Database Support for Matching: Limitations and Opportunities

Ameet M. Kini, Srinath Shankar, David J. Dewitt, amffrdy F. Naughton

Technical Report (TR 1545)
University of Wisconsin-Madison
Computer Sciences Department
1210 West Dayton Street
Madison, WI 53706, USA
{akini, srinath, dewitt, naughton}@cs.wisc.edu

Abstract. A match join of R and S with predicate theta is a substteotheta join of R and S such
that each tuple of R and S contributes to at most one raspie. tMatch joins and their
generalizations arise in many scenarios, including one tfabwraoriginal motivation, assigning jobs
to processors in the Condor distributed job scheduling systemexplere the use of RDBMS
technology to compute match joins. We show that the simpfgsach of computing the full theta
join and then applying standard graph-matching algorithms to thet iie ineffective for all but the
smallest of problem instances. By contrast, a closer sshdys that the DBMS primitives of
grouping, sorting, and joining can be exploited to yield efficraatch join operations. This suggests
that RDBMSs can play a role in matching beyond merely sgras passive storage for external
programs.

1. Introduction

As more and more diverse applications seek to use RDBMSHheir primary storage, the question
frequently arises as to whether we can exploit or ecdnélre query capabilities of the RDBMS to support
these applications. Some recent examples of this in€NRAEC queries [8], preference queries [1,4], and
top-k selection [7] and join queries [10,13,17]. Here we idemghe problem of supporting “matching”
operations. In mathematical terms, a matching proldam be expressed as follows: given a bipartite
graphG with edge seE, find a subset of, denotedE’, such that for each = (u,v)JE', neitheru norv
appear in any other edge . Intuitively, this says that each node in the grapmasched with at most
one other node in the graph. Many versions of this lpnobcan be defined by requiring different
properties of the chosen subset — perhaps the most seriple one we explore in this paper, where we
want to find a subset of maximum cardinality.

We first became interested in the matching problenthi context of the Condor distributed job
scheduling system [16]. There, the RDBMS is used to stdoemation on jobs to be run and machines
that can (potentially) run the jobs. Then a matchipgration can be done to assign jobs to machines.
Instances of matching problems are ubiquitous across mduagtries, arising whenever it is necessary to
allocate resources to consumers. In general, thesehimgtproblems place complex conditions on the
desired match, and a great deal of research has beewmahgorithms for computing such matches (the
field of job-shop scheduling is an example of this). Ourd goahis paper is not to subsume all of this
research — our goal is much less ambitious: to takesadimall step in investigating whether DBMS
technology has anything to offer even in a simpleigaref these problems.

In an RDBMS, matching arises when there are twadyenéts, one stored in a tali®ethe other in a
table S that need to have their elements paired in a majct@ompared to classical graph theory, an
interesting and complicating difference immediately arisather than storing the complete edge graph
E, we simply store the nodes of the graph, and reprdsermtdge sdf implicitly as a match join predicate
6. That is, for any two tuplediR andsldS, 4r,s) is true if and only if there is an edge franto s in the
graph.

Perhaps the most obvious way to compute a match owvalnata-resident data would be to exploit the
existing graph matching algorithms developed by the themmynwnity over the years. This could be
accomplished by first computing ti&join (the usual relational algebraic join) of the tiables, with@as
the match predicate. This would materialize a bipagitgph that could be used as input to any graph
matching algorithm. Unfortunately, this scheme is kelji to be successful - often such a join will be
very large (for example, wheR andS are large and/or each rowR“matches” many rows i, and the
join will be a large fraction of the cross product).

Accordingly, in this paper we explore alternate optimadl approximate strategies of using an
RDBMS to compute thenaximum cardinality matchingf relationsR andS with match join predicaté.

If nothing is known about), we propose a nested-loops based algorithm, which nve MINL (Match
Join Nested Loops). This will always produce a matchattpough it is not guaranteed to be a maximum
matching.

If we know more about the match join predic&tdaster algorithms are possible. We propose two such
algorithms. The first, which we term MIMF (Matchrldilax Flow), requires knowledge of which match
join attributes form the match join predicate. It wolksfirst “compressing” the input relations with a
group-by operation, then feeding the result to a max élgerithm. We show that this always generates
the maximum matching, and is efficient if the compres#sceffective. The second, which we term MJSM
(Match Join Sort Merge), requires more detailed knowle@itfeeamatch join predicate. We characterize a
family of match join predicates over which MJSM yieldaximum matches.

We have implemented all three algorithms in the Poed@DBMS [14] and report on experiments
with the result. Our experience shows that these afgositlend themselves well to a RDBMS
implementation as they use existing DBMS primitives sagtscanning, grouping, sorting and merging.
A road map of this paper is as followsfe start by formally defining the problem statemen$§eéction 2.
We then move on to the description of the three differmatch join algorithms MJNL, MJMF, and
MJSM in Sections 3, 4, and 5 respectively. Section 6afesta discussion of our implementation in
Predator and experimental resulRelated work is discussed in SectionFinally, we conclude and
discuss future work in Section 8.

2. Problem Statement

Before describing our algorithms, we first formally dése the match join problem. We begin with
relationsR andS and a predicaté. Here, the rows dR andS represent the nodes of the graph and the
predicated is used to implicitly denote edges in the graph. Theioalat join R X, S then computes the
complete edge set that would be the input to a classi@phgnatching algorithm.

Definition 1 (Match join) Let M = Match(R,Sj). Then M is a matching or a match join of R and S iff M
[7RMNMyS and each tuple of R and S appears in at most one tuple (r,s) in M. WéR)sankll M(S) to
refer to the R and S tuples in M respectively.

Definition 2 (Maximal Matching) A matching M'’=Maximal-Match(R,8) if ZfZR-M'(R), 55-M’'(S),
(r,s) 7RM,S. Informally, M’ cannot be expanded by just adding edges.

Definition 3 (Maximum Matching) Let M be the set of all matchings M=Match(R§S, Then
MM=Maximum-Match(R,%) if MMM’ of the largest cardinality.

Note that just as there can be more than one majichiere can also be more than one maximal and
maximum matching. Also note that every maximum matchsnglso a maximal matching but not vice-
versa.

3. Approximate M atch Join using Nested L oops

Assuming that the data is DBMS-resident, a simple wagotopute the matching is to materialize the
entire graph using a relational join operator, and teed this to an external graph matching algorithm.
While this approach is straightforward and makes good usxisfing graph matching algorithms, it
suffers two main drawbacks:
* Materializing the entire graph is a time/space intenpiocess;
« The best known maximum matching algorithm for biparti@ps isO(*°) [9], which can be too
slow even for reasonably sized input tables.

Recent work in the theoretical community has led ¢go@ihms that give fast approximate solutions to
the maximum matching problem, thus addressing the secamel ad®ve; see [12] for a survey on the
topic. However, they still require as input the entir@pir. Specifically, [5] gives a (2/3 ¢€)-
approximation algorithm (0 € < 1/3) that makes multiple passes over the set of edghe wnderlying
graph. As a result of these drawbacks, the above appmedichot be successful for large problem
instances, and we need to search for better approaches.

