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ABSTRACT
During the past decade or two, the Internet has wit-
nessed an ever escalating demand for protection against
unwanted traffic, including those carrying out malicious
attacks. Packet filtering has been universally deployed
in firewalls to serve as the first defense frontier against
such unwanted traffic. Thus far in practice, packet fil-
tering in firewalls has followed the conventional paradigm
of exact packet classification, in which every packet has
to be classified exactly conforming to the complete set
of defined rules. However, under heavy traffic load due
to unusually large traffic bursts or malicious attacks,
performing exact packet classification sometimes incurs
load that far exceeds the firewall’s capacity. It is not
rare for firewalls to crash under such circumstances,
causing considerable loss of important data and ex-
tended periods of service disruption. In this paper, we
propose the first robust scheme for approximate packet
classification, which dynamically adjusts the rules to be
evaluated at runtime as a function of system load, so as
to reduce the drop rate and delay of legitimate packets
at the firewall while still being conservative enough in
filtering all unwanted packets. Through extensive sim-
ulations based on firewall rule sets and traffic logs man-
aged by a large tier-1 ISP, we demonstrate that our pro-
posed solution can reduce legitimate packet drop rate
by as much as an order of magnitude and hence signifi-
cantly improve the robustness of the firewall, especially
under high traffic loads.

1. INTRODUCTION
During the past decade, the Internet has witnessed

an escalating demand for protection against unwanted
traffic, including those carrying out malicious attacks.
To guard against such attacks, enterprises and networks
typically construct multiple levels of defense layers con-
sisting of both stateless and stateful components. State-
less approaches — approaches in which the decision to
permit or deny a packet depends on the packet itself
and no other packet — to traffic filtering are relatively

simple, can operate at much higher speeds, but are not
as sophisticated in detecting all unwanted traffic. State-
ful approaches, though better at detecting sophisticated
attacks, cannot match the speeds of stateless filtering.
Both these techniques are complementary in their use.
In general, we can view stateless firewalls to be the first
layer of a network’s defense perimeter. All traffic per-
mitted by a stateless firewall may subsequently be in-
spected by more stateful approaches. The role of the
stateless firewalls is, thus, to reduce the volume of traf-
fic that stateful components have to further inspect and
perform complex operations on.

The focus of this paper is on this first layer of a net-
work’s defense mechanism, i.e., on the design of state-
less firewalls. Stateless firewalls perform packet filtering
operations which match each incoming packet against a
rule set, i.e., a set of rules defined over the entire packet
content. Even though, the operations of a stateless fire-
wall are relatively simple, the rules themselves might
be a quite complex function of the entire packet, which
evaluates each incoming packet to either permit or deny
for packet filtering. For example, a rule might specify
a large number of value ranges that will be matched to
different components of the packet content. Dependen-
cies might exist between different rules in a rule set such
that a packet may match more than one rule. In such
cases, there is a strict ordering among the rules and the
goal is to find the highest priority matching rule.

For a simple illustrating example, consider the rule
set in Table 1 and an incoming UDP packet, which
originates from the source IP address 192.168.224.18,
targeting UDP port 1433. This packet matches both
the first rule and the second (default deny) rule. (It
matches the first rule because it comes from the network
192.168.224.0whose network mask is 255.255.255.0.)
Applying the two rules in their given order in Table 1,
the first rule determines the fate of the packet and hence
the packet is accepted. However, if we reverse the or-
dering of these two rules, the default deny rule will de-
termine the fate of the packet and hence the packet will



:rule (
:source (

: host 192.168.221.97
: host 192.168.27.8
: network 192.168.224.0 255.255.255.0

)
:destination (

: Any
)
:services (

: udp-1433-1434
: traceroute
: echo-request
: ping-replies

)
:action (

: permit
)

)
:rule (

:source (
: Any

)
:destination (

: Any
)
:services (

: Any
)
:action (

: deny
)

)

Table 1: Some example rules used by the firewalls.

be dropped instead. Such and other complexities in the
matching process implies that a firewall’s packet filter-
ing operations need to be implemented in software.

As transmission speeds continue to increase at a faster
rate than memory access speeds [16], software-based
classification systems are not always able to match the
potential rates at which traffic may arrive at the fire-
walls. Moreover, as more and more complex rules are
used to handle increasingly sophisticated attacks [29],
the classification process becomes even slower, thus fur-
ther hindering the ability of firewalls to match such
packets at wire speeds. Hence, it is likely that during
an overwhelming burst of traffic, the incoming traffic
load can exceed the classification capacity of such sys-
tems. In such a scenario, incoming packets will have to
be delayed in the queue, for longer and longer periods
of waiting time. Eventually, the firewall will run out of
critical resources such as buffer space, and start drop-
ping even legitimate packets without getting an oppor-
tunity to classify them. Indeed, this is a real problem
faced by many networks under high traffic loads (in-
cluding misbehaving users and DoS attacks), and our
exploration in this domain was triggered by multiple
instances of firewall failures due to such overload.

The goal of this paper is to design robust packet filter-
ing strategies in a stateless firewall that minimize the
total volume of legitimate traffic that is dropped by it.

