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Abstract

Dynamic Bayesian networks (DBNs) are becoming widely used to learn gene regulatory
networks from time series microarray data. Careful experimental design is required for data
generation, because of the high cost of running each microarray experiment. This paper
presents a theoretical analysis of learning DBNs without hidden variables from time series
data. The analysis reveals, among other lessons, that under a reasonable set of assumptions
a fixed budget is better spent on many short time series than on a few long time series.
Keywords: dynamic Bayesian networks, gene expression microarrays, gene regulatory
networks, PAC-learnability, time series data

1 Introduction

Time series data, and dynamic Bayesian networks (DBNs) to model such data, are becoming
widely used as an approach to learning gene regulatory networks (Ong et al., 2002; Husmeier,
2003; Perrin et al., 2003; Kim et al., 2003). In a typical experiment, gene expression microarrays
are used to measure mRNA abundance at several specific time points after a particular stimulus
to an organism or cell sample. The goal is then to learn a DBN that fits the time series data
well. Biologists can visually examine this DBN structure and interpret an arc from gene X; at
time ¢ to gene X5 at time ¢ + 1 as evidence that expression of gene X; influences expression of
gene X, (Figure 1).

The most common alternative to DBNs for modeling gene expression data is to instead learn
an ordinary Bayesian network (BN). A BN can be learned either from time series data (treating
each time slice as a replicate) or from “ordinary” expression data, that is, data with one time
point per stimulus or condition. However, there are several advantages that DBNs have over
BNs. DBNs can construct cyclic regulations, whereas cycles are explicitly disallowed in BNs.
DBN learning also can provide more insight into causality. For example, an induced arc from
gene X, to gene X, in an ordinary BN simply means that the expression of gene X is a good
predictor of the expression of gene X5 at the same time (Figure 2a). While this good prediction
may be because expression of gene X; influences expression of gene X5, it could just as easily be
because expression of gene X, influences expression of gene X; or expression of both gene X;
and gene X, are influenced by expression of another gene X3 (Figure 2b). On the other hand,
an induced arc from gene X; to gene X, in a DBN implies that expression of gene X; at one
time slice is a consistently good predictor of gene X5 at the next time slice. This good prediction



Figure 1: Simple DBN model. Labeled circles within a dotted oval represent our variables in one
time slice. Formally, arcs connecting variables from one time slice to variables in the next have
the same meaning as in a BN, but they intuitively carry a stronger implication of causality. We
note that in a DBN with more time slices, the arcs are always the same, e.g., the arc from X,
at time slice 1 to Xy at time slice 2 is also present from time slice t to time slice t + 1 for all
1 <t < T where T is the last time slice in the model. This constancy of the arcs is justified
by an assumption that the process being modeled is stationary though not static. While values
of wvariables may change over time, the manner in which the value of one variable influences
the value of a wvariable at the next time step (i.e., the parents and the conditional probability
distribution for the latter variable) will not change.

is unlikely to be because expression of gene X, influences expression of gene X;; intuitively, it
seems likely to be because expression of gene X influences expression of gene X,.!

Following earlier experiments in learning DBNs from time series microarray data (Ong et al.,
2002), we have consulted with biologists about the design of future time series experiments.
While a number of design issues arise, the most common question is the following. “Given that
we have resources to run r microarrays, is it better to run many short time series or a few long
time series?” Design issues also arise for our learning algorithms. For example, given a specific
number of microarrays r that will be run, and a given amount of time in which a DBN must
be produced from this data, should we place a limit on the number of parents a node can have
in the DBN and, if so, what should this limit be? One way to help answer these questions is to
perform many runs with many time series data sets having different properties; unfortunately,
at present few such data sets are available, and the cost of producing such a data set requires
design insight now, before additional data sets are available. An alternative way to gain insight
is to construct a formal model of the learning task, as realistic as possible though necessarily
making some simplifying assumptions.

