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Abstract

In this paper we consider detecting collisions between characters
whose motion is specified by motion capture data. We consider
rough collisions, modeling the characters as a disk in the floor
plane. To provide efficient collision detection, we introduce a hi-
erarchical bounding volume, the Motion Oriented Bounding Box
tree (MOBB tree). A MOBBtree stores space-time bounds of a
motion clip. In crowd animation tests, MOBB trees performance
improvements ranging between two and an order of magnitude.
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1 INTRODUCTION

Data driven animation based on motion capture is a common way
to animate human characters. When multiple characters are ani-
mated this way, care must be taken to provide proper interaction
between them. A minimal requirement is that they do not interpen-
etrate. A better goal is that two characters interact appropriately
when they are close. In either case, when a system selects captured
motion clips for characters, it must check is these motions will lead
to the characters colliding so it can respond appropriately. This pa-
per presents algorithms for identifying potential collisions between
motion clips, and hence animated characters.

When many characters are animated simultaneously, such as in
crowd simulation, efficiency is an important concern. Detecting in-
teractions between fully articulated characters is computationally
intensive, and may be excessive if the application requires charac-
ters to maintain reasonable seperations. We therefore focus on the
use of a simplified character geometry: a bounding cylinder (Figure
1, left). In cases where this simplification is unaccaptable, the effi-
cient algorithms it affords can be used as a culling step to identify
potentially interacting agents.

Even with the simplified geometry, checking for interactions be-
tween characters on every frame can be prohibitive if there are many
characters. The problem is even worse if we are evaluating poten-
tial choices for motions for each character. We therefore exploit the
fact that data driven animation often selects an entire clip of cap-
tured motion at once. We can, therefore check entire motions for
collisions before they begin.

The motion clip collision problem considers two motions, along
with their transformations that place their starting points in space.
One motion may have a time offset, for the event that the two do
not start simultaneously. A collision must be detected if at any time
during the duration of the motions the bounding cylinders for the
characters associated with the motions overlap. If the characters
are spatially disjoint, or at the same place at different times, there
are no collisions.

To perform motion clip collision detection efficiently, we pre-
compute a hierachical representation of each motion. We refer to
our collision data structure as a Motion Oriented Bounding Box
(MOBB) tree (Figure 1, right). It is a space-time variant of OBB
trees [Gottschalk et al. 1996] targeted at skeletal motion clips, and
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can be viewed as a continuous collision detection technique based
on hierarchies of swept volumes. The design of MOBB trees is
motivated by several motion specific properties: the agent’s path is
densely point sampled in time and can be arbitrarily shaped (Fig-
ure 1, center); the time steps are large compared to typical phys-
ically based simulation; the aim is to avoid collisions entirely, so
we require a yes/no intersection test and have no need for contact
points etc.; and agents are moving on the ground plane, so the prob-
lem is 2D with time (we are looking for intersections between cir-
cles extruded in time – thin disks in space-time). These properties
primarily drive the way in which an MOBB tree is constructed, but
also influence the intersection testing algorithm.

The next section provides a review of related work. Sections 3
and 4 precisely define MOBB trees, describe their construction and
present algorithms for intersection testing. We close with several
experiments and a discussion of future work.

2 RELATED WORK

Our algorithm is a novel application of OBB trees [Gottschalk et al.
1996] to swept volume intersection in space-time. OBB trees have
been applied to continuous collision detection in the past [?; ?], but
existing techniques use bounding boxes fitted to static geometry
and account for motion in the intersection test. This restricts their
application to simple parameterized motion (such as linear transla-
tion [Eberly 2001]) and makes them unsuitable for motion capture
data.

The majority of literature in the graphics community is targeted
at simulation algorithms where the future motion of the body is
either ballistic or bounded but unknown (see Mirtich [1996] for
rigid body examples). Kim et. al. [2003a] describe a crowd-specific
solution that uses parabolic horns as space-time bounds (spheres
of changing radii swept along parabolic paths), while kinetic data
structures [Basch et al. 2004] assumes motion along rational curves.
Our problem differs in that we know the precise trajectory but in a
sampled form, and we have a generate-and-test strategy, rather than
a continuous search for the next collision.

