a

EEREEEBEBE OB B

B EERBEB B B8

D m B EEEBEEHEEEE SRR B ERERBO

Balancing Capacity and
Latency in CMP Caches

Bradford Beckmann
Michael Marty

David Wood

Technical Report #1554

February 2006

UNIVERSITY OF

|

M A DI1S O N

Balancing Capacity and Latency in CMP Caches
Bradford M. Beckmann, Michael R. Marty, and David A. Wood

Computer Sciences Department
University of Wisconsin-Madison
{beckmann, mikem, markhill, david} @cs.wisc.edu

Abstract

The large working sets of commercial and scientific workloads stress the L2 caches of
Chip Multiprocessors (CMPs). Some CMPs use a shared 1.2 cache, to maximize the on-
chip cache capacity and minimize misses. Others use private L2 caches, replicating data to
limit the delay due to global wires and minimize cache access time. Recent hybrid propos-
als strive to balance latency and capacity, but use simple, static rules that are not robust to
changes in workload behavior and system configuration.

This paper studies alternative L2 cache designs for an 8-processor CMP system and shows
that two previous selective-replication mechanisms actually degrade performance up to
13%, for some combinations of scientific and commercial workloads and system configu-
rations. We propose the Adaptive Selective Replication (ASR) mechanism that dynami-
cally monitors workload behavior to control replication. ASR replicates read-only blocks
only when it estimates the benefit of replication (lower L2 hit latency) exceeds the cost
(more L2 misses). Full-system simulation results show that ASR provides robust perfor-
mance: decreasing runtimes by as much as 31% versus shared caches, 33% versus private
caches, and 27% versus CMP-NuRapid and Victim Replication. Furthermore, while ASR
does not improve the performance of all workloads on all system configurations, it almost
always performs as well as the best alternative.

1 Introduction
As Chip Multiprocessors (CMPs) emerge in mainstream systems they must provide good performance for a

wide variety of workloads across a range of system configurations. Level-2 (L2) cache management presents
a key challenge, especially in the face of the conflicting requirements of reducing off-chip misses (capacity)
and managing slow global wires (latency). Current CMP systems, such as the IBM Power 4/5 [8] and Sun
Niagara [17], employ shared L2 caches to maximize the on-chip cache capacity by preventing replication.
While shared caches minimize off-chip misses, they have higher access latencies since many requests must
cross global wires to reach distant L2 banks. In contrast, private L2 caches [18, 22] reduce average access
latency by replicating data close to the requesting processor, but sacrifice on-chip capacity and incur more
misses.

Recent hybrid cache designs seek to achieve a balance between latency and capacity by selectively replicat-
ing cache blocks. CMP-NuRapid [6] and Victim Replication [33] have nominally private L2 caches, but rep-
licate data blocks under certain fixed criteria. These schemes perform better than private and shared caches
for selected workloads and system configurations. However, their static replication policies cannot adjust to
match different workload and data set behavior.

This paper proposes an adaptive CMP cache organization that offers the latency advantage of private caches
yet conserves space like a shared cache. The Adaptive Selective Replication (ASR) mechanism dynamically

monitors cache behavior to determine how much replication of read-only data should exist between the L2

1

caches. The paper shows shared read-only data exhibits high request locality, and ASR exploits this behavior
by selectively replicating frequently requested blocks when on-chip storage is under high demand. ASR
manages the cache hierarchy on a per-processor basis, allowing cache capacity sharing between processors
operating on the same data and cache isolation for processors operating on different data.

ASR’s adaptive replication policy provides robust performance across a wide variety of workloads and sys-
tem configurations. Thus, the same CMP will provide good performance in single-chip and multiple-chip
CMP systems, with slower memory access times [14], and for scientific and commercial workloads.

This paper makes the following contributions:

® Shared read-only data account for up to 72% of .2 requests, but on average consume—without replica-
tion—only 5% of the L2 cache capacity. Furthermore in commercial workloads, requests for shared
read-only data have tremendous locality: the top 3% of shared read-only blocks account for 70% of

requests.

® The Adaptive Selective Replication (ASR) mechanism dynamically estimates the cost (extra misses)
and benefit (lower hit latency) of replication, increasing or decreasing the replication level to minimize
average access time. ASR adds only 1.2% storage overhead to the on-chip cache hierarchy, but reduces
runtimes up to 27% versus both the Victim Replication [33] and CMP-NuRapid’s replication [6] policy.
ASR reduces runtimes by 11% and 12% on average versus the shared and private cache designs respec-
tively, and by 5% on average versus the previous replication policies
Section 2 characterizes the CMP working sets of the 8 evaluated workloads, Section 3 introduces the base-
line shared and private cache designs, and Section 4 describes ASR. Section 5 describes the evaluation

methodology, Section 6 presents the results, and Section 7 summarizes related work.

2 Characterizing CMP Working Sets

This section focuses on understanding the potential benefits and drawbacks of replication in a CMP cache.
This study simulates an eight-processor CMP executing various commercial and scientific workloads under
the Solaris 9 operating system. Section 5 describes the simulation environment and workloads.

The analysis focuses on the behavior of cache blocks during their on-chip lifetime; that is, the interval from
when a miss brings a block on chip until it is replaced. The simulation model assumes a single-banked
16 MB inclusive shared L2 cache with 16-way associativity and a uniform access time to isolate the sharing
activity from access latency and most conflict misses. To mitigate cold start effects, all simulations run long

enough that total L2 cache misses significantly outnumber the L2 block frames.

2.1 Sharing Types: Requests vs. Capacity

The cost and benefit of replication depends on the cache block’s sharing behavior. We identify three distinct
sharing types: 1. Single Requestor blocks are accessed by a single processor, 2. Shared Read-Only blocks are

read, but not written, by multiple processors, and 3. Shared Read-Write blocks are accessed by multiple pro-

Table 1. L2 Cache Capacity Profile

Single Requestor Shared Read-Only Shared Read-Write

L 4

sz | g g | §| 2| 2| ¢

2 E : E 3 2 2 3

g & g & @ g g @

& QO 2 Q s & 0 3

s 3 3 S * k5 s A

S 2 2 2 SO I S 2

Benchmark < <
apache 11% 55% 48% 17% 3.7 41% 29% 3.0
jbb 55 91 44 10 35 1 <1 2.4
oltp 4 52 72 20 4.3 24 28 3.8
zeus 17 76 59 9 3.0 24 15 2.3
apsi 99 >99 <1 <1 7.3 <1 <1 2.8
art 49 62 51 38 3.0 <] <1 2.7
galgel <1 84 <1 <1 4.0 99 16 5.3
mgrid 96 98 4 2 2.3 <1 <1 2.2

cessors, with at least one write. Single-requestor blocks cannot benefit from replication. Shared read-only
and share read-write blocks can, but the latter will incur extra delay on writes due to coherence invalidations.
The percentage of requests to each sharing type varies significantly between the workloads, Table 1 shows
that shared read-only requests dominate the four commercial workloads, 44-72% of requests, while Art,
with 51%, is the only scientific workload to make more than 4% of its requests to shared read-only blocks.
Single-requestor blocks account for nearly all the requests by Apsi and Mgrid, nearly half for Jbb and Art,
and relatively little for the rest. Three of the four commercial workloads have many requests, 24-41%, to
shared read-write blocks, but Galgel is the only scientific workload, at 99%, to have more than 1%.

While many requests are to shared data, single-requestor blocks consume the majority of the cache capacity.
Table 1 shows that single-requestor blocks account for over 50% of L2 cache capacity for all workloads and
over 90% Jbb, Apsi, and Mgrid. In comparison, shared read-only and shared read-write data consume rela-
tively little capacity, with the maximum being less than 40%.