The present paper limits its attention to DBNs whose variables are Boolean, though the
results extend naturally to non-Boolean discrete variables. Because of the use of Boolean vari-

1An arc in a DBN does not establish causality definitively. Nevertheless, if a learned DBN contains arcs
that imply novel potential causal relationships, in some cases biologists can test these novel relationships with
additional, more focused (and time-consuming) experiments.
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Figure 2: (a) Xy may be a good predictor of X, but is X regulating Xs? (b) Ground truth
might be any one of these or a more complicated variant.

ables, our DBNs also can be viewed as (deterministic or probabilistic) Boolean networks. In
groundbreaking work Akutsu, Kuhara, Maruyama and Miyano (1998) formalized the task of
constructing Boolean networks from gene expression microarray data. Further papers extended
or improved their initial results (Akutsu et al., 1999; Akutsu et al., 2000; Shmulevich et al.,
2002a; Shmulevich et al., 2002b; Lahdesméki et al., 2003; Datta et al., 2003). Several of those
papers provide formal results on the task of finding a consistent or best-fit Boolean network for
the data. Nevertheless, the results do not give guarantees about the accuracy of the learned net-
work on new or unseen data, or the amount of data required to achieve a given level of accuracy.
The present paper follows in the spirit of this prior work on formal modeling of the Boolean net-
work or DBN learning task, but it addresses the question of polynomial-time learnability using
the PAC-learning framework (Valiant, 1984) and its extension to probabilistic concepts (Kearns
& Schapire, 1994). Consequently, the novel aspect of this paper is its provision of (probabilistic)
accuracy guarantees based on data set size. The formal results in this paper, both positive and
negative, imply the following practical advice for the design of time series microarray experi-
ments and DBN learning algorithms.

First, many short time series experiments are preferable to a single long time series experi-
ment. More specifically, time series experiments should be kept as short as possible, i.e. to two
time steps. In other words, while time series experiments may be superior to individual inde-
pendent experiments for determining causality, that message should not be carried to its logical
extreme that the longer the time series the better. '

Second, given the number of time series experiments that can feasibly be run with present-
day costs, the number of parents per node in a DBN should be limited to at most three per
node, two if possible. Even if we can fix part of the structure based on background knowledge
of regulatory pathways, more than three parents to a node will likely yield very poor estimates
of the relevant probabilities.

Third, even with only two parents per node, the worst-case number of examples required to
guarantee a given level of accuracy with a given probability is cubic in the number of variables n,
and this number typically is in the thousands. If we are concerned with gaining insight into—or
accurate prediction of-—only a small number m of the n variables, we can reduce this term to
n?m. This often is the case where we are interested in learning or refining a model of a particular
regulatory pathway, and we know most of the key players (genes). If in addition we have an over-
estimate of the potential other players, and there are [ of these, then we can reduce this term
further to I?m, perhaps dramatically reducing the number of required examples, or microarrays.

The practical import of the preceding lessons of course depends on the fit between our formal
models and the real world. The paper concludes by presenting caveats—some cases where these
lessons may not apply—and by discussing possible extensions as directions for further work.
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2 Definitions and Terminology

Definition 2.1. A Boolean dynamic Bayesian network (DBN) is defined over the Boolean vari-
ables
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where X; ¢ denotes variable X; at time t. For each 1 <i<n and1 <t < T the value of variable
Xir 18 fi(X14-1,-.., Xns-1), where f; is some (possibly stochastic) Boolean function.

Definition 2.2. We denote by DBN(C,,) the class of Boolean DBNs for which each function f;
comes from Boolean concept class Cy,.

Any particular Boolean DBN in DBN(C, ) is a set of functions f;(X14-1,...,Xn¢-1), one for
each variable X; 1 < i < n. Note that the function f; does not change with time.

For example, the Boolean concept class C, might be all stochastic functions of at most
k variables. This class of functions corresponds to all possible conditional probability tables
(CPTs) in a DBN for a node with at most k£ parents. An example of such a CPT is given in
Figure 3. Or if the DBN is in fact deterministic, C, might be the set of all (non-stochastic)
functions of at most k variables, that is, all truth tables over k variables. For such a CPT, each
row in Figure 3 would instead have one of the probabilities set to 1 and the other set to 0.
A generalization of this class, allowing more than k parents in a still limited fashion would be
to have as C, the set of all functions that can be represented by a k disjunctive normal form
(kDNF') expression. The set of kDNF expressions is the set of all DNF expressions where each
disjunct (conjunction) contains at most k literals.
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Figure 3: Example of probabilistic CPTs.

3 Results

3.1 Boolean DBN from 2-slice data

Before presenting the first of our related models, we establish some conventions. In practice
a DBN model may contain some variables that have no data, e.g., variables that cannot be
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observed or measured; such variables are also known as hidden variables. The present paper
does not consider hidden variables or missing data, although those points are discussed later as
a topic for further work.

