P mEEEEEE @R

EEEREREDNEE DO S BB

BB ERE EBEEEEEBEEER

E @ EEBDE0EEEDBE O 0ERE B

Logical Image Migration Based on Overlays

Joe Meehean
Greg Quinn

Technical Report #1564

June 2006

UNIVERSITY OF

M A DI1S O N

Logical Image Migration Based on Overlays

Joe Meehean and Greg Quinn
Computer Sciences Department
University of Wisconsin-Madison
Madison, WI 53706
{jmeehean|gquinn}@cs.wisc.edu

May 12, 2005

Abstract

Virtual machine technology is becoming an increas-
ingly popular vehicle for enabling process and ser-
vice migration. Many migration frameworks rely on
a distributed file system to avoid worrying about the
burden of migrating a large virtual disk. While this
assumption is valid in some contexts, there are other
environments where it is not feasible. In these cases,
disk migration becomes the primary bottleneck for
achieving efficient migration. We discuss the design,
implementation, and evaluation of LIMBO, a sys-
tem for efficient migration of VM local file systems.
We've found that overlay-based migration using a
copy-on-write block device can significantly improve
migration costs while imposing a small amount of
overhead on file system operations.

1 Introduction

Process migration has been an active topic in oper-
ating systems research for several decades. Until re-
cently, most of this research has focused on enabling
support for migration within the operating system.
An alternative approach, which is now receiving a
lot of attention, is to enable migration by executing
a system within a virtual machine (VM).

The virtual machine approach has several advan-
tages. The main challenges that a system must con-
sider in order to enable migration are those of re-
source naming and handling a process’s external de-
pendencies. A virtual machine ensures that naming
conflicts cannot occur, as resource names like pro-
cess IDs are private to a particular VM. In addition,
migrating a process along with its enclosing virtual
machine significantly reduces the types of external
dependencies that must be dealt with when migrating.
For example, IPC mechanisms like shared memory or
pipes do not present problems since both endpoints

are migrated together. An additional advantage of us-
ing virtual machines for migration is portability. Mi-
grating individual processes will require that the mi-
gration target is running a sufficiently similar soft-
ware environment to the source machine in order for
the migration to succeed. Migrating a virtual ma-
chine, however, will require only that the migration
target has the same hardware architecture, a signifi-
cantly more relaxed constraint.

VM-based approaches for problems like migration
are likely to continue to gain momentum in com-
ing years. Hardware technologies are in develop-
ment that will provide support for virtualization at
the CPU level [11, 1]. Furthermore, newer systems
like Xen [12], based on the idea of paravirtualiza-
tion, reduce the runtime cost of executing inside a
VM by placing virtual machine monitor awareness in
the guest OS kernel.

Process migration has been suggested as a mecha-
nism for several purposes, including fault tolerance,
improving network locality, load balancing, and user
mobility. It is important to note that a single migra-
tion strategy may not be suitable for all of these pur-
poses. For example, the VM approach has many nice
properties as described above, but may not be a re-
alistic option for achieving load balancing. The way
in which a migration scheme will be used should dic-
tate the set of assumptions the scheme is based on. In
particular, many migration systems assume file sys-
tem migration can be handled by mandating the use
of a distributed file system [19, 14]. This assumption
disallows migration in many circumstances, and may
result in unacceptable performance in others. Specif-
ically, the distributed file system assumption is not
well suited to the mobile user and grid computing en-
vironments where a process may migrate beyond the
efficient operating range of many distributed file sys-
tems.

The idea of using virtual machine-based migration

to allow mobile users to access their personal com-
puting environments anywhere is described in Inter-
net Suspend/Resume [14]. This work breaks the bond
between a user’s customized environment and a par-
ticular piece of hardware. With such a wide range
of possible migration targets, it is unlikely that a dis-
tributed file system will always be available.

Grid computing is another area in which migrating
virtual machines are becoming useful. Virtual ma-
chines make it possible to create a sandbox to pro-
tect a system from any untrusted grid jobs it may be
running. Virtual machines are also useful for grids
because they allow a user to specify a well-defined
environment in which a job will be executed.

OQur goal is to facilitate efficient migration in a
wider range of environments by dealing with situa-
tions where the ability to use a distributed file sys-
tem cannot be assumed. Removing this assumption
presents an imposing challenge. In a typical VM
configuration, virtual disk size is at least an order of
magnitude larger than main memory. In this paper,
we describe and evaluate the LIMBO system, which
reduces the amount of data that must be transmitted
when migrating a virtual machine’s local file system.
In Section 2, we present properties of file system data
that can be leveraged in achieving our goal. Section
3 presents the LIMBO architecture. In implementing
LIMBO for Linux, we’ve taken advantage of some
existing technologies, which we detail in Section 4.
Section 5 describes our implementation, which we
evaluate in Section 6. Section 7 describes related
work, and Section 8 concludes.

2 Leverage Points

There are two leverage points that allow for optimiza-
tion when migrating a large system image. First, typ-
ically a large portion of a disk image is comprised of
standard operating system and application files (Sec-
tion 2.1). Second, a user is likely to migrate within a
particular subset of machines (Section 2.2).

2.1 Image Commonality

A typical disk image contains a large number of files
that are common to many users. This includes oper-
ating system files, application binaries, libraries, and
documentation. In a typical Linux installation this in-
cludes the files located in the /bin, /sbin, /1ib,
/boot, and portions of /usx directories [20]. Many
distributed computing environments take advantage
of this commonality by placing binaries and libraries
in a shared distributed file system directory.

If all users shared the same unmodified operating
systems and applications, full VM migration would
be unnecessary. A much simpler solution would be
provided by installing this common image on all ma-
chines and using process migration frameworks such
as Zap [19]. Users, however, do not perform the same
functions uniformly across all desktop systems. Even
between software engineers on the same project one
may prefer emacs and while another may use vi.
Typically a user will customize their particular sys-
tem installation to maximize the efficiency of their
given work. A dedicated emacs user may have a
emacs configuration file that is tens of KB. Addi-
tionally, some users require special applications or li-
braries. For example, a user wishing to build the Xen
source code would require the development version
of the 1ibcurl library. In a typical Linux instal-
lations these customizations are sprinkled across the
previously mentioned directories as well as populat-
ing directories created specifically for customization
suchas /etc, /usr, and /hone.

