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Abstract

This paper presents thread-level transactional
memory (TTM), a memory system interface that sepa-
rates the semantics of transactions—atomicity, consis-
tency, and isolation—from the implementation. By
making transactions a thread-level abstraction, TTM
permits implementations using different combinations of
of high-level software, low-level software, and dedicated
hardware. TTM tracks a transaction’s read and write
sets and creates a "before-image" log in the thread’s vir-
tual address space. We evaluate four TTM implementa-
tions—broadcast and directory coherence times two
different transaction abort mechanisms—using full-sys-
tem simulation. Like previous transactional memory sys-
tems, TIM implementations are competitive with or
better than lock-based synchronization. TTM’s ability to
cache the before and after images both supports large
transactions and enables low memory bandwidth on
successful commits and fast rollback on aborts.

1 Introduction

The emergence of chip multiprocessors (CMPs)—which
integrate multiple, possibly multi-threaded cores on a
single chip [18, 20, 21]—makes multi-threaded pro-
gramming critical to meeting society’s expectation that
computer performance doubles every two years. Unfor-
tunately, programmers’ have long been challenged by
making multi-threaded applications both correct and
high-performance. Synchronizing with locks, for exam-
ple, exposes correctness issues (e.g., priority inversion
[26]) and performance problems (e.g., coarse-grain
locking limits parallelism and fine-grain locking adds
overhead [35]).

At a higher level of abstraction, database management
systems (DBMSs) have long eased programming with
transactions possessing the ACID properties of atomic-
ity (all or nothing), consistency (correct at beginning and
end), isolation (partially done work not visible to oth-
ers), and durability (survive DBMS failure) [9]. At a
simplified level, DBMSs achieve parallel execution
(while preserving ACID properties) with concurrency
control algorithms that track a transaction’s read and
write sets (items read and written, respectively), detect-
ing conflicts (overlap between one transaction’s write set
and another’s read or write set), and taking appropriate
actions (commit a non-conflicting transaction, but make
a conflicting transaction wait or abort). Conservative
concurrency control algorithms seek to detect conflicts
early (conservatively assuming conflicts are common)

[71, while optimistic concurrency control algorithms
defer conflict detection (optimistically assuming con-
flicts are rare) [22]. DBMS transactions can be very
long—millions of instructions plus I/O accesses—but
operate only on specific datatypes (e.g., relations).

Transactional Memory systems extend the transaction
concept to facilitate general multi-threaded program-
ming [3, 12, 13, 15, 14, 19, 39, 43]. These transactions
differ significantly from DBMS transactions by target-
ing relatively short sequences of arbitrary memory oper-
ations and only provide the first three ACID
properties—atomicity, consistency, and isolation, but
not durability.

A key challenge with transactional memory systems is
reducing the overheads of enforcing the ACI properties.
Knight [19] proposes hardware that allowed transactions
with a few loads followed by one store; the store was
broadcast to allow other processors to detect conflicting
transactions and abort. Herlihy and Moss’s seminal
transactional memory (TM) [15] builds on multiproces-
sor cache coherence to allow transactions to have multi-
ple loads and stores to a fixed maximum number of
cache blocks. The blocks of a transaction’s read and
write sets are stored in a special fixed-sized cache, while
a (snooping or directory-based) write-invalidate cache
coherence protocol provided conflict detection. Pro-
grammers are responsible for ensuring that transactions
were sufficiently small to reside in the transaction cache.
With speculative lock elision (SLE) [32] and transac-
tional lock removal (TLR) [33}, Rajwar and Goodman
leverage speculative processors to allow an aborting
transaction to restore processor state (e.g., registers and
program counter), as well as memory state. To enable
backward compatibility, their hardware implicitly elides
locks to create transactions. If a transaction exceeds
available hardware resources, it aborts and re-executes
using locks. Hammond et al.’s transactional memory
coherence and consistency (TCC) [12] asks processors
to track an active transaction’s read set and write set,
broadcasts the write set on commit to both write data
through to a level-two shared cache and allow proces-
sors to detect conflicts with their transactions’ read sets.
By requiring all processors to always be “in” transac-
tions, this bold approach replaces, rather than extends,
the multiprocessors’s coherence protocol and consis-
tency model. Furthermore, TCC’s conflict resolution is
much closer to DBMS’s optimistic concurrency control,
while all other schemes we discuss are closer to conser-
vative concurrency control. TCC also allows large trans-
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actions, i.e., those that exceed hardware resources, but
does so by serializing all transaction commits. Finally,
Ananian et al’s large transactional memory (LTM) [3]
provides transactions that can roll back both processor
state and memory, and importantly, facilitates a more
graceful performance degradation when large transac-
tions exceed fast hardware resources. When a transac-
tion is small, LTM uses the cache and coherence
protocol in a manner roughly similar to SLE/TLR. On
the first write to a block, LTM ensures that main mem-
ory is up-to-date (flushing the pre-transaction value, if
necessary) and stores the new value in the cache. If a
transaction exceeds a particular cache set’s associativity,
LTM marks the set as “overflowed” and writes a log
entry containing the new value to physical memory.
When a coherence request arrives for an overflowed set,
hardware defers the request, and searches the log for
possible conflicts. Other hardware transactional memory
systems include the 801 minicomputer [5] and the Okla-
homa Update Protocol [43]. Thread-level speculation
systems address the related problem of guaranteeing
sequential, rather than serializable, execution [2, 6, 8,
11, 31, 40, 42]. Finally, software transactional memory
systems [13, 14, 16, 39] strive for the same objectives,
but with little or no hardware support.