Our first approach is based on the nested loops joinitiigor Specifically, consider a variant of the
nested-loops join algorithm that works as follows: Weer it encounters afn,s) pair, it adds it to the
result and then marksands as “matched” so that they are not matched again.éfée to this algorithm
as MJNL; it has the advantage of computing match jomarbitrary match predicates. In addition, one
can show that it always results in a maximal matchatiipough it may not be a maximum matching (see
Lemma 1 below). It is shown in [2] that maximal matahialgorithms return at least 1/2 the size of the
maximum matching, which implies that MINL always retuensnatching with at leadtalf as many
tuples as the maximum matching. We can also bound thefdize matching produced by MJNL relative
to the percentage of matchifyandS tuples. These two bounds on the quality of matches prodiyced
MJNL are summarized in the following theorem:

Lemma 1 Let M be the match returned by MINL. Then, M is maximal.

Proof: MJNL works by obtaining the first available matchingdes for each and every nodeAs such,
if a certain edger(s)0OM whereM is the final match returned by MJNL, it is becauskegir or s or both
are already matched, or in other worlglsis maximal’

Theorem 1 Let MM = Maximum-Match(R,8) where@is an arbitrary match join predicate. Let M be the
match returned by MINL. Then, |M|[0.5*|MM|]. Furthermore, if p percentage of R tuples match at
least p percentage of S tuples, then |M| min(p*|R|, p*|S|). As such, [M|> max(0.5*|MM]|],
min(p*|RI, ps*ISI)).

Proof: By Lemma 1,M is maximal. It is shown in [2] that for a maximal mlE@ing M, |M| =
r0.5*|MMﬂ. We now prove the second bound, namely {Mdt= min(p*|R|, ps*|S|) for the case when
ps*|S| < pr*|R|. The proof for the reverse is similar.

By contradiction, assumiM| < ps*|S|, say, M| = g*|S| - k for somek > 0. Now, looking at theR
tuples inM, MJNL returned onlypg*|S| - k of them, because for the other= |R| - M| tuples, it either
saw that their only matches are alreadiviror that they did not have a match at all, sikces maximal.
As such, each of thesetuples match with less thag*|S| tuples. By assumption, sinpge percentage of
|R| tuples match with at leagt*|§ tuples, the percentage Rftuples that match with less thagt|S|
tuples are at modt- p. Sor/|R| < 1- p. Sincer'= |R| - (ps*|S] - k), we have
(Rl - ®*S|-K)/IR[<1-p
- [R[- p¥IS| + k< |R| - p¥|R|
- k < ps*[S| - p*|R|, which is a contradiction sinée> 0 and p*|S| - p*|R| <00

Note that the difference between the two lower bowagtsbe substantial; so the combined guarantee
on size is stronger than either bound in isolatione @bove results guarantee that in the presence of
arbitrary join predicates, MJINL results in the maximurthe two lower bounds.

Of course, the shortcoming of MJINL is its performawe. view MJINL as a “catch all” algorithm that
is guaranteed to always work, much as the usual nested jwopalgorithm is included in relational
systems despite its poor performance because it alwajie® We now turn to consider other approaches
that have superior performance when they apply.

4. Match Join asa Max Flow problem

In this section, we show our second approach of soltfiregmatch join problem for arbitrary join
predicates. The insight here is that in many problestairces, the input relations to the match join can be
partitioned into groups such that the tuples in a group argicdé with respect to the match (that is,
either all members of the group will join with a givierple of the other table, or none will.) For example,
in the Condor application, most clusters consist of arfew different kinds of machines; similarly, many
users submit thousands of jobs with identical resouggirEments.

The basic idea of our approach is to perform a reldtign@up-by operation on attributes that are
inputs to the match join predicate. We keep one reprdésentd each group, and a count of the number
of tuples in each group, and feed the result to a maxdlbw. As we will see, the maximum matching
problem can be reduced to a max flow problem. Note tirahfs approach to be applicable and effective
(1) we need to know the input attributes to the matehpoedicate, and (2) the relations cannot have “too
many” groups. MJINL did not have either of those limdas.

41 MaxFlow

The max flow problem is one of the oldest and mostbcated problems in the area of network
optimization. Informally, given a graph (or network) lwisome nodes and edges where each edge has a
numerical flow capacity, we wish to send as much flewpassible between two special nodes, a source
nodes and a sink nodg without exceeding the capacity of any edge. Here isiaitigfi of the problem

from [2]:

Definition 4 (Max Flow Problem) Consider a capacitated network G = (N,A) with a nonnegative
capacity y associated with each edge (ifJjA. There are two special nodes in the network G: a source
node s and a sink node t. The max flow problem can be stated formally as:

Maximize v subject to:

o — _ Vv fori=s,
DR DR T for all i N — {s and }
JLDOA - j()DDA v fori=t

Here, we refer to the vector x =jfixsatisfying the constraints as a flow and the corresponding value of
the scalar v as the value of the flow.

We first describe a standard technique for transformimgatching problem to a max flow problem.
We then show a novel transformation of that max flmweblem into an equivalent one on a smaller
network. Given a match join problematch(R,S6), we first construct a directed bipartite graph= (N1
O N2, E) where a) nodes iN1 (N2) represent tuples iR (S), b) all edges it point from the nodes iN1
to nodes inN2. We then introduce a source naland a sink nodg with an edge connectirgto each
node inN1 and an edge connecting each nodBl2tot. We set the capacity of each edge in the network
to 1. Such a network where every edge has flow capacitkidown as ainit capacity networlon which
there exists max flow algorithms that run@gmvh) (wherem=JA| andn=|N|) [2]. Figure 1(b) shows this
construction from the data in Figure 1(a).

Such a unit capacity network can be “compressed” usinfplloeiing idea: If we can somehow gather
the nodes of the unit capacity network into groups suchebery node in a group is connected to the
same set of nodes, we can then run a max flow algorithrthe smaller network in which each node
represents a group in the original unit capacity netwooksée this, consider a unit capacity netwerk

(N1 O N2, E) such as the one shown in Figure 1(b). Now we cons&rmgw networlG’ = (N1' 0 N2,

E’) with source nods’ and sink nodé¢ as follows:

1. (Build new node set) we add a natELIN1’ for every group of nodes iN1 which have the same
value on the match join attributes; similarly fo2’.

2. (Build new edge set) we add an edge betwdémand n2' if there was an edge between the original
two groups which they represent.

3. (Connecting new nodes to source and sink) We add an etigeehs’ andnl’, and between2’ and
t.

4. (Assign new edge capacities) For edges of the fetm1’) the capacity is set to the size of the group
represented bgl’. Similarly, the capacity om@’, t') is set to the size of the group represented2y
Finally, the capacity on edges of the formd’(n2’) is set to the minimum of the two group sizes.

Figure 1(c) shows the above steps applied to the unititapatwork in Figure 1(b).

Finally, the solution to the above reduced max flow moblcan be used to retrieve the maximum
matching from the original graph, as shown below. Thaetiging idea is that by solving the max flow
problem subject to the above capacity constraintgbtein a flow value on every edge of the fommi’(
n2’). Let this flow value bd. We can then match members ohl’ to f members oh2'. Due to the
capacity constraint on edgel(, n2’), we know thatf < the minimum of the sizes of the two groups
represented byl andn2’. Similarly, we can take the flows on every edge amddiorm them to a
matching in the original graph.