The robotics community has dealt with similar problems in the
guise of intersection-free robot motion planning. Several solutions
have been proposed based on 4D space-time swept volumes (see
Abdel-Malek et. al. [2002] for a survey). Recent advances include
work aimed at complex models [Kim et al. 2003b], but the most
similar approach to ours is due to Foisy and Hayward [1993]. They
use a hierarchy of convex swept volumes, each volume specified by
a set of bounding planes. Our method is simpler due to the use of
OBB trees and targeted specifically at motion in the ground plane.

MOBB trees detect collisions between the cylindrical bounding
volumes of skeletal motion, not the skeleton itself. Redone et. al. [?]
provide a solution for close-in skeletal motion that also exploits
hierarchies of volumes, but assumes small time intervals between
tests. Our approach can be viewed as a broad phase test that com-
plements their work.
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Figure 1: On the left, a sample frame of motion data from a clip used in our system. The skeleton is bound by a vertical cylinder centered on its root position with a radius

large enough to contain the limbs. Center is a 3D space-time visualization of two motions that do not intersect in time (vertical axis) even though their paths cross in space. Each

cylindrical bound is now a thin disk - a circle in space extruded in time. On the right, part of the Motion Oriented Bounding Box (MOBB) for the motions. This hierarchical structure

bounds the motion in space-time and enables efficient collision queries.

Figure 2: Three levels in an MOBB tree hierarchy. Boxes are split evenly in the time (vertical) dimension going from one level to the next, and then spatial bounds are generated

containing all the samples in that time-slice.

3 MOBB TREES

The motion clip collision detection problem considers a pair of mo-
tions, ma(t) and mb(t). A motion is a function that maps times
to character pose. Because we simplify character geometry as a
cylinder, we consider motion functions as providing three values
for any given time: the position of the character in the plane(x,y)
and the radius of the cylinder around the characterr. For simplicity,
we center the cylinder around the projection of the character’s root
joint onto the ground plane. We computer from the point on the
character whose projection is furthest from this position. When the
character is assymetric, for example when carrying a large sword,
the use of the root as center leads to an oversized bounding cylin-
der. In practice, this has not been a problem. In fact, we often use a
fixed value forr.

Because we are working with data-driven animation, motions
are representing by samples. We assume, without loss of gener-
ality, that the first sample is at timet = 0. We also assume that
the motions are sampled finely enough that we need not consider
interpolation between samples.

A collision detection test is given two motions,ma andmb, a 2D
transformation for each,Ta andTb, and a time offset for each,ta
andtb measured in a global timeframe. Definetstart asmax(ta, tb)
andtend,a andtend,b as the last sample inma andmb respectively.
The test should return a positive result (an intersection) if there exist
sample times,

(tstart− ta) ≤ oa < tend,a
(tstart− tb) ≤ ob < tend,b

such that

‖Tama(oa)−Tbmb(ob)‖< ra(oa)+ rb(ob) (1)

In practice, the time offsets could be arbitrary real numbers,
while the samples are discrete. We therefore interpretma(oa) to
be the sample from the time closest to but belowoa. An alternative
is to interpolatema, but our sample spacing is sufficiently fine with
respect to the agent’s speed and size that this is unnecessary for the
purposes of collision avoidance.

In 3D space-time, each sample is a short cylinder, axis aligned
with the time dimension, the center of the base at(m(t); t), radius
r(t) and height equal to the sample spacing,dt. Detecting a colli-
sion is equivalent to identifying collisions between these space-time
cylinders, appropriately transformed.

An MOBB tree is a hierarchical bounding volume in 3D space-
time. Each node in the hierarchy is an oriented bounding box with
one axis parallel to the time domain and the other two axes lying in
thexy-plane. This is equivalent to a 2D spatial OBB extruded in the
time domain. Each node bounds a set of samples fromtmin to tmax.
The children of a node in the tree bound the subsets of samples from
tmin to tmax−tmin

2 and tmax−tmin
2 to tmax. In other words, the hierarchy is

built by subdividing the volume at its midpoint in time.
The following sections describe how we construct a MOBB tree

from a motion, and how we intersect two MOBB trees.

3.1 Fitting MOBB trees

MOBB trees are built in a manner analogous to standard OBB trees:
given a sequence of samples to bound, we must compute the orien-
tation and dimensions of the box, and then recurse on the two child
sub-sequences. Note that in each node we store data defining a
2D OBB tree and the time range for which it is valid, which can
be thought of as the third dimension of the space-time box. Three
levels of an example tree are shown in Figure 2.