1.1 Our approach to robustness

Typical firewalls attempt to perform exact packet clas-
sification — the software filtering process will permit
or deny a packet only if it is the correct action accord-
ing to its rule set. We call such packet classification
semantically-exact. In contrast, in this paper we pro-
pose to use semantically-inexact packet classification —
classification where the firewall’s software process may
sometimes violate the rule set semantics, and drop some
legitimate traffic as well. (It will never permit unwanted
traffic through the firewall, however.) Such inexact clas-
sification will be applied only when necessary, i.e., only
when the exact classification process is unable to keep
up with the incoming traffic volume, will the system
switch to inexact classification. Since the classifica-
tion is inexact, we also call this approach approximate
packet classification in this paper. As discussed, the ap-
proximation is conservative — no unwanted traffic (as
defined by the rule set) is permitted by the firewall,
but some legitimate traffic may be dropped during high
loads.

Based on this simple idea, the focus of this work is to
structure the classification process to meet two goals.
The most important goal is to minimize the total vol-
ume of legitimate traffic that is dropped by the firewall.
The secondary goal is to minimize the classification la-
tency for all traffic that is permitted by the firewall.
Note that any exact classification system will also drop
some legitimate traffic under heavy loads. This will
happen only due to buffer overflows prior to classifi-
cation. In our approximate approach, some legitimate
traffic may be dropped due to the inexact nature of the
classification process. Depending on the specific tech-
niques applied, additional legitimate traffic may still be
dropped due to buffer overflows. Minimally we desire
that the aggregate of all such drops of legitimate traffic
in our proposed inexact case is lower than the drops in
the current model of exact classification.

1.2 A simple example
We illustrate this approach of approximate packet

classification using a simple example. Consider the rule
set shown in Table 2, which is also pictorially illustrated
in Figure 1. The rule set checks two fields in incoming
packets, denoted by F1 and F2. In the figure, the two
fields, F1 and F2, are represented along x and y axes,
respectively. The boxes correspond to different rules. In
particular, the shaded boxes correspond to rules whose
decision is permit whereas the white boxes correspond
to rules whose decision is deny. In the scenario depicted
in Figure 1, there are 8 flows observed by the firewall,
each represented by a corresponding dot. (In this pa-
per, a flow corresponds to a set of all packets with the
same projection, and where the projection of a packet
is defined as the d-tuple consisting of the values of the
d fields specified in the rule set.) Rules I, II, III and
IV match 4, 2, 1 and 1 of these 8 flows, respectively.



Rule I : (F1 ∈ [10, 70]) ∧ (F2 ∈ [40, 65]) → permit

Rule II : (F1 ∈ [20, 85]) ∧ (F2 ∈ [20, 60]) → permit
Rule III : (F1 ∈ [25, 75]) ∧ (F2 ∈ [55, 85]) → permit

Rule IV : (F1 ∈ [0, 100]) ∧ (F2 ∈ [0, 100]) → deny

Table 2: A rule set of 4 rules. Rules ordered by priority.

III

II

I

IV

Figure 1: Approximate packet classification based on

the rule set in Table 2.

Among these 8 flows, the 7 flows matched by Rules I, II
and III are legitimate flows, while the other one should
be denied.

To provide the basic intuition, we assume a näıve
packet classification algorithm which compares each in-
coming packet with every individual rules in order1. Let
us say the firewall is capable of comparing a rule with
100 units of traffic per second, and each flow contributes
10 units of traffic per second. Exact classification of the
8 flows requires a classification capacity of comparing a
rule with 4×1×10+2×2×10+1×3×10+1×4×10 =
150 units of traffic per second. Consequently, incoming
packets will get delayed in the queue and the firewall
will end up dropping one third of incoming legitimate
packets. Let us assume the queue can accommodate
L packets. For those legitimate packets that are not
dropped, as the queue is always full, they have to wait
for all the L packets already in queue to be classified, be-
fore they can be classified. That represents a significant
delay for those legitimate packets that were eventually
permitted by the firewall.

The basic idea of approximate packet classification
is quite simple: if we can somehow quickly approve a
considerable percentage of legitimate packets to avoid
accumulating packets in the queue, possibly at the cost
of mistakenly denying a small percentage of legitimate
packets, the legitimate packet drop rate may still be
lower than that caused by exact packet classification,
since the system will not have to drop (possibly a large
pencentage of) packets due to buffer overflow. More-
over, the average delay on legitimate packets will hope-

1Indeed, this simple näıve algorithm is implemented in many
real systems. Moreover, the classification speed of other pro-
posed packet classification algorithms depends on the num-
ber of used rules as well.

fully be much lower than the delay incurred by exact
packet classification. The system should also provide
the additional guarantee that unwanted packets should
always be denied.

We, first, consider a simple approximate packet clas-
sification scheme where the firewall only compares each
incoming packet with the first K rules and drops all
packets that do not match them. Let us examine the
case when K = 2. Such approximate classification of
the 8 flows requires a classification capacity of compar-
ing a rule with 4×1×10+2×2×10+1×2×10+1×2×10 =
120 units of traffic per second. As a result, the firewall
will only need to drop 120−100

120 = 1
6 of incoming (legiti-

mate) packets, although the queue is still full and hence
the long delay on approved packets remains there. It
can be verified that K = 1 or K = 3 will lead to more
drops of legitimate traffic than the K = 2 case.

However, this is by no means the best we can do. If
we construct a new rule Rule X : (F1 ∈ [32, 55])∧ (F2 ∈
[32, 68]) → permit as illustrated by the dashed box in
Figure 1, this single rule will match all 7 legitimate flows
and executes the same action. In this case, we will need
to simply compare each incoming packet with this single
new rule X , which requires a classification capacity of
comparing a rule with 4×1×10+2×1×10+1×1×10+
1×1×10 = 80 units of traffic per second, which is within
the firewall’s classification capacity. Consequently, the
firewall does not have to put packets in queue or drop
them. The legitimate traffic drop rate and the delay
of legitimate traffic both reach zero, in this example of
approximate packet classification.