Theorem 2: A solution to the reduced max flow problem in the transformed netwar&rtructed using
steps 1-4 above corresponds to a maximum matching on the original bipartite graph G

Proof: See [2] for a proof of the first transformation (he¢n matching irG and max flow on a unit
capacity network). Our proof follows a similar structusg showing a) every matchinyl in G
corresponds to a flow in G’, and b) every flowf in G’ corresponds to a matching in G. Here, by
“corresponds to”, we imply that the size of the matghand the value of the flow are equal. First, b) by
the flow decomposition theorem [2], the total fifwcan be decomposed into a set of path flows of the
form s—i;—i,—t wheres, t are the source, sink ang i, are the aggregated nodesGi Due to the
capacity constraints, the flow on edgg i), say,¢ = min(flow(s, i1), flow(i,, t)). As such, we can adg
edges of the formiy, i,) to the final matchingvl in G. Since we do this for every edge@®f of the form

(i1, ip) that is part of a path flow, the sizeMfcorresponds to the value of fldiv a) The correspondence
between a matching i& and a flowf in a unit capacity network is shown in [2]. Going fréno f on G’

is simple. Take each edge of the forsni{) in G’. Here, recall thalt; is a node inG’ and it represents a
set of nodes ir5; we refer to this set as thegroup and the members of the set as the members iqf the
group. For each edge of the forsy ig) in G’, set its flow to the number of members of thgroup that
are matched irG. This is within the flow capacity ofs(i;). Do the same for edges of the forip).
Sincef corresponds to a matching, flows on edges of the fornibY are guaranteed to be within their
capacities. Now, since is the sum of the flows on edges of the fosn,) in G’, every matched edge of
G contributes a unit t6. As such, the value &f represents the size of the matchingsin

4.2 Implementation of MIMF

We now discuss issues related to implementing the abansformation in a relational database system.
The complete transformation from a matching probleia noax flow problem can be divided into three
phases, namely, that of grouping nodes together, buildingetheeed graph, and invoking the max flow
algorithm. The first stage of grouping involves finding tspie the underlying relation that have the
same value on the join columns. Here, we use thearédtgroup-by operator on the join columns and
eliminate all but a representative from each group (usiagthe min or the max function). Additionally,
we also compute the size of each group using the countf)idan This count will be used to set the
capacities on the edges as was discussed in Step 4 ainSé&dti Once we have “compressed” both input
relations, we are ready to build the input graph to max. fidere, the tuples in the compressed relations
are the nodes of the new graph. The edges, on the loéimel, can be materialized by performing a

relational &join of the two outputs of the group-by operators whie the match join predicate. Note
that this join is smaller than the join of the onigi relations when groups are fairly large (in otherdsp
when there are few groups). Finally, the resulting graghrow be fed to a max flow algorithm. Due to
its prominence in the area of network optimizatioreréhhave been many different algorithms and freely
available implementations proposed for solving the max firoblem with best known running time of

R S
a a
1 4
10 4
20 25
20 25

30

Fig 1. A 3-step transformation from (a) Base tables to (b) A unit capacity network to finally (c) A
reduced network that isinput to the max flow algorithm

O(r’) [6]. One such implementation can be encapsulated insitm= which first does the above
transformation to a reduced graph, expressed in SQL aw/éoll

TablessR(a int, b int), S(aint, b int)
Match Join Predicat&(R a, S.a, R b, S.b)
SQL for 3-step transformation to reduced graph:

SELECT *
FROM (SELECT count (*) AS group_si ze,
max(R a) AS al, max(R b) AS bl
FROM R
GROUP BY R a, R b) AS T1,
(SELECT count (*) AS group_si ze,
max(S.a) AS a2, max(S.b) AS b2
FROM S
GROUP BY S.a,S.b) AS T2))

WHERE O(Tl.a, T2.a, Tl.b, T2.b);

In summary, MIJMF always gives a maximum matching, and regwnly that we know the input
attributes to the match join predicate. However, fiiciency it relies heavily on the premise that thare
not too many groups in the input. In the next sectioncavesider an approach that is more efficient if
there are many groups, although it requires more knowledget #éire match predicates if it is to be
optimal.

5. Match Join Sort-Merge

The intuition behind MJSM is that by exploiting the satizs of the match join predicat® we can
sometimes efficiently compute the maximum matching withiesorting to general graph matching
algorithms. To see the insight for this, considerdaige wherd consists of only equality predicates. Here,
we can use a simple variant of sort-merge join: liké-serge join, we first sort the input tables on their
match join attributes. Then we “merge” the two tabéegept that when a tuplén R matches a tuplgin
S we outpufr,s) and advance the iterators on bBhAndS (so that these tuples are not matched again.)

Although MJSM always returns a match, as we later sfeme Lemma 2 below), MJSM is only
guaranteed to be optimal (returning a maximum match) ifntlaéch join predicate possesses certain
properties. An example of a class of match predicatestioch MJSM is optimal is when the predicate
consists of the conjunction of zero or more equalitied at most two inequalities (‘'<’ or *>'), and we
focus on MJSM'’s behavior on this class of predicatestfe remainder of this section.

Before describing the algorithm and proving its correstpewve introduce some notation and
definitions used in its description. First, recall ttieg input to a match join consists of relatiGhandS
and a predicaté. R X, S s, as usual, the relationdljoin of R andS In this section, unless otherwise
specified, 8 is a conjunction op predicates of the forrR.a, opy S.a AND R.a op; S.a@ AND, ..., AND
R.3.1 0p-1S.8.1 AND R.g op, S.g, whereop, throughop,.;are equality predicates, ang,.;andop, are
either equality or inequality predicates. Without losgeerality, let < be the only inequality operator.
Finally, letk denote the number of equality predicatez Q).

MJSM computes the match join of the two relationditst dividing up the relations intgroups of
candidate matching tuples and then computing a match jdlinwmeach group. The groups used by
MJSM are defined as follows:

Definition 5 (Groups) A group G/7RX,;Ssuch that:
1.k G (R), G (S), r(@) = s(a), r(a) = s(&), ... , r@@) = s(a) thus satisfying the equality predicates on
attributes athrough a. If k=p-1, thenéd consists of at most one inequality predicate,R.8.5,
2. However, if k=p-2, then both R.a< S.g.; and R.3 < S.g, are inequality predicates. Then:
a) Lk JG(R), sLUG(S), r(&-1) < s(a.-1) thus satisfying the inequality predicate on attribuje and
b) Lt LG(R), sLJ G'(S) where G’ precedes G in sorted order, y(& s(g) thus not satisfying the
inequality predicate on attributg,a
We refer to G(R) (similarly, G(S)) to refer to the R-tuggieduples) in G. Also, either G(R) or G(S) can be
empty but not both. Figure 2 shows an example of how groups are constructeshdienying tables.

Note that groups here in the context of MJSM are netsgime as the groups in the context of MIMF
because of property 2 above.

Next we define something called a “zig-zag”, which isfuilsen determining when MJSM returns a
maximum matching.