In generating a gene expression microarray data set, the cost of r microarray experiments
(measuring the expression of each gene in r samples of mRNA) is roughly the same regardless
of whether the r samples are all part of a single, long time series or many different time series.
Therefore, we treat our number of data points as the number of microarray experiments rather
than the number of time series.

In the ordinary PAC-learning model, one assumes each data point is drawn randomly, inde-
pendently according to some probability distribution D. Our models cannot assume this, because
in a time series each data point (after the first) depends on the previous data point. The most
faithful we can remain to the original PAC-learning model is to specify that the first data point
in each time series is drawn randomly according to some probability distribution D, and the
first data points in different time series are drawn independently of one another.

For simplicity, we begin with a formal model of DBN learning that resembles the PAC-
learning model as much as possible, by restricting consideration to deterministic concepts. We
later extend the definition to permit probabilistic concepts. Given a deterministic DBN and a
specific (input) time slice, the next (output) time slice is fixed according to the DBN. We say
that a DBN model and a target DBN disagree with one another on an input time slice if and only
if, given the input time slice, the two DBNs produce different outputs. A DBN model is (1 — ¢)-
accurate with respect to a target model if and only if the sum of the probabilities, according to
D, of input time slices on which the two DBNs disagree is at most €. As is standard with the
PAC model, we take |T| to denote the size of the target concept (DBN model) T' € DBN(C,) in
a “reasonable” encoding scheme. For concreteness, we specify |T'| as the number of bits required
to encode, for each variable X, its parents and its function f;. Given these preliminaries, the
following definition is an application of the PAC-learning model to DBNs.

Definition 3.1. An algorithm PAC-learns a deterministic DBN(C,)) if and only if there exist
polynomaals poly (-, -, -, -) and polys(-) such that for any target DBN T in DBN(C,), any 0 <
e < land 0 < 6 < 1, and any probability distribution D over initial data points for time
series: given any r > poly;(n,|T|,L,3) data points, the algorithm runs in time poly(rn) and
with probability at least 1 — & outputs a model that is (1 — €)-accurate with respect to T

Theorem 3.2. For any fized k € N the class of DBN (kKDNF) is PAC-learnable from 2-slice
data.

Proof. Our algorithm A learns one kDNF formula to predict each of the n variables at time slice
2 from the values of the n variables at time slice 1. Each 2-slice time series (input and output)
is used to generate one example for each X;,. For each 1 < 4 < n the output (class) is X9
and input features are Xi1,...,Xn 1. Given a PAC learning algorithm L for kDNF expressions
(Kearns et al., 1987), we can run L on n feature vectors to find a concept in C, that is consistent
with our data.

Algorithm A iterates: for each variable X;,, 1 <14 < n, we make a call to kDNF learning
algorithm I with % as the maximum probability of failure (i.e., with desired confidence of 1 — %)

€

and with £ as the maximum error (i.e., with desired accuracy of 1 — £). Algorithm A’s final

model is the set of functions f;(X1,1,..., Xy 1) returned by L, one per output variable Xj .
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Algorithm A runs in polynomial time since nxpoly;(n,|T|,2,%) yields a polynomial, and each
call to L runs in time polynomial in the size of its input. It remains only to show that with
probability 1 — § the error is bounded by e. The definition of union bound states that if A and
B are any two events (that is, subsets of a probability space), then Pr(AU B) <Pr(A)+Pr(B)
(Kearns & Vazirani, 1994). Since each call to L fails to achieve the desired accuracy with
probability only %, by the union bound the probability that there exists any of the n calls to L
that fails to achieve the desired accuracy is at most §. If each call to L has a desired error bound
of £, then the error of the model (probability according to D of drawing an input time slice
on which the learned model and target will disagree for some variable X;o, 1 < 7 < n) is the
union of all n error expressions from L. By the definition of DBN(C,,) this gives us Pr(Error; U
ErroraU...U Error,) =Pr(Error))+Pr(Errory) 4 ... +Pr(Error,) = S+ £ +...+ £ < ¢ by
the union bound. O

kDNF is a richer representation than one usually uses in a DBN. Typically, each variable
is a function (represented as a CPT) of up to k parents. We denote the class of such DBNs
by DBN (k-parents). While PAC-learnability of a more restricted class does not automatically
follow from PAC-learnability of a more general class (because the space of allowed hypotheses is
smaller), in this case arguments very similar to those just given show that, for any fixed k € N,
the class of deterministic DBN (k-parents) is PAC-learnable from 2-slice data.

