Rothko-T can often be applied when the
anonymity requirement isk-anonymity and/or̀ -diversity, and the
split criterion is either Median or InfoGain. The output of this tech-
nique is guaranteed to satisfy all given anonymity requirements,
and it is also guaranteed to be a minimal partitioning.

The second technique, called Rothko-S, is also guaranteed to
produce output that satisfies all given anonymity constraints (pro-
vided that the full input data set satisfies these requirements). This
recursive algorithm uses a data sample, and partitions the space
“optimistically” using the sample and a set of estimators. Periodi-
cally, the algorithm repartitions the data, and prunes away any splits
that were made in error.

We conducted an experimental performance evaluation, and found

11

that the sampling-based algorithm is often more efficient, both in
terms of I/O and elapsed time. In addition, we found that for
reasonably-large sample sizes, choosing workload-oriented splits
(InfoGain or Regression) based on a sample has only a small im-
pact on the quality of the output data.

Finally, there are several interesting opportunities for future work.
Specifically, in this paper, we considered using sampling as a way
to scale an anonymization algorithm to data sets larger than main
memory. The hypothesis tests we developed (Section 3.1) fork-
anonymity,`-diversity, and variance diversity are reasonable rules
of thumb, particularly for the large samples encountered in the ex-
ternal algorithm. However, if we had a more precise set of tests
(and precise characterizations of power and significance levels), it
is reasonable to believe that we could also apply a sampling-based
algorithm to enhance the performance of the in-memory case, choos-
ing sample sizes in accordance with the given test(s).

8. REFERENCES
[1] C. Aggarwal and P. Yu. A condensation approach to

privacy-preserving data mining. InProceedings of the 9th
International Conference on Extending Database
Technology, 2004.

[2] G. Aggarwal, T. Feder, K. Kenthapadi, R. Motwani,
R. Panigrahy, D. Thomas, and A. Zhu. Anonymizing tables.
In Proceedings of the 10th International Conference on
Database Theory, January 2005.

[3] G. Aggarwal, T. Feder, K. Kenthapadi, R. Panigrahy,
D. Thomas, and A. Zhu. Achieving anonymity via clustering
in a metric space. InProceedings of the 25th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 2006.

[4] R. Agrawal, S. Ghosh, T. Imielinski, and A. Swami.
Database mining: A performance perspective. InIEEE
Transactions on Knowledge and Data Engineering,
volume 5, 1993.

[5] R. Bayardo and R. Agrawal. Data privacy through optimal
k-anonymity. InProceedings of the 21st International
Conference on Data Engineering, April 2005.

[6] J. Domingo-Ferrer and J. Mateo-Sanz. Practical
data-oriented microaggregation for statistical disclosure
control.IEEE Transactions on Knowledge and Data
Engineering, 4(1), 2002.

[7] B. Fung, K. Wang, and P. Yu. Top-down specialization for
information and privacy preservation. InProceedings of the
21st International Conference on Data Engineering, April
2005.

[8] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. BOAT:
Optimistic decision tree construction. InProceedings of the
ACM SIGMOD International Conference on Management of
Data, 1999.

[9] J. Gehrke, R. Ramakrishnan, and V. Ganti. RainForest: A
framework for fast decision tree construction of large
datasets. InProceedings of the 24th International
Conference on Very Large Databases, 1998.

[10] V. Iyengar. Transforming data to satisfy privacy constraints.
In Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
August 2002.

[11] D. Kifer and J. Gehrke. Injecting utility into anonymized
datasets. InProceedings of the ACM SIGMOD International
Conference on Management of Data, 2006.

[12] K. LeFevre, D.DeWitt, and R. Ramakrishnan. Incognito:

Efficient full-domain k-anonymity. InProceedings of the
ACM SIGMOD International Conference on Management of
Data, 2005.

[13] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian
multidimensional k-anonymity. InProceedings of the 22nd
International Conference on Data Engineering, 2006.

[14] K. LeFevre, D. DeWitt, and R. Ramakrishnan.
Workload-aware anonymization. InProceedings of the ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006.

[15] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam. l-Diversity: Privacy beyond
k-anonymity. InProceedings of the 22nd International
Conference on Data Engineering, 2006.

[16] A. Meyerson and R. Williams. On the complexity of optimal
k-anonymity. InProceedings of the 23rd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 2004.

[17] M. Mokbel, C. Chow, and W. Aref. The new casper: Query
processing for location services without compromising
privacy. InProceedings of the 32nd International Conference
on Very Large Databases, 2006.

[18] J. A. Rice.Mathematical Statistics and Data Analysis.
Wadsworth, Inc., 1995.

[19] P. Samarati. Protecting respondants’ identities in microdata
release.IEEE Transactions on Knowledge and Data
Engineering, 13(6), November/December 2001.

[20] L. Sweeney. Achieving k-anonymity privacy protection using
generalization and suppression.International Journal on
Uncertainty, Fuzziness, and Knowledge-based Systems,
10(5):571–588, 2002.

[21] L. Sweeney. K-anonymity: A model for protecting privacy.
International Journal on Uncertainty, Fuzziness, and
Knowledge-based Systems, 10(5):557–570, 2002.

[22] K. Wang, P. Yu, and S. Chakraborty. Bottom-up
generalization: A data mining solution to privacy protection.
In Proceedings of the 4th IEEE International Conference on
Data Mining, November 2004.

[23] X. Xiao and Y. Tao. Personalized privacy preservation. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2006.

[24] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu.
Utility-based anonymization using local recoding. In
Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2006.

12

APPENDIX
Given an input tuple setR, consider the set of all possiblebucke-
tizations(groupings of tuples into equivalence classes). It is possi-
ble to define a partial order¹ on this set of bucketizations, where
R∗ ¹ R∗∗ if and only if every bucket inR∗∗ is the union of one or
more of the buckets inR∗.

Let R∗ andR∗∗ be bucketizations of input data setR such that
R∗ ¹ R∗∗, and letallowabledef (R∗) denote that bucketization
R∗ is allowable with respect to privacy requirementdef . Privacy
requirementdef is monotoneif and only if allowabledef (R∗) →
allowabledef (R∗∗).

THEOREM 1. Variance diversity is monotone.

PROOF. Without loss of generality, consider two finite multisets
of real numbers,A = {a1, ..., am} andB = {b1, ..., bn}, which
are the sensitive values in two non-overlapping buckets (equiva-
lence classes). Suppose that each bucket satisfies variance diver-
sity. That is,V ar(A) ≥ v and V ar(B) ≥ v. To show that
V ar(A ∪ B) ≥ v, it is sufficient to show thatV ar(A ∪ B) ≥
min(V ar(A), V ar(B)).

For two random variables,X andY , the Law of Total Variance
[18] states thatV ar(X) = E[V ar(X|Y)] + V ar[E(X|Y)]. For
finite setsA andB, we useY to indicate membership in one of the
two sets. Thus, we can computeV ar(A ∪B) as follows, whereA
denotes the mean value in setA:

R =
m

m + n
A +

n

m + n
B

V ar(A ∪B) =
m

m + n
V ar(A) +

n

m + n
V ar(B)

+
m

m + n
(A−R)2 +

n

m + n
(B −R)2

Thus,V ar(A ∪B) ≥ min(V ar(A), V ar(B)).

13