Original Tables
R S Groups
ap az as a; ap as T TIITTIIII T e
10 100 1000 Join predicates 10 100 1110 ,'/Gl 10 100 1100 10 100 1110
10 100 1200 R.a;=S.ai & 10 100 1220 \“\.10 100 1000 10 100 1000"'1

10 100 1100 Ra=S.a & 10 100 1000 JUUET S i

FermmanzzzIT]

. 10 200 1200 10 200 1000°--
10 200 1200 R.a3 < S.a3z 10 200 1000 "*..Es__z 10 200 1000 o
10 200 1000 20 200 4000 oo T }
20 200 2000 20 200 4000 |G, 20 200 3000 20200 4000

“~._ 20 200 2000 20 200 4000_--

20 200 3000 | el T T Tl
Fig 2 Construction of groups

Definition 6 (Zig-zags) Consider the class of matching algorithms that work by enumerating (a sdfipset
the elements of the cross product of R and S, and outputting them if tlody(MaBM is in this class).
We say that a matching algorithm in this class encounters a zig-zaghié soint it picks a tuple (r,s)
rR and 45 as a match, there exists tuple§/ R-M(R) and &7 S-M(S) such that r' could have been
matched with s but not s’ whereas r could also match s'.

Note thatr' ands’ could be in the match at the end of the algorithm;déinition of zig-zags only
require them to not be in the matched set at the pdieh(r,s) is chosen. As we later show, zig-zags are
hints that an algorithm chose a ‘wrong’ match, andding zig-zags is part of a sufficient condition for
proving that the resulting match of an algorithm is indeaximum.

Definition 7 (Spill-overs) MJSM works by reading groups of tuples (as in Definition 5) and finding
matches within each group. We say that a tuplé(R) is a spill-over if a match is not found for r in G(S)
(either because no matching G(S) tuple exists or if the only matchirgs upG(S) are already matched
with some other G(R) tuple) and there is a G’, not yet read, $uth@ and G’ match on all k equality
predicates. In this case, r is carried over to G’ for another rounghatiching.

5.1 Algorithm Overview

Figure 3 shows the sketch of MJSM and its subroutine MatatBroups. We describe the main steps of

the algorithm:

1. Perform an external sort of both input relationaibattributes involved iré.

2. lterate through the relations and generate a gypsing GetNextGroup) oR and S tuples.G
satisfies Definition 5, so all tuples @&(R) match withG(S)on all equality predicates, if any; further, if
there are two inequality predicates, they all matchhenfirst, andG is sorted in descending order of
the second.

3. Call MatchJoinGroups to compute a maximum matcMi within G. Any r tuples withinG(R) but
not in MM(R) are spill-overs and are carried over to the next group.

4. MM is added to the global maximum match. Go to 2.

Figure 4 illustrates the operation of MJSM when the mgbin predicate is a conjunction of one
equality and two inequalities. Matched tuples are indicajedobd arrows. GetNextGroup divides the
original tables into groups which are sorted in descendlidgr of the second inequality. Within a group,
MatchJoinGroups runs down the two lists outputting matelses finds them. Tuple <Intel, 1.5, 30> is a
spill-over so it is carried over to the next group whiere matched.

As mentioned before, unless otherwise specified, ird@seription of our algorithm and in our proofs, we

assume that the input predicates are a) a conjunctiorikafO) equalities and at most 2 inequalities. The

rest of the predicates can be applied on the fly. Alsopte that both inequality predicates are ‘less-than

(i.,e., R.a < S.a); the algorithm can be trivially extended to handle @mbinations of < and >

inequalities by switching operands and sort orders.

Al gorit hm Mat chJoi nSort Mer ge

Input: Tables R(aiaz,....apa ps1,....am,
S(ai.az,...,.ap,a p1,...,&n) and a join predicate
consisting of k equalities Ra;=S.a ;,Ra ;=
S.aj..,Ra =S.a and up to 2 inequalities
Rapi: <S.a p1,Ra , <Sa,

Qut put : Match

/lkeep reading groups and matching within them
whi |l e curGroup #{}

curMatch = Mat chJoi nGr oups(curGroup, k, p);
Match = Match U curMatch;
nextGroup = Get Next Gr oup(curGroup);

/leither nextGroup is empty or curGroup and
/InextGroup differ on equality predicates
if nextGroup = {} OR (both groups differ on
any a 1,a 2,...,a«)

curGroup = nextGroup;

conti nue;
el se

/I select R tuples that weren’t matched

spilloverRtuples = (curGroup(R) —

curMatch(R));

Body:

Sort R andS in ascending order of <aias,,...ap>;
Match= {};

curGroup = Get Next Group({});

Subr outi ne Mat chJoi nGr oups

Input: GoupG,p= # of predicates
andk= # of equality predicates
Qut put : Match

Body:

Match = {};
/lif there are no inequalities
if k=p
r= next(G(R)); s= next(G(S));
while neither r nors are null do
Match = Match u(r,s);
r= next(G(R)); s= next(G(S));
end while
/lelse if there is at least one
/linequality
else if k<p
r= next(G(R)); s= next(G(S));
//find tuples that satisfy
/linequality predicate
while neither r nor s are null do
ifr@ w)<s@ 1)
Match = Match u(s) ;
r= next(G(R));
s= next(G(S));
else ifr@ wa)=s(@ «1)
r= next(G(R));

/I merge spillover R tuples with next group end if
nextGroup(R) = Mer ge(spilloverRtuples, end while
nextGroup(R)), end if
curGroup = nextGroup; return Match
end if
end while

return Match

Figure 3: The MJSM Algorithm

52 When doesMJSM return Maximum-Match(R,S,0)?

The general intuition behind MJSM is the following: &fconsists of only equality predicates, then
matches can only be found within a group. A greedy passighrboth lists G(R) and G(S) within a
group retrieves the maximum match. As it turns out, thegmee of one inequality can be dealt with a
similar greedy single pass through both lists. The stodti more involved, however, when there are two
inequalities present in the join predicates.

We now characterize the family of match join predis#for which MJSM can produce the maximum
matching and outline a proof of the specific case whetonsists ofk equality at most 2 inequality
predicates. We first state the following lemma:

Lemma 2 Let M be the result of a matching algorithm A, i.e, M=Match(@,8here & consists of
arbitrary join predicates. If M is maximal and A never encounterzags, then M is also maximum.

The proof uses a theorem due to Berge [3] that relatesi#te of a matching to the presence of an
augmenting path, defined as follows:

Definition 8 (Augmenting path) Given a matching M on graph G, an augmenting path through M in G is
a path in G that starts and ends at free (unmatched) nodes and whose edgesraagegltin M and
E-M.

Theorem 3 (Berge) A matching M is maximum if and only if there is no augmenting path through M.

Proof of Lemma 2. Assume that an augmenting path indeed exists. We showhtharesence of this
augmenting path necessitates the existence of two made$dI(R), £R-M(S)and edgdr,s)d RX,S,
thus leading to a contradiction sindewas assumed to be maximal.

Now, every augmenting path is of odd length. Without Idsgemerality, consider the following
augmenting path of sizeconsisting of nodes,,, ..., r; ands,4, ..., Si:

lp1 = Sp1 2 Mp2 > S22 ...2M1F

By definition of an augmenting path, bat}y ands, are free, i.e., they are not matched with any node.
Further, no other nodes are free, since the edgesangmenting path alternate between thodd iand
those not inM. Also, edgesr(.1,5,1), ((p-2.5-2), ---, (2.%), (r,S1) are not inM whereas edges,(1.r,-2),
(Sp-2,50-3), -+, (S3.12), (52,r1) are inM. Now, consider the edgefs;). Here,s, is free and, can be matched
with s,. Since §,,r;) is in M and, by assumptiom does not encounter zig-zags,can be matched with
s.. Now consider the edgey(s;). Here againg, is free and; can be matched witl. Since &,r») is in
M andA does not encounter zig-zags,can be matched witk. Following the same line of reasoning
along the entire augmenting path, it can be showrrfhatan be matched with. This is a contradiction,
since we assumed thisltis maximal.