3.2 Boolean DBN from r-slice data

In the previous subsection we showed that a Boolean DBN is PAC-learnable from 2-slice data.
It is equally common in practice for time series measurements to yield one long time series
instead of multiple time series of length 2, or to fall between these two extremes. While the total
number of microarray experiments r is determined largely by budget, the choice of time series
lengths for any fized total number of microarray experiments 7 usually is not driven by expense.
Rather, researchers make the choice they believe will provide the most information, because r
microarrays will have about the same cost regardless of whether they occur in one long time
series or many shorter time series.

To gain some theoretical insight into whether a single, long time series might be more useful
than many short time series, we now ask whether the class DBN (k-parents) is PAC-learnable
from a single time series, and if so, whether the total number of microarrays required might
be less. Unfortunately, it is trivial to prove that no algorithm PAC-learns this class when all
the data points are in a single time series; the algorithm simply cannot learn enough about
the distribution D according to which the start of each time series is drawn. But such a trivial
negative result in unsatisfying. In practice if we subject an organism to an experimental condition
and run a long time series of microarray expression measurements, it is because we wish to learn
an accurate model of how the organism responds to that particular condition. Therefore, we
next consider a natural variant of our first learning model, where this variant is tailored to data
points in a single time series. A positive result for single time series will be easier to obtain in
this variant than in the original model.

Definition 3.3. An algorithm learns a deterministic class DBN(C,) from a single time series
if and only if there ezist polynomials poly;(-, -, -, -) and polys(.) such that for any target DBN T
in DBN(C,), any 0 < e < 1 and 0 < § < 1, and any starting point for the time series: given
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a time series of any length v > poly; (n,|T|,%,3), the algorithm runs in time polys (rn) and with
probability at least 1 — & outputs a model that with probability at least (1 — €) correctly predicts
time slice r + 1.

Notice that we do not require that the learning algorithm is capable of performing well for
most starting points, but only for the one given. For deterministic DBN models, which are all
we are considering thus far, after some m time slices the time series must return to a previous
state, from which point on the time series will cycle with some period length at most m. If for
some class of DBN models m is only polynomial in the number of variables n then it will be
possible to PAC-learn this class of models from a single time series, within the definition just
given. Unfortunately, even for the simple class of deterministic DBN (k-parents), the period is
superpolynomial in n and the size of the target model, leading to the following negative result.

Theorem 3.4. For any k > 2 the class of DBN (k-parents) is not learnable from a single time
series.

Proof. Assume there exists a learning algorithm L for DBN (k-parents). Then for any k-parent
target DBN T, any 0 < ¢ < 1 and any 0 < ¢ < 1, given a time series of any length r >
polyi(n |T|,€, 5) L will run in time polynomial in the size of its input and with probability at
least 1 — ¢ will output a model that will correctly predict time slice r + 1 with probability at
least 1 — €. Because any 2-parent DBN can be represented in a number of bits that is polynomial
in n, we can simplify poly,(n,|T|,2,3) to poly:(n,,3).

We consider a time series that starts from a point in which every variable is set to 0.
Lemma 3.5 shows that for suitable choice of n (any n such that n — 1 is divisible by 3) we
can build two 2-parent deterministic DBNs 77 and 73 over variables X, ..., X,, with the follow-
ing properties when started from a time slice with variables set to 0: in both 77 and T3, X,
remains 0 for r > 25 steps and then X, goes to 1 at step r + 1; in 77 once X,, goes to 1 it
remains 1; in 75 when X, goes to 1 it then reverts to 0 on the next step.

We choose ¢ = § = % and large enough n such that 2% > poly:1(n,z, 5) We present the
algorithm L with a time series generated by 77, of length 7 as specified in the previous paragraph,
starting from the time slice in which all variables are set to 0. Then L must, with probability at
least %, return a model that will correctly predict time slice r + 1. Therefore, with probability
at least (3)(2) > 1, L’s output model predicts the value of X, to be 1. Consider what happens
when we give L exactly the same learning task, except that the target is T5 instead of 7;. The
time series of length r that L sees is identical to the previous one, so L will with probability
greater than :,12- incorrectly predict the value of X, at time slice r + 1. Hence L will not produce,
with probability at least 1 — ¢, a model that will predict time slice r + 1 with accuracy at least
1—e 0