1.3 Design objectives and challenges
The above example illustrates that under heavy load

conditions a careful design of semantically-inexact clas-
sification can actually be better than semantically-exact
one and a poor design may hurt performance. Here, we
identify the following to be key requirements for the
design of inexact classification techniques:

• The inexact classification should not lead to un-
necessary packet drops for legitimate traffic when
the incoming volume of traffic is low. In particular,
under low loads inexactness would not be useful.

• Under high loads, inexact classification should lead
to lower drop rate and lower delay for legitimate
traffic than exact classification.

• No unwanted traffic will be permitted even when
inexact classification is in effect.

Our approximate packet classification system meets
all of these requirements by answering the following spe-
cific questions.

1. When and how should we switch between exact
and inexact classification schemes? While inex-
act classification can reduce legitimate packet drop
rate under high loads, we do not want to use it



under low loads since it may unnecessarily drop
legitimate packets due to its inexact nature.

2. How shall we obtain the new rules for further im-
proving classification efficiency?

3. Which of the new rules and given rules should
we use for approximate classification of incoming
packets?

4. As incoming traffic pattern changes, how should
we update the set of rules we use in the approxi-
mate classification scheme?

5. How to make sure that unwanted packets are never
permitted by the firewall?

This paper represents a first exploratory step to solve
these problems. In particular, we start with a recently
proposed efficient technique for exact classification (pro-
posed in the context of traffic classification in core routers
using TCAMs) [33] which we adapt to improve firewall
performance. This solution, however, still gets over-
loaded when large bursts of traffic arise. We then in-
troduce a systematic approach to implementing inexact
classification such that it achieves our desired perfor-
mance objectives for firewalls. Through comparisons,
using real traffic traces and real rule sets from a tier-
1 ISP, we show that the inexact classification scheme
leads to significant performance gains (both in terms of
latency and drop rate for legitimate traffic) over the ex-
act classification scheme, especially under high loads. In
particular, our proposed solution can reduce legitimate
packet drop rate by as much as an order of magnitude,
and reduce packet delay by as much as a factor of 4.
When the incoming traffic load is low, our proposed so-
lution seamlessly converges to exact classification and
hence avoids unnecessary drops of legitimate packets
under low loads.

It is worth emphasizing that, while our work in this
paper focuses on stateless packet classification only, the
general idea of inexact packet classification is likely to
apply beyond that. We expect to further explore that
direction in our future work.

1.4 Road map
The rest of the paper is organized as follows. In Sec-

tion 2, we present the design of our proposed approxi-
mate classfication scheme. We evaluate its performance
through extensive simulations in Section 3. After re-
viewing related work in Section 4, we conclude the pa-
per in Section 5.

2. DESIGN
In this section, we describe our design for approxi-

mate packet classification to improve robustness of state-
less firewalls.

We start with the observation that most rule sets have
significant redundancy in their rules [26, 32]. In partic-
ular, different firewall rules may get added at different

incoming
packets

evolving
rules

Approximate
Classifier

Rule
Manager

learn traffic
characteristics

original
rule set

permitted
packets

dropped
packets

Figure 2: Framework of our design.

points in time, possibly triggered by different sources
of reported vulnerabilities. It is possible that a newly
added rule is partially, or even completely, covered by
other rules. Hence, the first step in designing our sys-
tem is to eliminate such redundancies, by transforming
a specified rule set into a new rule set that is seman-
tically equivalent, i.e., the classification decision of the
new rule set is identical to the original rule set [26, 32,
33]. The new rule set is just a more efficient version of
the original rule set for exact packet classification.

The focus of this paper is on the second step, in which
we build an approximate classifier based on the new rule
set, by carefully introducing inexactness during periods
of high loads in lieu of faster classification speeds.

Our design of the approximate classification system,
therefore, consists of two components — the rule man-
ager and the approximate classifier as shown in Fig-
ure 2. The rule manager is responsible for the first
step, while the approximate classifier is responsible for
the second step. In particular, the approximate classi-
fier tries to classify incoming packets in an adaptive and
not necessarily exact manner, using a certain subset of
the rules provided by the rule manager as well as the
original rule set. It adapts its choice of this subset in
response to changes in incoming traffic. In our proposed
solution, we select a rule manager that guarantees exact
classification selected from prior best known schemes in
the literature [33], and we summarize its characteristics
in Section 2.1. The design of the approximate classifier
is at the heart of our proposed approximate classifica-
tion scheme, and is the key contribution of this paper.
We describe the design of our efficient approximate clas-
sifier in Section 2.2.

2.1 Rule manager
Prior work [33] describes a rule manager designed for

exact packet classification using TCAMs in core routers.
We briefly summarize the design of this rule manager
in this section, which we adapt for our use in software-



based stateless firewalls. (We will also borrow terminol-
ogy from this subsection in describing the approximate
classification process.)

