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Abstract. In this paper, we reduce pushdown system (PDS) model checking to a graph-
theoretic problem, and apply a fast graph algorithm to improve the running time for model
checking. We use weighted PDSs as a generalized setting for PDS model checking, and
show how various PDS model checkers can be encoded using weighted PDSs. We also give
algorithms for witness tracing, differential propagation, and incremental analysis, each of
which benefits from the fast graph-based algorithm.

1 Introduction

Pushdown systems (PDSs) have served as an important formalism for program analysis
and verification because of their ability to concisely capture interprocedural control
flow in a program. Various tools [1-6] use pushdown systems as an abstract model of
a program and use reachability analysis on these models to verify program properties.
Using PDSs provides an infinite-state abstraction for the control state of the program.
Some of these tools [1,2, 6], however, can only verify properties that have a finite-
state data abstraction. Other tools [4, 5, 3] are based on the more generalized setting
of weighted pushdown systems (WPDSs) [7] and are capable of verifying infinite-state
data abstractions as well.

At the heart of all these tools is a PDS reachability-analysis algorithm that uses
a chaotic-iteration strategy to explore all reachable states [§-10]. Even though there
has been work to address the worst-case running time of this algorithm [11], to our
knowledge, no one has addressed the issue of giving direction to the chaotic-iteration
scheme to improve the running time of the algorithm in practice. In this paper, we try
to improve the worst-case running time as well the running-time observed in practice.
To provide a common setting to discuss most PDS model checkers, we use WPDSs to
describe our improvements to PDS reachability.

An interprocedural control flow graph (ICFG) is a set of graphs, one per procedure,
connected via special call and return edges [12]. A WPDS with a given initial query
can also be decomposed into a set of graphs whose structure is similar. (When the un-
derlying PDS is obtained by the standard encoding of an ICFG as a PDS for use in
program analysis, these decompositions coincide.) Next, we use a fast graph algorithm,
namely the Tarjan path-expression algorithm [13] to represent each graph as a regular
expression. WPDS reachability can then be reduced to solving a set of regular equa-
tions. When the underlying PDS is obtained from a structured (reducible) control flow
graph, the regular expressions can be found and solved very efficiently. Even when the
control flow is not structured, the regular expressions provide a fast iteration strategy
that improves over the standard chaotic-iteration strategy.

Our work is inspired by previous work on dataflow analysis of single-procedure
programs [14]. There it was shown that a certain class of dataflow analysis problems
can take advantage of the fact that a (single-procedure) CFG can be represented using



a regular expression. We generalize this observation to multi-procedure programs, as
well as to WPDSs. The contributions of this paper can be summarized as follows:

— We present a new reachability algorithm for WPDSs that improves on previously
known algorithms for PDS reachability. The algorithm is asymptotically faster
when the PDS is regular (decomposes into a single graph) and offers substantial
improvement in the general case as well.

— The algorithm is completely demand driven and computes only that information
needed for answering a particular user query. The algorithm can be easily paral-
lelized (unlike the chaotic-iteration strategy) to take advantage of multiple proces-
sors, making it attractive to run on the coming generations of CMPs.

~ We show that several PDS analysis questions and techniques carry over to the new
approach. In particular, we describe how to perform witness tracing, differential
propagation, and incremental analysis.

The rest of the paper is organized as follows: §2 provides background on PDSs and
WPDSs. §3 presents the previously known algorithm and our new algorithm for solv-
ing reachability queries on WPDSs. In §4, we describe algorithms for witness tracing,
differential propagation, and incremental analysis. §5 presents experimental results. §6
describes related work.

2 PDS Model Checking

In this section, we review existing pushdown system model checkers, as well as weighted

pushdown systems. We also show how the model checkers can be encoded using WPDSs.

2.1 Pushdown Systems

Definition 1. 4 pushdown system is a triple P = (P, I, A) where P is the set of
states or control locations, I' is the set of stack symbols and A C P x ' x P x I'™*
is the set of pushdown rules. A configuration of P is a pair (p,u) where p € P and
u €I Aruler € Ais written as (p,v) ~»p (¢, u) wherep,p’ € P, v € I' and
u € I'. These rules define a transition relation =>p on configurations of P as follows:
Ifr = (p,7) —p (o' u) then (p,yu') =>p (p',w’) for all v’ € I'*. The subscript
P on the transition relation is omitted when it is clear from the context. The reflexive
transitive closure of = is denoted by =*. For a set of configurations C, we define
pre*(C) ={c |Fe e C: ¢ =* ¢} and post*(C) = {¢' | Je € C : ¢ =* '}, which
are just backward and forward reachability under the transition relation =.

We restrict the pushdown rules to have at most two stack symbols on the right-hand
side. This means that for every rule r € A of the form (p,y) —p (p',u), we have
|u] < 2. This restriction does not decrease the power of pushdown systems because
by increasing the number of stack symbols by a constant factor, an arbitrary pushdown
system can be converted into one that satisfies this restriction [15, 16, 10].

The standard approach for modeling program control flow is as follows: Let (A, £)
be an ICFG where each call node is split into two nodes: one has an interprocedural
edge going to the entry node of the procedure being called; the second has an incoming
edge from the exit node of the procedure. AV is the set of nodes in this graph and £ is
the set of control-flow edges. Fig. 1(a) shows an example of an ICFG, Fig. 1(b) shows
the pushdown system that models it. The PDS has a single state p, one stack symbol for




each node in AV, and one rule for each edge in £. We use rules with one stack symbol on
the right-hand side to model intraprocedural edges, rules with two stack symbols on the
right-hand side for call edges, and rules with no stack symbols on the right-hand side
for return edges. It is easy to see that a valid path in the program corresponds to a path
in the pushdown system’s transition system, and vice versa. Thus, PDSs can encode or-
dinary control flow graphs, but they also provide a convenient mechanism for modeling
certain kinds of non-local control flow. For example, we can model setjmp/longjmp in
C programs. At setjmp, we push a special symbol on the stack, and at a longjmp with
the same environment variable (identified using some preprocessing) we pop the stack

until that symbol is reached. The longjmp value can be passed using the state of the
PDS.