A common trait of transactional memory systems is
their focus on hardware solutions: that is, they deal with
processors, caches, and physical memory. But program-
mers operate at a higher level: dealing with threads and
virtual memory, abstractions that hide the underlying
physical details. To gain wide acceptance, transactions
must also be virtualized, a vision shared by Ananian et
al, [3]. Their unbounded transactional memory (UTM)
seeks transactions unbounded in space (exceeding phys-
ical memory) and time (exceeding OS time slices). They
propose UTM hardware that augments each physical
memory block with transaction read and write bits plus
a pointer into a before image log stored in physical
memory [3]. Unfortunately, UTM’s hardware is argu-
ably too complex, an observation that motivated the
authors’ simpler LTM alternative. Ultimately, we
believe that all-hardware solutions are too complex, all-
software ones too slow, and the right hardware-software
balance depends on one’s price-performance target.

Our thesis is that transactional memory support
should be modeled after virtual memory. First, trans-
actions should be a thread-level abstraction: defined
between cooperating threads for cacheable virtual
addresses and the thread’s user-visible register state.
Second, all threads should see an interface that is inde-
pendent of the specific hardware implementation; per-
formance may vary between implementations, but not
high-level functionality. Third, implementations should
use judicious combinations of high-level software, low-
level software, and hardware (analogous to virtual mem-
ory implementations: paging policy, TLB/page-table
code, and TLBs/page-table-walking hardware, respec-
tively). This implies that full transaction support is
available to user-level threads, and possibly high-level

operating system threads, but not the kernel. Finally, we
conjecture-—but do not explore in this paper—that lay-
ering the interface facilitates exception handling, perfor-
mance tuning, and extensions (e.g., transactional I/O).

Section 2 presents the thread-level transactional mem-
ory (TTM) interface. The high-level interface allows
threads to begin, commit, or abort transactions. TTM
provides the ACI properties for successful transactions
and detects when conflicting transactions require aborts.
On an abort, the TTM system may transparently restore
some or all of a thread’s memory state to pre-transaction
values. The system then invokes a user-level software
abort handler, which restores the remaining memory
state using a “before-image” log. The log—allocated in
the thread’s virtual address space, but only defined in the
abort handler—contains the (virtual) addresses and pre-
write values of any non-restored memory blocks. The
TTM system maintains isolation of uncommitted writes
until the abort handler restores the before image.

Section 3 provides four example implementations of
thread-level transactions. (1) Like prior work, they aug-
ment L1 and L2 caches to track read and write sets and
extend write-invalidate coherence to detect conflicts. (2)
They allow transactions to replace blocks in their read
and write sets, while still detecting (potential) conflicts
with either a Bloom Filter [4] for broadcast protocols or
the directory for directory protocols. Allowing cache
capacity and conflict misses within a transaction frees
programmers from most hardware constraints. (3) On
the first store to a block, they append the pre-write value
to a log in cacheable virtual memory. Since both the old
and new values can be cached, both commits and aborts
are often fast. (4) For handling aborts, we evaluate both
the default software handler and using a hardware
engine to “walk” the log.

Section 4 uses full-system simulation to evaluate the
TTM implementations. Results show that TTM systems
perform as well or better than using locks and that most
transactions are small (confirming others [3, 15, 33]).
Experiments using both microbenchmarks and
SPLASH-2 benchmarks demonstrate the importance of
caching both the log and the updated value, but question
the utility of having heavy-weight abort hardware.

This paper makes four main contributions: (1) TTM is a
transactional memory interface that enables alternative
implementations with varying hardware complexity; (2)
TTM stores both new and old values in cacheable virtual
memory, allowing multiple transactions to write a block
without updating main memory (e.g., multiple iterations
accessing an in-cache work queue); (3) TTM’s log is in
a thread virtual address space, allowing transactions
independent of cache hardware limits; and (4) we show
that doing abort handling in (library) software can
reduce hardware and still perform well.