Replicating shared blocks in private caches to reduce access latency is attractive, since they are accessed fre-
quently yet consume relatively little cache capacity. However, blind replication is dangerous, since the
degree of sharing suggests that the capacity could increase significantly. Table 1 shows that the frequently
requested shared read-only blocks in Apache, Jbb, Oltp, Zeus, and Art are requested by 3.0 to 4.3 processors
during their on-chip cache lifetime. Fully replicating these blocks could increase the effective working set by
20-100%.

Fortunately, shared read-only blocks exhibit strong locality, especially for commercial workloads. Figure 1a
plots the cumulative request distribution versus the cumulative capacity (block) distribution for shared read-

only blocks. For all commercial workloads, the top 20% of blocks account for over 90% of requests and the

100

~ 80+ P ——apache g V7| T A T e - apache
) -+ jbb [€ A jbb
g 2
O 604 ---oltp o -=~ oltp
R o Zeus e - ZEUS
3 . . vl .
© ~—- apsi g -apsi
—;g) 40+ --=- art ©u == art
“ Es -~ galgel \2 galgel
S mgrid <) mgrid
=204 g g 4
g ; 3 ;
4 o :
& :
T T T T i 0 ‘ T T ¥ T 1
20 40 60 80 100 20 40 60 80 100
Cuni. % of Shared R Only Blocks Cum. % of Shared RW Blocks
Figure 1. a) Request to Block Figure 1. b) Request to Block
Distribution: Shared Read-Only Data Distribution: Shared Read-Write Data
1.0 T
//: ANy =

087 7 // / —— apache
e ‘ e T jbb
0.6- -~

g -~ oltp
% e Zeus
=] - apsi
N 0.4~ —-—- art
’ galgel
02- - mgrid

OO ! T T 7 T H T ¥ 1
<1/81/4 1/2 1 2 4 8 16 32
1.2 Size MB
Figure 2. 1.2 Cache Hit Ratios

top 3% of blocks account for over 70% of requests. Conversely, Figure 1b illustrates that shared read-write
blocks have much less locality: the top 20% of blocks only account for 75% or less of requests.

For this reason, we focus on replicating shared read-only blocks in this paper. Further observation (not
shown) shows that the top 3% of shared read-only blocks only consume 100-300 KB. Thus, replicating these

blocks would have relatively little impact on the total cache capacity.

2.2 Impact of Replication

While replicating blocks can reduce L2 hit latency, it also decreases the effective 1.2 cache size. If replicas
displace too much of a workload’s working set, performance may degrade significantly. Figure 2 illustrates

this risk by plotting the hit ratios for fully-associative caches up to 32 MB.

Hits within cache size Q.

b2 T Rato = g within 2 32 MB L2 cache

While the L2 Hit Ratio doesn’t show the exact change in hits for a practical set-associative L2 cache, it dem-
onstrates the sensitivity that many workloads have to small changes in cache size.

For example, Mgrid and Art have critical working set sizes of 3/4 MB and 8 MB, respectively. Decreasing
the available cache capacity below those thresholds has a dramatic negative impact on performance. All of

the scientific workloads exhibit clearly identifiable working set boundaries, while the commercial workloads

4

Table 2. Memory System Configuration Parameters

split .1 T & D caches 32 KB each, 2-way, 3 cycles

aggregate L2 cache sizes 16 MB 16-way pseudoLRU [24] I 4 MB 16-way pseudoLRU [24]
L1/L.2 cache block size 64 Bytes

memory bank -+ communication latency 200 + 60 cycles l 800 + 60 cycles
memory bandwidth] 56 GB/s

memory size 4 GB of DRAM

have less pronounced transitions. Ideally, a replication policy for private CMP caches would balance the

latency benefits against the capacity and miss rate costs.

3 CMP Parameters and Designs

This section specifies the system parameters and CMP designs evaluated in the paper. First, Section 3.1
details the system parameters assumed in the evaluation. Next Section 3.2 describes the three evaluated
CMP organizations: a shared L2 cache, a conventional private L2 cache, and a private L2 cache that restricts
duplication between caches. Then Section 4 will describe how ASR adapts to workload behavior and selec-

tively permits replication within the restrictive duplication infrastructure.

3.1 System Parameters
All evaluated designs target an eight-processor CMP, assuming the 45 nm technology generation projected

for the year 2010 [10]. Table 2 specifies the memory system configuration including the two parameters that
are varied in the evaluation: L2 cache size and memory bank latency. The evaluation employs an in-order
processor model and each CMP design assumes approximately 310 mm? of available die area [10]. We esti-
mate eight processors would occupy 210 mm? [21] and eight 2 MB of L2 cache banks with a 20-cycle
access latency [1] would occupy 70 mm? [10]. The on-chip interconnection network and other miscella-
neous structures occupy the remaining area.

All CMP designs in this paper implement the same CMP-Token cache coherence protocol [20]. The token
protocol provides a simple and flexible coherence substrate that allows a direct comparison of different rep-
lication policies. All designs use writeback, write-allocate caches and implement sequential memory consis-
tency. The intra-chip protocol allows for migratory sharing between L1 caches. The L2 cache is “mostly”
inclusive with the L1 caches and maintains up-to-date L1 sharer knowledge. The L2 cache is not strictly
inclusive because an L2 block replacement will not invalidate L1 sharers. This optimization saves bandwidth
and simplifies the L2 cache controller. All evaluated designs also incorporate a strided prefetcher between
the L1 and L2 caches, as well between the L2 caches and memory. The prefetcher is based on the IBM

Power 4 [30], except it issues prefetches for both load and stores.

3.2 CMP Designs
CMP-Shared. As illustrated in Figure 3a, the CMP-Shared design assumes a Non-Uniform Cache Archi-

tecture (NUCA) [16]. The eight processor cores are arranged with four on an edge, with the chip’s center

e S
DYi{ L2 || L2 ||I$ \D¥Private| |Private]! ¥
cPU3 Noankd [Bankdl| PV cpus LNy | cPue
1$ - —ID$ 1§51~ D%
][e 161$: ’Lg
D§l 12 il 12 (1§ Private| |Private
CPU2 - CPUS5 cpu2 |00 2l CPUS
1.1|Bank 2/l Bank §(1 uf k2 | L2 g
1§ —11D§) 1§ D$
L1 = L1 N L1
0§l L2 | L2 ||I$] D¥\Private] |Private || $|
CPU1 L1|1Bank '\ Bank 6|11 CPUS CPU1 L2 e g CPU6
1$ ~——1D§ 1§ D3|
e] e
D[L2 |f L2 D¥Private| |Private
CPUD || =F —— CPUT7 CPUO | ! CPU7
L1||Bank G |Bank 71 1 k2 1 r k2 e
1§ D§ 1§ : D$
Figure 3. a) Layout of CMP-Shared Figure 4. b) Layout of CMP-Private

occupied by eight L2 cache banks. Each processor’s L11 and L1 D caches interface with the packet-
switched grid interconnection network. CMP-Shared statically maps the addresses across all eight 2MB
cache banks, thus forming a shared 16MB L2 cache with non-uniform access latency. On an L1 cache miss,
a processor sends the request across the on-chip network to the appropriate L2 bank. The shared L2 cache
offers the best capacity because replication only occurs in L1 caches. However, the shared L2 cache does not
exploit the distance locality between a processor and its closest bank.