N (1) {p,m1) = (p,n2)
LT @) (pn2) = (p,na)
p = NULL =100 (3) (p,n3) — (p,n6 na)

loc, = trug (4)  (p,n4) = (p,ns)
(5) (P, TL(,) — <p75>
(6) (pv 72(3) - (p,n7>
(7)  (p,n7) — (p,ns)
(8) (P, nB) —* <]J,'I’L9>
(9) (p’ ns) - <p7n12>
(10) (p,m9) — (p,n10)
(11) <p,ng> —* (p,'nn)
(12) (pv T'Lm) ad <P, n9>
(13) (p,n11) = (p,u2)
(14) (pv ”12) o (p,E)
(a) (b)
Fig. 1. (a) An interprocedural control flow graph. The e and exif nodes represent entry and exit
points of procedures, respectively. flag is a global variable, 1oci and locs are local vari-
ables of main and foo, respectively. Dashed edges represent interprocedural control flow. (b) A
pushdown system that models the control flow of the graph shown in (a).
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Aruler = (p,7) — (p,u) is called a pop rule if |u| = 0, and a push rule if
lu| = 2.

Because the number of configurations of a pushdown system is unbounded, it is
useful to use finite automata to describe certain infinite sets of configurations.

Definition 2. [f P = (P, I, 4) is a pushdown system then a P-automaton is a finite
automaton (Q, ', —, P, F) where Q 2 P is a finite set of states, —C Q x I' x Q is
the transition relation, P is the set of initial states and F is the set of final states of
the automaton. We say that a configuration (p,u) is accepted by a P-automaton if the
automaton can accept! u when it is started in the state p (wrilten as p —* q, where
q € F). A set of configurations is called regular if some P-automaton accepts il.

An important result is that for a regular set of configurations C, both post*(C) and
pre* (C) are also regular sets of configurations [10, 8, 11,9].
2.2 Verifying Finite-State Properties

In this section, we describe two common approaches to verifying finite-state properties
using pushdown systems. The first approach tries to verify safety properties on pro-



grams. The property is supplied as a finite-state automaton that performs transitions on
ICFG nodes. The automaton has a designated error state, and runs (i.e., ICFG paths)
that drive it to the error state are reported as potentially erroneous program executions.
The automaton shown in Fig. 2 can be used to verify the absence of null-pointer deref-
erences (for pointer p in the program) by matching automaton edge labels against ICFG
nodes. For example, we would associate p = NULL with node ny, +p with node nqg
etc.

Fig.2. A finite-state machine for checking null-pointer dereferences in a program. The initial
state of the machine is s;. The label “p = &v” stands for the assignment of a non-null address
to the pointer p. We assume that the machine stays in the same state when it has to transition on
an undefined label.

Actual program executions are modeled using a PDS as constructed in the previous
section from an ICFG. The safety property is verified using the cross-product of the
automaton with the PDS, which is constructed as follows: For eachrule (p, v) < (p’, u)
in the PDS and transition s; — s, in the automaton, add the rule {(p,51),77) —
((»', s2),u) to anew PDS. If we can reach a configuration in the new PDS where the
automaton error state appears in the second component of the stack then the program
can have invalid executions.

The second PDS model-checking approach is used for assertion checking in Boolean
programs. In this approach, the PDS state and stack alphabet are expanded to encode
valuations of Boolean variables. The state space is expanded to include valuations
of global variables, and the stack alphabet is expanded to include valuations of local
variables. We illustrate this approach using the program shown in Fig. 1. It has three
Boolean variables, £ 1ag, which is a global variable, and 1ocy, i = 1, 2, which are local
variables. A valuation for these variables can be described by a pair of bits (a, b), stand-
ing for £lag = ¢ and loc; = b, where ¢ indicates the procedure from which the val-
uation was chosen. Each ICFG edge is associated with a transformer. A transformer is
simply a relation between valuations that encodes (an over-approximation of) the effect
of following that ICFG edge. For example, the edge (na2, n3), which changes the value
of flag to 0, can be associated with the relation {((a, ), (0,8)) | (a,b) € {0,1}?}.
A PDS for the program is constructed from the one describing its control flow as fol-
lows: For an intraprocedural rule (p, v} < (p, ¥') that describes control flow, if R is the
transformer associated with edge (v,7), then add rules {(a, (-, )} < (¢, (7, d)) for
each ((a,b), (¢, d)) € R to the new PDS. For a push rule (p,y) < (p,7'¥"), add rules
{a, (7, b)) — (¢, (v, e)(v", d)) for each ((a,b),(c,d)) € Rand e € {0,1} (assuming




that local variables are not initialized on procedure entry). For pop rules (p, v) < (p,€),
add rules (a, (7, b)) — (a,€) for each (a,b) € {0,1}2.!

The PDS obtained from such a construction serves as a faithfiul model of the Boolean
program. Reachability analysis in this PDS can be used for verifying assertions in the
program. For example, to see if node n can ever be reached in a program execution,
we can ask if a configuration (a, (n,b) u) is reachable in the PDS for some values of
a,be {0,1}andu € I'™.

Note that the two approaches described above are complementary and can be used
together to verify safety properties on Boolean programs.

2.3  Weighted Pushdown Systems

A weighted pushdown system is obtained by supplementing a pushdown system with
a weight domain that is a bounded idempotent semiring [17, 18]. Such semirings are
powerful enough to encode infinite-state data abstractions, such as copy-constant prop-
agation and affine-relation analysis [3].

Definition 3. 4 bounded idempotent semiring is a quintuple (D, &, ®,0,1), where
D is a set whose elements are called weights, 0 and 1 are elements of D, and & (the
combine operation) and ® (the extend operation) are binary operators on D such that

1. (D,®) is a commutative monoid with 0 as its neutral element, and where @ is
idempotent (ie, foralla € D, a ® a = a).