Lemma 3.5. There ezists a 2-parent deterministic DBN over j variables with a period of 23,
for any positive integer 7 divisible by 3. Moreover, based on our specific construction we can build
two 2-parent deterministic DBNs Ty and Ty over any variables X1, ..., X,, n= 7+ 1 for some j
dwisible by 3, with the following properties when started from a time slice with all variables set
to 0. In both Ty and Ty, X,, remains O for r > 275" steps and then X, goes to 1 at step r + 1;
m 1 once X, goes to 1 it remains 1; in Iy when X, goes to 1 it then reverts to O on the next
step.
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Figure 4: Base case construction ((a),(b) and (c)) and inductive case construction ((d),(e) and
(f)) of inductive proof of Lemma 8.5. Construction includes bit counter ((a),(d)), previous bit

memory ((b),(e)) and 0-to-1 flag ((c),(f)).

Proof. We begin with the first statement of the lemma. If we were allowed up to 3 parents
per variable, we could represent a two-input (e.g., R-S or J-K) flip-flop (one parent for current
state and two for inputs, to determine new state) with a single variable. We could then directly
implement a standard up-counter from computer architecture with just two variables per bit.
In our proof we still essentially implement an up-counter. But because we want to show a
superpolynomial period can be obtained with just two parents per variable, we require three
variables per bit of the up-counter. "

Inductive hypothesis: Given j variables, a deterministic DBN exists with a period of 9%,

Base case: When j = 3, the proof is trivial as this can be done with 1 bit. Nevertheless, we
employ the construction in Figure 4a to 4c so that every set of 3 variables is analogous to the
others. The first variable is a 1-bit counter. The second variable, Xo;, serves as a memory of
the previous bit at the previous time slice, X7 1. X3, works as a flag, taking on the value 1 to
indicate when X; has made the transition from 0 back to 1 on the previous time slice.

Inductive case: We prove that given n = j + 3 variables, a period doubling the period of 2%
can be generated. We first generate a counter that is based on the flag, X, ;1. If X;;_; is 0, then
Xj+1,+ takes on the value of X;1, 1. Otherwise, when X;; ; is 1, X1, acts as a bit counter.
Xjto4, serves as a memory of the previous bit at the previous time slice, X1, mimicking its
value in the previous time slice. Finally, X3, works as a flag, taking on the value 1, to indicate
when X 14-1is 0 and X9, 1 is 1; and X3, is O otherwise.

For the second statement of the lemma, m = j + 1, where j is divisible by 3. We construct
a network as in the proof of the first statement of the lemma, such that X; is 0 for the first
r > 2% time steps, then becomes 1, and then immediately reverts to 0; that is, X; is 1 just
once every 23 time steps. For T} we have a function for X,, such that X,,; is 1 if and only if
X1 (that is, Xpm-14-1) is 1 or Xyus—1 is 1. For T; we have a function for X, such that X, ;
is 1 if and only X;; 1 (that is, X;,—1¢-1) is 1. O

3.3 Stochastic Model of Boolean DBN from 2-slice data

In our first model of learning Boolean DBN models from 2-slice data, we made a simplifying
assumption that the DBN models were deterministic, in keeping with the standard assumption
for target concepts in the PAC model. In reality, DBNs are probabilistic models, with deter-
ministic DBNs as simply a special case. When we learn a Boolean DBN model, we are not only
interested in learning the correct Boolean functions but also inferring a good model of probabil-
ity with respect to the target distribution. We therefore now extend our theoretical framework
and to bring our model closer to practice. The foundation of this extension consists of the no-




tions of p-concept (probabilistic concept) and (¢, v)-good models of probability, defined as follows
(Kearns & Schapire, 1994). In these definitions X is the domain of possible examples and D is
a probability distribution over X.

Definition 3.6. A probabilistic concept (p-concept) is a real-valued function ¢ : X — [0,1].
When learning the p-concept ¢, the value c(z) is interpreted as the probability that z exemplifies
the concept being learned. A p-concept class C, is a family of p-concepts. A learning algorithm for
Cp attempts to learn a distinguished target p-concept ¢ € C, with respect to a fized but unknown
and arbitrary target distribution D over the instance space X (Kearns & Schapire, 1994).