Much of this customization is encapsulated in rel-
atively small configuration files and updated appli-
cation binaries. These customizations generally ac-
count for a relatively small portion of the total disk
size. A solution to the problem of migrating system
images should exploit the large commonality of sys-
tem images while still allowing user customization.

2.2 Migratory Patterns

Similar to migratory birds, the mobile user is likely
to migrate between a small set of locations. Typi-
cally, this will include the user’s work desktop, home
desktop, and laptop computers. The reduction in
the number of probable migration hosts allows these
hosts to perform prefetching and caching without a
large penalty in either storage or bandwidth. How-
ever, users may also migrate to machines they rarely
use. Teaching assistants may work in a common lab,
rather than in their offices, to answer student ques-
tions. Similarly, many software development compa-
nies provide “bull pens” where developers can tem-
porarily work together in small groups. Without care-
ful design, prefetching and caching become difficult,
costly, and ultimately useless at unlikely migration
hosts.

A mobile user migrating to an uncommon place
should not increase the overhead of migration to a
degree that makes it undesirable. However, a good
solution should also take advantage of the likelihood
that the user will migrate within a particular subset of
machines.

3 Architecture

In this section we discuss how image commonality
and migratory patterns can be leveraged to develop
an efficient architecture in both storage space and mi-
gration time. We present several design alternatives
to illustrate the benefits of our technique. Section 3.1
discusses how an immutable disk image can facili-
tate prefetching, while Section 3.2 presents a range of
techniques for encapsulating user configuration and
customization. Section 3.3 provides an overview of
our architecture for efficient virtual machine file sys-
tem migration.

3.1 Pristine Image

By analyzing the leverage points discussed in the pre-
vious section one can see that it is possible to capture
a majority of the disk contents in a shared pristine
disk image that contains the operating system and
standard applications. Our definition of pristine im-
age implies that any two instances of the same pris-
tine image are exactly the same. This allows a pris-
tine image to be safely prefetched and cached at the
likely migration points because it is guaranteed not
to change. Additionally, the overhead of prefetching
and caching for a subset of probable users is reduced
because several users may share the same pristine im-
age.

Throughout this paper we refer to the pristine im-
age, however, there may be several. For maximum
flexibility there may be single pristine image for each
operating system and application working set. For
example within the same company there may be a
Fedora2 with Standard Utilities image for software
developers, a Windows XP with Microsoft Office im-
age for management, and a RedHat Enterprise Linux
3 with IBM’s WebSphere for the web servers. Two is-
sues arise when dealing with multiple images. First,
each image must be assigned a unique name to pre-
vent a host from fetching the wrong image. Sec-
ond, the benefits of pristine images are reduced as the
number of images approaches the number of users.
We do not explicitly deal with either of these issues
in this paper.

3.2 Customization Encapsulation

Pristine images do not solve the problem of migrat-
ing user customizations or configurations, which is
key for functional VM migration. These changes
must be captured using a separate mechanism. If
we can assume that there is a mechanism to encap-
sulate these changes and that the destination host has

already prefetched the pristine image, when a partic-
ular user migrates to a host only the user’s changes
must be retrieved. In the case where a user migrates
to a machine that does not have a copy of the correct
pristine image, the image does not have to be fetched
from the same site as the user’s changes. When using
VM migration for mobile computing, pristine images
may be burned to CD or DVD and carried with the
user. When migrating a VM in a grid environment an
image server can be set up in each grid to efficiently
distribute pristine images at runtime. The network
connection between a grid computing resource and a
grid image server will likely have better bandwidth
and lower latency than the connection between the
grid resource and the submission site.

An issue of using pristine images and a set of
changes for virtual disk migration is that encapsulat-
ing customizations cannot continue indefinitely be-
cause the change representation may grow as large as
the disk image. Some technique must be devised for
merging changes back into a pristine state to prevent
migrating customizations from becoming as cumber-
some as migrating entire disk images.

Removing the assumption that there is some mech-
anism for encapsulating changes to a pristine image,
we must look at possible solutions. We detail several
techniques in the following sections to give the reader
an understanding of the advantages of our technique.

3.2.1 System Scan

The most straight forward approach to capturing
modifications is to determine what the user has mod-
ified after the fact. Each user begins with an instance
of a pristine system image which they may mod-
ify. During migration the user’s modified image is
scanned and compared to a pristine version. The dif-
ferences can be captured in a redo log and sent to the
destination site. These changes are then reapplied to
a pristine instance at the destination site. The fun-
damental disadvantage to this approach is that it is
computationally expensive to scan an entire disk im-
age.

3.2.2 Change Log

Improving upon the previous approach, it may be
possible to record the changes made by the user when
they occur. These changes can be captured with small
overhead by appending to a log. At migration time no
computation is required at the source machine. The
log is sent to the destination host and replayed there
to bring the instance of pristine image up to date.
For simple, non repetitive changes this approach may

work well. However, users often truncate a file and
rewrite it differently or delete a file and replace it with
one that has the same name. An example of this is a
user who incrementally updates some software instal-
lation several times over the course of weeks. Captur-
ing this work flow in a log would include capturing
file contents that were later overwritten. Logs con-
taining overwritten data are inefficient in both time
and space, as they can be large and the entire log
must be replayed at the remote site. To help ease this
problem, a log can be compressed to remove wasted
entries before the log is sent to the destination host.
However, this compression increases the computa-
tional penalty for migrating at the source host.