2. (D, ®) is a monoid with the neutral element 1.

Q distributes over @, i.e., for all a,b,c € D we have

a@b®e)=(aRb)®(a@c)and (a®b)®c=(a®c)D(b®C).

4. 0 is an annihilator with respect to ®, i.e., foralla € D,a®0=0=0® a.

5. In the partial order T defined by Ya,b € D, a T biffa® b = a, there are no
infinite descending chains.

“w

Definition 4. 4 weighted pushdown system is a triple W = (P, S, f) where P =
(P, I, A) is a pushdown system, S = (D, ®,®,0,1) is a bounded idempotent semiring
and f : A — D is a map that assigns a weight to each pushdown rule.

Let 0 € A* be a sequence of rules. Using f, we can associate a value to o, i.e., if

o = [r1,..., 7], then we define v(o) = f(r1) ® ... ® f(r1). Moreover, for any two
configurations ¢ and ¢’ of P, we use path(c,¢') to denote the set of all rule sequences
[r1,..., 7] that transform ¢ into ¢’. Reachability problems on pushdown systems are

generalized to weighted pushdown systems as follows.

Definition 5. Let W = (P, S, [) be a weighted pushdown system, where P = (P, I', A),
and let C C P x I'* be a regular set of configurations. The generalized pushdown
predecessor (GPP) problem is to find for eachc € P x I'*:
5(c) = @{v(o) | o € path(c,¢), ¢ € C'}
The generalized pushdown successor (GPS) problem is to find for eachc € P x I"™:
§(c) Z D{v(o) | o € path(c,c),¢ € C}

" In this construction, we ignore the single state p of the original PDS because a single state does
not provide any useful information.



Weighted pushdown systems can perform finite-state verification by designing an
appropriate weight domain. For verification of safety properties, let S be the set of states
of a property automaton A. Then define a weight domain (25%5,U, o, (}, id), where a
weight is a binary relation on S, combine is union, extend is composition of relations,
0 is the empty relation, and T is the identity relation. A WPDS can now be constructed
as follows?: If (p,y) < (p,u) is a PDS rule that describes control flow, then associate
it with the weight {(s, s2) | s1 —= sq in A}. If we solve GPS on this WPDS using
the singleton set that consistings of the program’s starting configuration as the initial
WPDS configuration, then safety can be guaranteed by checking if (s, error) € 6(c)
for some configuration ¢ where siy;, is the starting state of 4.2

Boolean programs can also be encoded as WPDSs.* Assume that a program has only
global variables. We defer discussion about local variables to §3.3. Then a transformer
for an ICFG node is simply a relation on valuations of global variables. If G is the set of
all valuations of global variables, then use the weight domain (2%, U, 0, ), id). Fora
PDS rule (p,y) < (p, u), associate it with the transformer of the corresponding ICFG
edge. Assertion checking can be performed by seeing if a configuration ¢ (or a set of
configurations) can be reached with non-zero weight, i.e., 8(c) # 0.

3 Solving Reachability Problems

In this section, we review the existing algorithm for solving generalized reachability
problems on WPDSs [7], which is based on chaotic iteration, and present our new algo-
rithm, which uses Tarjan’s path-expression algorithm [13]. We limit our discussion to
GPP; GPS is similar but slightly more tedious.

3.1 Solving GPP using Chaotic Iteration

Let W = (P, S, f) be a WPDS where P = (P, I, 4) is a pushdown system and
S = (D,8,®,0,1) is the weight domain. Let C be a regular set of configurations
that is recognized by P-automaton A = (Q, I', —, P, F). We assume, without loss of
generality, that .4 has no transitions that lead into an initial state, and does not have any
e-transitions as well. GPP is solved by saturating this automaton with new weighted
transitions (each transition has a weight label), to create automaton A,.-, such that
d(c) can be read-off efficiently from Ape~: §({p,u)) is the combine of weights of
all accepting paths for v starting from p, where the weight of a path is the extend of
the weight-labels of the transitions in the path, in order. We present the algorithm for
building A, .~ based on its abstract grammar problem.

Definition 6. [7] Let (S,1) be a meet semilattice. An abstract grammar over (S, 1)
is a collection of context-free grammar productions, where each production 8 has the
form

XQ - yg(Xl, ceny Xk)

? This construction is due to David Melski, and was used in an experimental version of the Path
Inspector [4].

3 If we add a self Toop on the error state that matches with (the action of) every ICFG node, then
we just need to check é(c) for the exit node of the program.

# A similar encoding is given in [1].




Parentheses, commas, and gy (where 0 is a production) are terminal symbols. Every pro-
duction @ is associated with a function gy S’”' — S. Thus, every string « of terminal
symbols derived in this grammar denotes a composition of functions, and corresponds
to a unique value in S, which we call valg(a) (or simply val(a) when G is under-
stood). Let L (X)) denote the strings of terminals derivable from a nonterminal X.
The abstract grammar problem is to compute, for each nonterminal X, the value

MODg(X) = aeLl—l(\') valg(a).
c (2

The value MODg (X)) is called the meet-over-all-derivations value for nonterminal
X.

We define abstract grammars over the meet semilattice (D, &), where D is the set
of weights as given above. An example is shown in Fig. 3. The non-terminal t3 can
derive the string o = ¢4(g3(g1)) and val(a) = wy ® w3 ® wy.

t1 = gi(e) g1 = wx
t1 — ga(ta) g2 = AT. w2 @ T
ta — ga(t1) g3 = AT.w3 @
t3 — ga(t2) ga=AZws BT
Fig. 3. A simple abstract grammar with four productions.
Production for each
(1) PopSeq(q.y,qn — 91(€) (g:7.¢) € =0
g=1
(2) PopSeq(y, o1y — g2(€) r=(p,7) = (pe) €A
g2 = f(r)

(3) PopSeq .y — 93(PopSeqy v gy) T =(p,7) = (0,Y) € 4,qeQ
gs = Az.f(r) @z
(4) PopSeq , gy — 9a(PopSeq s i o1y PopSeqyr i o)) o
r={(p,7) = (P, 77" € A,q,q' €Q
ga = Az Ay f(r)®zQy

Fig. 4. An abstract grammar problem for solving GPP.