Given a set of sample points in 2D, the optimal oriented bound-



Computer Sciences Technical Report CS-2005-1529

ing box (OBB) can be computed by computing the second order
statistics of the points [Gottschalk et al. 1996]. In practice, we find
it sufficient to approximate the optimal box with one obtained by a
simpler method.

Given a set of sample points, we choose the major axis of the
OBB, a0, by subtracting the location of the first sample,m(tmin)
from that of the last,m(tmax), and normalizing:

a0 =
m(tmax)−m(tmin)
‖m(tmax)−m(tmin)‖

The minor axis is perpendicular:a1 = (−a0,y,a0,x).
To compute the dimensions of the box, we iterate over the sam-

ples and keep track of the maximal extents seen. To compute these,
each sample is transformed into the box’s local coordinate system
andr(t) is added (subtracted) to get the maximal (minimal) extent
in each dimension. Ifdmax anddmin are the largest and smallest
extents found, then the center of the OBB is at

clocal =
dmax+dmin

2

and the dimensions of the box are

d =
dmax−dmin

2

The center is transformed back into global coordinates and
stored, along witha0, a1 and d. Each node also storestmax and
tmin.

After computing the bound at one node, we divide the duration
of the sample sequence in half. Recursion stops when a fixed num-
ber of samples,nmin, remain and the samples are stored in the node
(OBBs are still computed and stored for leaf nodes). We experi-
mented with various values fornmin, ranging from 1 to 50. Optimal
performance occurred atnmin = 10, which reflects the cost of a 2D
OBB intersection relative to computing the distance between two
samples. Performance is near best when one OBB test is equivalent
to nmin

2 sample distance tests.
Standard OBB tree construction algorithms [Gottschalk et al.

1996] use second order statistics to determine the box axes. We
tested this method but found it gave essentially identical results
(comparing box area) as our method, which is simpler to imple-
ment.

3.2 Intersection Testing

Intersection testing of two MOBB trees is very similar to testing
standard OBB trees. Note that we are seeking only yes/no intersec-
tion queries, and hence can exit as soon as an intersection is found.
Input to the intersection test is two MOBB nodes,A andB, their
2D spatial transformations from world coordinates,Ta andTb (ro-
tation and translation) and the time offsets,ta andtb. An example
collision test is presented in Figure 3.

We first test that the nodes overlap in time: ifta +A.tmax< tb +
tmin then the boxes do not overlap in time (Figure 3(c)) and we
can exit with no collision, and the same ifta + A.tmin > tb + tmax.
If temporal overlap is found, we testA’s andB’s 2D OBBs using
separating axes tests. There are only four axis tests required. If
the OBBs do not overlap there is no collision (Figure 3(b) and (d)),
otherwise we perform one of two actions (Figure 3(a) and (e)): if
one of the boxes is a leaf, we call a procedure to test the leaf against
the other tree; otherwise we make recursive calls to compare all the
child nodes.

A leaf versus tree node test checks the time interval covered by
the leaf against the time intervals covered by the node’s children
(Figure 4). If a child overlaps the leaf, we recurse on the child.
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Figure 3: Testing two internal MOBB tree nodes,A00 andB00. The relative spatial

and temporal arrangement of the nodes is shown in (a). The algorithm first tests for

temporal overlap, and then spatial overlap. In this case there is an intersection, so the

algorithm recurses with the four combinations of child nodes. At the next level, tests

(b) and (d) fail because there is no spatial overlap, test (c) fails because there is no

temporal overlap (no spatial test is done), and test (e) leads to further recursion.
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Figure 4: Testing an internal node against a leaf node. In (a), we have reached a

leaf nodeB while at a non-root nodeA in the other tree. The time range ofB is tested

againstA’s children,A10 andA11. In one case, (b), the time interval does not overlap,

so we stop with no intersection found. In the other case, (c), a temporal overlap is

found so the algorithm recurses withA11 andB. Note that we do not perform a spatial

test in case (c); experiments found it gave no advantage.