3.2.3 Distributed File System

An obvious improvement on the log approach is to
use write-back caching to dispense with the need
for a log altogether. Many distributed file systems
already provide a mechanism for performing write-
back disk caching to aggregate the number of updates
send to the remote server. When a given file page is
written, it is marked dirty so that it can eventually
be flushed to the server. A distributed file system
meshes well with many of the requirements of virtual
disk migration. Distributed file systems can perform
prefetching, long-term caching, and provide a single
access point for fetching disk images. Leveraging the
functionality already provided by distributed systems
is tempting as it simplifies implementation of cus-
tornization encapsulation. Using an technique built
on a distributed file system, a system image can be
prefetched from the file server, the VM can run over
the distributed file system client with little overhead,
and only changed portions of the image will be mi-
grated back to the server. An additional optimization
could be added to stream back modified pages at a
low bandwidth while the VM is still running. The
primary drawback to this approach is that distributed
file systems do not easily integrate with the abstrac-
tion of an image linked with a set of changes. The
distributed file system cache allows us to determine
which parts of the pristine image have been changed
but still leaves the problem of determining how to ef-
ficiently represent these changes.

The AFS [7] distributed file system has a mecha-
nism for creating backups that may be leveraged to
tackle the problem of representing changes. This
mechanism creates a read-only backup copy of a
given AFS volume (file hierarchy). This backup vol-
ume does not store an actual copy of the data, but
rather stores pointers to data that is in the original
volume. When the original volume is updated, the

Image Result

Overlay

Figure 1: lllustration of images and overlays.

backup volume maintains the pointers to the old data
and therefore remains unchanged. The backup is es-
sentially a copy-on-write volume that copies the old
data only when new data is written. One could cre-
ate a pristine image by making a backup of a system
image. All modifications must be made to the origi-
nal volume because the backup is read only. This im-
plies only a single modifiable image for given pristine
image, although there can be several backup images
for a single modified image. Unfortunately, this is
relationship is opposite of what is required. Ideally,
a single pristine image might have multiple changed
representations, one for each user.

3.2.4 Copy-on-Write Overlays

Although AFS backup volumes do not sufficiently
solve the problem of capturing modifications to a
pristine image, it does provide an interesting abstrac-
tion. AFS allows the pristine image to occupy a
small amount of space by sharing data with the mod-
ified image until a write occurs. Additionally, AFS
presents the backup as a full image to the user. From
the AFS abstraction we move naturally to the idea of
images and overlays. In a reversal of how AFS pro-
vides sharing, an implementation of image and over-
lays should have the pristine image maintaining the
unmodified pristine data. The overlay will share this
data until a modification is made, at which time, the
modified data is stored in the overlay. The overlay
is presented to the user as a stand-alone file system
when in reality it is only the changes made to the
pristine image, see Figure 1. Unlike AFS backup vol-
umes, this allows many overlays to be associated to a
single pristine image. Each overlay maintains a sin-
gle user’s modifications to a pristine image.

An overlay must contain not only the changed data,
but also metadata describing where in the pristine im-

age this changed data belongs. In this regard the over-
lay is similar to a compressed log with no overwritten
data. The advantage overlays have over logs is not in
data, but in the layering of an overlay on top of an
image that allows changes to be written in place as
opposed to appended to a log.

Another advantage of overlays is the ability apply
them recursively, creating a tiered architecture. For
example a student may capture the changes made to
a pristine image for an entire semester into a pris-
tine overlay. The next semester the student could start
with a fresh, empty overlay layered on top of the pris-
tine overlay from the previous semester, layered on
top of the pristine image. A multi-tiered approach
allows the set of new changes that have stricter con-
sistency requirements to be maintained in a smaller
subset. The larger set of changes captured by a pris-
tine overlay can be prefetched and cached indefinitely
since it is immutable. In this way overlays can more
efficiently capture the relatively large /home direc-
tory. Pristine overlays may also allow a set of users
to share a modification to a pristine image, such as an
update to a standard application or library.

Without breaking the abstraction, overlays may be
implemented at either the file or block level. There
are advantages and disadvantages to a block level im-
plementation of overlays. The primary advantage is
simplicity; a block level implementation is not re-
quired to perform any complicated manipulation of
file system metadata. Further, recording changes at
the block level does not bind an implementation to a
particular file system, maximizing its generality. The
primary disadvantage to a block level implementation
is that it is difficult to determine if a given modified
block has been deallocated by the file system. There-
fore, block level overlays may introduce added over-
head by migrating blocks that are no longer in use. To
prevent this problem one could add an explicit fxee
block command to the device or implement gray-
boxing techniques at the device level to determine
which blocks are free [22].

3.3 LIMBO

We chose to use an image and overlay technique as
we feel that it best meets the requirements of mobile
users and grid computing. We have named our tech-
nique for migrating VM disk images Logical Image
Migration Based on Overlays or LIMBO. In LIMBO
the pristine image is not viewable by the user except
through an overlay, even if the overlay contains no
changes. This allows us to ensure that all changes
are correctly recorded. Additionally, we use a block
level implementation of overlays because we want to

support multiple pristine images regardless of the im-
age’s file system. Unfortunately, we were not able to
explore multi-tiered overlays because the underlying
mechanism for layering an overlay on an image does
not support recursive layering.

4 Enabling Technologies

In our implementation of an overlay-based approach
to disk migration, we require a level of indirection
on top of the block device that will store the actual
data. This provides hook for intercepting attempts to
change the data on disk and thus allows for a copy-
on-write block device. Such a CoW block device al-
ready exists in Linux as part of the Device-Mapper
(DM) and Logical Volume Manager (LVM) systems.
We detail these essential components to our LIMBO
implementation in this section.

4.1 Device Mapper

Linux’s DM is a kernel subsystem that allows for the
creation of logical block devices. Once a logical de-
vice is enabled, a file system may be built on top of
it and the file system code can treat it in the same
way as a physical block device. However, any time
an /O request is made using the logical block de-
vice, the DM may modify the request as required by
the semantics of the logical device. Examples of sim-
ple functionality enabled by DM include disk striping
and mirroring,.

Creation and management of logical devices is
done through a logical device driver represented
by /dev/mapper/control. User code can
make ioctl system calls to this device file di-
rectly, or use higher-level interfaces provided by the
libdevmapper library or dmsetup command-
line utility.

A logical device is specified and represented by a
table, with each entry mapping a contiguous region
of logical disk blocks to a DM rarget. A targetis a
kernel module that defines the translation of requests
on a logical device into requests on the underlying
physical device(s).