The abstract grammar for solving GPP is shown in Fig. 4. The grammar has one
non-terminal PopSeq, for each possible transition ¢ € @ x I" x @ of Ap-. The pro-
ductions describe how the weights on those transitions are computed. Let [(t) be the
weight label on transition ¢. Then we want [(t) = MOD(PopSeq,). The meet-over-
all-derivation value is obtained as follows [7]: Initialize [(t) = O for all transitions
t. If PopSeq, — g(PopSeq,, ,PopSeq,,) is a production of the grammar (with possi-
bly fewer non-terminals on the right-hand side) then update the weight label on ¢ to
1(t) @ g(I(t1), l(t2)). The existing algorithm for solving GPP is a worklist-based algo-
rithm that uses chaotic iteration to choose (7) a transition in the worklist and (3) all
productions that have this transition on the right side, and updates the weight on the
transitions on the left side of the productions as described earlier. If the weight on a
transition changes then it is added to the worklist. Defn. 3(5) guarantees convergence.

Such a chaotic iteration scheme is not very efficient. Consider the abstract grammar
in Fig. 3. The most efficient way of saturating weights on transitions would be to start



with the first production and then keep alternating between the next two productions
until [(¢;) and {(¢2) converge before choosing the last production. Any other strategy
would have to choose the last production multiple times. Thus, it is important to identify
such “loops” between transitions and to stay within a loop before exiting it.

3.2 Solving GPP using Path Expressions
To find a better iteration scheme for GPP, we convert GPP into a hypergraph problem.

Definition 7. A (directed) hypergraph is a generalization of a directed graph in which
generalized edges, called hyperedges, can have multiple sources, i.e., the source of
an edge is an ordered set of vertices. A transition dependence graph (TDG) for a
grammar G is a hypergraph whose vertices are the non-terminals of G. There is a
hyperedge from {t1,--- ,t,} to t if G has a production with t appearing on the left-
hand side and ty - - - ty, are the non-terminals that appear (in order) on the right-hand
side.

If we construct the TDG of the grammar shown in Fig. 4 when the underlying
PDS is obtained from an ICFG, and the initial set of configurations is {{p,e) | p €
P} (or —g= 0), then the TDQG is identical to the ICFG (with edges reversed). Fig. 5
shows an example. This can be observed from the fact that except for the PDS states in
Fig. 4, the transition dependences are almost identical to the dependences encoded in
the pushdown rules, which in turn come from ICFG edges, e.g., the ICFG edge (ny, na)
corresponds to the transition dependence ({¢2},¢1) in Fig. 5, and the call-return pair
(na,ng) and (n12,n4) in the ICFG corresponds to the hyperedge ({t4,%6}, 3).

For such pushdown systems, constructing TDGs might seem unnecessary, but it
allows us to choose an initial set of configurations, which defines a region of interest
in the program. Moreover, PDSs can encode much stronger properties than an ICFG,
such as setjmp/longjmp in C programs. However, it is still convenient to think of a
TDG as an ICFG. In the rest of this paper, we illustrate the issues using the TDG of the
grammar in Fig. 4. We reduce the meet-over-all-derivation problem on the grammar to
a meet-over-all-paths problem on its TDG.

Intraprocedural Iteration. We first consider TDGs of a special form: consider the
intraprocedural case, i.e., there are no hyperedges in the TDG (and correspondingly no
push rules in the PDS). As an example, assume that the TDG in Fig. 5 has only the part
corresponding to procedure foo () without any hyperedges. In such a TDG, if an edge
({t1}, t) was inserted because of the production ¢ — g(t;) for g = Ax.z ® w for some
weight w, then label this edge with w. Next, insert a special node ¢, into the TDG and
for each production of the form ¢ — g(¢) with ¢ = w, insert the edge ({¢s},t) and label
it with weight w. ¢; is called a source node. This gives us a graph with weights on each
edge. Define the weight of a path in this graph in the standard (but reversed) way: the
weight of a path is the extend of weights on its constituent edges in the reverse order, It
is easy to see that
MOD(t) = @{v(n) | n € path(ts,t)}

where path(ts, t) is the set of all paths from ¢, to ¢ in the TDG and v(n) is the weight
of the path 5. To solve for MOD, we could still use chaotic iteration, but instead we
will make use of Tarjan’s path-expression algorithm [13].
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Fig. 5. TDG for the PDS shown in Fig. 1. A WPDS is obtained from the PDS by supplementing
rule number ¢ with weight w;. Let ¢; stand for the node (p, 74, p). The thick bold arrows form a
hyperedge. Nodes t4; and 2 are source nodes, and the dashed arrow is a summary edge. These,
along with the edge labels, are explained later in §3.2.

Problem 1. Given a directed graph G and a fixed vertex s, the single-source path ex-

pression (SSPE) problem is to compute a regular expression that represents path(s, v)

for all vertices v in the graph. The syntax of the regular expressions is as follows:
ruo=0lele|riUre|ryre|r*

where e stands for an edge in the graph. We say that a regular expression represents a

set of paths when the language described by it is exactly those set of paths.