Given this definition, it is easy to see that a function f; in a (not necessarily deterministic)
Boolean DBN, which gives the probability distribution over possible values for X; at time ¢t 41
conditional on the values of the n variables at time ¢, is a p-concept. Therefore, a Boolean DBN
as defined earlier in this paper is completely specified by a set of n p-concepts, one for each
variable.

Definition 3.7. A p-concept h is an (€, v)-good model of probability of a target p-concept c
with respect to D if and only if Preyep[|h(z) — c(z)] > 7] <e.

We generalize this definition to apply to DBNs as follows. Given an input time slice, a DBN
model defines a probability distribution over output time slices. We say that two DBNs M and
T ~-disagree on an input time slice if they disagree by more than « on the probability of an
output time slice given that input. A learned DBN M is an (¢, v)-good model of probability of a
target DBN T" with respect to a probability distribution D over input time slices if and only if
the sum of the probabilities of input models on which M and T' v-disagree is at most .

The learning model we present next is a straightforward application of Kearns and Schapire’s
notion of polynomially learnable with a model of probability to DBNs, analogous to our earlier
application of the PAC model to deterministic DBNs. In the following definition we take C,
to be any p-concept class. Thus for example DBN (k-parents) is the set of DBNs in which
each variable has at most k-parents; the p-concept class used here is the class of p-concepts of
k-relevant variables, or the class of p-concepts representable by CPTs conditional on k parents.

Definition 3.8. Where C, is a p-concept class, we say that an algorithm learns DBN(C,)) with
a model of probability if and only if there exist polynomials poly,(-, -, -, -, -) and polys() such
that for any target concept T € DBN(Cy), any0 <e<1,0< 8 <1, and 0 < v < 1, and any
probability distribution D over initial data points for time series: given r > polys(n, |T|, i—, %, —};)
data points, the algorithm runs in time poly,(rn) and with probability at least 1 — & outputs an
(€,7)-good model of probability of the target.

Theorem 3.9. For any fized k € N the class DBN (k-parents) is learnable with a model of
probability from 2-slice time series data.

Proof. We describe a learning algorithm B that is analogous to the algorithm A of Theorem 3.2,
and the correctness proof is analogous as well. Each 2-slice time series (input and output) is
used to generate one example for each X;,. For each 1 < ¢ < n the output (class) is X, and
input features are Xi,..., X, 1. In place of the kDNF learning algorithm used by the earlier
algorithm A, algorithm B uses an algorithm P that with probability 1 — ¢ learns an (e, v)-good
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model of probability for any p-concept with at most & relevant variables (Kearns & Schapire,
1994). The learned p-concept for variable X; can be expressed as a set of at most k parents for
variable X; and a CPT for variable X; given those parents.

More specifically, where J, € and «y are the parameters provided to algorithm B, algorithm
B calls algorithm P using instead %, £ and 7. Algorithm B iterates: for each variable X;3, 1 <
i < n, algorithm B makes a call to algorithm P with the examples and parameters as specified.
Algorithm B’s final model of probability for each X;, 1 < i < n, is Pr(X;|X1,t-1,.-., Xni-1)
= Pr(X;|Pa(X;)i—1), where Pa(X;);—1 denotes the (at most k) parents of X; from the previous
time step, as determined by algorithm P, and Pr(X;|Pa(X;):-1) denotes the specific function
(representable as a CPT) learned by algorithm P.

Algorithm B runs in polynomial time since n*poly; (n,]T],%,%,%;l) yields a polynomial, and
each call to P runs in time polynomial in the size of its input. The remainder of the reasoning
is analogous to that in the proof of Theorem 3.2, except that we must also note the following.
If the learned DBN and target DBN agree within 7= on the probability for a given setting for
each variable X;, 1 < i < n, then they agree within -y on the probability of the entire setting.
It follows that since for any gien variable X; the learned DBN with probability 1 — —g has an
(£, 2L)-good model of probability compared with the target DBN, then with probability 1 — ¢
the learned DBN is an (e, y)-good model of probability of the target DBN. O

We can extend also our model of learning from a single time series to apply to probabilistic
concepts in a similar fashion. But since deterministic DBNs are a special case of probabilistic
ones, it follows that the result for learning DBN (2-parents) with a model of probability, from a
single, long time series is a negative one.