Table 1 shows an example DM table. The logi-
cal device represented by this table uses two physical
disks for its underlying storage. The disk sizes are
80GB and 60GB, and combined to form a 140GB
logical disk. The first table entry maps the first
120GB of the logical device to the striped target. The
effect is that the first 120GB of the logical disk are
striped across both physical hard drives to improve
performance. The last 20GB of the logical device are

0 251658240 striped 2 32 /dev/hda 0 /dev/hdb 0
251658240 83886080 linear /dev/hda 125829120

Table 1: 4 DM table showing the use of some sim-
ple targets. The first two numbers on each line show
the starting logical block and number of blocks, re-
spectively, for that entry. The third token is the name
of the target that will handle those blocks. The rest of
the line consists of arguments specific to the the given
larget.

vg~lvsnap: O 1024000 snapshot 254:1 254:2 P 16
0 1024000 snapshot-origin 254:1

vg-lv:

Table 2: DM tables for a snapshot device and it's
origin. The arguments to the snapshot target include:
(1) The origin block device major and minor num-
bers, (2) the exception store device numbers, (3) “P"”
to designate a persistent snapshot, and (4) the chunk
size. The snapshot-origin target takes the original de-
vice's numbers as its only argument.

mapped by the second table entry to the remaining
part of the first hard drive, using the basic linear tar-
get,

The specific target that we leverage in LIMBO is
the snapshot target. The original motivation for the
snapshot target is to make backups of a system while
it continues normal operation. A system administra-
tor can create a snapshot of a logical device prior to
any backup operation. This snapshot device will not
reflect any changes that are made to the original de-
vice, referred to as the origin, after the snapshot has
been made. This ensures that the backup operation
captures a consistent state of the file system.

Table 2 shows two example logical device tables
that represent a snapshot device and its associated ori-
gin. A logical device table is needed for the origin
for cases where a block that has not yet been copied
to the exception store is written in the original. The
physical disk that underlies a snapshot logical device
is referred to as an exception store. An exception
store only stores the contents of blocks that have been
modified on the original device since the snapshot
was created. Thus, the exception store behaves like
a copy-on-write block device and stores significantly
less data than the original device, provided the set of
changes is relatively small.

When a read request is made to a snapshot logical
device, metadata in the exception store is consulted
to determine if the requested block is present. If it is,
the data is retrieved directly from the exception store.
If not, the request is forwarded to the origin because
the data has not been modified. The solid lines in

i |

Original Snapshot
Logical Logical
Device Device

T

i

\ y
Base CoW
Image i Overlay

Figure 2: Data paths for snapshot operations. Solid
lines indicate reads, dashed represent writes

Figure 2 show the possible data paths on a snapshot
read request.

The snapshot target also implements writable
snapshots, which means that the snapshot logical de-
vice does not have to be immutable and thus snap-
shots are suitable for uses other than backup. Like
read requests, snapshot write requests consult the ex-
ception store metadata to see if the block is present.
If it is present, the write is executed in the obvious
fashion. If the block is not present, it is first copied
from the origin device into the exception store, and
then the write proceeds. It is this writable snapshot
capability that enables us to treat an exception store
as an overlay on top of a larger pristine image. The
write data paths for a snapshot are depicted as dashed
lines in Figure 2.

There are two main sources of overhead when us-
ing DM snapshots for normal file system activity as
required by LIMBO. The first is the mapping function
that occurs on any access to a snapshot device. The
exception store metadata that maps exception blocks
to blocks in the original device is read into a hash ta-
ble in memory when the snapshot is activated. We
do not anticipate the cost of these lookups to be pro-
hibitive.

The other source of overhead is the copy operation
that must occur when a block is modified for the first
time. These copies are performed by a kernel thread,
kcopyd, that is created by DM. Rather than copying
the modified block, a larger unit of granularity called
a chunk is transferred. Chunk size is a configurable
parameter during snapshot creation, which defaults to
8KB (16 blocks).

4.2 Logical Volume Manager

As mentioned in the previous section, DM is a kernel-
level system with a low-level, table-based interface.
DM state resides entirely in memory and is thus
not persistent across machine reboots. Persistence
and a higher-level user interface are provided by a
user-level system called the Logical Volume Manager
(LVM).

The first-class objects in LVM include volume
groups (VGs), physical volumes (PVs), and logical
volumes (LVs). Volume groups represent pools of
allocatable disk space. This space is provided by
some number of physical volumes, which are phys-
ical disks or disk partitions formatted for use with
LVM. Logical volumes appear in the system as logi-
cal block devices using the DM mechanism described
earlier. Each logical volume is created by allocat-
ing some amount of free space from a volume group.
Logical volumes can make use of various features
present at the DM layer, such as striping, mirroring,
and snapshots.

Persistence is provided by dedicating a config-
urable portion of each physical volume to volume
group metadata. This metadata provides all the infor-
mation necessary to reconstruct the logical volumes
within a volume group when the system restart. By
default, the metadata is replicated on all physical vol-
umes in the VG for fault tolerance. Each change to
the VG metadata also invokes a backup of the previ-
ous version to enable recovery from mistakes.

Interaction with LVM is done via a large set of
user-level commands, with some examples being
lvcreate, lvremove, and vgcreate. These
commands offer a convenient interface and also im-
plement the metadata backup feature. Metadata cor-
ruption is further avoided in these tools via a locking
mechanism to ensure updates are serialized. Based
on these factors, we chose to implement our system
as a set of extensions to the LVM tool suite. The de-
tails of these extensions are discussed in the follow-
ing section.

5 Implementation

As a means for evaluating the idea of overlay-based
virtual disk migration, we’ve implemented the ability
to migrate logical volumes representing both pristine
images and snapshot-based overlays. This section de-
scribes our mechanisms for both.

While migrating pristine images is a situation that
should be feverishly avoided, it becomes a necessary
evil when the appropriate image is not present on a
migration target. Migrating an image based on a log-

ical volume is straightforward. Exporting an image to
a file involves copying directly from the device’s file
handle, e.g. /dev/vg/1lv,to a destination file. On
some Linux systems, it may be necessary to break
the image into multiple files, as files over 2GB are
not supported. Our implementation does not handle
this case, and the largest images we’ve dealt with so
far are 1.5GB in size. Importing an image is also a
simple copy, this time from an image file to a logical
volume device file. An extra step of creating a LV for
the image is also needed for import.