CMP-Private. In contrast to the CMP-Shared design, the CMP-Private design (Figure 4b) allocates each
2MB cache bank private to a processor. Similar to the Itanium 2 microprocessor [23], the closely integrated
private L2 caches allow each processor to avoid the shared on-chip network and directly query the L2 cache
tags in parallel with an L1 cache access. L.1 misses and replacements are always directed to the local private
L2 cache and other processors cannot allocate data into a remote L2 bank. Thus, CMP-Private inherently
migrates single requestor data to the requesting processor [4, 13], but their unrestricted replication of shared
data can increase off-chip misses and coherence invalidations.

CMP-PrivateCS. To save valuable on-chip storage capacity by preventing unwanted replication between
private L2 caches, CMP-Private Conserve Storage (CMP-PrivateCS) implements a ring writeback mecha-
nism [26]. Naively, a private CMP cache design allows replication when separate L.1 caches writeback to dif-
ferent local L2 banks. In contrast, CMP-PrivateCS prevents unwanted replication by merging L1 cache
writebacks with existing remote L2 copies. Specifically, L1 writeback messages are passed clockwise
between private L2 caches to search for an already allocated version of its tag or empty L2 block. The result
is ring writebacks allow CMP-PrivateCS to conserve capacity like the CMP-Shared design.

By preventing undesired replications, the CMP-PrivateCS design serves as the basis to evaluate different
replication mechanisms. By default, CMP-PrivateCS allows shared read-only data to be replicated, but pre-
vents replicating shared read-write data. CMP-PrivateCS can also be extended with the more selective repli-
cation policies. For instance, the initial Victim Replication policy [33] was for an on-chip directory protocol

that disallowed replications when the local L2 cache set was filled with home blocks with remote sharers.

We combined Victim Replication with CMP-PrivateCS’s token broadcast protocol [20] by disallowing repli-
cations when the local cache set was filled with owner blocks with identified on-chip sharers. Another previ-
ously proposed replication policy, CMP-NuRapid [6], was to only allocate the local L2 tag after the first
request and then locally allocate the actual L2 data block upon a second request. We incorporated CMP-
NuRapid’s replication policy to CMP-PrivateCS by storing a per processor request count for each L2 block
and locally allocating the L2 block as soon as the processor’s request count is two. While both previous pol-
icies restrict replication using fixed, static criteria, the next section describes our Adaptive Selective Replica-
tion mechanism that dynamically adjusts the replication policy to match the current workload behavior and

system configuration.

4 Adaptive Selective Replication: ASR
This section describes how Adaptive Selective Replication (ASR) adapts the CMP-PrivateCS cache hierar-

chy to best meet workload demands and system constraints. The section begins with Section 4.1 describing
how replication effects the performance of the memory system. Section 4.2 explains how ASR dynamically
analyzes the benefit and cost of replication and adjusts the L2 cache capacity devoted to replica blocks,

based on the analysis. Section 4.3 details the ASR implementation.

4.1 Replication and Memory System Performance
Replication will improve memory system performance when the benefit of increasing local L2 cache hits

outweighs the cost of increasing off-chip misses. The combination of local L2 hits, remote L2 hits, and off-
chip misses determine the average latency of L1 cache misses. For an in-order blocking processor model, the

following equation describes the average cycles for L1 cache misses normalized by instructions executed:

(Placa[LZ X LlocalLZ) + (PremofeLZ X Ll"emoleLZ) * (Pmiss x Lmiss)

Memory cycles / Instr, = :
Instructions

P, is the probability of a memory request being satisfied by the entity x, where x is a local L2 cache, the
remote L2 caches, or main memory and L, equals the latency of each entity. Therefore, the combination of
the first two localL.2 and remoteLl.2 term represents the memory cycles spent on L2 cache hits and the third
miss term depicts the memory cycles spent on L2 cache misses. By replicating more remote blocks locally,
L1 misses are more likely to hit in the local L2 cache, thus the Py, » term increases and the P oo 2 term
decreases. Because the latency of a local L2 cache hit is tens of cycles faster than a remote 1.2 cache hit, the
net effect of increasing replication will be a reduction in total memory cycles spent on L2 cache hits. How-
ever, more replication devotes more. capacity to replica blocks, thus fewer unique blocks exist on-chip,
increasing the probability of L2 cache misses, Py 1f the probability of a miss increases significantly due to
replication, the miss term will dominate, as the latency of memory is hundreds of cycles greater than the L2
hit latencies. Therefore, balancing these three terms is necessary to improve memory system performance.

The optimal degree of replication often lies between allowing all replications and no replications. Figure 4
graphically depicts the general tradeoff of adjusting replication within a CMP cache. The left-hand plot of

Figure 4, the L2 hit cycles-per-instruction curve, summaries the trend that increasing the L2 capacity

{J
P
Al

L2 Miss Cycles / Instr.

L2 Hit Cycles / Instr.

-

—

i
1
H

]
l
L o3

% Replicas % Replicas

Total Cycles / Instr.

optimat __’_/
e

1

i

L .
-

L c
% Replicas

)
Figure 4. Replication Effecting Memory System Performance

devoted to replication reduces the total memory cycles for L2 cache hits. Due the strong locality of shared
read-only requests, a small percentage of L2 replication capacity can significantly reduce 1.2 hit cycles by
allowing many previous remote L2 hits to become local L2 hits. In contrast, a large percentage L2 replica-
tion capacity more gradually reduces L2 hit cycles because fewer unique blocks on-chip lead to fewer total
L.2 hits. The right-hand plot of Figure 4, the L2 miss cycles-per-instruction curve, illustrates that increasing
the L2 capacity consumed by replication increases the total memory cycles for off-chip misses. In essence,
the L.2 miss cycles plot is a segment of the previously presented L2 hit ratio curve, Figure 2, near the current
effective L2 cache capacity. Thus the L2 miss cycles plot indicates the value of the unique blocks that have
been recently evicted or soon will be evicted by replication. The combination of these two curves, the bot-
tom plot of Figure 4, charts the normalized memory cycle curve and graphically illustrates replication’s
effect on the memory cycles-per-instruction equation. Due to the fact that the L2 hit cycles curve decreases
with increasing replication capacity, and the L2 miss cycles curve increases with increasing replicating
capacity, the minimum value of the total memory cycle curve often lies between allowing all replications and
no replications. However, finding the specific optimal point of replication for a given set of workload and

system parameters requires detailed knowledge of replication’s effect on memory system performance.

4.2 Balancing Replication via ASR

By dynamically monitoring the benefit and cost of replication, ASR attemipts to achieve the optimal level of
replication within the CMP cache hierarchy. Analyzing the entire memory cycles-per-instruction curve to
precisely determine the optimal amount of replication for a set of workload and system parameters is prohib-
itively expensive, especially in hardware. Instead, ASR breaks down the normalized memory cycle curve
into a series of distinct points. Then ASR simplifies the analysis to a local decision of whether the amount of
replication should be increased, decreased, or remain the same. Figure 4 illustrates the case where the cur-
rent replication level, labeled C, results in H hit cycles-per-instruction and M miss cycles-per-instruction.

ASR considers three alternatives: increasing replication to the next higher level, labeled H, decreasing repli-

ADecreasa > O ADecraase <= 0

I (yncronso”™ Loosronsd
increase Replication l ncrease
Definitions oise Replication

Decrease Replication

D perease = (He= Hy) = (M= M)
ZxDecraasez (MCW ML) - (H - I—t)

Decrease Do
Replication Nothing

AIncreas.e <= O AIncfease > O

Figure 5. ASR Decision Table for Adjusting Replication

cation to the next lower level, labeled L, or leaving the replication level unchanged. To make this decision,
ASR not only needs H and M, but also four additional hit and miss cycles-per-instruction values: Hyy and
My, for the next higher level and H; and M, for the next lower level.