2 TTM Interface

At a behavioral level, TTM provides atomicity, coher-
ence, and isolation for successful transactions and
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detects and resolves conflicting transactions. At an oper-
ational level, TTM does the following:

1. At transaction begin, TTM initializes the thread’s
log by allocating space for a checkpoint of the
thread’s architectural register state. Although space
is allocated immediately, the hardware need not
write the checkpoint to the log until later. This is
similar to SPARC processors, which allocate a stack
frame on a procedure call, but defer spilling the reg-
ister window as long as possible [45].

2. For read and write operations during a transaction,
TTM updates the thread’s read and write set, respec-
tively. TTM’s abstract model is that each thread
maintains two bits—indicating read, written, or
both—for each word of memory. Implementations
are free to implement this conservatively. For exam-
ple, most implementations will maintain the read
and write sets on cache block, rather than word,
granularity. Some implementations may isolate large
transactions more coarsely, much like a long DBMS
transaction may escalate from row-level to page- or
table-level locks [9].

3. TTM must also monitor reads and writes by other
threads, to detect conflicting transactions. Imple-
mentations may resolve conflicts by stalling a trans-
action, subject to deadlock avoidance or detection,
or by aborting a transaction.

4. For writes during a transaction, TTM also ensures
that the virtual address and “before image” have
been logged. Like the register checkpoint above,
implementations must allocate log space immedi-
ately, but may lazily update the log entry.

5. On commit, TTM resets the thread’s log and read
and write sets. Because log updates can be deferred,
some implementations may never actually write the
log during short transactions (much like SPARC reg-
ister windows eliminate most register spills).

6. On abort, a TTM implementation may transparently
restore state to pre-transaction values for some or all
modified blocks. A software abort handler then uses
the log to undo any remaining writes and (often)
restarts the transaction (via calls to an implementa-
tion-dependent layer). Because the log resides in
cacheable (virtual) memory, for most aborts the log
entries are likely to be cache hits. The TTM imple-
mentation must continue to enforce isolation of
modified blocks—by keeping them in the write
set—until the pre-transaction state is restored.

7. To facilitate software composition, transactions
begun within transaction(s) are subsumed in the
outer transaction.

To be more concrete, Table 1 highlights the three layers

of the TTM interface. The top cell displays the only

interface used by most programmers: begin, commit,
and abort a transaction. The middle cell presents
selected functions from the system/library interface that

sustain thread-level transactions. Functions initialize a

thread for using transactions (e.g., allocating contiguous

virtual address space for a log) and register an abort
handler. Finally, the bottom cell highlights a low-level

interface that isolates the machine-independent aspects
of the abort handler from the machine-specific ones. We
model this separation on that used in virtual memory
systems and device drivers.

2.1 TTM Mechanisms

TTM dictates an interface, not an implementation. This
makes possible a range of TTM systems: (nearly) all
hardware for highest performance, all software for early
acceptance and development, and, most importantly,
judicious combinations of hardware and software to bal-
ance price and performance.

All TTM implementations must support three basic
mechanisms: logging, isolation, and commit/abort. All
three mechanisms can be implemented in software,
hardware, or various combinations.

Logging: Transaction logging can be implemented in
software, using a compiler or executable editing tool to
add code annotations that explicitly store the before
image to the log [23, 24]. A hardware implementation
could write the log directly, much like some procedure
call instructions write the return PC to the stack. More
aggressive hardware implementations might handle the
common case of small transactions by writing log
entries to a special buffer (like some fault tolerant sys-
tems [41]), spilling the buffer to the (cacheable) virtual
address space on overflow. Such an implementation may
need hardware support for transaction aborts (see
below), to handle exceptions when writing the log.

Isolation: Transaction isolation detects when two (or
more) transactions conflict. Isolation is similar to the
fine-grain access control mechanism used by hardware
and software distributed shared-memory systems [38].
Software implementations can use code annotations to
check and update software data structures [36, 37].
Hardware implementations can add extra state to mem-
ory and/or extend cache coherence protocols to achieve
much higher performance [10, 15, 34]. Most implemen-
tations will optimize for the common, small transaction
case, providing slower support for larger transactions.

Commit/Abort: Transaction commit involves reset-
ting both the log (easy) and the read and write sets used
to maintain isolation (depends upon the implementation,
above). Aborts are fundamentally more complex, as
they must restore the before images from the log. Any
log-based abort scheme must be capable of handling
exceptions (e.g., page faults and TLB misses) while pro-
cessing the log. TTM addresses this by defining a soft-
ware log handler that runs in the thread’s execution
context, allowing it to tolerate not only cache and TLB
misses, but some page faults (e.g., log pages). More
aggressive implementations can use hardware to accel-
erate the common, exception-free cases.