Theorem 4 Let M=MJSM(R,S). Then, if 8 is a conjunction of k equality predicates and up to 2
inequality predicates, M is maximum.

Proof: Our proof is structured as follows: We first prove thhts maximal. Then we prove that MIJSM
avoids zig-zags, thus using Lemma 2 to finally prove kha maximum.

Why is M maximal? AnrZG(R) for some grougs, is considered a spill-over only if it cannot find a
match inG(S) Hence, within a group, MatchJoinGroups guarantees a rabxmatch. At the end of
MJSM, all unmatchedR tuples are accumulated in the last group, and we hbtER-M(R), €7 S-M(S),
(r,s)JRMyS. As suchM is maximal.

Now, why does MJSM and its subroutine MatchJoinGroupsdaviy-zags? Let the input to
MatchJoinGroups be groud. Now our join predicates can consist of i) zero ofenequalities, and either
i) exactly one inequality or iii) exactly two inequadis. We show that in all three cases,
MatchJoinGroups avoids zig-zags. First recall thatiwithgroup, an¥s(R) tuple matches with an@(S)
tuple on any equality predicates by Definition 5. Alsaatlethat in the presence of 2 inequalities each
group is internally sorted on the second inequaljityVe have then 3 cases:

case i) If there are only equalities, thenrathatch with all s. Trivially, MatchJoinGroups avoidg-z
zags and will simply returmin(|G(R)|, |G(S)]) = [Maximum-Match(G(R), G($)|.

case ii) If, in addition to some equalities, therexiaotly one inequality, and if-/G(R)can be matched
with s’/7G(S) thenr [7G(R)afterr can also be matched wishsince, due to the decreasing sort order on
ap, I'(ap) < r(ap) < s'(ay).

case iii) If in addition to some equalities, if there &wo inequality predicates,., anda,, then Lf J
G(R), 4G (S), r(a-1) < s(a-1) by the second condition in Definition 5. So, aliuples match with alé
tuples on any equality predicates and the first inequal@glipate. MatchJoinGroups avoids zig-zags here
for the same reason as case ii) above.

So within a group, MatchJoinGroups does not encounterzigngags, and the iterator dd can be
confidently moved as soon as a non-matctrgple is encountered. In addition, we've already proven
that MatchJoinGroups results in a maximal-match witBinHence, by Lemma 2, MatchJoinGroups
results inMaximum-Match(G(R),G(S).

If, at the end of MatchJoinGroups, a tupléurns out to be a spill-over, we cannot discard it asay
match with as’ZG'(S) for a not-yet read grou@’ asr'(a,.;) < s'(ap-1). MISM would then insentin G'.
Now, running MatchJoinGroups 0B’ before insertion of would not have resulted any zig-zags, as
proven above fofs. After insertingr, G’ is still sorted in decreasing order of the last inetyaliedicate
a,. So, by above reasoning f@; running MatchJoinGroups 0@’ after inserting would not result in
zig-zags either. Hence, by Lemma 2, MJSM resultdaximum-Match(R,%) [

Note that according to Lemma 2, MJSM’s optimality earcompass arbitrary match join predicates
provided that the combined sufficient condition of maxitgednd avoidance of zig-zags is met. In the

case of equalities and at most two inequalities, MJSM si3ding to obtain its groups and avoid zig-zags,
a technique that does not generalize to arbitrary pregic#/e illustrate the case whéoonsists of three
inequalities in Figure 5. Here, MJSM is unable to retumaximum match due to the zig-zag identified
in Step 1 of the algorithm. Once tuple <1,105,47> is match#d «ii0,111,50>, <9,110,42> is a spill-
over and is copied tG, where it finds no matches. This is because, wighgroup, unless there is a total
order on all inequality attributes, sorting in descendinder on one may disturb the sort order on
another, thus making the algorithm vulnerableitgpzags. However, even in such cases when MJSM does
not produce the maximum match, it still produces a maxingktim As such, the lower bounds from
Theorem 1 also apply for MJSM. Discovering techniquesvtid zig-zags while retaining maximality of
MJSM on other predicates is, as such, both and initegeshd challenging area of future research.

5.3 Complexity and an optimization

We now present a cost-based analysis of the perfoenaindJSM. As we will see, the running time
depends strongly on the percentage of spill-over tuplesdamrh group. We first present the CPU and 1/O
costs under the assumption that a constant perceRtafgeach group spill-over, i.e., the number of tuples
carried over into each group from the previous is considren we revise the analysis after relaxing this
assumption. Finally, we describe ways to improve thaingitime for a large subset of join predicates.

Let M andN be total # of pages & andS respectively. Also, leth = |R| andn = |§ and assume that
> n. We first analyze the running time in terms of tH&UQutilization and then measure the 1/O usage.

Let the # of groups bk and a group, on average, be of s First, bothR and S are sorted in
increasing order of all join attributes. The costhaé toperation i€D(m log m) Then, as groups are read
in, they are first sorted in descending order and thermgedetogether. This is an in-memory sort plus
traversal of both lists once, which@m/k * log (m/k)) The running time of MJSM ovérgroups is then

§(1+ P)* %* Iog((1+ P)* %j = O(m*log m)

If the number of spill-over tuples is not constant, &esv, then the running time of the algorithm
varies significantly. In the worse case, every grouppetely spills over to the next; the size of the last
group then becomeR|| So, instead dfL+P) above, the multiplicative factor increases lineaflgwever,
we can exploit the fact that each group of spill-over wddtself sorted, and thus, instead of resorting it
in the next group, we simply merge the two sorted groupshiegét linear time. The running time is
now

[o) led)

:Zk:(i —1)*%+i%+0(mlogm)

i=1
= (k* kT_ll +m+O(m* logm)

=0O(k? + mlogm)

The left summation represents the cost of mergingphleoser tuples with the new group. Since we
assume that every group spills over to the next, byitie we reach thi&th group, we would be merging
two groups of sizék-1)*m/kandm/k The right summation represents the cost of sortiaghw group.

In the best case, when = 1, we have only 1 group, and the running timeOign log m) This
corresponds to the case of constant spill-over tupldsPvi 0. In the worst case, whdn=m, each group
consists of just one tuple, and every group spills ontméxe, effectively the running time of MJSM is
O(nf). The analysis above only takes into account the tpesaperformed orR. However, the work
performed oris dominated by sorting its groups$siples do not spill over.

The I/O costs of MIJSM depend on the number of spill-ewples. If each group, after the addition of
any spill-over tuples, fits into memory, the 1/O coitis MISM, not including the cost of writing out the
result, is(2M+2N) + (M+N) = 3M + 3N. Here the sum inside the left pair of parenthesegsponds to
the cost of externally sortinB andS, whereas the second sum corresponds to the costddfigesach

group once; MJSM then returns the maximum match by doingetbasses through both relations.
However, if, after spill-overs, a group cannot fit iremmory, then we would need to externally merge the
spill-over tuples with the new group, similar to mergingtia sort-merge algorithm.