To simplify the collection process, ASR estimates only the four differences between the hit and miss cycles-
per-instruction: 1. the decrease of L2 hit cycles caused by increasing replication, (H¢ - Hy); 2. the increase
of L2 hit cycles caused by decreasing replication, (FH; - H¢); and 3. the increase of L2 miss cycles caused by
increasing replication, (My - M); and 4. the decrease of L2 miss cycles caused by decreasing replication,
(Mc - M).

By comparing the difference between (H¢ - Hy) and (My - M) and the difference between (H, - Ho) and
(M- M;), ASR will increase, decrease, or maintain constant the amount of replication. Figure 5 presents
the decision table ASR uses to adjust the amount of replication. When both AIncrease and ADecrease agree
the benefits for increasing or decreasing replication exceed the costs, the amount of replication is adjusted
accordingly. Similarly, when both AIncrease and ADecrease indicate the costs of adjusting the amount of
replication outweigh the benefits, ASR maintains the current level of replication. However, if Ay .
and Apcirease disagree in the direction replication should be changed, ASR chooses the direction with the

greater estimated benefit.

4.3 Implementing ASR

This section describes the details of Adaptive Selective Replication. The section begins with the storage
required to identify shared read-only blocks, then continues with the description of ASR’s process for repli-
cating frequently requested blocks. Finally, the section ends with how ASR determines the replication’s

effect on memory system performance.

4.3.1 Identifying Shared Read-Only Blocks

To identify which cache blocks are shared and read-only, ASR uses a per-block dirty bit in combination with
a per-block shared bit. The dirty bit is already used by current systems to identify which blocks are modified
with respect to memory, and must be written back on replacement. The L1 and L2 cache tags also include a

shared bit that is set when receiving a coherence request from a different processor than the current sharer.

Table 3. ASR Replication Levels

Replication Level 0 1 2 3 4 5 6 7 8 9
Probability of replication 0 11024 | 17256 | 1/64 | 1/16 | 1/8 1/4 172 3/4 1

Similar to the dirty bit, once the shared bit set, it is not reset until the block is replaced to memory. When nei-

ther the dirty bit nor shared bit is set, the block is considered shared read-only.

4.3.2 Replicating Frequently Requested Blocks

To simplify the replication process, ASR breaks down the amount of replication into distinct steps. ASR has
ten replication levels (Table 3) that permit various levels of replication within the local L2 cache. Each repli-
cation level has a unique probability that a shared read-only block will be replicated, with the lower replica-
tion levels permitting very few replications. In effect, the probabilistic policy biases replications to the most
frequently requested L2 blocks because each request increases the probability the block is replicated upon its
subsequent L1 cache eviction. Once replicated locally, there may be many more future requests for the block
that will encounter the fast local L2 hit latency rather than the slow remote L2 hit latency. Therefore, through
selective probabilistic replication, ASR exploits the request locality of shared read-only data to provide most
of replication’s latency benefit, while avoiding the cost of replicating every shared read-only block.

ASR further exploits the locality of shared read-only requests by biasing replications to the frequently
requested blocks that lie on the top of L2 cache sets’ pseudo LRU stacks [12]. ASR includes two extra bits in
the .1 cache tags to store whether the block’s L2 LRU position was in one of four ranges of LRU stack
depth: ‘0, “1-7°, *8-14’, *15°. Blocks received from a L1 cache or memory are set to range ‘0’. Upon L1
cache eviction, the replication decisions of range ‘0’ blocks are based solely on the probability of replica-
tion, but replication decisions for the other three ranges, ‘1-7°, ‘8-14°, “15°, are further filtered by the ratios

of 0.75, 0.50, and 0.25 respectively.

4.3.3 Measuring Replication Benefit and Cost

Determining the change in the replication benefit and cost requires identifying those replications that would
or would not have occurred with the next higher and lower replication levels. As previously stated, ASR uses
distinct replication levels to discretely adjust the probability that a block is replicated locally. Specifically,
ASR utilizes a linear feedback shift register as a pseudo-random number generator [11]. ASR uses the ran-
dom numbers, along with the current replication level’s probability, to determine whether a replication will
occur. By modulating the random numbers by decreasing powers of 2, the replications occurring at replica-
tion level n, also occur at the next higher level n+1, plus some additional replications for the next higher
level. The subsumption of lower level replications allows ASR to distinguish the distinct groups of cache
blocks that will or will not be replicated for the next higher and lower levels respectively.

The remainder of this section describes ASR’s four separate mechanisms for estimating the costs and bene-
fits of increasing and decreasing replication, as well as, what triggers a replication analysis.

The Cost of Decreasing Replication (Hy, - H¢). To estimate the cost of decreasing replication, ASR

marks the blocks that are replicated with the current replication level, but not with the next lower level. Spe-

10

cifically, an extra current replication bit marks these blocks in the local L.2 cache tags. For local L2 hits that
find the current replication bit set, ASR increments the (H| - H¢) counter by latency benefit of a local L2 hit
versus a remote L2 hit (30 cycles). When the replication level is increased, the current replication bits are
cleared because they no longer correspond to the blocks of the new lower replication level group.

The Benefit of Increasing Replication (H¢ - Hy). To determine the benefit of increasing replication,
ASR tracks the blocks that are not replicated at the current replication level, but would have been with the
next higher level. Specifically, ASR identifies these blocks using separate Next Level Hit Buffers (NLHBs)
for each L2 cache. The NLHB stores the 8-bit partial tags [15] of blocks that would have been replicated
with the next higher replication level. To record most blocks that would be replicated with the next higher
level, NLHB is sized to a 16 K entry, 16-way set associative buffer. When a request hits in a remote 1.2
cache, the NLHB is checked to determine if the request could have been a local hit if replication was

increased. If so, ASR increments the (Hc - Hy) counter by the 30-cycle local L2 hit atency benefit.

The Cost of Increasing Replication (Mg - M). ASR approximates the increase in miss cycles asso-
ciated with increasing the replication level by estimating the utilization of the L2 cache blocks soon to be
evicted. While the NLHB must store 16 K entries of partial tags to determine the benefit of the next higher
replication level, ASR only needs to monitor the utilization of the last 1 K of least recently used L2 blocks to
determine the cost of the next higher replication level. Due to the low locality of these infrequently used L2
cache blocks, there is virtually no additional benefit for increasing the monitor size past 1 K. Because pre-
cisely determining the recently used cache blocks is prohibitively expensive in hardware, ASR uses way and
set counters [28] to estimate which blocks are the least recently used. Specifically, ASR breaks the L2 sets
into 256 separate groups using the high order L2 cache index bits and relies on a 255-bit pseudo LRU binary
tree [24] to estimate the LRU position of the requested set group versus the other set groups. If an on-chip
request hits a L2 block that is not identified as a current replica, and the combination of the L2 block’s set
group and way LRU position lies within the last 1 K of L2 blocks, the (My; - M) counter is incremented by
the off-chip memory latency.