2.2 Discussion

TTM defines transactions between user-level threads
operating on virtual memory. While hardware may
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User Interface

begin_transaction () Requests that subsequent
dynamic statements form transaction with ACI properties.
Logically saves a copy of user-visible non-memory thread
state (i.e., architectural registers, condition codes, etc.).

commit_transaction () Ends successful transaction
begun by last begin_transaction (). Discards any
transaction state saved for potential abort.

abort_transaction () Transfers control to a previ-
ously-registered abort handler which should undo and discard
work since last begin_transaction() and (usually)
restart the transaction.

System/Library Interface

initialize_thread level_transactions (Thre
ad* thread struct, Address log_base,
Address log_bound) Initiates a thread’s transactional
support, including allocating virtual address space for a
thread’s log. As for each thread’s stack, page table entries and
physical memory may be allocated on demand and the thread
fails if it exceeds the large, but finite log size. (Other options
are possible if they prove necessary.) We expect this call to
wrapped with a user-level thread initiation call (e.g., for P-
Threads).

register abort_handler (void (*)
abort_handler) Registers a function to be called if a
transaction is aborted. Abort handlers are registered on a per-
thread basis. The registered handler should assume the fol-
lowing pre-conditions and ensure the following post-condi-
tions:

* Abort Handler Pre-conditions: Abort has occurred. Sys-
tem may have restored some or all memory blocks written
by the thread to their pre-transaction state. Other memory
blocks written by the thread (a) have new values in (vir-
tual) memory but these blocks are isolated and (b) have
their (virtual) address and pre-write values in the log. If a
block is logged more than once, its first entry pushed on
the log must contain its pre-transaction value. Log also
contains a record of pre-transaction user-visible non-
memory thread state.

*  Abort Handler Post-conditions: Abort handler called
undo_log_entry () to pop off every log entry. Abort
handler then called
complete_abort_with_restart () or
complete_abort_without_restart ().

Low-Level Interface

undo_log_entry () Reads a block’s (virtual) address and
pre-write data from the last log entry, writes the data to the
address, and pops the entry off of the log. The system may
end isolation on the block if is sure that pre-transaction value
is now restored (i.e., there are not earlier duplicate log entries
for this address).

complete_abort_with_restart () End isolation on
all memory blocks, restore thread’s non-memory state from
last begin_transaction (), and resume execute there.

complete_ abort_without_restart () End isola-
tion on all memory blocks, discard thread’s non-memory state
from begin_transaction (), and return to abort han-
dler. Use to handle error conditions.

Table 1: Thread-Level Transactional Interface

accelerate performance, the logical semantics must be
consistent with user-level execution. Thus a TTM sys-
tem must tolerate software faults, such as TLB misses
and page faults, during both normal execution and abort
handling. Similarly, a user-level thread’s transactions
can have no adverse impact on the operating system,
which must be free to page out or context switch a
thread. When such events occur, a TTM system may
abort one or more transactions or serialize their execu-
tion to ensure correct execution. For example, if an
implementation cannot save and restore isolation meta-
state across paging events, it may instead abort all cur-
rent transactions on page-ins.

3 Four TTM Implementations

This section describes four example TTM implementa-
tions. Although they do not demonstrate the full range
of possible implementations, they illustrate some of the
flexibility provided by the TTM interface. Section 3.1
describes the common framework including logging;
Section 3.2 describes two alternative isolation alterna-
tives based on broadcast (Bcast) and directory-based
{(Dir) coherence; and Section 3.3 describes two transac-
tion abort mechanism using more (Heavy) or less
(Light) hardware. The cross product yields four imple-
mentations: TTM-Bcast-Heavy, TTM-Bcast-Light, TTM-
Dir-Heavy, and TTM-Dir-Light.

3.1 Common mechanisms, including logging

The four TTM implementations share a common frame-
work; however, future TTM implementations are not
limited to this design point. The base system is a cache-
coherent shared-memory multiprocessor. Each proces-
sor has private L.1 and L2 caches that are write-back,
write-allocate, and set associative. Coherence is main-
tained with a write-invalidate protocol that allows nega-
tive acknowledgements (nacks) and uses the modified
(M), and shared (S) and invalid (I) MOESI states [44].

To support TTM, each processor is extended with a
TTM mode bit, nesting count, and log pointer. The TTM
nesting count allows the first, outer transaction to sub-
sume subsequent, inner transactions. The processor also
implements the user-level instructions begin, commit
and abort to directly support the TTM interface. Instruc-
tion begin sets the TTM mode bit and increments the
nesting count. If the processor was previously not in
TTM mode, it checkpoints the thread’s architectural reg-
isters to a shadow register file. Although logically part
of the log, the deferred update semantics effectively
allow the registers to remain in the shadow copy indefi-
nitely. Instruction commit decrements the TTL nest
count. If now zero, the processor resets TTM mode,
resets the isolation state (Section 3.2), and resets the log
pointer. Instruction abort triggers the same abort action
as a detected conflict. The precise action varies with
alternative implementations (Section 3.3). On comple-
tion of the abort, the TTM mode bit, nesting count, and
log pointer are reset.
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Figure 1. (a) TTM-Bcast node architecture, (b) TTM-Bcast Conflict Filter (CF).