Migrating a snapshot-based overlay involves a
few more steps than simple image migration. The
process is detailed in Figure 3. The lvunbind
and lvexport operation combine to checkpoint an
overlay on the migration source. At this point, any
file transfer mechanism may be used to move the
checkpoint to the migration destination. On the des-
tination, 1vimport and 1vbind are performed to
complete the disk migration. These overlay migration
components form the buik of our implementation and
are detailed in the following subsections.

5.1 lvunbind

In migrating a snapshot-based overlay we only wish
to transfer the contents of the exception store. Per-
forming a copy directly from the snapshot logical de-
vice, in a way similar to what was done for image
migration, would not produce the desired effect. Al-
though the snapshot device occupies a small amount
of disk space relative to its origin, the snapshot de-
vice behaves like a block device of the same size as
its origin. Thus, a direct copy would produce a file
the size of the entire system image.

In order to access the exception store directly, we
first must tear down part of the snapshot DM state.
lvunbind, run on an active snapshot, breaks the as-
sociation between an exception store and the origin it
refers to. The result is that the exception store now
appears as normal logical volume. This situation is
shown as state 2 in Figure 3.

5.2 1lvexport

With the exception store now directly accessible as
a logical volume, we can simply copy the volume’s
contents to a file as was done for full system images.
Such a copy would result in a file as big as the full
capacity of the exception store. This capacity is spec-
ified by an administrator at the time when the snap-
shot is created, and is a conservative estimate of the
size that the snapshot may grow to. We may, how-
ever, further reduce the size of our checkpoint file by

W b

Snapshot
Logical
Device

Original
Logicul
Device

¥

CoW
Overlay

Base
Image

J/ lvunbind

= b

CoW
Overluy

lvexch

Base
Image

T
@

Machine A

Figure 3: Overlay migration flow chart

only exporting the blocks that are actually in use by
the exception store.

In order to throw away unneeded data, we use the
internal metadata of the exception store to determine
which blocks are /ive data. The exception store is
treated as an array of chunks, the chunk size being
a configurable parameter at snapshot creation time.
The first chunk on the device contains some basic
header information. The next chunk is a metadata
area, which stores an array of mappings from blocks
in the original device to blocks in the exception store.
The next set of blocks contain the data that corre-
sponds to these mappings. This pattern of metadata
areas followed by the corresponding data chunks con-
tinues until a special end marker appears in a meta-
data area. This exception store format is illustrated in
Figure 4.

In order to export only the needed blocks from the
exception store, our lvexport tool scans the meta-
data areas for the end marker. The result is that our
exported overlay consists only of the chunks that have
been changed from the original device, plus a small
amount of additional metadata. The exported over-

I l
Original Snupshot
Logical Logical
Device Device
l L
A
Base CoW
fmage ™ =P Overlay
w\lvbmd
I l
Buse CoW
Tmage Overluy
lvimport
Machine B
©c 0o o o 0]
Header Metad Excepti Exception
Area Data Area Data
(Full: N (N Chunks) (M Mappings) (M Chunks)
Mappings)

Figure 4: Example exception store layout

lay can then be transferred and used on any migration
target that contains a matching pristine image.

5.3 1lvimport

Once the overlay file is transferred to the destination
target, we use the lvimport utility to create and
populate a logical volume to serve as the exception
store. The user may specify the maximum capacity
of this new exception store, but the chunk size must
match that of the source’s, since the overlay file for-
mat depends on this parameter. The situation after
lvimport is depicted as state 4 in Figure 3.

54 1vbind

lvbind takes as input two logical volumes: an ori-
gin and an exception store, and creates a working
snapshot. This process sets up the DM tables and
makes the appropriate changes to the volume group
metadata. After 1vbind is run, the disk is fully
migrated and the overlying file system may be used.
lvbind is the complement of the 1vunbind com-
mand introduced earlier.

In addition to implementing 1vbind as a stand-
alone operation, we also added an option to the
stock lvcreate command to create a snapshot us-
ing a disk file as the initial contents of the excep-
tion store. This essentially combines the 1vimport
and 1vbind operations, and we used this version of
lvcreate in evaluating our LIMBO prototype.

We found that the 1vbind process takes signif-
icantly longer to run than lvunbind. This is be-
cause binding an exception store to an origin causes
the DM to read in all metadata from the exception
store and use it to populate a hash table. This table is
then used to perform lookups to determine whether a
given block is in the exception store or only exists in
the origin.

6 Evaluation

In evaluating our prototype, we set out to answer the
following questions:

1. How large can we expect overlays to be?

2. How long does it take to checkpoint and restart
overlays as compared to entire disk images?

3. What is the performance cost of running a file
system on top of an LVM snapshot versus run-
ning directly over a physical partition?

The experiments presented here were all run on
Pentium III machines with 256MB of RAM. Since
our goal is to use LIMBO for migration of virtual
machines, the machines ran the Xen 2.0.5 VMM,
with Linux 2.6.10 as the domain-0 operating system
kernel. The domain-0 OS was allocated 128MB of
RAM, and no guest OSs were running while the ex-
periments were conducted, unless noted otherwise.

6.1 Overlay Size

Before comparing overlay migration times times to
image migration times, it is useful to know roughly
how large an overlay will get after it’s in use for some

Chunk Size
4KB 8KB 16KB Ideal
coreutils-5.2.1 17.98 18.08 18.39 16.74
emacs-21.3 86.66 88.49 89.20 79.60
openssh-3.9 88.09 90.02 90.83 80.93
jre-1.4.2 149.35 | 151.18 | 152.20 || 141.06

Table 3: Cumulative effective of software installa-
tions on overlay size (in MB). Ideal is the cumulative
disk space the installations would require on a raw
ext2 partition.

time. In this experiment, we try to represent the typ-
ical amount of change that a user may make to their
system in a few weeks time. After this time, we ex-
pect most users to update their pristine state to in-
clude these changes, allowing them to restart with an
empty overlay. Supporting this operation efficiently
is a necessary complement to LIMBO which we were
unable to explore due to time constraints.