The Benefit of Decreasing Replication (M- - M|). To predict the benefit of decreasing replication,
ASR uses Victim Tag Buffers (VIBs) to track which L2 misses could have been avoided by reducing the
replication level. Each separate ASR uses the 1K entry 16-way set associative buffer to store the most
recently evicted block’s 16-bit partial tags from their associated L2 cache. The VTB only stores blocks that
were evicted due to the current replication level, but would not have been with the next lower level. When an
L2 eviction occurs that is identified to be caused by the current replication level, the evicted block is allo-
cated into the VTB. All other L2 evictions are only stored in the VTB if they replace an existing valid entry.
Subsequent off-chip misses that hit in the VTB, increment the (M - M;) counter by the off-chip miss
latency. When the replication level is decreased, the victim buffer is cleared because the blocks currently in

the VTB don’t estimate the off-chip misses caused by the new lower replication level. Overall, by utilizing

11

Table 4. Rules for Triggering Replication Evaluation

When one of the two values > 1 K entry monitor size

1. Number of local L2 replications that would not have happened with the next Jower replication level

2. Number of remote L2 replacements that would have been replicated with the next higher replication level

Table 5. Adaptive Selective Replication Storage Overhead

Overhead Bits K Entries Total KBytes
per L1 block 3 8 3
per L2 block 2 256 64
next-level hit buffer 8 128 128
victim tag buffer 16 8 16
Total KBytes 211
% of Total On-chip Cache Capacity 1.2%

these four counters, ASR can determine whether to increase or decrease replication. However, constantly
evaluating the counters is inefficient. A key aspect of the ASR is deciding when to evaluate the counters.
Triggering a Cost-Benefit Analysis. ASR triggers an analysis of the four benefit and cost counters after
observing enough events to ensure a fair comparison. Table 4 shows the two rules ASR uses for triggering an
analysis of recent replication opportunities. By counting the local L2 replications and remote 1.2 replace-
ments, the time interval between replication analyses is not fixed, but rather depends on the frequency of rep-
lication opportunities observed by ASR. Upon triggering a replication evaluation, ASR performs the
comparison described in Section 4.2 to determine if and how the replication level should be changed. Four
consecutive evaluation results in the same direction causes an actual change the replication level. The four-
evaluation-result hysteresis ensures ASR has seen a definite change in workload behavior before changing
the replication level, thus preventing unnecessary replication level adjustments. After each ASR evaluation,
all four counters are cleared.

Hardware Summary. Overall, the storage space required by ASR is approximately 1.2% of the total on-
chip cache capacity. Table 5 breaks down the storage requirement of the ASR’s main components. Because
the ASR only needs to estimate the impact of replication and has no effect on correctness, the ASR uses par-
tial tags in the NLHBs, and VTBs to further reduce the state requirements. ASR’s replication logic lies on
the non-latency critical L1 replacement decision, and is a simple probabilistic choice. While ASR costs bits,
it doesn’t cost bandwidth to pass messages between processors to coordinate replication level changes. All

information required by each ASR instantiation is stored locally within each CMP node.

5 Methodology

We evaluate all configurations using full-system simulation based on Virtutech Simics and the Wisconsin
GEMS toolset [32]. GEMS extends Simics to provide detailed timing of a CMP memory hierarchy. The

intra-chip and inter-chip networks are modeled in detail, including all messages required to implement the

12

Table 6. Evaluation Methodology

Bench | Fast Forward | Warm-up | Executed

Commercial Workloads (unit = transactions)

apache | 2000000 2000 1000
jbb 200000 15000 10000
oltp 100000 300 200
zeus 2000000 2000 2000

Scientific Workloads (unit = billion instructions)
apsi 89 4.6 loop completion
art 121 32 loop completion
galgel 235 34 loop completion
mgrid 33 3.0 loop completion

coherence protocol. Virtual cut-through routing is used with two message buffering at all switches except the
buffers between the on-chip and off-chip networks are extended to 20 entries to decouple the on-chip net-
work from off-chip queueing delay.

We studied the CMP cache designs for various commercial and scientific workloads. Alameldeen, et al.
described in detail the four commercial workloads used in this study [2]. We also studied four scientific
SPECOMP benchmarks [3]: Apsi, Art, Galgel and Mgrid. We used a work-related throughput metric to
address multithreaded workload variability [2]. Thus for the commercial workloads, we measured transac-
tions completed and for the scientific workloads, runs were completed after the cache warm-up period indi-
cated in Table 6. However, for the SPECOMP workloads using the reference input sets, runs were too long
to be completed in a reasonable amount of time. Instead, these loop-based benchmarks were split by main
loop completion. This allowed us to evaluate all workloads using throughput metrics, rather than IPC. All
simulations contain small pseudo-random perturbations in the memory latency to account for the non-deter-
minism that exists in multi-threaded workloads. The error bars shown in Section 6.3 indicate the results 95%

confidence interval.

6 Evaluation

6.1 Replication Capacity and Memory Cycles

The optimal point of replication shifts depending on workload behavior and system constraints. Figure 6 dis-
plays the L2 hit cycles-per-instruction, L2 miss cycles-per-instruction, and the Total cycles-per-instruction
curves for three sets of system configurations. Each point on the curve corresponds to a static ASR replica-
tion level. The first row of graphs, Figure 6 a-c, presents the cycles-per-instruction curves for a CMP with a
large, 16 MB aggregate L2 cache capacity, referred to as the /6 MB 200 lat. configuration. In this case, rep-
lication exploits the large cache size and effectively reduces the L2 hit cycles-per-instruction by 0.4 to 0.6
for Apache, Oltp, Zeus, and Art. In contrast, increasing replication capacity only increase Apache’s and
Art’s L2 miss cycles-per-instruction by greater than 0.2. Therefore, the resulting Total cycles-per-instruction

plot, Figure 6c, reveals that the optimal point of replication for six of the eight workloads is near maximum

13

N I .
\ ot - WL
1 51[3;‘.‘_% 154" /a’/«) :‘:___:_c::—fr ‘‘‘‘ o
i[‘\h\\ "‘\'\---_0“\0_ e :Bmm:;cl] P N
- Sy ey apachie . 1,450/ ~e~ gpache " 0 o gpache
% R PR R B ﬂ),zg;a—ﬁ”" ajbb B 2 jbb
N eap 20 seoltp T2 -+- olip
g 10 s 3] --zens 8 T o= ZEUS
2] ° 5 S L T
5, = apsi I eoapst S ~o=apsi
J 6) 6]
.é -t 9 -o it = - art
054 “e-gilgel 5054, qow 5o caeeme T e palgdl B]_»r . -~ galgel
:; N N mgl’id 2 jwnowa B . mgrid = D oea o oo N mgrid
N Stoo woo
SRS R -
pas b= e - B
00 ™ T T T H 1 00 T T T T _I 0 T T T T 1
0 20 3 40 %0 0 20 3 4 30 1020 30 40 50
% L2 Replication Capacity % L2 Replication Capacity % L2 Replication Capacity
Figure 6. a) L2 Hit Cycles/ Figure 6. b) L.2 Miss Cycles Figure 6. c¢) Total Cycles /
Instr. (16 MB 200 lat.) / Instr. (16 MB 200 lat.) Instr. (16 MB 200 lat.)
ke ® poge b HY R I
4 [54 ?
“ -o—apache i ~o—apache . {po-o-eo-007 ¢ /*/o/“" ~o— apache
7 N p00” USSR N T IV SR 3 jbb
= 5 3000 -0 e £ s
~ -eoolp 2 e »oltp T = oltp
0 T "
kS seozens 8 P S eS8 - ZEUS
g - . ° " A H o 3- n g 8 E . :
; —-apsi 5, —apsi > e e femt ~o= apsi
o 2 0
= -% an 2 T art By - art
5 0.59 -+~ galgel é ¢ i S -+~ galgel é T -+~ galgel
S < omgid T mgrid © mgrid
e V4p poa . 14
DAl B~ e B - B
00 o e
00 " T U T T 1 0 T U T T 1 0 : ”A.I‘ = .AI T T 1
0 10 20 30 4 50 10 20 30 40 50 1020 30 4 S0
% L2 Replication Capacity % L2 Replication Capacity % L2 Replication Capacity
Figure 6. d) L2 Hit Cycles/ Figure 6. e) 1.2 Miss Cycles Figure 6. f) Total Cycles /
Instr. (16 MB 800 lat.) / Instr. (16 MB 800 lat.) Instr. (16 MB 800 lat.)
a Q
9 40
154 b
25#
- ~o— apache . —o—apache . —o— apache
z o b § 20 s § 3"‘?39 5 b
N 104 ~eolp 2 ~e-olp Z = olip
2 cezes 8 s wezs 8 - 7S
5 o apsi E o~ apsi 3,209 o apst
3 i coapst o o apsi
= - af 9104 ™ -¢ af = - A
+ mgrid .l P . “n:g'nd e e et opeane " mgrid
- SN e b’u“"”ﬂ”‘gu i"‘ﬂ‘?‘,’“ﬁ‘.’ B &om et
Om T - T 1 0 - H T T T 1 0 TMW T T T T 1
0 0 40 50 020 30 4 50 0 020 30 40 30
% L2 Replication Capacity % L2 Replication Capacity % L2 Replication Capacity
Figure 6. g)L.2 Hit Cycles/ Figure 6. h) L2 Miss Cycles Figure 6. i) Total Cycles /
Instr. (4 MB 800 lat.) / Instr. (4 MB 800 lat.) Instr. (4 MB 800 lat.)