We can use the SSPE algorithm to compute regular expressions for path(ts,t),
which gives us a compact description of the set of paths we need to consider. Also,
the Kleene-star operator identifies loops in the graphs. Let ®°¢ be the reverse of ®,
ie, w; ®° we = w2 ® wi. To compute MOD(¢), we take the regular expression for
path(ts, t) and replace each edge e with its weight, § with 0, e with 1, U with &, . with
®¢ and solve the expression. The weight w* is computed as TOw®H (w@w)®- - - . Again,
because of the bounded-height property of the semiring, this iteration converges. Two
main advantages of using regular expressions to compute MOD(¢) are: First, loops are
identified in the expression, and the evaluation strategy saturates a loop before exiting
it. Second, we can compute w* faster than normal iteration could. For this, observe that

Touw)"=1owduw?d - duw"
where exponentiation is defined using ®, i.e., w® = T and w* = w @ w*~ V). Then w*
can be computed by repeatedly squaring (T @ w) until it converges. [fw* = T ® w @
<+« @ w™ then it can be computed in O(log n) operations. A chaotic-iteration strategy
would take O(n) steps to compute the same value. In other words, having a closed
representation of loops provides an exponential speedup.’

3 This assumes that each semiring operation takes the same amount of time.



Given a graph with m edges (or m grammar productions in our case) and 7 nodes
(or non-terminals), regular expressions for path(ts,t) can be computed for all nodes
t in time O(mlogn) when the graph is reducible. Evaluating these expressions will
further take O(m lognlogh) semiring operations where h is the height of the semir-
ing. Because most high-level languages are well-structured, their CFGs are mostly re-
ducible. Even for programs in x86 assembly code, we found that the CFGs were mostly
reducible. When the graph is not reducible, the running time gradually degrades to
O((mlogn + k)logh) semiring operations, where % is the sum of the cubes of the
sizes of dominator-strong components of the graph. In the worst case, k can be O(n®).
In our experiments, we seldom found irreducibility to be a problent: k/n was a small
constant. A pure chaotic-iteration strategy would take O(m h) semiring operations in
the worst case. Comparing these complexities, we can expect to be much faster than
chaotic iteration, and the benefit will be greater as the height of the semiring increases.

Interprocedural Iteration. We now generalize our algorithm to any TDG. For each
hyperedge ({t1,¢2},¢) delete it from the graph and replace it with the edge ({¢1},t).
This new edge is called a summary edge, and node t; is called an out-node. For example,
in Fig. 5 we would delete the hyperedge ({t4, s}, t3) and replace it with ({4}, t3). The
new edge is called a summary edge because it crosses a call-site (from a return node
to a call node) and will be used to summarize the effect of a procedure call. Node t4
is an out-node and will supply the procedure summary weight. The resultant TDG is a
collection of connected graphs, with each graph roughly corresponding to a procedure.
In Fig. 5, the transitions that correspond to procedures main and foo get split. Each
connected graph is called an intragraph. For each intragraph, we introduce a source
node as before and add edges from the source node to all nodes that have e-productions.
The weight labels are also added as before. For a summary edge ({¢; }, t) obtained from
a hyperedge ({{1,t2},¢) with associated production function g = Az.\y.w @ = ® v,
label it with w & t5.

This gives us a collection of intragraphs with edges labeled with either a weight or
a simple expression with an out-node. To solve for the MOD value, we construct a set
of regular equations. For an intragraph G, let ¢ be its unique source node. Then for
each out-node ¢, in G construct the regular expression for all paths in G from ¢z to
to, 1.€., for path(ts, to). In this expression, replace each edge with its corresponding
label. If the resulting expression is 7 and it contains out-nodes ¢; to t,,, add the equation
to = 7(t1,- - ,tn) to the set of equations. Repeating this for all intragraphs, we get a
set of equations whose variables correspond to the out-nodes. These resulting equations
describe all hyperpaths in the TDG to an out-node from the collection of all source
nodes. The MOD value of the out-nodes is the greatest® fixpoint of these equations. For
example, for the TDG shown in Fig. 5, assuming that ¢; is also an out-node, we would
obtain the following set of equations.”

tg = w14A(’U}9 (&) wlguwu.(wu,wlo)*.ws).w—;.w@
ty = w5_w4,(w3 ® tg).wg.wl

5 With respect to the partial order w1 < wz iff w; @ w2 = wy
7 The equations might be different depending on how the SSPE algorithm was implemented but
all such equations would have the same solution.
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Here we have used . as a shorthand for ®°. One way to solve these equations is by
using chaotic iteration: start by initializing each out-node with 0 (the greatest element
in the semiring) and update the values of out-nodes by repeatedly solving the equations
until they converge. Another way is to give direction to the chaotic iteration by using
regular expressions again. Each equation ¢, = r(t1,- - - , ¢, ) gives rise to dependences
t; — 1o, 1 < i < n. Construct a dependence graph for the equations, but this time label
each edge with the equation that it came from. Assume any out-node to be the source
node and construct a regular expression to all other nodes using SSPE again. These
expressions give the order in which equations have to be evaluated. For example, if we
have the following set of equations on three out-nodes:
t1 =r1(t1,t3) t2=r2(t1) t3 =rs(t2)

then a possible regular expression for paths from ¢; to itself would be (r1 Urg.rs.ry)*.
This suggests that to solve for ¢; we should use the following evaluation strategy: eval-
uate 71, update £y, then evaluate rq, 73, and ry, and update ¢; again — repeating this
until the solution converges. In our implementation, we use a simpler strategy. We take
a strongly connected component (SCC) decomposition of the dependence graph and
solve all equations in one component before moving to equations in next component
(in a topological order). We chose this strategy because SCCs tend to be quite small in
practice.

Each regular expression in these equations summarizes all paths in an intragraph
and can be quite large. Therefore, we want to avoid evaluating them repeatedly while
solving the equations. To this end, we incrementally evaluate the regular expressions:
only that part of an expression is reevaluated that contains a modified out-node. A reg-
ular expression is represented using its abstract-syntax tree (AST), where leaves are
weights or out-nodes and internal nodes correspond to @, ®, or *. A possible AST for
the regular expression for out-node ¢; of Fig. 5 is shown in Fig. 6. Whenever the value
of out-node t¢ is updated, we only need to reevaluate the weight of subtrees at a4, a3,
and a,, and update the value of out-node ¢; to the weight at a;.