Recursion continues until we have two leaves, at which point corre-
sponding samples are found fromA andB and the distance between
them compared to the bounding radii. In other words, we explicitly
search for samples withoa andob satisfying Equation 1.
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Figure 5: Three levels in an unrestricted MOBB (UMOBB) tree hierarchy. In this tree, bounding volumes are 3D OBBs in space-time, removing the restriction that one axis align

with the time dimension. Boxes are still split evenly in the time dimension, but a 3D OBB is fitted to the samples. UMOBB trees have tighter bounds than MOBB trees, but are more

expensive to test for intersection.
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Figure 6: Computing the extent of a sample disk for a 3D space-time OBB. The

disk has the center of its base located at the sample point,p, with radius vectorr and

heightdt. We must find the minimal and maximal projections onto the axesa0 anda2.

Note the asymmetry in the cylinder’s position.

4 UNRESTRICTED MOBB TREES

The MOBB trees described thus far always use the time axis as
one of the OBB axes in 3D space-time. This restriction can be
relaxed, essentially treating the samples as regular 3D geometry
and building 3D OBBs to bound them. We refer to trees built in this
manner as Unrestricted MOBB trees, or UMOBB trees. UMOBB
trees are expected to give tighter space-time bounds (Figure 5), and
hence require fewer tests to identify non-intersecting cases.

To determine the axes of the 3D OBB in space-time, we deter-
mine the first axis,a0, by subtracting the space-time location of the
first sample,(m(tmin); tmin) from that of the last,(m(tmax); tmax) and
normalizing (similar to the 2D case, but including the time dimen-
sion). We obtain a second axis,a1, mutually orthogonal toa0 and
the time dimension,(0,0,1). Finally, a2 = a0×a1.

The dimensions of the box are found by transforming the sample
points into the box’s coordinate system, projecting the extents of
the samples’ cylinders onto the axes and hence finding the maximal
projection across all samples. Figure 6 illustrates the projection.
First we computer , which is the vector with length equal to the
disk’s radius,r, aligned witha0 in thexy-plane:

r = r
(a0,x,a0,y,0)
‖(a0,x,a0,y,0)‖

From the figure, we see that

min0 = −r ·a0

min2 = r ·a2

max0 = r ·a0 +dta0,t

max2 = −r ·a2 +dta2,t

The extents in the remaining direction,a1, are at distancer by con-
struction. Taking the maximum and minimum over all samples
gives us the necessary information to compute the box origin and
dimensions. The node of an UMOBB tree stores the box proper-
ties (origin, axes, dimensions) in addition totmin andtmax. Keeping

Figure 7: Snapshot of the crowd simulation used to explore the performance of

MOBB trees. The environment is a 30×40 meter rectangle containing 100 agents.

the times allows for a fast early reject test when looking for box
intersections.

Intersection testing of UMOBB trees is is essentially identical
to that of MOBB trees, the only difference being the use of 3D
OBB tests. A 2D transformation plus a time offset becomes a 3D
space-time transformation by applying the rotation about thet-axis
and using the temporal offset as a translation in thet dimension.
Otherwise the algorithm is identical.

5 EXPERIMENTS

We performed a series of experiments to explore the benefits of
MOBB trees under an application workload. Our test environment
is a crowd simulator in which agents wander through the world
avoiding collisions (Figure 7). The agents are animated with a
Snap-Together Motion [Gleicher et al. 2002] style motion graph
built from 51 motions. The motions have an average length of only
2.1 seconds, or 63 frames. Withnmin = 10 (the number of samples
in a leaf node), the tree is very shallow - only 3 levels on average.
This limits to some extent the benefits we see from a hierarchical
method. The radius of the bounding sphere around each agent was
fixed atr = 1.85meters.

As a base case for comparison, we used MOBB trees that per-
formed bounding box tests only at the root, referred to as “1 level”
trees in Table 1. These trees simulate a collision detection method
that tests an OBB bound for the entire motion, and then uses binary
search on time to identify potentially overlapping samples (a hierar-
chy in time but not space). Our results hence show the performance
advantage gained from a hierarchy of bounds compared to an algo-
rithm that uses only a root bound but is otherwise intelligent about
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Method Time (10−6s) # 2D # 3D # sample
MOBB 1 level 4.6 0.45 0 10.3

UMOBB 1 level 4.5 0 0.45 10.0
MOBB 2.3 1.7 0 0.91

UMOBB 2.2 0.16 1.53 0.77
Hybrid 1 2.1 0.40 1.34 0.77
Hybrid 2 2.0 1.5 0.25 0.81

Table 1: Results for our application-based experiment. See the text for a descrip-

tion of the methods. The table shows average time per intersection query, the average

number of 2D and 3D OBB tests per intersection query, and the average number of

sample-sample overlap tests. Note that, even though the UMOBB contains no explicit

2D nodes, some 3D boxes end up aligned and hence are treated as 2D. This explains

the non-zero count for 2D tests in the UMOBB trees.