replication. While the remaining two workloads, Apache and Art, prefer a replication capacity considerably
less than the maximum.

With slower memory latencies, the second row of memory curves Figure 6 d-f show that the optimal level of
replication shifts towards less replication. We evaluated a CMP with an 800-cycle memory latency (i.e. the
16 MB 800 lat. configuration) to study how the longer memory latencies effect the optimal level of replica-

tion. Due to the same aggregate L2 cache size, the L2 hit cycle curves of Figure 6d, maintain the same basic

14

TR e T ey R

8 4 8 it IR G I R A
T>J Riitiing E -d+ -4 BT G AT TR R b R BUHI BT H -
:)] 6 —4 -4l ﬁ 6 — B 3 R DG HEH SRR
= HEHH- HH- 3383 2 o S HEb = Eaziam -+
= S
% 4 -1 HEHHE BRI R M R g 4 -
:i% 0 20 B A FURTES RN FER R e S SRR IR o2 SR SRR S AR i 52 R 2 —% E

O """"" pryvererey | A | AN [O """"" priTTETETT | AR | A prorTrerEy pryveeTe

0 100 200 30 400 0 100 200 300 400 50
Cycles (M) Cycles (M)
Figure 7. a) Apache Replication Figure 7. b) Oltp Replication Change
Change (16 MB 200 lat.) (16 MB 200 lat.)

shape as those of Figure 6a. However, the slower memory latency causes the L2 miss cycle curves in
Figure 6e to substantially increase with respect to those in Figure 6b. The result is the miss cycle curves have
a greater impact on the total cycle curves. For instance the optimal point of replication capacity for Oltp
shifted from near 40%, for the previous 200 memory cycle configuration, to close to 20% for the 800 mem-
ory cycle configuration.

Figure 6 g-i display how a smaller aggregate L2 cache size further shifts the optimal level of replication
towards less replication. We studied the 4 MB aggregate L2 cache size configuration, referred to as
4 MB 800 lat., to account for the scaled down working sets of the evaluated workloads [2]. The smaller 1.2
capacity cause the L.2 hit cycles-per-instruction to decrease and the miss cycles-per-instruction to increase
for all workloads. Art exhibits the most significant change because its 8 MB working set (Figure 2) no
longer fits in the on-chip cache. The resulting total cycles-per-instruction graph shows that replica blocks
can consume up to 53% of all L2 capacity in the four commercial workloads, but that the optimal replication

level for all workloads is near 0%.

6.2 Adapting to Workload Behavior

By dynamically monitoring the changes in L2 hit cycles and L2 miss cycles, ASR matches the level of repli-
cation within each local L2 cache to the behavior of each individual processor. Figure 7 illustrates ASR’s
dynamic adjustment of each private L2 cache’s replication level over the runtime of the workload. Both plots
of Figure 7 use the 16 MB 200 lat. configuration and all ASR replication levels are initialized to level 7.
Each point on the plots indicates when an ASR triggered an evaluation of its counters (x-axis) and the cur-
rent replication level (y-axis).

For the workload Apache, ASR reduces the replication level to achieve the lower replication capacity pre-
ferred by the workload. Figure 7a demonstrates that each ASR replication level drops within the first 40 mil-
lion cycles to the replication levels 3-5 and stays in this range for the remainder of the execution. The result
is the average dynamic L2 capacity consumed by replicas in Apache is 15%.

For the workload Oltp, which has an optimal point of replication capacity between 25-50%, ASR adjusts

replication to between the levels 5 and 9. Figure 7b illustrates initially each processor’s ASR mechanism

I35

o 1.0+
E '
=
&
B
N 0.5+
S
£
S
Z
0.0~ SPcvNA SPCVNA SPCVNA SPCVNA SPCVNA SPCVNA SPCVNA SPCVNA SPCVNA SPCVNA
apache jbb oltp zeus apsi art galgel mgrid jbb-apsi jbb-art
Figure 8. Normalized Runtimes (16 MB 200 lat.) S: CMP-Shared, P: CMP-
Private, C: CMP-PrivateCS, V: Victim Replication, N: CMP-NuRapid, A: ASR
= 1.0+
2]
‘é Local L1
S 0.5 =1 Local 1.2
o =28 Remote
= s Off-chip
g]
Z OO e S P

apache art jbb-art

Figure 9. Memory System Cycles (16 MB 200 lat.) S: CMP-Shared, P: CMP-
Private, C: CMP-PrivateCS, V: Victim Replication, N: CMP-NuRapid, A: ASR

quickly detects a benefit for replicating Oltp’s large instruction footprint and moves all eight L2 caches to
level 9, or 100% probability of replication within the first 20 million cycles. Then each ASR compensates
for the overly aggressive replication level, and moves all 8 caches back to level 7 by the 80 million cycle
mark. Finally, ASR falls into a steady state where each cache’s replication level varies between levels 5 and
9 for the remainder of the run, resulting in a 41% average .2 capacity consumed by replicas.

In order to remove cold-start effects, Section 6.3 evaluates ASR by initializing the ASR replication levels to

their steady-state values.