4 Lessons and Limitations

The results proven in this paper show that, for natural definitions of learnability, DBNs are
learnable from 2-slice time series data but not from a single, long time series. If we adopt a
compromise, with k-slice time series for fixed k greater than two, we can again get positive
results but the total number of time slices, e.g., microarrays to be run, increases linearly with k.
Hence the results in this paper imply that while time series are desirable, they should be kept
as short as possible. We return to discuss limits on this lesson after discussing lessons related to
sample size.

Because PAC bounds are worst-case, the number of examples they imply are required, while
polynomial in the relevant parameters, can be much greater than typically are required in reality.
Nevertheless, we can gain some insight from these numbers into which factors most affect sample
size required for a given degree of accuracy. The sample sizes required by the algorithms in this
paper follow directly from those required by the learning algorithms they employ as subroutines.
The sample sizes for those algorithms grow linearly with the number of variables n, the target
concept size, and % (and % where relevant), and logarithmically with % But note that the sizes
of our target concepts in DBN (KDNF) and DBN (k-parents) are at least O(n*n), because we
must specify the choice of k out of n possible parents for each of n variables. Therefore, by far
the most important factor in sample size is k, and the next most important is n. Because current
costs limit microarray data set sizes to around one thousand microarrays (in fact, we currently
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know of no data sets quite that large), a value of three for k£ seems the largest reasonable value,
with k = 2 probably more sensible. The size of the target concept can be further contained if we
limit our models to trying to predict only a small subset of variables in terms of another small
subset, based on background knowledge about particular regulatory pathways in which we are
most interested.

Of course this entire discussion hinges upon an acceptance that the learning models defined
in this paper are reasonable. The models themselves are a natural application of existing PAC
models to DBN learning. Nevertheless, several assumptions are inherited in this application—
some from PAC modeling and some from DBNs—and several additional assumptions have been
made. We now discuss these classes of assumptions in turn.

Inherent to the use of PAC modeling are the assumptions that (1) we must perform well
on all target concepts, and (2) examples are drawn randomly, independently according to some
probability distribution. Regarding assumption (1), perhaps particularly difficult target concepts
such as counters, while representable in simple DBNs, do not appear in biological regulatory
pathways. If in fact all real biological pathways have very short periods, perhaps single, long time
series will be more effective than our results imply. Regarding assumption (2), it seems plausible
that an organism’s environment imposes some probability distribution over states in which its
regulatory machinery may find itself, and to which it will need to respond. Nevertheless, perhaps
through careful selection of experimental conditions, active learning approaches may arise that
will benefit more from a few long time series than from many short ones.

Inherent in the use of DBNs are several notable assumptions as well. First, the DBN frame-
work assumes we are modeling a stationary process; while the state of an organism is not static
(e.g., mRNA levels may change over time), the organism’s regulatory network itself does not
change over time. This assumption appears reasonable for the application to learning regulatory
pathways. But more specific assumptions include the assumption of discrete time steps—that
an organism, like a computer, operates on a fixed clock that governs when changes occur—and
a first-order Markov assumption, that the organism’s next state is a function of only its previ-
ous state inputs. These assumptions clearly are violated to some extent, and those violations
present caveats to our lessons. For example, perhaps collecting longer time series, with a very
fast sampling rate, could allow our algorithms to try different sampling rates (by skipping some
of the time steps), to find optimal rates for providing insight into certain processes. Inappro-
priate sampling rates have been noted as a potential source of error when modeling time series
microarray data (Bay et al., 2003). Our results do not speak to uses such as this for longer time
series.

Finally, we have made additional simplifying assumptions beyond those of the PAC frame-
work or DBNs. Specifically, we have assumed all Boolean variables and no missing values or
hidden variables. While discretization is common with microarray data, one may discretize to
more than two values or may use the continuous values originally reported in a microarray exper-
iment. We see no obvious reason why using such values should change the lessons in this paper,
but such a change is possible. Missing values are rare in microarray data, but one might wish to
include hidden variables for unmeasured environmental factors or for other players in a regula-
tory pathway, such as certain proteins that may act as transcription factors or for other types
of signaling. Extending the present work to handle hidden variables is an interesting direction
for further work.

In addition to handling continuous-valued variables and hidden variables, another significant
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direction for further work is the use of background knowledge to limit the space of potential
models and hence the sample complexity. Also, based on the notion of membership queries,
perhaps the models in this paper can be extended to model active learning approaches. Finally,
we intend to use the lessons from this paper to design a large number of short time series
microarray experiments aimed at gaining more detailed models of a few key regulatory pathways
in human cells.
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