To build an efficient rule set, the rule manager contin-
uously samples incoming traffic and computes specific
statistics of this sampled traffic to learn its current char-
acteristics. In particular, the rule manager calculates
all distinct sampled flows and their frequency (which
we will refer to as weight) in the sample. Based on
this sampled information, the rule manager creates and
maintains a small set of new rules that cover all sam-
pled packets, and dynamically evolve these rules in re-
sponse to traffic pattern changes. We call them evolv-
ing rules. The evolving rules created will (typically)
match a significant portion of incoming traffic and hence
can be effectively used later for improving the efficiency
of both exact classification and inexact classification.
These evolving rules possess the following key proper-
ties, which make our approximate packet classification
a lot easier to implement.

• Each evolving rule is semantically consistent with
the original rule set. Namely, if an evolving rule
matches a packet, its decision (on that packet) is
always the same as the decision specified by the
original rule set.

• The packets of each distinct sampled flow always
get assigned to one evolving rule that matches it.
This ensures the evolving rules contain the entire
sampled information. The weight of each evolv-
ing rule is defined to be the total weight of its
assigned flows, i.e., the total number of assigned
sample packets. After normalization, the normal-
ized weight of an evolving rule is an estimate of the
percentage of incoming packets that will be matched
by this rule. The approximate classifier tries to
adopt an appropriate classification strategy based
on this estimation.

• The evolving rules are structured in a way such
that if two rules match the same packet, they must
have the same decision. This greatly simplifies the
approximate packet classification, because this al-
lows us to use the evolving rules in any order for
approximate packet classification.

2.2 Approximate classifier
In this subsection, we describe our design of the ap-

proximate classifier, which classifies incoming packets
in a way that adapts to incoming traffic. Suppose there
are l evolving rules, R1, R2, · · · , Rl, provided by the
rule manager. Let w1, w2, · · · , wl denote their nor-
malized weight, respectively. Our approximate classifier
employs a combination of two classification schemes, as
described below in Section 2.2.1 and Section 2.2.2, and
carefully switches between these two schemes depending
on the dynamics of incoming traffic load as discussed in
Section 2.2.3.

2.2.1 Scheme I
This scheme matches each incoming packet against a

certain small number (denoted by m) of evolving rules
provided by the rule manager, using some packet clas-
sification algorithm A0. If a matching rule is not found,
we then match the packet against the original rule set
(which contains n rules), using some other packet clas-
sification algorithm A.

We intentionally use this two stage classification pro-
cess based on the following observations. Typical rule
sets in firewalls we consider have the order of 104 ∼ 105

rules. However, in normal operations, it has been re-
ported that a large volume of the traffic often match
just a few rules [28]. Employing a single stage clas-
sification process over the entire rule set to find such
a match can therefore be much less efficient, even if
the best known classification algorithm [4] is applied.
Instead, if we can carefully select a small number (say,
m < 10) of popular evolving rules, even a simple sequen-
tial search approach (used as algorithm A0) will deliver
much higher performance. On failure, the packet can
then be compared against the entire rule set using more
sophisticated techniques applicable for large rule sets.

It is worth emphasizing that we do not need to make
any assumption about A0 and A. As an initial ex-
ample for demonstrating the effectiveness and poten-
tial of approximate packet classification, let us sim-
ply take näıve sequential search as the algorithm we
use as A0. Because the rule manager typically pro-
vides a very small number of evolving rules that are
highly popular. Employing sophisticated classification
algorithms using these evolving rules can only gener-
ate very marginal efficiency improvement. Moreover, as
the evolving rules are frequently updated (i.e., evolved)
by the rule manager, sophisticated algorithms typically
have to re-compute sophisticated data structures upon
every update by the rule manager. The added overhead
by far exceeds the marginal performance gain.

To perform sequential search (algorithm A0) through
the evolving rules, we sort the evolving rules into a list
L (in some order we shall discuss shortly). Note that
simply searching through the entire list of l evolving
rules does not necessarily lead to optimal performance,
as we shall analyze below. Instead, we should carefully
compare each incoming packet with the first m evolving
rules in L , where m ≤ l. In fact, this is an essential
advantage of our Scheme I over the exact classification
scheme using the rule manager proposed in [33], which
simply uses a fixed number of evolving rules for improv-
ing classification efficiency.

To determine the optimal value of m, let us suppose
the evolving rules are indexed based on their position
in L . The estimated workload when using the first
m evolving rules is equal to comparing each incoming



packet with an average of

N1(m) =

(

m
∑

k=1

wkk

)

+ (m + W (n))

(

1 −

m
∑

k=1

wi

)

rules, where W (n) denotes the average number of com-
parisons per packet incurred by the complete packet
classification algorithm A using the original rule set
(containing n rules). Here, we do not need to make
any assumption about W (n). The firewall can use any
complete classification algorithm A applicable for large
rule sets. Note that if m = 0, Scheme I is reduced
to the original single stage packet classification scheme
used by the firewall.

Let us say the firewall’s classification capacity enables
it to perform an average of C comparisons for each in-
coming packet. In general, there are two cases where
an incoming packet may be dropped.

1. Before an incoming packet enters the queue, the
packet may be directly dropped without classifi-
cation, due to a full queue in the case of system
overload. We refer to such drops as pre-queuing
drops.

2. After an incoming packet enters the queue, the
packet may be dropped according to a classifi-
cation decision. We call such drops post-queuing
drops.

In Scheme I, there is no post-queuing drop of legiti-
mate packets, because queued packets are always cor-
rectly classified. However, incoming legitimate pack-
ets may be dropped due to system overload (i.e., pre-
queuing drop). Therefore,

• If N1(m) ≤ C, the firewall is able to handle the
incoming traffic load and hence does not have to
drop (legitimate) packets.