6.3 Comparison of Replication Schemes
By matching the level of replication to the workload behavior and system parameters, ASR outperforms the

baselines CMP-Shared, CMP-Private, and CMP-PrivateCS, as well as the previously proposed replication
policies of Victim Replication [33] and CMP-NuRapid [6]. Figure 8 shows the normalized runtime of each
CMP design executing the 8 homogeneous workloads, plus 2 heterogeneous mixtures Jbb-Apsi and Jbb-Art.
Heterogeneous bars are split with the top sections indicating the normalized cycles per transaction for Apsi
or Art and the bottom indicating the normalized cycles per transaction for Jbb, The private cache designs
exploit the high capacity and relative fast memory latency of the 16 MB 200 lat. configuration and achieve a
2% to 31% reduction in runtimes versus the shared cache design. As forecasted by the total cycles-per-
instruction curve, Figure 6c, the three private cache designs that restrict shared read-only replication (Victim

Replication, CMP-NuRapid, and ASR) attain better performance for workloads Apache and Art than the two

16

Normalized Runtime

VNA S VNA SPVNA SP,
apache jbb oltp zeus apsi art galgel mgrid jbb-apsi jbb-art

Figure 10. Normalized Runtimes (16 MB 800 lat.) S: CMP-Shared, P: CMP-
Private, C: CMP-PrivateCS, V: Victim Replication, N: CMP-NuRapid, A: ASR

8
(8]
>
% 104 == Local L1
g o local L2
= 05] = Remote
2 7] = Off-chip
E
2 0.0 5 eV INTA S P C V N A S P C V N A

apache oltp art

Figure 11. Memory System Cycles (16 MB 800 1at.) S: CMP-Shared, P: CMP-

Private, C: CMP-PrivateCS, V: Victim Replication, N: CMP-NuRapid, A: ASR
private cache designs that allow all shared read-only replication (CMP-Private and CMP-PrivateCS). ASR
attains the best performance and reduces runtimes versus the second best replication policy, CMP-NuRapid,
by 11%, 5%, and 8% for Apache, Art, and Jbb-Art respectively.
To provider further insight, Figure 9 shows the memory system cycle breakdown for the Apache and Art
workloads to indicate where the time is spent in the memory system. The ‘Local L1’ and ‘Local L2’ seg-
ments display the fraction of the average memory access time contributed by local L1 and L2 hits respec-
tively (for CMP-Shared ‘Local L2’ includes all L2 hits). The ‘Remote’ bar segment represents the cycles
spent on requests satisfied by remote L1 or L2 caches. Finally, the ‘Off-chip’ bar segment exposes the cycles
spent on off-chip misses.
By devoting 61% less L2 capacity to replications than CMP-NuRapid (the next most restrictive replication
proposal), ASR achieves a similar contribution for off-chip miss cycles as CMP-Shared when running
Apache. Meanwhile, the data ASR does replicate in Apache, enables it to achieve a similar sum for the
‘Local L2’ and ‘Remote’ cycles as the CMP-PrivateCS design. For the heterogeneous mixture of Jbb and
Art, ASR exhibits the same performance for Jbb as the other private cache designs, but reduces the cycles to
reach the end of the main loop in Art by 8% versus CMP-NuRapid.
ASR’s flexibility allows it to adapt when the memory latency is increased. In Figure 10, the memory latency
is increased to 800 cycles, thus increasing the penalty for off-chip misses. The higher memory latency

diminishes the advantage the private cache designs have over CMP-Shared. While ASR maintains it perfor-

17

1.0

0.5

Normalized Runtime

ALPVN/: LI’VNA LPVN;‘: LPVNA LPVNA LPCVNA LPCVNA LPCVN;\ LPC A L
apache jbb oltp zeus apsi art galgel mgrid jbb-apsi jbb-art

Figure 12. Normalized Runtimes (4 MB 800 lat.) L: CMP-Shared, P: CMP-
Private, C: CMP-PrivateCS, V: Victim Replication, N: CMP-NuRapid, A: ASR

8

£ 1.0

Q Local L1
E* = Local L2
;5, 0.5+ e Remote
2] mw Off-chip
E

2 0.0-—% L P C V N A P C V N A

jbb oltp zeus

Figure 13. Memory System Cycles (4 MB 800 lat.) L: CMP-Shared, P: CMP-
Private, C: CMP-PrivateCS, V: Victim Replication, N: CMP-NuRapid, A: ASR

mance improvement over the CMP-Shared design for the workloads Apache, Art, and Jbb-Art, the other pri-
vate cache designs actually perform worse than CMP-Shared. Furthermore, by limiting the average L2
replication capacity to 23%, ASR reduces the runtime for Oltp by 5% versus the second best private cache
design. Figure 11 breaks down the memory cycles for Oltp, Apache, and Art. By comparing the Oltp mem-
ory cycles in ASR to that of CMP-Shared, it is evident that ASR does allow enough replications such that
off-chip cycles increase by 16% versus CMP-Shared. However the tradeoff in capacity allows ASR to
reduce the ‘Local L2’ and ‘Remote’ cycles by 49% versus CMP-Shared.

For most workloads, the advantage of ASR’s adaptability is fully exemplified when the cache capacity is
constrained. To account for scaled down commercial workloads [2], the total L2 cache is reduced to 4 MB in
Figure 12. Unlike the 16MB configuration, most 4 MB private cache designs perform worse than the CMP-
Shared design when running commercial workloads. However, ASR matches or exceeds CMP-Shared’s per-
formance for all workloads except Jbb-Art, where it encounters a 1% increase in cycles per transaction. In
this heterogeneous workload, a global L2 cache allocation policy is preferred because it allows Art’s larger
working set to consume more cache capacity. The ASR’s associated with processors running Art train to rep-
lication level 0, but ASR still encounters 44% more misses than CMP-Shared because Art’s large data set
cannot be allocated into the other private L2 caches running Jbb.

For the commercial workloads Apache, Oltp, and Zeus the restrictive replication policies of Victim Replica-

tion and CMP-NuRapid increase the runtimes by 5% to 13% versus CMP-Shared. In contrast ASR adapts

18

the Private CMP cache hierarchy to severely restrict replication, thus for these same three commercial work-
loads ASR achieves a 2% to 17% reduction in runtime versus CMP-Shared and a 3% to 21% reduction in
runtime versus the second best private CMP design, CMP-NuRapid. Figure 13 breaks down the cycles for
Jbb, Oltp, and Zeus to show that the ASR performance improvement is due to achieving similar off-chip

cycles as CMP-Shared, while exploiting the local private L2 cache latency to reduce on-chip cycles.

7 Related Work

7.1 Multiprocessor Memories
A large body of previous work exists in studying data replication in the context of flat multiprocessors [7].

Specifically, throughout the previous decade significant work has compared hardware solutions such as CC-
NUMA and Flat COMA architectures [27, 34], along with software [5, 31] and hybrid hardware/software
combinations [9, 25]. The Flat COMA protocol [25, 27] removed the slow ordered network of hierarchical
COMA machines allowing data to migrate and replicate towards the requesting processor on an unordered
network, similar to the evaluated private CMP cache designs. Related to ASR’s adaptive selective replication
mechanism, Verghese et al. [31] proposed an OS mechanism that adapted the number of pages migrated and
replicated to a processor’s local memory. Zhang et al [34] studied the working sets of various workloads run-
ning on a NUMA system, and comparable to our work in Section 2, they characterized data into three

classes: replication, migration read-only, and migrating read/write.

7.2 Chip Multiprocessor Caches

There has also been significant recent work in evaluating the benefits and limitations of replication in CMP
caches. Huh et al. [13] investigated sharing in a CMP-NUCA cache and concluded allowing some replica-
tion between cache banks was advantageous. Liu et al. [19] evaluated the performance of managing the allo-
cation of cache resources on a bus-based CMP and proposed a profile-driven approach to determine which
cache banks to share between processors and which to reserve as private. In contrast to these proposals, ASR
dynamically analyzes workload behavior and adapts L2 cache replication on a per cache block basis to
match the current workload demands.

The most closely related proposals to Adaptive Selective Replication are the previously discussed Victim
Replication and CMP-NuRapid proposals by Zhang et al. [33] and Chishti et al. [6] respectively. Both
designs restrict shared read-only data replications, but their static mechanisms tend to favor certain work-
loads and fail to adjust to changes in workload behavior and system constraints.

Finally, similar to ASR Suh et al. [29] used set and way counters to monitor cache block utilization. How-
ever, Suh et al. used the monitoring information to dynamically partitioned ways in a set-associative cache
among multiple threads, while ASR uses the monitoring information to determine the cost of increasing rep-

lication.