Fig. 6. An AST for ws.wa.(ws ® t6).wa.w;. Internal nodes for ®° are converted into ® nodes
by reversing the order of its children. Internal nodes in this AST have been given names a; to as.

As a further optimization, all regular expressions share common subtrees, and are
represented as DAGs instead of trees. The incremental algorithm we use takes care of
this sharing and also identifies modified out-nodes in an expression automatically. At
each DAG node we maintain two integers: last.change and last_seen; and the

11



weight weight of the subdag rooted at the node. We assume that all regular expres-
sions share the same leaves for out-nodes. We keep a global counter update_count
that is incremented each time the weight of some out-node is updated. For a node, the
counter 1ast.change records the last update count at which the weight of its subdag
changed, and the counter last_seen records the update count at which the subdag
was reevaluated. Let ® stand for @ or ®. The evaluation algorithm is shown in Fig,. 7.
When the weight of an out-node is changed, its corresponding leaf node is updated with
that weight, update_count is incremented, and the out-node’s counters are set to
update.count.

1 procedure evaluate(r)

2  begin

3 ifr.last.seen == update_count then

4 return

5 caser = w, r = t,return

6 caser = rj

7 evaluate(r1)
8 ifr;.last.change € r.last.seen then

9 w = (ri;.weight)"

10 if r.weight # wthen

11 r.last.change = r;.last_change
12 r.welght = w

13 r.last_.seen = update.count

14 caser = r; Q2

15 evaluate(r)

16 evaluate(rz)

17 m = max{r:.last.change, rz.last.change}
18 ifm € r.last_seen then

19 w = ri.weight ® ra.weight

20 if r.weight % wthen

21 r.last.change = m

22 r.weight = w

23 r.last.seen = update.count

24 end

Fig. 7. Incremental evaluation algorithm for regular expressions.

Once we solve for the values of the out-nodes, we can change the out-node labels
on summary edges in the intragraphs and replace them with their corresponding weight.
Then the MOD values for other nodes in the TDG can be obtained as in the intraproce-
dural version by considering each intragraph in isolation.

The time required for solving this system of equations depends on reducibility of
the intragraphs. Let S¢ be the time required to solve SSPE on intragraph G, i.e., Sg =
O(mlogn + k) where k is O(n®) in the worst-case, but is ignorable in practice. If the
equations do not have any mutual dependences (corresponding to no recursion) then
the running time is ), S¢ log h, where the sum ranges over all intragraphs, because
each equation has to be solved exactly once. In the presence of recursion, we use the
observation that the weight of each subdag in a regular expression can change at most h
times while the equations are being solved because it can only decrease monotonically.
Because the size of a regular expression obtained from an intragraph G is bounded
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by Sg, the worst-case time for solving the equations is 3 Sg h. This bound is very
pessimistic and is actually worse than that of chaotic iteration. Here we did not make
use of the fact that incrementally computing regular expressions is much faster than
reevaluating them. For a regular expression with one modified out-node, we only need
to perform semiring operations for each node from the out-node leaf to the root of the
expression. For a nearly balanced regular expression tree, this path to the root can be
as small as log S¢. Empirically, we found that incrementally computing the expression
required many fewer operations than recomputing the expression.

Unlike the chaotic-iteration scheme, where the weights of all TDG nodes are com-
puted, we only need to compute the weights on out-nodes. The weights for the rest
of the nodes can be computed lazily. For applications that just require the weight for
a few TDG nodes, this gives us additional savings. Moreover, the algorithm can be
executed on multi-processor machines by assigning each intragraph to a different pro-
cessor. The only communication required between the processors would be the weights
on out-nodes while they are being saturated.

3.3 Handling Local Variables

WPDSs were recently extended to Extended-WPDSs (EWPDSs) to provide a more
convenient mechanism for handling local variables [3]. EWPDSs are similar to WPDSs,
but allow for a special merge function to be associated with each push rule, in addition to
a weight. These merge functions are binary functions on weights, and are used to merge
the weight returned by a procedure with the weight at a call site of the procedure to
compute the required weight at the return site. Instead of giving the formal definition of
EWPDSs and merge functions, we describe how to encode Boolean programs with local
variables as an EWPDS. Note that §2.3 only gave an encoding for Boolean programs
without local variables. Let G be the set of all global variable valuations and I be the
set of all local-variable valuations (assume that all procedures have the same number
of local variables). Then each ICFG edge is associated with a transformer, which is
a binary relation on G x L. The weight domain is: (2(G*L)X(GxL) ) o @, 4d). Each
PDS rule is still associated with the transformer of the corresponding ICFG edge, but
in addition each push rule is associated with the following merge function:
h(wy, wa) = {(g1,11,92,81) | (91,11, 97, 11) € wi, (91,12, 92, 1) € wa}

The first argument is the weight accumulated at a call-site and the second argument is
a summary of the called function. The merge function forgets the local variables of the
second argument and composes the global information between the two arguments.

Reachability problems in EWPDS can also be solved using an abstract grammar.
The abstract grammar for GPP on EWPDSs is shown in Fig. 8. It only differs from that
of a WPDS in the last case.

To solve GPP we just require one change. For hyperedges in the TDG corresponding
to case 5 in Fig. 8, if ¢, is the out-node, then label the corresponding summary edge with
hy(1,t,). Application of merge functions amounts to passing only global information
between intragraphs.