• If N1(m) > C, the firewall is only able to handle
C

N1(m) of incoming traffic and hence the estimated

pre-queuing packet drop rate is 1 − C
N1(m) . Since

packets are dropped without classification here, we
assume such pre-queuing drops are completely ran-
dom. Thus, legitimate packets are dropped with
the same probability ρ = 1 − C

N1(m) .

In both cases, we want to minimize N1(m) in order to
minimize ρ. Thus in L , we should sort the evolving
rules in non-increasing order of weight. (Because m +
W (n) > k for any k ≤ m.) An optimal value of m that
minimizes N1(m) can be easily determined by checking
all possible values of m ∈ [0, l]. The calculations can be
done quite efficiently, especially given the fact that l is
(typically) very small.

2.2.2 Scheme II
Compared with the exact Scheme I, our inexact Scheme

II is even more aggressive. In Scheme II, if a matching

rule is not found among the evolving rules, we simply
drop the packet without further classifying it using the
original rule set, which introduces (slight and conserva-
tive) inexactness for (significantly) decreased workload
and hence much better efficiency.

In this scheme, we also match incoming packets against
the first m evolving rules in L , using sequential search.
(However, the way we determine the list L and the
value of m is different from Scheme I.) The estimated
workload is equal to comparing each incoming packet
with an average of

N2(m) =

(

m
∑

k=1

kwk

)

+ m

(

1 −

m
∑

k=1

wi

)

rules. Compared with Scheme I, Scheme II is less likely
to drop packets due to overload (i.e., pre-queuing drops),
since the incurred workload is much lower. But it may
drop packets due to mistaken classification decisions
(i.e., post-queuing drops), due to its inexactness.

For ease of presentation, we also define the notion of
positive weight (denoted by w+

i ) for each evolving rule
Ri. If the decision of Ri is permit, then w+

i = wi and
we refer to Ri as a positive rule; If the decision of Ri

is deny, then w+
i = 0 and we refer to Ri as a negative

rule.

• If N2(m) ≤ C, the firewall is able to handle the
incoming traffic load and packets are only dropped
as a classification decision. Thus, the estimated
legitimate packet drop rate is given by

ρ =

l
∑

k=m+1

w+
k

l
∑

k=1

w+
k

.

• If N2(m) > C, firewall is only able to handle C
N2(m)

of incoming traffic. The estimated percentage of
(legitimate) packets that are dropped before queu-
ing is ρ1 = 1− C

N2(m) , and the estimated percentage

of legitimate packets that are dropped after queu-

ing is ρ2 =
C

N2(m)
×

l
∑

k=m+1

w+
k

l
∑

k=1

w+
k

. The aggregate



legitimate packet drop rate ρ is thus given by

ρ =

(

1 −
C

N2(m)

)

+
C

N2(m)
×

l
∑

k=m+1

w+
k

l
∑

k=1

w+
k

= 1 −
C

N2(m)
×

m
∑

k=1

w+
k

l
∑

k=1

w+
k

.

In both cases, we want to maximize
∑m

k=1 w+
k and min-

imize N2(m), in order to minimize ρ. Unlike the case
in Scheme I, simply sorting the evolving rules in non-
increasing order of weight may not minimize ρ here.
To determine the optimal list L of evolving rules to
be used for approximate packet classification, we show
there must exist an optimal list L that satisfies the
following properties.

I. The first m evolving rules in L , regardless of their
decision, are sorted in non-increasing order of weight.
To see that, consider two evolving rules Ri and Rj

that both appear in the first m evolving rules of
L . Suppose wi < wj and Ri appears before Rj in
L . If we switch Ri and Rj , the value of N2(m)
will decrease and the value of

∑m

k=1 w+
k will not

change. The value of ρ will decrease.

II. Positive rules in L are sorted in non-increasing
order of weight. To see that, consider two positive
rules Ri and Rj in L . Suppose wi < wj and Ri

appears before Rj in L . If we switch Ri and Rj ,
the value of N2(m) will not increase and the value
of
∑m

k=1 w+
k will not decrease. The value of ρ will

not increase.

III. Negative rules in L are also sorted in non-increasing
order of weight. To see that, consider two negative
rules Ri and Rj in L . Suppose wi < wj and Ri

appears before Rj in L . If we switch Ri and Rj ,
the value of N2(m) will not increase and the value
of
∑m

k=1 w+
k will not change. The value of ρ will

not increase.

IV. The m-th evolving rule in L should be a positive
rule. Otherwise, there is no need to compare in-
coming packets with the m-th evolving rule, since
the packets will be dropped anyway.

By property II, let us assume the k highest-weight
positive rules are in the first m evolving rules of L . By
property III, the m−k highest-weight negative rules are
in the first m evolving rules of L . Then by property
I, these first m rules should be sorted in non-increasing
order of their weight. Finally, we check if the m-th rule
satisfies property IV. Thus, once k and m are given, an

for (m = 0; m ≤ l; m++) {
for (k = 0; k ≤ m; k++) {
/* Based on Property II ... */

if there are less than k positive rules
continue;

pick the k highest weight positive rules;
/* Based on Property III ... */

if there are less than m − k negative rules
continue;

pick the m − k highest weight negative rules;
/* Based on Property I ... */

sort the m rules in non-increasing order of weight;
/* Based on Property IV ... */

if the m-th rule is a negative rule;
continue;

compute ρ for this sorted list L ;
keep the optimal L that minimizes ρ so far;

}
}

Table 3: Compute an L that minimizes ρ in Scheme II.

optimal list L can be determined, if such an optimal
list L exists for the given k and m at all. That said, an
optimal list L can be found after checking all possible
values of k ∈ [1, m]. A pseudo code description of this
simple algorithm is given in Table 3.