The above CPU and I/O costs for MJSM can be sigmifigamproved if the join predicates consistkof
equality predicateék = 0) and at most one inequality predicate. This is becaudeipresence of at most
one inequality, it suffices to sort the two relationseither ascending or descending order and go down
the two lists, retrieving matches in a greedy fash&ince we already sort the relations at the beginning
of the algorithm, GetNextGroup can avoid re-sorting thaigragain in descending order. In addition to
reduced CPU time, avoiding the second sort also savegleoable I/O in the case when groups do not fit
in memory. Thus, the 1/O cost farequality predicates and at most one inequaliBMs-3N. On the other
hand, the CPU cost is similar to the best-case aisabf a sort-merge join ©(max(m log m, n log n))
Table 1 summarizes the CPU and 1/O costs of MJISM uniferatit conditions.

Groups

Original Tables
R S

ap az as ap az as

Intel 10 32 Intel 17 50
Solaris 1.2 22 Join predicates Intel 18 38

Intel 18 31 R.a; =S.a; Intel 19 51
Solaris 2.0 34 R.az <S.a Intel 20 56

Intel 15 30 R.as<S.a3 Solaris 2.1 35
Solaris 1.8 34 | Solaris 24 38
Solaris 1.6 37 Solaris 3.8 50 i } Solaris

Intel 25 40 { Gs Solaris 20 34___Solais 21 35 4

. . Solaris 2.0 32 4

Solaris 2.0 32 N -_Solaris 12 22 »

Fig 4. llustration of MJSM on sample input

Sorting in ascending order on <ay, a>>
and in descending order on ag within each group

Step 1

___ R s |
aQ a ag a az ag
1 105 47 R@<Saand 12 106 50 g,
11 111 46 Ra<S.aand 10 111 5(
9 110 42 R.z3<S.

Fig5: MJSM on 3inequalities - prone to zig-zags

Table 1: CPU and I/O costs of MJSM

Groups fit in- Groups do not fit
memory in memory
O(m log m) O(m log m)
k equalities
+
< linequality SM+3N 3M + 3N
2; 2;
k equalities o(m) O(m’)
+
2 inequalities 3M + 3N ZaM + 3N

6. Experiments

We implemented our algorithms in the open source obgational database Predator [14], which uses
SHORE as its underlying storage system. All queries warécold” on an Intel Pentium 4 CPU clocked
at 2.4GHz. The buffer pool was set at 32 MB.

Our overall experimental objective was to measure tmnoeance of our algorithms and evaluate
their sensitivity to various data characteristics. S¥&t from the most general algorithm MJNL, then
consider MIJMF and finally MJSM. First, recall that @ternative approach to computing the matching is
to compute the full join in the RDBMS, then feed thsuitto any well-known bipartite matching
algorithm, such as the one presented in [9]. For tlasarg the time to compute the full join serves as a
lower bound on the time for this approach. We startbyutomparing the performance of MJNL to the
full join and show that MJNL is faster in all cashence its running time always dominates approaches
exploiting existing graph algorithms by first computing thd faln. The second set of experiments
measure the performance of MIJMF relative to our otfmatch join algorithms while varying the
parameter to which it is most sensitive: the siz¢hefinput graph to the max flow algorithm. We then
compare MJSM to the full join for various table sizewd join selectivities. Finally, we validate our
algorithms on a real-world dataset consisting of jotas machines in the Condor system.

In order to carefully control various data charactesstsuch as selectivity and group size, we
generated synthetic datasets using two separate techritguése experiments where we study the effects
of data sizes or join selectivities (those in Sexti6.1 and 6.3 below), the data was generated using the
following technique: Values for all attributes which appda the match-join predicate were
independently selected using a uniform distribution frorarege selected to yield the desired selectivity.
First we explain the case for equality predicatesa(= S.aand R.b = S.h. Given any two discrete
uniformly distributed random variables in the range [, the chances that they are equal is 1/Thus,
choosingR.aandS.afrom [1...n] andR.bandS.bfrom [1...m] gives a combined selectivity of h#m).

For the inequality predicateR @ > S.aandR.b > S.h, both attributes irs were chosen uniformly from
[1...1000] andR.aandR.bwere chosen uniformly from [1...(2006%] and [1...(2000%})] respectively
for a combined selectivity afi* g,. Data for the experiments in Section 6.2 where we stelgffects of
the group size on MIMF was generated using a differemtitpaly, and we defer its discussion to Section
6.2 below.

Unless explicitly mentioned, the schema of the inpuetabareR(a int, b int, ¢ intandS(a int, b int, ¢
int); each tuple is of 150 bytes. For sake of concisenesspditicular join predicates (equality, one
inequality, etc.) and other parameters that vary ire#periments are reported in the figures themselves.

The full relational join would returall pairs of joining tuples, while the match join algorithionly
return a subset. Obviously, the size of the result pratbygethe full join is never smaller and may be
much larger than that produced by match join algorithnesavioid including the time to output such a
large answer, we suppressed output display for all our quérigs. unfairly improvesthe relative
performance of the regular join, but as the results sttesvmatch joins algorithms are still significantly
superior.

6.1 Validating MJINL

Here, we show the performance of MINL, comparing ih&full join for various join selectivities. With a
join predicate consisting of 10 inequalities (b&tandS are 10 columns wide here), grouping does not
compress the data much, and MJSM will not return maximaiches. As seen in Figure 6, MJNL
outperforms the full join (for which the Predator optieni chose page nested loops, since sort-merge,
hash join, and index-nested loops do not apply) in abscathis is expected as MINL generates only a
subset of the full join. Since the size of the fulhjincreases with selectivity, the difference betwége

two algorithms also increases accordingly. Note thallMdoes take longer (albeit it grows much slower
than the full join) with larger selectivities. This due to the construction time of the resulting matching
which is larger as the selectivity increased.

6.2 ValidatingMJIMF

We now evaluate the performance of MIJMF on varyingigrsizes and selectivities. Recall that MIMF
works by performing a group-by on the match join attriputellowed by a full join, thus building a graph
which is then fed to the max flow algorithm. Due to @@>) running time of the max flow algorithm, the
size of the graph3 (or, number of edges) plays a major role in the diveeaformance of MIMF Q] is a
function of two variables: the average group gigend the join selectivity. More precisely, G| =
*((| Tableer| * [Tableign|)/g). As such, for a fixed selectivity, the larger the greige, the smaller the
graph. Similarly, for a fixed group size, a low selectivisults in a small graph.

Sincef*((| Tableer| * [Tableign|)/g) = (*(|Tablee| / 9))* |Tableign|, we generate a dataset with the
required variable§andg by making f*(|Tableen| / g)) groups of tuples frorable.s join with all groups
from Tableign, and the rest of the groups frofable. join with none inTableign. Note that this “all-or-
none” technique, while contrived for simplicity in daganeration, does not, by itself, influence the
behavior of MIJMF which, as we mention above, isyatépendent oG] and not in the mann& was
generated.

Accordingly, using synthetic datasets, we conducted twaiemeets that measured the effect of those
variables on the performance of MIJMF. Figure 7 showsrtimning times of MIJMF on a join predicate
consisting of 3 inequalities, joining relations of sB$00.f was kept at a constant 0.5. Group sizes range
from 10 (low compression) to 5000 (high compression). Acogtyj [G| ranges from 500000 to 2.

|R] =|S| = 10000 & MINL |RI =] =10000, Selectivity=0.5 B MIVE
Join Predicate (10 inequalities): Join Predicate (3 inequalities):
Ra<SaA\DRb<SbAND aNL Ra<SaANDRb<SbANDRc<Sc B MISM
...A\DRi<Si
40
7 g
£ £=
= Fio
o Ml Bl J1 1]
010 05 050 075 100 10 25 50 100 500 1000 5000
Selectivity Qo size
Figure 6: MJINL on varying join selectivities Figure 7: MIJMF on varying group sizes.