Logging is done on cache block granularity (64 bytes).
On the first store to a cache block (detected using the W
bits, described below), the entire block is read from the
L1 cache and then written, along with the virtnal
address, to the log. A single entry micro-TLB effec-
tively pre-translates the log’s virtual address. A small
hardware log buffer reduces contention for the L1 cache
port and hides any L1 cache miss latencies.

Finally, when two transactions conflict, an implementa-
tion may stall (risking deadlock) or abort (risking live-
lock) at least one transaction. These TTM implementa-
tions adapt TLR’s distributed timestamp method to logi-
cally order transactions [33]. In place of TLR’s
transaction count, they use a per-processor, loosely-syn-
chronized physical clock to generate timestamp values,
similar to the checkpoint clock in SafeyNet [41]. On
transaction begin, a processor records the current value
of the timestamp clock and appends that timestamp to
all memory requests that are part of the transaction.
When a processor receives a conflicting request, it com-
pares the request’s timestamp against its own. Requests
from logically later transactions are stalled (using
nacks); requests from logically earlier transactions
cause the processor to abort its own transaction. Note
that when a transaction aborts and restarts, it continues
to use original timestamp. This ensures that—even in
the presence of many conflicts—a transaction will even-
tually become the logically earliest transaction and thus
be guaranteed to complete. User-level requests initiated
outside of a transaction use the current value of the
timestamp clock, effectively becoming a very short
transaction. Requests by the kernel or I/O devices are
not transactional and never stall. This is implemented
using the reserved timestamp 0.

3.2 Isolation using Broadcast or Directories

Transaction isolation is enforced with a two-level
approach. The first level-—common to all four imple-
mentations—extends the L1 and L2 cache states, similar
to other transactional memory systems [3, 12, 15]. Each
cache block’s state includes read (R) and write (W) bits.
A load in TTM mode sets the block’s R-bit. A store in
TTM mode examines the block’s W-bit and, if not set,
sets it and appends the block’s virtual address and previ-
ous data to the log. The caches flash clear the R and W
bits to efficiently handle transaction commit and abort.

The first-level support handles the expected common
case: where transactions are small enough to fit in the
caches. The write-invalidate cache coherence protocol
ensures that as long as the cache holds copies of the
block, it will see all requests to blocks that conflict with
a transaction’s read and write sets. The second-level
support deals with the case that a transaction overflows
the L2 cache (or set) and must replace or writeback
blocks in a pending transaction’s read or write set. The
system must detect (potential) conflicts, but can do so
conservatively because we expect large transactions to
be relatively uncommon. These implementations—for
broadcast and directory coherence protocols—ensure
correct execution with limited hardware by overestimat-
ing the read and write sets of transactions that overflow
any particular cache set. That is, they allow false posi-
tives, affecting performance but not correctness.

Broadcast: For broadcast coherence protocols [1, 27],
TTM-Bcast uses a variation on a Bloom filter—similar
to the Partial Address Filter [30]—to summarize the R
and W states of the evicted blocks. Unlike a traditional
Bloom filter, however, the TTM-Bcast Conflict Filter
requires only two bits per entry, rather than a counter
(Figure 1 (b)). When the L2 cache evicts a block with
either the R or W bits set, it sets the corresponding bits
in the corresponding filter entry. Incoming coherence
requests access the filter in parallel with the L2 access.
The filter’s results are only meaningful if the cache(s) do
not have a match, as the filter only detects potential con-
flicts with evicted blocks. The two bits encode three
possible states (R, W): (0, 0) no possible conflicts, (1, 0)
at least one block has been read, but no blocks have been
modified, and (1, 1) at least one modified block has been
evicted. External requests that conflict in the filter are
handled in the same way as entries that conflict in the
cache. All bits in the filter are cleared on transaction
begin, commit, and abort using a flash-clear circuit.

Directories: The TTM-Bcast filter relies on seeing all
potential conflicting accesses. While broadcast proto-
cols ensure that all nodes see all coherence requests, a
directory acts as a natural filter to reduce bandwidth.
TTM-Dir extends the directory protocol to ensure that
caches continue to receive conflicting accesses, even
after evicting blocks with their R or W bits set.
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Fortunately, most directory protocols—including our
base protocol—already provide support for the R bit.
This is because they implement silent (also called non-
notifying) replacement of blocks in the S and E coher-
ence states. We refer to these as “sticky” states, because
the directory remains stuck in the previous state even
though the cache state has changed. If another processor
attempts to write a block in “sticky-S”, for example, the
directory will send an invalidation to that processor.