2.2.3 Approximate classification algorithm
Given the design and analysis of Scheme I and Scheme

II, we now present a simple yet effective algorithm for
approximate packet classification. Our algorithm dy-
namically switches between Scheme I (which is exact)
and Scheme II (which is inexact), with preference being
given to Scheme I if the packet drop rate is already quite
low. Because ideally, if we ignore packet drops due to
traffic bursts (much of which we try to handle by ac-
tively adapting to changes in incoming traffic pattern),
Scheme I guarantees correct classification of every in-
coming packet. In contrast, Scheme II does not provide
such a guarantee.

Initially, our algorithm starts in Scheme I. According
to the analysis in Section 2.2.1, the optimal strategy is
to choose a value of m such that N1(m) is minimized.
To effectively adapt to incoming traffic load, we contin-
uously monitor the pre-queuing drop rate ρ0 of recently
received packets, and adapt our classification scheme
accordingly.

Let us first consider the case where the current scheme
in use is Scheme I. If ρ0 does not exceed a threshold
(e.g. 3% in our simulations), which is quite low, we
continue to use Scheme I for classification. Because on
one hand, the legitimate packet drop rate ρ is equal
to the pre-queuing drop rate ρ0 in Scheme I. On the
other hand, Scheme II always has a certain probability
of mistakenly dropping legitimate packets, due to its



inexact classification of incoming packets. Therefore,
continue using Scheme I is a conservative and acceptable
choice, especially when the threshold is quite low.

To decide the optimal value of m, we can estimate
the constant C in our formula by ρ0 = 1− C

N1(m) , which

gives C = (1 − ρ0)N1(m). 2 An apparent merit of
this approach is that C and ρ0 are estimated in a real
time manner, which provides us with a dynamic view of
the system’s currently available capacity and incoming
traffic load. Using this estimation, explicit knowledge
about currently available system capacity and incoming
traffic load is not required, which greatly simplifies the
design and implementation of our approximate classifi-
cation scheme. However, if ρ0 = 0, this may underes-
timate C. Therefore, in such cases we will not update
our estimation of C. Using the estimated value of C,
we can determine the optimal value of m as described
in Section 2.2.1.

If ρ0 exceeds the threshold (and hence ρ0 > 0), we
need to decide which scheme to use and what the op-
timal value of m should be. Again, we can estimate C

by ρ0 = 1− C
N1(m) . After estimating C, we shall choose

a value of m and one of Scheme I and II that minimize
the drop rate ρ of legitimate packets. To minimize ρ

in Scheme II, we compute an optimal list L as well as
an optimal value of m, as is described in Table 3. If
this optimal estimated value of ρ in Scheme II is lower
than the optimal estimated value of ρ in Scheme I, we
will use Scheme II with that m value for approximate
packet classification. Otherwise, Scheme I will be used
with its optimal m value.

Now let us consider the case where the current scheme
in use is Scheme II. Similarly, the constant C can be es-
timated by ρ0 = 1 − C

N2(m) . If ρ0 = 0, we will not

update our estimation of C to avoid possible under-
estimation. Using the estimated value of C, we shall
similarly choose a value of m and one of Scheme I and
II that minimize the drop rate ρ of legitimate packets,
as described above.

A brief pseudo code description of this adaptation
algorithm used by our approximate classifier is given in
Table 4.

3. EVALUATION
We evaluate the performance of our proposed solution

for approximate packet classification using real rule sets
and traffic logs obtained from firewalls managed by a
large ISP. Each day, the firewalls dump a snapshot of
their rule sets as well as a 24-hour-long traffic log of
that day.

• Each rule set contains up to the order of 104 rules.
The decision of rules is either permit or deny.

2We use pre-queuing drop rate ρ0 instead of the drop rate ρ
of legitimate packets to estimate C, because calculating ρ0

does not require knowing if a dropped packet is legitimate
or not, which is more realistic.

ChooseScheme;
Scheme I :

if (ρ0 ≤ threshold) {
choose Scheme I;
if (ρ0 > 0)

C = (1 − ρ0)N1(m);
pick the optimal value of m;
return;

}
if (ρ0 > threshold) {

if (ρ0 > 0)
C = (1 − ρ0)N1(m);

pick the optimal scheme and value of m;
return;

}
Scheme II :

if (ρ0 > 0)
C = (1 − ρ0)N2(m);

pick the optimal scheme and value of m;
return;

Table 4: The adaptation algorithm.

• Each traffic log is essentially a list of flow records
of incoming packets at the firewall for a single
day. Each record contains a number of fields, in-
cluding timestamp, source and destination IP ad-
dresses, source and destination port numbers, pro-
tocol type, etc. Each traffic log lasts one day.
Since these firewalls only log traffic that have been
successfully classified, packets that were dropped
prior to classification (e.g., packet loss due to buffer
overflow) do not have corresponding records in the
traffic logs. This recording strategy at the firewalls
would limit our ability to study behavior patterns
during high loads. Hence, in our simulations, we
generate heavier traffic loads by compressing each
24 hour long traffic log into a shorter time dura-
tion.