First, observe that when compression is high, MIMisisbently outperforms MJNL by almost two orders of
magnitude. Additionally, MJIMF has similar running timesMdSM, which does not return the maximum
matching for these queries. However, MIMF’s respomse gjets higher as groups get smalier 5) and
G gets larger | = 80000); eventually the performance of MIMF approacheofidINL. As an aside, the
full relational join query took over 2 minutes in all tteses so we did not include its timings in the figure.
We also measured the times spent by MIMF in its thtigeges (Figure 8). Here, we variekeepingg at
a constant 8. Asincreases from 0.1 to eventually G| fanges from around 150000 to 1.5 million, and the
performance of MIJMF degrades in a manner similar garéi 7. Note that the last bar is scaled down by an
order of magnitude in order to fit into the graph. Sirtoe table sizes are kept constant at 10000, the time
taken by group-by is also constant (and unnoticeabled.}8 seconds. For graph sizes up to around 1
million, the CPU bound max flow takes a fraction of twverall time and is dominated by the join operation
(page nested loops, in this case). However, beyondthssg-over point, the graph was too large to be held
in main memory; this caused severe thrashing and dalgtsiowed down the max flow algorithm. This
shows that when grouping ceases to be effective, M3Miot an effective algorithm. We summarize with
the following observations:

* MJMF outperforms MJINL (and the full-join) for all butetsmallest of group sizes (Figure 7). When the
input graph to max flow is large (e.g. 500000), MIJMF's perforraategrades to that of the full-join.
MJMF can be applied to any match join predicate soritbsaused as a general match join algorithm to

compute the maximum matching.

6.3 Validating MJSM

As shown above, on some data sets MJSM outperforrhsobdihe other algorithms, sometimes by an order
of magnitude. Here, we take a closer look at its behaxioqueries where ioesreturn the maximum
matching (recall that it always does so for match pedds with at most two inequalities.)

First we report the running times on a query consistfrt@ equalities (Figure 9). The sizes of the two
tables were 200,000, 1 million and 5 million, and the sefégtivas kept at 18. We see that MISM clearly
outperforms the regular join, and the difference is muaeked as table size increases. The algorithms differ
only in the merge phase, and it is not hard to seeMd§M dominates. When two input groups of gize
each are read into the buffer pool during merging, the regola merge examines each tuple in the right
group once for each tuple in the left group, resulting’icomparisons, while MJSM examines each tuple at
most once. For a fixed selectivity, the size of a grimgpeases in proportion to the size of the relatgm,
the differences are more marked for larger tables.

The difference between the two is more pronounced wherary the selectivity for a fixed table size
(Figure 10). The sizes of the input tables were fixed atlliomtuples while the selectivities were 1,010°
and 10°. Note that the performance of MJSM was largely ucsdte by varying selectivity (similar to
MJNL), since as mentioned above, it examines eacke tugl once in the merge phase. The performance of
regular sort-merge join worsened considerablfyinsreased, as this meant that individual group sizdsein t
merge phase increased.

IRl =S| = 10000 O Fow Selectivity = 10° B NISM
Join Predicate (3 inequalities): = PNL Join predicate (2 equalities):
soRa<SaADRb<SbAD mGBY 6000 ,Ra=SaADRb=sp [Sotverge
Rc<Sc x10 4983
4(1) - S(II) 7
8 a0 | ed
= £ 2000 - 1303
100 1000 15 o 94 340
04 0 . PR
010 025 050 075 100 200,000 1 million Smillion
Selectivity Size (of each relation)
Figure 8: Various stages of MIJMF Figure 9: Equality predicates, varying table sizes

We now report on the performance of MJSM on inequaligdicates. Recall from Section 5.3 that in
the case of one inequality (R.a > S.a), the merge pifdddSM is optimized and performs a single pass
through both tables without causing any spill-overs. hexdirst report on the time taken by MJSM on
one inequality predicate (Figure 11) for selectivities &10.0.001 and 0.0001 at a fixed table size of
10000 tuples. Due to the inequality join predicate, the optimtlzese page nested loops for the regular
join, and as such both algorithms were unaffected lsctety. MISM consistently outperforms the
regular join by two orders of magnitude.

Comparing MJSM on one vs. two inequalities on variousetasizes (Figure 12) we notice the
performance of MJSM on inequality joins scales welhvsize. In fact, the performance on inequality
joins is comparable to equality joins, as can be geéme similarity of the trends in Figure 12 and Figure
9. This validates the average case analysi®(oflog n)in all cases. Another noteworthy aspect of the
graph is that the difference in performance betweegiesimnd double inequalities is insignificant. This is
indeed the case when the number of spill-over tuples &ach group is fairly constant as was shown in
the cost analysis in Section 5.3. As an aside, whikig not in the graph, page nested loops took over an
hour for the case when the input tables were eadzeflamillion!

To summarize, MJSM is faster than the other algorsthso it is always a good option for match
predicates over which it can be guaranteed to produce maximatohes, or in cases where an
approximate match (that is, a non-maximum match) ispaabke.

IR =S| =10 tuples B MISM __ IRI=ISi=10000tples B MISM
Join predicate (2 equdities): Jain Predicate (1 inequality): Ra<Sa 0
Ra=SaA\DRb=sb U SotMerge BT z40 @ -
3000 2807 01 1 — 1
2500 ,g 5
gzooo 3 20
g 1500 £ 15|
IE 1000 F 104
340
507 710 94 51 oz 033 0.35
0) : :
01 i 0 o1 1 ., 10
Selectivity (x10°) Selectivity (x10°)

Figure 10: Equality predicates, varying selectivity Figure 11: 1 inequality, varying selectivity

6.4 Validation on the Condor dataset

Here we apply our 3 match join algorithms to our mothgtapplication, the Condor distributed
computing system. Condor currently runs on 1009 machindmi¥V-Madison Computer Science pool,
and at the time we gathered data (October 2004), theredw8& outstanding jobs (submitted but not
completed). Every job submitted to Condor goes through atcimmaking” process. Matchmaking in
Condor occurs at least once every five minutes. Ih eagtchmaking cycle, the requirements of a job are
matched to the specifications of an available machnmachine can run at most one job and a job can
run on at most one machine so what we desire is ehingt

Machines and jobs in Condor have a large number abatiss and can be added dynamically. We
chose a representative subset of those in our schema:

Jobs(wantopsys varchar, wantarch varchar, diskusagenegesize int)
Machines(opsys varchar, arch varchar, disk int, menmbyy

The match queries we ran on the Condor dataset codtaiatch predicates consisting of i) 2 equalities,
i) 1 equality + 1 inequality, and iii) 2 inequalities. Weepent the times for full joins for comparison -
for computing the full join, Predator’s optimizer choset-gnerge for the first two queries and page nested
loops for the third.