Figure 8: One of the long motions used in our experiments. The motion clip is of

someone walking in circles.

avoiding sample tests.
In addition to results for the “1 level”, MOBB and UMOBB

trees, we also experimented with two hybrid trees: one used an
MOBB node for the root and UMOBB nodes for the rest of the
tree; while the other used a UMOBB node for the root and MOBB
nodes elsewhere. These are listed as “Hybrid 1” and “Hybrid 2” in
Table 1.

The experiments were performed on a PC running Windows with
a 3.0GHz Athlon processor. Each experiment ran for 2 minutes of
simulated time. Approximately 80% of all queries returned nega-
tive at the root node test, which is a sufficiently large percentage
to make the fast but inaccurate MOBB trees’ 2D OBB test perform
very similarly to the more expensive UMOBB trees’ 3D OBB test
at the root node level (the results for “Level 1” testing). However,
at nodes deeper in the tree the MOBB boxes improve in fit, and
they perform better than UMOBB nodes due to their cheaper cost
per test. The hybrid trees confirm this result. Overall then, in this
environment it matters little which hierarchical method we use.

The short motions of our target environment limit the perfor-
mance gains available through a hierarchical method. We see only
around a factor of 2 improvement over a non-spatial (but still tem-
poral) hierarchy. Longer motions provide greater performance im-
provements, so we conducted another experiment using a simula-
tion style workload (in terms of percentage of positive tests) but in
an isolated test environment.

Our second experiment used 14 motions with an average length
of 42 seconds. We performed an identical set of 100000 tests with
each style of tree, each test using a random translation, rotation and
temporal offset on one of the motions. These tests were done on a
3GHz Pentium 4 PC running Linux. The results are in Table 2, and
an example motion appears in Figure 8. On longer motions, MOBB
trees perform best by a small margin, and the almost identical per-

Method Time (10−6s) # 2D # 3D # sample
MOBB 1 level 68.3 0.83 0 306

UMOBB 1 level 68.1 0 0.83 307
MOBB 5.9 27.5 0 4.15

UMOBB 6.8 0.62 21.6 3.10
Hybrid 1 6.8 1.45 20.8 3.10
Hybrid 2 6.0 26.7 0.83 4.15

Table 2: Results for our experiment using longer motion clips. The methods are de-

scribed in the text. The table shows average time per intersection query, the number of

2D and 3D OBB tests performed, and the number of sample-sample overlap tests. We

see MOBB trees slightly out-performing the unrestricted tree, reflecting the relatively

high cost of 3D OBB tests compared to 2D tests.

formance of the “Hybrid 2” trees (containing almost all MOBB
nodes) supports the conclusion that faster tests with looser MOBB
bounds are preferable in this application to the slower UMOBB
tests. Regardless of the exact type of bounding tree, we consis-
tently see roughly an order of magnitude improvement. Intuitively,
the motions are long enough to allow pairs to frequently start nearby
(meaning their root nodes overlap) and move away from each other
(meaning that spatial testing is effective when temporal is not).

6 Discussion

We have presented a novel bounding volume methodology, Motion
Oriented Bounding Box trees, for motion capture clips that exploits
a spatio-temporal hierarchy. In practice, we found a restricted form
of OBB, with one axis aligned with time, formed the most effective
bound for motion data. Experimental tests confirmed that hierar-
chical bounds are more effective for longer motions – short motions
produce trees that are too shallow. Hence, hierarchical bounds are
most applicable in planning type applications where long sequences
must be tested for intersection, rather than highly reactive environ-
ments in which clips are typically short. In the former situation,
we saw an order of magnitude improvement in collision detection
time, while in the latter case the fastest approach is likely to be a
binary search on time for overlapping samples, followed by direct
comparison of sample positions.

An extension we are exploring is the application of hierarchical
bounds to sequences that are temporally combined at run-time, as
occurs in motion graphs. Combinations of short clips obviously
produce longer ones, and hence suit our technique. It is insuffi-
cient to simply test each short segment; better performance should
result from combining small trees from the bottom up into larger
trees. Advances in this area will result in more realistic simulation
of interactive characters, and hence more engaging virtual worlds.
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