In our simulations, we try to classify each traffic log us-
ing the rule set snapshot obtained from the same firewall
on the same day, using different classification schemes
we are going to evaluate and compare.

3.1 Schemes and metrics
In simulations, we can possibly compare our proposed

approximate classification scheme against the best pos-
sible classification algorithm as our reference point. As
the authors showed in [4], for packet classification over
d > 3 fields, the best known algorithm has O(log n)
search time at the cost of O(nd) space, where n is the
number of rules in the rule set. Note that the bound
provided above makes no assumption about the incom-
ing traffic pattern.

Our Scheme I is also an exact classification algorithm
that enhances any existing exact classification algorithm,
A, with another stage, a stage that first learns popu-



larity of rules from the incoming packets and checks
packets against these popular rules. If a match is not
found among these popular rules, then the full classi-
fication is performed using algorithm A, using all of
the rules in the second stage. This traffic-aware ap-
proach of Scheme I leads to performance improvements
over the corresponding traffic-unaware classification al-
gorithm, A, both in terms of legitimate packet drop
rate and classification latency. These gains have been
consistently verified in our simulations.

Therefore, we pick Scheme I as the exact classification
algorithm that uses the most efficient traffic-unaware
algorithm in its second stage. The running time of
this traffic-unaware classification algorithm is log n for
each packet as reported in [4]. In the simulation results
we present here, we shall focus on comparing our pro-
posed approximate classification scheme (which adap-
tively switches between Scheme I and Scheme II) with
Scheme I. Scheme II itself is an approximate classifica-
tion scheme that has no second stage and hence, and
does not depend on the the computational speed of the
best known exact classification algorithm.

One problem that confronted us in our simulation
setup is to construct reasonable scenarios where over-
load does happen, at least from time to time. The
recorded traffic logs are for packets that were success-
fully classified by the firewalls. Hence, the aggregate
of these packets will not cause overload of the firewall
they traverse. In particular, packets that were dropped
due to the overload will simply not be recorded in these
logs.

Thus, in our simulations, we artificially make over-
load present by properly setting the processing capac-
ity of the simulated firewall. To make our presentation
of simulation results as intuitively clear as possible, we
present traffic load in a normalized form. In particu-
lar, each simulation involves a traffic log, a classification
scheme, and a rule set. We calculate for each simulation
an average capacity demand (ACD), which is basically
the product of the average packet rate of the traffic log
and the average number of comparisons needed to clas-
sify a packet using the classification scheme and the rule
set. The average capacity demand of each simulation is
normalized to the firewall’s capacity.

3.2 Results
To evaluate the performance of our proposed approx-

imate classification scheme, we have conducted many
simulations with different rule sets and traffic logs. In
general, for low traffic loads, the proposed approximate
classification scheme will use the exact classification
technique in Scheme I, and hence will neither perform
better or worse than the exact classification scheme. It
is only when the traffic volume approaches or exceeds
the firewall capacity, does the inexactness of our pro-
posed classification mechanism take effect, and lead to
performance gains. Hence, in this section, we focus pri-
marily on scenarios where the average traffic demands

are relatively high, ranging from 70% to 110% of the
firewall’s capacity.

We first present detailed simulation results from a
representative pair of traffic log and rule set. Subse-
quently, we will present results from a number of other
representative rule sets and traffic logs.

Representative rule set and traffic log: In Fig-
ure 3–5, we present the legitimate packet drop rate
achieved by different schemes, with the average capac-
ity demand being equal to 90%, 100% and 110% of the
firewall’s capacity, which represent the cases where in-
coming traffic load approaches, reaches, and exceeds the
firewall’s capacity, respectively. In these simulations, we
calculate and present the legitimate packet drop rate
observed during each minute-long period of the entire
hour. The first five minutes are taken as a warm-up
stage and hence not presented in the figures.

As we can see from Figure 3, even if the firewall
has sufficient capacity to handle the average capacity
demand, traffic burstiness still generates overloads on
the firewall from time to time. There are many one-
minute durations when the exact classification scheme
was overloaded and dropped between 5-30% of the in-
coming traffic (between time 15–47 minutes). In con-
trast, our proposed approximate scheme was very effec-
tive in avoiding most drops of legitimate packets.

As the incoming traffic load increased to 100% in Fig-
ure 4 and 110% in Figure 5, the performance of the
exact classification approach (Scheme I) degrades sig-
nificantly, while our approximate scheme only suffers
slight performance degradation.

The above conclusions are not only the case for legit-
imate packet drop rate, but also the case for packet de-
lay. To demonstrate that, we also calculate the average
packet delay for each minute-long period, and present
the results in Figure 6–8.

To further evaluate how the performance of differ-
ent schemes degrades as the incoming traffic load (rela-
tively) increases, we have also conducted the same sim-
ulation with other different firewall capacities. The ob-
served cumulative drop rate of legitimate packets and
average packet delay are presented in Figure 9 and Fig-
ure 10, respectively. As we can see, the performance of
Scheme I proportionally degrades with incoming traffic
load, and the effectiveness of our approximate scheme
steadily increases with incoming traffic load. In general,
the legitimate packet drop rate and average packet de-
lay of our approximate scheme is roughly an order of
magnitude lower than Scheme I.

Other rule sets and traffic logs: Next, we present
simulations results from other rule sets and traffic logs
obtained from the same firewalls. The observed cumula-
tive drop rate of legitimate packets and average packet
delay are presented in Figure 11 and Figure 12, respec-
tively. For these rule sets and traffic logs, our approxi-
mate scheme can reduce legitimate packet drop rate by
as much as an order of magnitude, and reduces average
packet delay by as much as a factor of 4.