Starting with a Gentoo Linux installation with
about 1GB of file system data installed, we consec-
utively installed the packages shown in Table 3. We
see that the net effect was an overlay size of about
150MB. Varying the chunk size parameter of the
snapshot did not significantly effect the size of the
overlay - larger chunk sizes resulted in only slightly
larger files. From this experiment, we reason that it
is possible to take advantage of the space savings of
overlay-based migration for a reasonable amount of
time before overlays must be merged back into a base
system image.

We expect the bulk of changes to a system to
be results of software installations, like those tested
here, and configuration changes. Since configuration
changes are small compared to software installations,
we’ve ignored their effect on overlay size for the pur-
poses of this experiment.

6.2 Checkpoint/Restart Performance

We locally checkpointed and restarted several images
and overlays of varying sizes to illustrate the bene-
fits of migrating an overlay instead of an entire im-
age. Figure 5, illustrates that the time to both check-
point and restart an image scales linearly with the size
of the image. Further, restarting is only marginally
slower than checkpointing. Figure 6, displays the
times for checkpointing and restarting overlays. This
also scales linearly with size (note the log-scale in
the x-axis), but the disparity between the checkpoint
and restart times is larger. Restarting an overlay is
more expensive because the DM must reconstruct the

160

—&- Checkpoint
~&— Restart

—#r— Xen Checkpoint
~&~ Xen Restarl

140

120

100

80

60

Time (seconds}

40

20

600 800 1000 1200 1400 1600
Image Size (MB)

200 400

Figure 5: Checkpoint and restart times for full sys-
tem images.

in-memory metadata mapping from the checkpointed
CoW file. For example, an 800MB overlay with 8KB
chunks has 102,400 map entries or about 1600KB
of map data. From our previous experiment (Sec-
tion 6.1) we expect a reasonable amount of modifi-
cations to a 1.5GB image to total less than 200MB
in overlay size. This experiment shows that check-
pointing a 200MB overlay is nearly seven times faster
than checkpointing the entire 1.5GB image, even dis-
regarding network transmission. Despite the expense
of reconstructing the chunk mappings, restarting a
200MB overlay is more than twice as fast as restart-
ing an entire 1.5GB image. We checkpointed and
restarted a Xen guest OS running on a 1.5GB pris-
tine image with a 200MB overlay to further illustrate
the performance increase when migrating an entire
virtual machine using overlays. As a proof of con-
cept, in this experiment we migrated the Xen guest
OS to another machine with a copy of the same pris-
tine image. Checkpointing the Xen guest OS with
overlays was over six times faster than checkpoint-
ing Xen with the entire image. Restarting Xen with
overlays was twice as fast as restarting Xen with the
entire image, even excluding the overhead of network
transmission.

6.3 Snapshot Overhead

We also performed a series of benchmarks comparing
Linux file systems running directly on the device to
file systems running over a writable-persistent snap-
shot to ensure the overhead of running a file system
over a snapshot is not overly restrictive. Addition-
ally, we varied the snapshot chunk size in these ex-
periments to determine whether the 8KB default is
an appropriate granularity. A large chunk size can be

10

250

~&- Checkpoint
~£ Restart
~#— Xen Checkpoint

200 -2 Xen Restart

150

100

Time (seconds}

50

100 200 400
Overlay Size (MB)

50 800

Figure 6: Checkpoint and restart times jor system
overlays.

ext2 ext3
Phase I 0.023179 | 0.024229
Phase 11 0.240448 | 0.245333
Phase III | 0.624104 | 0.630803
Phase IV | 0.879889 | 0.892818
Phase V | 75.720034 | 76.034853
Total 77.493653 | 77.828036

Table 4: Modified Andrew benchmark times (in sec-
onds) for ext2 and ext3 running on raw disk parti-
tions.

more efficient than a smaller chunk size because per-
forming a single 16KB copy between the origin de-
vice and snapshot device is likely more efficient than
performing four 4B copies. However, this depends
largely on the locality of writes. If a series of writes
only modifies a single 4KB range of data, it is far
more efficient to perform a 4KB copy than a 16KB
copy.

In our first experiment we used a modified An-
drew Benchmark [5]. This benchmark consists of five
phases, each stressing a different component of the
file system. Phase 1 recursively creates directories,
phase 2 performs a series of file copies, phase 3 ex-
amines the metadata of several files, phase 4 performs
reads, and phase 5 compiles the OpenSSH source
tree. Table 4 shows the baseline benchmark results
for ext2 [3] and ext3 [4] running directly on the de-
vice. Figure 7 and Figure 8 illustrate the overheads
incurred when using snapshot volumes with a vary-
ing chunk size. The largest overhead using ext2 is
incurred when performing copies, slightly over 25%.
This is expected because writes to the snapshot de-
vice cause two writes to occur, one from the origin to

1251
. [Isnapshot 16K
N 12
3
e
815t
©
E
2 11
ke
©
£
§ 105
(o]
1
095 . E i , i
Phase | Phase il Phase il Phase IV Phase V Total
Figure 7: Overhead of running ext2 over a snap-

shot. Normalized to ext2 running on a raw disk par-
tition.

the snapshot and one from the user to the snapshot.
However, the total overhead for this benchmark us-
ing ext2 over a snapshot is still less than 2%. Also
note that in this experiment a 4KB chunk size per-
formed better than either the 8KB or 16KB sizes.
This would imply that this benchmark does not stress
non-locality.