8 Conclusions and Future Work
Managing on-chip wire delay, while limiting off-chip misses, is essential in order to improve future CMP

performance. A private CMP cache hierarchy offers lower access latency than a shared cache, but uncon-

19

trolled replication may cause significant performance degradation due to increased off-chip misses. In this
paper, we observed for commercial workloads, shared read-only data is frequently requested and exhibits
high request locality. Then we propose ASR, which dynamically adapts shared read-only data replication to
exploit the latency advantage of a private caches without wasting cache capacity due to excessive replica-
tion. By performing an opportunity analysis of replication, ASR adjusts the degree of replication to match

the current workload behavior and system configuration, the providing a robust CMP cache hierarchy.

References

[1] V. Agarwal, S. W. Keckler, and D. Burger. The Effect of Technology Scaling on Microarchitectural Structures.
Technical Report TR-00-02, Department of Computer Sciences, University o{ exas at Austin, May 2001.

[2] A.R. Alameldeen, M. M. K, Martin, C. J. Mauer, K. E. Moore, M. Xu, D. J. Sorin, M. D. Hill, and D. A. Wood.
Simulating a $2M Commercial Server on a $2K PC. IEEE Computer, 36(2):50-57, Feb. 2003.)

[31 V. Aslot, %/I Domeika, R. Eigenmann, G. Gaertner, W. Jones, and B. Parady. SPEComp: A New Benchmark Suite
g%rol}/leasuring Parallel Computer Performance. In Workshop on OpenMP Applications and Tools, pages 1-10, July

4] B. M. Beckmann and D. A. Wood. Mana%ing Wire Delay in Large Chip-Multiprocessor Caches. In Proceedings of
the 37th Annual IEEE/ACM International Symposium on Microarchitecture, Dec. 2004.

[5] R.Chandra, S.Devine, B. Verghese, A.Gupta, and M. Rosenblum. Scheduling and Page Mi%ration for
Multiprocessor Compute Servers. In Proceedings of the 6th International Conference on Architectural Support for

Pro, rammi{\?f Languages and Operating Systems (ASPLOS), Oct. 1994,

[6] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing Replication, Communication, and Capacity Allocation
in CMPs. In Proceedings of the 32nd Annual International Symposium on Computer Architecture, June 2005.

7] F.Dahlgren and J. Torrellas. Cache-Only Memory Architectures. IEEE Computer, 3256):72—79, June 1999.

8] K. Diefendorff. Power4 Focuses on Memory Bandwidth. Microprocessor Report, 13(13):1-8, Oct. 1999.)

9] B.Falsafi and D. A. Wood. Reactive NUMA: A Design for Unifying S-COMA and CC-NUMA., In Proceedings of
the 24th Annual International Symposium on Computer Architecture, pages 229-240, June 1997.

[1I6] L. T.R. ~for Semiconductors. = ITRS 2003 Edition. Semiconductor Industry Association, 2003.
htt%/ public.itrs.net/Files/2003ITRS/Home2003 . htm.)

{1 1} S. W. Golumb. ShXt Register Sequences. Aeiean Park Press, revised edition, 1982.

12M.D. Hill and A.J. Smith. Evaluating Associativity in CPU Caches. JEEE Transactions on Computers,
38(12):1612-1630, 1989.

[13] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S, W. Keckler. A NUCA Substrate for Flexible CMP Cache
Shar‘in% In Proceedings of the 19tn International Conference on Supercomputing, June 2005.

[14] C. N. Kelicher, K. J. McGrath, A. Ahmed, and P. Conway. The' AMD Opteron Processor for Multiprocessor
Servers. IEEE Micro, 23(2):66—76, March-April 2003.)

[15]1R.E. Kessler, R.Jooss, A.Lebeck, and M.D. Hill. Inexpensive Implementations of Set-Associativity. In
Proceedings of the 16th Annual International Symposium on Computer Architecture, May 1989.

[16] C. Kim, D. Burger, and S. W. Keckler. An Addptive, Non-Uniform Cache Structure for Wire-Dominated On-Chip

Caches. In Proceedings of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Oct. 2002.
(17 50&011get1ra. A 32-way Multithreaded SPARCZ Processor. In Proceedings of the 16th HotChips Symposium, Aug.

18] K. Krewell. UltraSPARC IV Mirrors Predecessor. Microprocessor Report, pa}gss 1-3, Nov. 2003.
191 C. Liu, A. Sivasubramaniam, and M. Kandemir. Ogganizing the Last Line of Defense before Hitting the Memory
Wall for CMPs. In Proceedings of the Tenth IEEE Symposium on High-Performance Computer Architecture, Feb.

2004.

[20] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin, and D. A. Wood. Improving Multiple-CMP
Systems Using Token Coherence. In Proceedings of the Eleventh IEEE Symposium on High-Performance Computer
Architecture, Feb. 2005. .

[21] H. McIntyre and et al. A 4-MB On-Chip L2 Cache for a 90-nm 1.6-GHz 64-bit Microprocessor. IEEE Journal of
Solid-State Circuits, 40(1):52-59, Jan 20055.

[22] C. McNairy and R. Bhatia. Montecito: A Dual-Core Dual-Thread Itanium Processor. IEEE Micro, 25(2):10-20,
March/Apri] 2005. . .

{23] C. McNairy and D. Soltis. Itanium 2 Processor Microarchitecture. IEEE Micro, 23(2):44-55, March/April 2003.

24 7K0 98(} and 19.8%1. Rechtschaffen. Cache Operations by MRU Change. IEEE Transactions on Computers, 37(6):700-

, June .

[25] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A. Gupta, and J. Hennessy. Flexible Use of Memory
for Replication/Migration in Cache-Coherent DSM Multiprocessors. In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages 342-355, June 1998.

[26] E. Speight, H."Shafi, L. Zhang, 'and R. Rajamony. Ada})tive Mechanisms and Policies for Managiz}g Cache
Hierarchies in Chlg Multiprocessors. In Proceedings of the 32nd Annual International Symposium on Computer
Architecture, June 2005.

[27] P. Stenstrom, T. Joe, and A. Gupta. Comparative Performance Evaluation of Cache-Coherent NUMA and COMA
Architectures. In Proceedings ?f the 19th Annual International Symposium on Computer Architecture, May 1992.

[28] G. E. Suh, S. Devadas, and L. Rudolph. A New Memory Monitoring Scheme for Memory-Aware Scheduling and
g(%tétxoning, In Proceedings of the Eighth IEEE Symposium on High-Performance Computer Architecture, Feb.

[29] G.E. Suh, L.Rudolph, and S.Devadas. Dynamic Cache Partitioning for CMP/SMT Systems. Jowrnal of
Suﬁlercomputing, pages 7-26, 2004,

[30] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 System Microarchitecture. IBM Server
Group Whitepaper, Oct. 2001.

20

[31] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating System Support for Improving Data Locality on
CC~N{%MA Compute Servers. In Proceedings of the 7th International Conference on Architectural Support for
Programmin, Langua%es and Operating Systems (ASPLOS), Oct. 1996.

32] Wisconsin Multifacet GEMS Simulator. hitp://www.cs. wisc.edu/gems/. R i i

33] M. Zhang and K. Asanovic. Victim Replication: Maximizing Capacity while Hiding Wire Delay in Tiled Chip

%L(l)%iprocessors. In Proceedings of the 32nd Annual International Symposium on Computer Architecture, June

[34] Z. Zhang and J. Torrellas. Reducing Remote Conflict Misses: NUMA with Remote Cache versus COMA. In
Proceedings of the Third IEEE Symposium on High-Performance Computer Architecture, Feb. 1997.

21