 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60

D
ro

p 
R

at
e 

of
 L

eg
iti

m
at

e 
P

ac
ke

ts

Time (in minutes)

(Exact) Scheme I
Approximate Scheme

Figure 3: ACD = 90% of Capacity.
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Figure 4: ACD = 100% of Capacity.
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Figure 5: ACD = 110% of Capacity.

4. RELATED WORK
Packet classification on multiple fields was first stud-

ied in [5] and [6]. Since then, there have been two
primary lines of research on designing efficient packet
classification schemes. A long thread of research [5, 6,
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Figure 6: ACD = 90% of Capacity.
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Figure 7: ACD = 100% of Capacity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  20  30  40  50  60

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
ac

ke
t D

el
ay

Time (in minutes)

(Exact) Scheme I
Approximate Scheme

Figure 8: ACD = 110% of Capacity.

8, 9, 10, 12, 15, 14, 19, 18, 21, 22, 27, 28, 31] has been
devoted to designing efficient algorithms for packet clas-
sification. The other thread of research focuses on de-
signing efficient packet classification schemes based on
TCAMs [17, 20, 23, 25, 29, 32].
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In addition to these packet classification schemes, some
researchers have also proposed cache-like techniques to
further improve the efficiency of packet classification.
For example, two packet cache techniques have been
proposed in [13] and [24], respectively. These packet
cache techniques cache recently observed packets to speed
up the classification of succeeding packets of the same
flows. However, the increasingly large number of con-
current flows witnessed by routers/firewalls present seri-
ous threat to the performance of packet cache schemes.
Based on the notion of rule evolution, Dong et al. pro-
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Figure 12: Average packet delay.

pose smart rule cache [32], which is able to handle many
more concurrent flows, requires much smaller cache size
and delivers much higher cache hit ratios.

The idea of speeding up packet classification by first
checking “hot” rules (like smart rule cache) has also
been explored by other researchers as well. In [28], Co-
hen and Lund propose to reorder rules based on popu-
larity. Although their goal is to reduce the expected
time of sequentially searching through a rule set to
classify packets, this technique can actually be used
to reorder rules and then cache the hottest rules. In
that sense, their proposal shares some common observa-
tion with smart rule cache. However, simply reordering
given rules has limited effectiveness. For one example,
it is often the case that the last default rule matches
a significant portion of incoming traffic. Therefore, to
preserve semantic integrity, the default rule cannot be
placed before any other rule that has a different deci-
sion, because the default rule overlaps and hence con-
flicts with such a rule. In smart rule cache, rules in
cache are not necessarily present in the original rule set
and dynamically evolve in response to incoming traf-
fic pattern changes. Use of such independently defined
and constantly evolving rules is decisive to the success
of smart rule cache.

More recently, Hamed et al. [31] propose to add
some “early reject” rules to the beginning of firewall
rule sets, in pursuit of the same goal of reducing the
expected time needed to sequentially search through a
rule set. Compared with the proposal by Cohen and
Lund, Hamed et al. have gone one step further in that
the early reject rules they add are not necessarily in the
original rule set. However, the key idea of dynamically
evolving rules is still absent. Moreover, in identifying
early reject rules, they have not been able to take a sys-
tematic approach based on the semantics of the original
rule set. This greatly limits the flexibility and effective-
ness of added early reject rules.

Almost all of these previous proposals are constrained
in the domain of exact packet classification, where ev-
ery packet must be correctly classified based on the



original rule set. The only exception is [24], in which
the authors propose approximate cache using bloom fil-
ters [1]. More recently, Bonomi et al. have proposed
approximate state machines, which employ bloom fil-
ters to achieve increased efficiency. However, mistak-
enly accepting unwanted packets, especially those ma-
licious attacking packets, is not acceptable in robust
firewalls. Bloom filters cannot avoid such false posi-
tives, and hence are not appropriate for use in robust
firewalls. The reason is briefly explained as follows. For
more information about bloom filters, interested readers
are referred to [1].

1. As a data structure for membership checking, false
positive is inherent in bloom filters. If we define
packets present in a bloom filter to be legitimate
packets, unwanted packets may be mistakenly de-
termined to be present in the bloom filter and
hence interpreted as legitimate packets.

2. Even if we define packets present in a bloom filter
to be unwanted packets, we are still not able to
avoid accepting unwanted packets. Because if an
unwanted packet has never been seen before, it is
likely to be not present in the bloom filter and
hence interpreted as a legitimate packet.

Our proposed approximate packet classification scheme,
therefore, is the first known applicable technique for
approximate packet classification that can avoid mis-
takenly accepting unwanted packets, which is of vital
importance in robust firewalls.

5. CONCLUSIONS
Given the increase in unwanted traffic, firewalls in

networks and enterprises are getting configured with
increasing number of rules, each encoding more com-
plex specifications than before. Additionally, as wire
speeds continue to increase at a more rapid rate than
memory access latencies, software based packet classi-
fication systems are more fragile against conditions of
traffic overload. To improve the performance of such
classification systems, we propose to employ approxi-
mate packet classification for increased robustness. Our
ideas have been specifically designed for stateless sys-
tems. However, we believe the concept itself is fairly
general, and may find different uses in the context of
more stateful classification systems.
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