TTM-Dir extends the directory protocol with a “sticky-
M” state. The directory enters sticky-M when a cache
writes back data with the W bit set. Memory is updated,
but the sticky-M state ensures that all requests continue
to be forwarded to the prior owner. If a processor reac-
cesses a block previously written back to sticky-M, the
directory returns the block in state M even if the proces-
sor only requested a shared copy. The processor imme-
diately sets the R and W bits to detect future conflicts.

TTM-Dir could use TTM-Bcast’s Conflict Filter to infer
when incoming coherence requests indicate transaction
conflicts. However, because the directory already filters
out most coherence requests, TTM-Dir uses a single
“overflow” bit to detect the (common) case that the
transaction fits in cache. A single bit suffices, rather than
separate R and W bits, since the cache can infer the
directory state (and thus the previous R and W bits)
based on the request type (e.g., invalidation versus read).
The overflow bit is cleared on abort and commit, but the
sticky-M state is not (which would require an additional
message exchange with the directory for each block).
Although the lingering sticky-M blocks will cause some
false conflicts, they occur only in the infrequent case
that one long transaction’s state persists until the same
processor is in another long transaction (since the over-
flow bit will filter out false conflicts that occur during
short transactions). TTM-Dir uses a full-directory,
although a limited directory would also work (but with
more false conflicts).

3.3 Transaction Abort Support

The TTM interface defines a software abort handler that
runs in the thread’s execution context. This provides a
simple conceptual model—user-level execution—that
can handle complex sequencing even in the presence of
exceptional conditions (e.g., page faults). However, the
interface also allows implementations to use hardware
accelerators to improve abort performance.

Light: The light-weight TTM abort implementation
immediately transfers control to the software abort han-
dler. The handler is a simple loop that sequences
through the log entries, calling the Ilow-level
undo_log_entry() call to restore the before
images. Undo_log_entry() is implemented as a
block store instruction, which bypasses the cache on a
miss. After the handler restores the before images of all
cache blocks, it completes the abort by calling
complete_abort_with_restart (), which
clears the caches’ R and W bits, restores the register

System Model Settings
Processors 16, single-issue, in-order, non-memory
IPC=1
L1 Cache 16 kB 4-way split, 1-cycle latency
L2 Cache 4 MB 4-way unified, 12-cycle latency
Memory 4 GB 80-cycle latency
Directory Full-bit vector sharers list (TTM-Dir-Light
and TTM-Dir-Heavy only)
Directory cache, 6-cycle latency
Interconnec- | Hierarchical switch topology, 14-cycle link
tion Network | latency

Table 2. System model parameters.

checkpoint, and restarts the transaction. This call also
clears the TTM-Bcast filter and TTM-Dir overflow bit.

Heavy: The heavy-weight abort implementation uses
the same mechanisms above, but adds a hardware
engine to accelerate the log rollback. The abort accelera-
tor is a simple state machine that walks the log, invoking
the low-level log undo mechanisms directly. The abort
accelerator reduces the overheads of the common case.
The software handler is only invoked when the abort
accelerator encounters an exceptional condition, such as
a software-implemented TLB miss or page fault.

4 Evaluation

This section evaluates the four TTM implementations—-
plus two baseline systems using Test-And-Test-Set
(TATAS) locks—for several microbenchmarks and par-
allel applications from the SPLASH-2 benchmark suite
[46]. Section 4.1 describes the simulation model, Sec-
tion 4.2 presents the microbenchmarks and results, and
Section 4.3 describes and analyzes the transactional ver-
sions of the SPLASH-2 benchmarks.

4.1 System Simulation Model

All six systems share the same basic multiprocessor
architecture, summarized in Table 2. The system has 16
processors, each with two levels of private caches, kept
coherent over a high-bandwidth switched interconnect
using either an AMD Hammer-like broadcast protocol
[1] or an MOESI directory protocol. The processor
model is single-issue and in-order, but with an aggres-
sive single-cycle non-memory IPC. The memory system
is modeled in detail, including most timing details of the
transactional memory extensions.

The simulation framework uses the Simics full-system
simulator [23] and customized memory models built
using the Wisconsin GEMS toolset [28]. Simics is a
full-system functional simulator that accurately models
the SPARC architecture, but does not support transac-
tional memory. Support for the TTM interface was
added using Simics “magic” instructions: special no-op
instructions that Simics catches and passes to the mem-
ory model. To implement the begin instruction, the
memory simulator uses a Simics call to read the thread’s
architectural registers and create a checkpoint. During a
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Figure 3. Shared Counter microbenchmark: (a) TTM-Bcast-Heavy/Light, (b) TTM-Dir-Heavy/Light

transaction, the memory simulator models the log
updates. On an abort, after the log is rolled back, the
register checkpoint is written back to Simics, and the
thread restarts the transaction.