Like ext2, in ext3 experiment the largest overhead
is incurred when performing copies. An interesting
phenomenon we discovered from this benchmark, is
that using a snapshot with 16KB chunks provides bet-
ter performance for creating directories, reads, and
compiling than raw ext3. This may be caused by
ext3’s journaling facility, where metadata changes are
written to a journal before being written to the inode
to ease crash recovery. The first update to the journal
causes the entire journal chunk to be copied to the
CoW device. The associated disk update also causes
a chunk to be written to the CoW device. It is likely
that the data chunk and the journal chunk are now
much nearer on the CoW device then they were on
the origin device. This should significantly reduce
seek times for further updates to both the journal and
the data chunk. We are uncertain what causes an in-
crease in read performance. Snapshots perform close
to 2% worse for the entire benchmark even with these
performance improvements. This is due, primarily,
to the poor write performance when compared to a
raw ext3 partition. Also note that in this experiment
a 16KB chunk size performed better than either the
8KB or 4KB sizes and in some cases even the raw
partition. We believe this may be caused by the larger
preallocation of log space on the CoW device pro-
vided by a 16KB chunk.

11

il 1ogical volume
1.25¢
= [")snapshot 16K
5 12
]
©
@
N 1.15f
[u]
E
Q
£ 11
o
@
@
£
B 1.05-
2
¢}
1_
085

Phase | Phase Il Phasa Hl Phase IV Phase V. Total

Figure 8: Overhead of running ext3 over a snap-
shot. Normalized to ext3 running on a raw disk par-
tition.

The results of the previous section made us doubt
the quality of the modified Andrew Benchmark for
evaluating snapshot performance using the ext3 file
system. We ran the PostMark [8] benchmark with an
ext3 file system using both a raw disk partition and
snapshots to provide a counterpoint to the above test.
In our experiment the PostMark benchmark created
761 files with sizes ranging from 500 bytes to S00KB
and performed roughly 250 reads and as many writes.
We disabled Unix standard I/O buffering for these
tests to remove any possible advantages this buffering
may provide to snapshots. Table 5 shows the results
of this benchmark for both cold and warm snapshot
performance. The cold experiments were run with a
fresh snapshot containing no CoW exception chunks.
The warm experiments were performed after a sin-
gle run of the benchmark on the snapshot. The per-
formance penalty for using a cold snapshot is large,
read and write throughput is less than a quarter of a
raw disk throughput. This is likely caused by the ad-
ditional bandwidth consumed copying chunks from
the origin to the snapshot. However, after this initial
penalty the reduction in throughput caused by using a
snapshot is less than 12% for writes and 6% for reads.

7 Related Work

Other work has been motivated by migrating vir-
tual machines to facilitate mobile and grid comput-
ing. Internet Suspend/Resume (ISR) [14] is an ab-
straction comparing migrating virtual machines for
user mobility to the suspend and resume function-
ality of laptops. The implementation of this ab-
straction uses VMWare [9] and NFS [6] to provide

ext3 lv | snapshot(4KB) | snapshot(8KB) | snapshot(l16KB)

Transactions (#/s) 35 35 12 10 10

Cold | Read (MB/s) 373 | 3.73 1.02 0.87 0.94
Write (MB/s) 11.69 | 11.69 3.19 2.66 2.88
Transactions (#/s) 35 35 33 35 33

Warm | Read (MB/s) 373 3.73 3.36 3.36 3.53
Write (MB/s) 11.69 | 11.69 10.52 10.52 11.07

Table 5: PostMark benchmark results for an ext3 file system running on a raw partition, a logical volume,

and snapshots using varying chunk sizes

checkpoint functionality and distributed storage re-
spectively. This approach stores and migrates an
entire disk image for each user. The Grid Virtual
File System (GVES) [24] is user-level modification
to NFS to provide on-demanding paging to grid sys-
tems. GVFS also provides some optimizations for
migrating virtual machines, including using metadata
to store which memory pages are empty and do not
require migrating. GVFS advocates using the pris-
tine image and change log technique to migrate VM
disk images.

There has been related work focusing on synchro-
nizing a pair of file systems. diff [2] is a GNU
program that can generates a list of differences be-
tween two files or file hierarchies. However, diff
is too computationally expensive even for a scan im-
plementation of customization encapsulation. Each
pair-wise byte of the two file systems is examined and
compared. This would mean that the entire image
would have to be sent and compared if the pristine
image were on a remote image server. rsync [23] is
another tool for synchronizing a pair of file systems.
It can also be used as a scan technique, but more ef-
ficiently than diff. rsync breaks a file into fixed-
size blocks and computes a hash for each block using
a rolling checksum. This checksum is then sent to the
site of the other file system and compared to every
block-sized segment of data in the other file. When
this completes for every block in the file, only data
that is not on the other file system is sent. This algo-
rithm prevents sending the complete file when non-
appending writes shift the block alignment by com-
paring the hash against all possible blocks.

A follow up paper [16] to ISR replaces NFS with a
modified Coda [21]. Coda already performs prefetch-
ing and long-term caching because it is designed to
work in a disconnected state or on a low-bandwidth
network. In the updated implementation of ISR, disk
images are prefetched and cached using Coda and
only changes to the image are written back to Coda
server. This implementation does not use an abstrac-

12

tion of a pristine images so each user must store
a large disk image on the Coda server. Addition-
ally, there is a large restart penalty for migrating to
an unlikely host as the entire disk image must be
fetched over a possibly high-latency, low-bandwidth
link. The modified ISR uses demand paging to offset
the penalty for a cold cache, but this introduces a per-
formance penalty while the VM waits for requested
pages to be transmitted across the network, A fur-
ther follow up [15] to ISR allows the user to carry a
memory device to be used as a look-aside cache when
performing restarts with a cold cache. However, be-
cause the contents of this device are not pristine the
migration infrastructare must still query the server to
ensure cache consistency.

LBFS [18] is a distributed file system designed to
work in a low-bandwidth WAN environment. Like
rsync, LBFS sends hashes prior to sending data
blocks to prevent transmitting blocks that are already
at the remote side. Also like rsync LBFS uses
a mechanism to prevent insertion at the front or in
the middle of a file from requiring the entire file
to be retransmitted. Additionally, LBFS stores its
data blocks in a hash-indexed database to reduce the
impact of redundant data on storage space. LBFS
could be used effectively as distributed file system
implementation of customization encapsulation be-
cause, although each user would have a separate non-
pristine system image, redundant blocks among the
images would only be stored once. Additionally, stor-
ing a pristine image on LBFS would require little
overhead and would allow efficient prefetching. A
pristine image would not be linked in a logical way
to a given user’s system image, but the images would
share a multitude of blocks. A host can prefetch the
pristine image, and when a user migrates to that host
LBFS will only transmit the blocks that differ from
the pristine image. One drawback to using LBFS
for VM disk migration is that block hashing may de-
crease file system performance.