Production for each

(1) PopSeq g, gy — 91.(€) (@,7:9) € =0
gr=1

(2) PopSeq .y — 92(€) r={p,y) ~ Pe)e
g2 = f(r)

(3) PopSeq(, oy — g3(PopSeqyr v y) T =0, = P Y)EDGEQ
gs=Ar.f(r)®z
(4) PopSeq(;, ., oy — 9a(PopSeq i .t arys PODSEG (0 11 03)

ga=Xz Xy f(r)®z®y r={p) = P YY)€EA4eQ,qd E(Q~P)
(5) PopSeq(y, ;. — g_s(PopSeq(p,W,,q,),PopSeq(q/ﬂn,q))
gs =z h(TLz)®y r={@N =@, YY)eAqeQ g eP

Fig. 8. An abstract grammar problem for GPP in an EWPDS. h.. is the merge function associated
with rule .

4 Solving other PDS Problems

4.1 Witness Tracing

For program-analysis tools, if a program does not satisfy a property, it is often useful
to provide a justification of why the property was not satisfied. In terms of WPDSs, it
amounts to reporting a set of paths, or rule sequences, that together justify the reported
weight for a configuration. Formally, using the notation of Defn. 5, the witness tracing
problem for GPP is to find, for each configuration ¢, a set w(c) € |J path(c,c’) such
C’
that &
D vlo)=4(c)
oc€uw(c)

This definition of witness tracing does not impose any restrictions on the size of the
reported witness set because any compact representation of the set suffices for most
applications.

Because of Defn. 3(5), it is always possible to create a finite witness set. In [7], it
was shown that a witness set can be found by recording how the weight on a transition
changes during the GPP saturation procedure. If the weight of a transition is updated
from {(t) to w = I(t) ® g(I(t1), {t2)) and the latter differs from the former, then it is
recorded that transition ¢ with weight w can be created from (7) transition ¢ with weight
I(t), (4) transitions ¢; and ¢ with weights [(¢1) and [(tg), and (ii%) production function
g (which corresponds to some WPDS rule). The witness set for a configuration can be
obtained from those of individual transitions. The running time is covered by the GPP
saturation procedure but it requires O(]Q|? |I"] h) memory, which can be quite large.

In our new GPP algorithm, we already have a head start because we have regular
expressions that describe all paths in an intragraph. In the intragraphs, we label each
edge with not just a weight, but also the rule that justifies the edge. Push rules will be
associated with summary edges and pop rules with edges that originate from a source
node. Edges from the source node that were inserted because of production (1) in Fig. 4
are not associated with any rule (or with an empty rule sequence). After solving SSPE
on the intragraphs, we can replace each edge with the corresponding rule label. This
gives us, for each out-node, a regular expression in terms of other out-nodes that cap-
tures the set of all rule sequences that can create that out-node. Next, while solving the
regular equations, we record the weights on out-nodes; i.e., when we solve the equa-
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tion t, = 7(t1, - ,tn), we record the weights on t1, -« ,tn — say wy, -+ , wp —
whenever the weight on ¢, changes to, say, w,. Then the set of rule sequences to create
transition ¢, with weight w, is given by the expression r (where we replace TDG edges
with their rule labels) by replacing each out-node ¢; with the regular expression for all
rule sequences used to create ¢; with weight w; (obtained recursively). This gives a reg-
ular expression for the witness set of each out-node. Witness sets for other transitions
can be obtained by solving SSPE on the intragraphs by replacing out-node labels with
their witness-set expression.

Thus, we only require O(|ON| h) space for recording witnesses where |ON]| is
the number of out-nodes. For PDSs obtained from ICFGs and empty initial automaton,
|ON is the number of procedures in the ICFG, which is very small compared to |I"].

4.2 Differential Propagation

The general framework of WPDSs can sometimes be inefficient for certain analysis.
While executing GPP, when the weight of a transition changes from w; to we = w) Gw,
the new weight wo is propagated to other transitions. However, because the weight wy
had already been propagated, this will do extra work by propagating w; again when
only w (or a part of w) needs to be propagated. This simple observation can be incorpo-
rated into WPDSs when the semiring weight domain has a special subtraction operation
(called diff, denoted by —) [7]. The diff operator must satisfy the following properties:
Foreach a,b,c € D,

a®(b-—a) = adb
(a—b)—c = a-=-(bdc)
a®b=a e b-a=0

For the weight domains presented in §2.3 for finite-state property verification, set dif-
ference (where relations are considered to be sets of tuples) satisfies all of the required
properties.

We make use of the diff operation while solving the set of regular equations. In addi-
tion to incrementally computing the regular expressions, we also incrementally compute
the weights. When the weight of an out-node changes from w; to wg, we associate its
corresponding leaf node with the change wy — wy. This change is then propagated to
other nodes. If the weight of expressions r; and r is wy and ws, and they change by
dy and dp, then the weights of the following kinds of expressions change as follows:

rUr . di®dy
1.7 v (dy ®%dy) B (dy ®° 'wg) (O] (w1 ®°dsy)
r} (@ dr) — wy

There is no better way of computing the change for Kleene-star (chaotic iteration suffers
from the same problem), but we can use the diff operator to compute the Kleene-star
closure of a weight as follows.

1 begin
2 wstar=del =1
3 whiledel #0
4 temp=del @ w
5 del = temp — wstar
6 wstar = wstar © temp
7 end
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4.3 Incremental Analysis

The first incremental algorithm for verifying finite-state properties on ICFGs was given
by Conway et al. [6]. We can use the methods presented in this paper to generalize their
algorithm to WPDSs. An incremental approach to model checking has the advantage of
amortizing the verification time across program development or debugging time.

We consider two cases: addition of new rules and deletion of existing ones. In each
case we work at the granularity of intragraphs. When a new rule is added, the fixpoint
solution of the regular equations monotonically decreases and we can reuse all of the
existing computation. We first identify the intragraphs that changed (have more edges)
because of the new rule. Next, we recompute the regular expression for out-nodes in
those intragraphs.® Then we solve the regular expressions as before but set the initial
weights of out-nodes to be their existing value. If new out-nodes got added, then set
their initial value to 0.