4.2 Microbenchmark Analysis

This section uses two microbenchmarks——shared-
counter and B-tree—to (a) highlight the potential of
transactions to simplify multithreaded programming and
(b) demonstrate that the TTM implementations perform
qualitatively similarly to previous transactional memory
implementations.

Shared Counter: Shared-counter is a simple, multi-
threaded program designed to generate maximum con-
tention for a shared variable. Each thread repeatedly
attempts to atomically fetch-and-increment a single
shared counter and update some private state. Figure 2
(a) illustrates the critical section, demarcated by the
begin_transaction() and commit_transaction() calls. For
the TTM systems, these calls translate to the begin and
commit instructions (translated using the gcc asm()
directive). For the baseline systems, these macros trans-
late to a Test-And-Test-And-Set (TATAS) lock/unlock
pair.
Figure 3 displays the execution time of 10,000 transac-
tions (critical sections) as the number of competing
threads increases. Although the useful work remains
begin_transaction();
new_total = total.count + 1;
private_data[id] .count++;
total.count = new_total;
commit_transaction();

Figure 2. Shared-Counter Microbenchmark.

constant, the overhead of contending for TATAS locks
results in super-linear slow down (due to the so-called
N-squared effect). This well-known behavior can be
eliminated through the use of queue-based locks [17,
29] or software restructuring, but is a simple example of
the kinds of performance problems presented by using
explicit locks. In contrast, although execution time
increases somewhat from one to two threads (which
reflects the cache-to-cache transfers of the block con-
taining the counter), the TTM implementations have
essentially constant performance for two or more
threads. These TTM implementations perform well
under high contention for two reasons. First, aborts are
rare: even with 15-threads (i.e., the highest contention),
only 1.6% of transactions ended in an abort. Second, the
remaining conflicts are resolved by stalling the later
transaction(s). Thus one thread completes its transaction
before handing the shared counter off to the next thread.
Rajwar and Goodman showed that this behavior is simi-
lar to hardware queue-based locks [17, 33].

This benchmark also qualitatively demonstrates TTM’s
advantages compared to proposals like LTM [3] and
TCC [12], which require that memory or a lower-level
cache, respectively, contain up-to-date information.
Conversely, since TTM stores both old and new transac-
tion data in cacheable memory, it eliminates unneces-
sary write traffic on commit. For example, the Shared-
counter transactions modify one shared and two local
variables, each allocated in a separate cache block. TCC
and LTM require that the committed values update the
L2 cache and memory, respectively (LTM delays the
update until the next transaction writes the block). With
TTM, the private data remains in the cache indefinitely.
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Figure 5. B-Tree Microbenchmark: (a) TTM-Bcast-Heavy/Light, (b) TTM-Dir-Heavy/Light

B-Tree: B-Tree consists of multiple threads performing
repeated, random lookups (95%) and inserts (5%) to a
1K-ary B*-tree with 400 nodes. B-Tree has significantly
larger transactions than Shared-counter: over 95% read
between 32 and 64 cache blocks; 60% of the update
transactions modify more than 8 (but less than 64) cache
blocks. As shown in Figure 4, B-Tree uses a very simple
synchronization scheme: one transaction/critical sec-
tion per lookup or insert. Although there are many, more
efficient B-Tree locking algorithms [25], this
voilid insert (int id, int key, char *
string) {

begin_transaction();
BTree_insert (tree, key,
commit_transaction();

string);

}
char *lookup(int id,
char * result;

int key) {

begin_transaction();

result = BTree_lookup (tree,
commit_transaction();
return result;

key) ;

}
Figure 4. B-Tree Microbenchmark.
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microbenchmark again illustrates the potential for trans-
actional memory systems to simplify multithreaded pro-
gramming. That is, by providing good performance
despite simple synchronization structures, transactions
can reduce the need for complex hierarchical locking.

Figure 5 shows the execution time for a fixed number of
insert/update operations as the number of threads
increases. Not surprisingly, because the TATAS imple-
mentation uses a single spin lock on the entire tree, it
performs poorly. The execution time remains roughly
constant, since the larger critical section size greatly
outweighs the lock overhead. The TTM implementa-
tions perform substantially better: speedups of 6 on 8
threads and 8 on 15 threads. The speedup is not linear
because the relatively large read and write sets result in
significant number of aborts for larger thread counts.

In fact, with 15 threads, the contention for the B-Tree is
so high that, on average, each transaction aborts roughly
10 times before successfully committing. However,
because the log and the read and write sets—except for
the block that caused the abort—remain in cache, the
restarted transaction can quickly recover. Thus the
restarted transaction will typically “catch up” to and
serialize behind the conflicting thread.