VMWare Workstation 5 [10] can capture a snap-

shot of a running guest operating system, including
its virtual disk. Further, this version of Workstation
has a management tool that allows snapshots to be
versioned either linearly or in a tree structure, much
like code versioning systems. However, we were un-
able to find any technical documentation detailing
whether commonality between snapshot versions is
exploited or whether there is a merging feature for
branches of the same version tree,

Other related work has explored providing a layer
of indirection between block devices and the file sys-
tem. The Logical Disk [13] is a logical layer that
manages allocation of space on the device. This ab-
straction removes the responsibility of disk layout
and allocation from the file system. The focus of this
work is to provide an interface to the logical disk that
is simple, but still allows the file system to optimize
disk layout for performance. LIMBO uses a device
driver abstraction that implements the same interface
as the actual device driver. This interface does not
allow the file system to give hints about block lay-
out so the layout of blocks on the CoW device may
not be optimal. Petal [17] provides a layer of indirec-
tion between file systems and block storage devices
to implement network distribution at the block level.
Again this abstraction allows the file system to focus
on managing files, while the underlying abstraction
handles distribution, replication, and fault tolerance.

8 Conclusion

We have demonstrated the utility of enabling local
file system migration for virtual machines by repre-
senting disk contents as a set of changes to a pristine
image. We have also shown that using a copy-on-
write block device is an effective means of capturing
these changes with an acceptable amount of overhead
during normal operation. The overlay checkpoint and
restart times for LIMBO are significantly faster than
those for full system images.

This work lays a foundation for overlay-based mi-
gration. Making this system fully usable would re-
quire adding the ability to merge overlays into a
user’s pristine state (either a user-custom image or
a pristine overlay) in order to bound overlay growth.
Additionally, using pristine overlays to create a multi-
tiered customization encapsulation framework is also
an area of future work.

References

[11 Amd multi-core white paper, Tech. report,
AMD.

13

[2] diff; http://www.gnu.org/software/diffutils/
diffutils.html.
[3] ext2, http://e2fsprogs.sourceforge.net/

extZintro.html.

[4] ext3, http://www.redhat.com/support/wpapers/
redhat/ext3/.

[51 Modified andrew benchmark,
http://www.citi.umich.edu/projects/nfs-
perf/results/cmarion/,

[6] Nfs, http://sourceforge.net/projects/nfs.
[71 Open afs, www.openafs.org.

[8] Postmark, http://www.netapp.com/tech library/
3022.html.

[9] Vmware, http://www.vmware.com.

[10] Vimware snapshot version manager,
http://www.vmware.com/support/ws5/doc/
preserve_snapshot_ws.html.

[11] Enhanced virtualization on Intel architecture-
based servers, Tech, report, Intel, 2005.

[12] Paul Barham, Boris Dragovic, Keir Fraser,
Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, lan Pratt, and Andrew Warfield, Xen and
the art of virtualization, SOSP *03: Proceedings
of the nineteenth ACM symposium on Operat-
ing systems principles, 2003.

[13] Wiebren de Jonge, M. Frans Kaashoek, and
Wilson C. Hsieh, The logical disk: A new ap-
proach to improving file systems, Proceedings
of the 14th ACM Symposium on Operating Sys-

tems Principles, 1993.

[14

—

Michael Kozuch and M. Satyanarayanan, Inter-
net suspend/resume, Fourth IEEE Workshop on
Mobile Computing Systems and Applications,
April 2002.

[15

—

Michael Kozuch, M. Satyanarayanan, Thomas
Bressoud, Casey Helfrich, and Shafeeq Sin-
namohideen, Seamless mobile computing on
fixed infrastructure, Tech. Report IRP-TR-04-
28, Intel Research Pittsburgh, 2004.

[16

et

Michael Kozuch, M. Satyanarayanan, Thomas
Bressoud, and Yan Ke, Efficient state trans-
Jer for internet suspend/resume, Tech. Report
IRP-TR-02-03, Intel Research Pittsburgh, May
2002.

[17]

(18]

(19]

[21]

[23]

Edward K. Lee and Chandramohan A.
Thekkath, Petal: Distributed virtual disks,
Proceedings of the Seventh International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems
(Cambridge, MA), 1996, pp. 84-92.

Athicha Muthitacharoen, Benjie Chen, and
David Mazieres, A low-bandwidth network file
system, Symposium on Operating Systems Prin-
ciples, 2001, pp. 174-187.

S. Osman, D. Subhraveti, G. Su, and J. Nieh,
The design and implementation of Zap: A sys-
tem for migrating computing environments, 5th
USENIX Symposium on Operating Systems
Design and Implementation, December 2002,
pp. 361-376.

Daniel Quinlan, Paul Russell, and Christopher
Yeoh, Filesystem hierarchy standard, Tech. re-
port, Filesystem Hierarchy Standard, 2004.

M. Satyanarayanan, James J. Kistler, Puneet
Kumar, Maria E. Okasaki, Ellen H. Siegel, and
David C. Steere, Coda: A highly available

file system for a distributed workstation envi-

ronment, IEEE Transactions on Computers 39
(1990), no. 4, 447-459.

Muthian Sivathanu, Lakshmi Bairavasundaram,
Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, Life or Death at Block-Level,
Proceedings of the Sixth Symposium on Op-
erating Systems Design and Implementation
(OSDI ’04) (San Francisco, CA), December
2004.

Andrew Tridgell and Paul Macker-
ras, The rsync algorithm, Tech. report,
Australian National University, 1998,
http://samba.anu.edu.au/rsync/tech.report.

Ming Zhao, Jian Zhang, and Renato Figueiredo,
Distributed file system support for virtual
machines in grid computing, Proceedings of
HPDC-13, 2004.