Deletion of a rule requires more work. Again, we identify the changed intragraphs
and recompute the regular expression for out-nodes in those intragraphs. These out-
nodes are called modified out-nodes. Next, we look at the dependence graph of out-
nodes as constructed in §3.2. We perform a SCC decomposition of this graph and topo-
logically sort the SCCs. Then the weights for all out-nodes that appear before the first
SCC that has a modified out-node need not be changed. We recompute the solution for
other out-nodes in topological order, and stop as soon as the new values agree with pre-
vious values. We start with out-nodes in the first SCC that has a modified out-node and
solve for their weights. If the new weight of an out-node is different from its previously
computed weight, all out-nodes in later SCCs that are dependent on it are marked as
modified. We repeat this procedure until there are no more modified out-nodes.

The advantage of doing incremental analysis in our framework is that very little
information has to be stored between analysis runs. In particular, we only need to
store weights on out-nodes. Moreover, because the algorithm is demand-driven, we
only compute what is required by the user.

5 Experiments

We have implemented our algorithm as a back-end for WPDS++{19], a C++ implemen-
tation of WPDSs. The interface presented to WPDS++ clients is unchanged. We refer
to our implementation as FWPDS.? We compare FWPDS against an optimized version
of WPDS++. This version, called BFS-WPDS++, can be supplied with a user priority-
ordering on stack symbols that gets used by chaotic iteration to choose the transition
with least priority first. In our application, we use a breadth-first ordering on the ICFG
obtained by treating it as a graph. BFS-WPDS++ performed better than WPDS++ in
the experiments. We do not compute witnesses in the experiments.

5.1 Basic Saturation Algorithm

We tested our algorithm on two applications. The first application, BTRACE, is for
debugging [5]. It performs path optimization on C programs: given a set of ICFG nodes,

8 There are incremental algorithms for SSPE as well, but we have not used them because solving
SSPE for a single intragraph is usually very fast.
% F stands for “fast”.
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called critical nodes, it tries to find a shortest ICFG path that touches the maximum
number of these nodes. The path starts at the entry point of the program and stops at a
given failure point in the program. We perform GPS with the entry point of the program
as the initial configuration, and compute the weight at the failure site. We measure end-
to-end performarnce to take advantage of the lazy nature of our algorithm, and, thus,
only compute the weight at the failure site. As shown in Table 1, FWPDS performs
much better than BFS-WPDS-++ for this application.

Prog {ICFG nodes|Procs|BFS-WPDS++FWPDS|Improvement
gawk 86617 401 170 53 3.21
indent 28155 104 49 44 111
less 33006| 359 46 12 3.83
make 40667, 204 31 10 310
me 78641} 676 12 8 1.46
patch 27389} 133 170 32 5.31
uucp 16973] 139 10 5 2.11
wget 445751 399 800 64 12.50

Table 1. Comparison of BTRACE results. Running times are reported in seconds and improve-
ment is given as a ratio of the running time of FWPDS versus BFS-WPDS++. The critical nodes
were chosen at random from ICFG nodes and the failure site was set as the exit point of the
program. The programs are common Unix utilities, and the experiments were run on P4 2.4 GHz
machine with 4GB RAM.

The second application is nMoped [20], which is a model checker for Boolean pro-
grams. It uses a WPDS library for performing reachability queries. Weights are binary
relations on variable valuations, and are represented using BDDs. We measure the per-
formance of FWPDS against this library. The results, as shown in Table 2, are incon-
clusive. We attribute the big differences in running times to BDD-variable ordering.
FWPDS performs a different sequence of weight operations, which in turn use different
BDD operations. Variable ordering is crucial for these operations.

Prog ICFG nodes|ProcsinMoped| FWPDS|Improvement
blast.rem 30 4 10.52 0.85 12.38
gsort3.rem 13 20 14.36 336 0.04
simplInv.rem 7 1 39.68 4.3 9.23
gsortlrrel.rem 31 5 2 12 0.17
intInt.rem 13 2 6.79 204 0.03
files.rem 45 S 267 6.86 38.92

Table 2. Comparison of nMoped results. Experiments were run on P4 3 GHz machine with 2GB
RAM. (The programs were provided by S. Schwoon.)

5.2 Incremental Analysis

We also measure the advantage of incremental analysis for BTRACE. Similar to the
experiments performed in [6], we delete a procedure from a program, solve GPS, then
reinsert the procedure and look at the time that it takes to solve GPS incrementally. We
compare this time with the time that it takes to compute the solution from scratch. We
repeated this for all procedures in a given program, and discarded those runs that did
not affect at least one other procedure. The results are shown in Table 3, which shows
an average speed up by a factor of 10.
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Prog|Procs#Recomputed| Time (sec)|Improvement
less | 359 91 1.66 7.25
mc | 676 70 0.41 20.2
uucp| 139 36 2.00 2.34

Table 3. Results for incremental analysis for BTRACE. The third column gives the average num-
ber of procedures for which the solution had to be recomputed. The last column compares the
time required to compute the solution incrementally versus the time required to compute the
solution from scratch, the latter of which is reported in Table 1.

6 Related Work

The basic strategy of using a regular expression to describe a set of paths has been used
previously for dataflow analysis [14]. However, it has only been used for dataflow analy-
sis of single-procedure programs. We have generalized the approach to multi-procedure
programs, as well as pushdown systems.

Most other related work has already been discussed in the body of the paper. A
lengthy discussion on the use of PDS model checking for finite-state property verifica-
tion can be found in [10].

There has been a host of previous work on incremental model checking [21,22], as
well as on interprocedural automaton-based analysis [6]. The incremental algorithm we
have presented is similar to the algorithm in [6], but generalizes it to WPDSs and is thus
applicable in domains other than finite-state property verification. A key difference with
their algorithm is that they explore the property automaton on-the-fly as the program is
explored. Our encoding into a WPDS requires the whole automaton before the program
is explored. This difference can be significant when the automaton is large but only a
small part of the automaton needs to be generated.
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