Execution Time (in millions of cycles)
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M
Locks
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&8s = = 3 =
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Figure 6. SPLASH benchmarks (a) TTM-Bcast-Heavy/Light and (b) TTM-Dir-Heavy/Light.
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Benchmark Inputs
BARNES 512 bodies
OCEAN contiguous partitions, 66x66
RAYTRACE small image (teapot)
WATER N-SQ 216 molecules

Table 3. SPLLASH-2 Benchmarks and Input

Figure 5 also shows that the hardware accelerator used
by the Heavy abort handler makes little difference,
despite the high abort frequency. This is despite reduc-
ing the average abort latency by roughly 40%: from
~120 cycles to 70-75 cycles. However, the memory
latency to refetch the conflicting block plus any others
blocks tends to dominate.

4.3 SPLLASH-2 Benchmarks

While microbenchmarks help understand a system’s
behavior, they say nothing about overall performance.
We address this using four benchmarks from SPLASH-2
[38], summarized in Table 3. We created “transaction-
ized” versions by replacing critical section locks with
TTM transactions. No performance tuning was done to
reduce conflicts. While a programmer starting from
scratch might produce very different programs, these
provide evidence of TTM’s performance robustness.

Figure 6 presents the simulated execution time for all six
systems. TTM performs comparably for three of the
benchmarks and roughly 30% better for OCEAN.
OCEAN uses critical sections to check and occasionally
update shared variables (e.g., the maximum residual
error). By eliding the lock accesses, transactions elimi-
nate a major source of contention.

Figure 6 also shows that the TTM-Light and TTM-
Heavy systems perform essentially the same. This is not
surprising for WATER N-SQ and OCEAN, which abort
only 1% and 2% of transactions, respectively. However,
BARNES and RAYTRACE abort 15-30% of transac-
tions. The greater abort frequency occurs because the
read and write sets are much larger for these transac-
tions. Table 4 presents a histogram of the read set sizes,
where the bin sizes are powers of two (e.g., bin 8§ shows
the fraction of transactions that read at least 5 but not
more than 8 blocks). Table 5 shows the write set histo-
gram (which also determines the transaction log size).

s | = 3 7
Az | B % 5 z
9 & & = e =
m & o 3 =
=

2 1.65% 1| 100.00% | 61.38% 0.00 %

4 5.55 % 0.00% | 3648 % 3.97 %

81 6570 % 0.00 % 0.17 % 0.00 %

16] 1282 % 0.00 % 0.13% | 96.03%

32 8.69 % 0.00 % 0.20 % 0.00 %

64 5.55 % 0.00 % 0.26 % 0.00 %

128 0.00 % 0.00 % 0.32 % 0.00 %

256 0.02 % 0.00 % 0.49 % 0.00 %

512 0.00 % 0.00 % 0.51 % 0.00 %

1024 0.00 % 0.00 % 0.06 % 0.00 %

Table 4. Read set size distribution.

OCEAN has very small read and write sets and WATER
N-SQ’s are somewhat larger but most fall within two
distinct bins. Conversely, BARNES and RAYTRACE
exhibit much more dynamic range and the distributions
have relatively heavy tails. While most of the transac-
tions continue to fit in the L.1 cache, the larger transac-
tions result in the higher abort frequencies. Nonetheless,
because the log resides in cacheable memory, even the
large transactions can be aborted quickly. The abort
accelerator makes no perceptible difference for most
combinations, and a statistically significant, but small
improvement for RAYTRACE on TTM-Dir.

5 Conclusion

This paper introduces thread-level transactional memory
(TTM), which—Ilike virtual memory——abstracts away
the underlying implementation details. TTM differs
from prior transactional memory systems in two key
ways. First, TTM enables multiple implementations,
from all software to mostly hardware, permitting a range
of cost-performance alternatives. Second, because TTM
maintains a before image log in virtual memory, both
old and new values can be cached. This both reduces
memory traffic for successful transactions and acceler-
ates the processing of aborts.
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2| 083%| 000%| 97.86%| 0.00%

4| 6347%| 000%| 188%]| 96.03%

8| 799%| 000%| 026%| 0.00%

16| 13.52%| 0.00%| 000%| 0.00%

2] 153%| 000%| 000%| 0.00%

64| 403%| 000%| 000%| 0.00%

128] 002%| 000%| 000%]| 0.00%

Table 5. Write set size (log size) distribution.

We evaluate four TTM implementations—directory-
based and broadcast-based cache coherence times Light
and Heavy hardware for aborts. Microbenchmarks illus-
trate the potential for TTM systems to simplify multi-
threaded programming and the potential for TTM to
outperform other transactional memory implementa-
tions. We demonstrate that TTM-Light is competitive
with TTM-Heavy, even for frequent aborts, suggesting
that all-hardware solutions are unnecessary. Using four
“transactionized” versions of the SPLASH-2 bench-
marks, we demonstrate that TTM systems achieve com-
parable or superior performance compared to using
conventional locks.
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