Figure 13 shows the results of the experiment. Firstlg tiwat all 3 match join algorithms outperform
the full join by factors of 10 to 20; MJSM and MJIMF taksd than a second in all cases. Also, the
response time of the match join algorithms stayyaidnstant across all queries. In the case of MISM,
this is consistent with its behavior observed onsyrghetic datasets. MIMF's fast response times ean b
explained by the fact that group sizes for machines ate uige; in fact, for all the queries, the number
of groups in the machines table were no more than 3(fragdently under 10. This is expected since
there are relatively few distinct machine configunagioln addition, both MIMF and MJSM result in
maximum matches for all queries; MJINL, on the othendhais an approximate but more general
algorithm that takes longer than the other two but fstikes better than the full join. This shows that a
match join is indeed a favorable alternative to conmguthe full join in many cases. This will become
even more important in the future as Condor is expectbd tteployed in configurations up to two orders
of magnitude larger than the ones from which we gatheéa¢a. Currently, for matching Condor uses a
handcrafted algorithm external to the DBMS that runisvimminutes.

B MISMon linequality 0O MISMon 2 inequalities B MJSM B MIMF 8 MINL O Full Join
200 s _ Condor dataset of 1009 machines and 4739 jobs
Selectiity =10 1706 1725 > 209
Join Predicate:
~ 1501 linequality Ra<Sa AZO’
§ 2inequdlies: Ra<S.a §
ElOOA ADRb<Sb EE’
E €101
50 F
134 131 519
03 04
o R o4
0.01 0.2 1 . .
2eq leqlineq 2ineq
Size (x 10° tuples) Type of Join Predicates

Figure 12: 1 vs. 2 inequalities, varying tablesizes Figure 13: Performance on the Condor dataset

7. Related Work

Bipartite maximum matching is one of the oldest studiedlenab in graph theory [2,3,9]. Over the last
decade, researchers have studied many variants of tfi@abrproblem that work in parallel [6],
approximate [5], and online settings [11], the latter gpehre case when the input(s) come in streaming
order. Reference [2] contains many references taetieal work in the area. Our work, to the best of our
knowledge, is the first to address the problem of computiagchings efficiently by using database
technology.

Match join is just one of many recently proposed noparations seeking to enhance the functionality
of relational data sources. Recently proposed query typhsde preference queries [1,4], top-k queries
[7,10,13,17] and OPAC queries [8]. Both match joins andktjgirs seek to compute a subset of the full-
join without enumerating the full-join, but match joidiffer from top-k in that the quality of the result is
a property of the entire subset, not of its constitueples. OPAC queries, on the other hand, are
selections over single tables that are expressed asnptarized queries with linear programming
constraints. Our work is similar to the OPAC work it both involve modeling an optimization problem
as a relational query and using RDBMS infrastructure topce the answer, although the classes of
gueries considered and approaches employed are very different

8. Conclusonsand Future Work

It is clear from our experiments that our proposed mgeh algorithms perform much better than
performing a full join and then using the result as inpari@xisting graph matching algorithm. As more
and more graph applications store their data sets in REBEBMnd as these data sets grow in size,
supporting some kind of matching within an RDBMS will beedincreasingly attractive.

Clearly, however, most applications involving a matgberation, as one can envision, are more
complex than the simple maximum matching problem we considéis paper. We have focused on this
maximum matching problem because it is a simple exampectzss of problem that “looks like” a join
but, to the best of our knowledge, has not yet been eiarthe context of relational database systems.
The maximum match join is interesting because it requivessomputation of a subset of a full join and
the “quality” of the subset returned is a global propefftyhe subset rather than a property of the
individual tuples in the subset. Our results show thagastlin the restricted case we consider, relational
database technology can effectively be applied to sudiigmns. This is encouraging, because if this were
not the case, when faced with such problems or theiergéizations relational database systems would be
relegated to serving only as heavy-weight file systatmsing data that is input to other programs without
exploiting any of the query machinery built in to thetsys

Obviously a great deal of scope for future work remaif@ne interesting direction would be to
investigate generalizations of the maximum match probleesteed, maximum cardinality matching is
just one of many different ways to evaluate the qualita match. Another variant of the match join

problem arises in scenarios where, instead of spegifgi common match join predicate for all entities,
each entity specifies its own match predicate. Yetraranteresting problem to consider is how match
join algorithms or their variants should be implemen@tiin an RDBMS. The simplest approach would
be to implement these algorithms as user defined fursctigthout modifying the RDBMS engine — this
approach makes the most sense if each variant of mgtehonly useful to a small subset of RDBMS
users. If a commonly accepted abstraction of the ritegdbecomes accepted as a generally useful DBMS
primitive, it may make more sense to implement thiralstion as a new operator, in which case it would
be “exposed” to the system and could participate in quergngation. In this case interesting problems
would arise with respect to what statistics are needechbose among match join-related algorithm
alternatives.

References

1. R. Agrawal and E. Wimmers. “A Framework for Expresgind Combining Preference$?’roceedings of ACM
SIGMOD 2000 p. 297-306.

2. R. K. Ahuja, T.L. Magnanti, and J.B. OrliNetwork Flows: Theory, Algorithms, and Applicatiofsentice
Hall, Englewood Cliffs, NJ, 1993.

3. C. Berge, “Two Theorems in Graph Thed’ydc. Nat. Acad. Sci. USA957, p. 842-844.

4. Y. Chang et al. “The Onion Technique: Indexing for Linear Opttion Queries”,Proceedings of ACM
SIGMOD 2000 p. 391-402.

5. J. Feigenbaum et al., “On Graph Problems in a Semi-Strgdvtodel”, Proceedings of ICALP 2004. 531-
543

6. A\V. Goldberg and R. E. Tarjan. “A new approach to the mawxisfiow problem”, Journal of the ACM
(JACM) v.35 n.4, Oct 1988, p. 921-940.

7. L Gravano and S. Chaudhuri. “Evaluating Top-k Selection GieReoceedings of VLDB 1999¢. 397-410

8. S. Guha et al. “Efficient Approximation of Optimization @ae Under Parametric Aggregation Constraints”,
Proceedings of VLDB 200p. 778-789

9. J. Hopcroft, R. Karp. “Am>’2 Algorithm for Maximum Matching in Bipartite GraphsSIAM Journal of
Computing 1975, p. 225-231.

10. I llyas et al. “Supporting Top-k Join Queries in RetaldatabasesVLDB Journa) v.13 n.3, p. 207-221

11. R. Karp, U.V. Vazirani, and V.V. Vazirani. “An optimdgarithm for online bipartite matchingRroceedings
of 22 Annual ACM Symposium on Theory of Compuytii@$0.

12. J. Magun. “Greedy Matching Algorithms: An experimental studdfoceedings of the 1 Workshop on
Algorithm Engineeringp. 22-31, 1997.

13. A. Natsev et al. “Supporting Incremental Join Queries amk&d Inputs”Proceedings of VLDB 200p. 281-
290.

14. Predator Project. http://www.distlab.dk/predator/

15. R. Raman et al. “Matchmaking: Distributed Resource Manege for High Throughput Computing”,
Proceedings of IEEE HPDC 1998

16. T. Tannenbaum et al., “Condor - A Distributed Jobe8aker”, Beowulf Cluster Computing with
Linux, The MIT Press, 2002

17. P. Tsaparas et al. “Ranked Join IndicBsbceedings of IEEE ICDE 200B. 277-288.

