Hﬂﬂﬂﬂﬂﬂﬂllﬂﬂ-ﬂ!ﬂﬂﬂﬁﬁﬂﬂﬂHEEHEEHﬂﬂﬂﬂﬂﬂﬂﬂﬂaﬂﬂﬂﬂﬁﬂﬂlEEEEEEEHHEEEEEEIEEHEHEWW

Deconstructing Storage Arrays

Timothy Denehy

John Bent

Florentina Popovici
Andrea Arpaci-Dusseau
Remzi Arpaci-Dusseau

Technical Report #1506

May 2004

UNIVERSITY OF

WISCONSIN

M A DIS O N

Deconstructing Storage Arrays

Timothy E. Denehy, John Bent, Florentina |. Popovici,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Department of Computer Sciences, University of Wisconsin, Madison
{tedenehy, johnbent, popovici, dusseau, remzi} @cs.wisc.edu

ABSTRACT

We present Shear, a user-level software tool that characterizes
RAID storage arrays. Shear employs a set of controlled algo-
rithms combined with statistical techniques to automatically
determine the important properties of a RAID system. We il-
lustrate the correctness of Shear by running it upon numer-
ous simulated configurations, and then verify its real-world
applicability by applying Shear to both software-based and
hardware-based RAID systems. Finally, we demonstrate the
utility of Shear through two case studies. First, we show how
Shear can be used in a storage management environment to
verify RAID construction and detect failures. Second, we show
how an operating system can use Shear to automatically tune
its storage subsystems to specific RAID configurations.

1. INTRODUCTION

Modern storage systems are complex. For example, a high-
end storage array can contain tens of processors and hundreds
of disks [6] and a given array can be configured many different
ways. However, regardless of their internal complexity, RAID
arrays expose a simple interface to the file system: a linear
array of blocks. All of the internal complexity is hidden; a
large array exports exactly the same interface as a single disk.

This encapsulation has many advantages, the most impor-
tant of which is transparency: file systems can operate with-
out modification on top of any storage device. But this trans-
parency has a cost: users and applications are not easily able to
obtain more information about the storage system. For exam-
ple, most storage systems do not reveal how data blocks have
been mapped to each of the underlying disks and it is well
known that RAID configuration has a large impact on perfor-
mance and reliability [3, 14, 19, 23]. Furthermore, despite
the fact that configuring a modern RAID array is difficult and
error-prone, administrators are given little help in verifying the
correctness of their setup.

In this paper, we describe Shear, a user-level software tool

that automatically identifies the important properties of a RAID,

Using this tool to discover the properties of a RAID allows de-
velopers of higher-level software, including file systems and
database management systems, to tailor their implementations
to the specifics of the array upon which they run, Further, ad-
ministrators can use Shear to understand details of their RAIDs,
verifying that they have configured the RAID as expected or
even observing that a disk failure has occurred.

As is common in microbenchmarking, the general approach
used by Shear is to generate controlled /O request patterns
to the disk and to measure the time the requests take to com-
plete; indeed, others have applied generally similar techniques
to single-disk storage systems [20, 24]. By carefully construct-
ing these /O patterns, Shear can derive a broad range of RAID
array characteristics, including details about block layout strat-
egy and redundancy scheme.

In building Shear, we applied a number of general tech-
niques that were critical to its successful realization. Most
important was the application of randomness where possible;
by generating random I/O requests to disk, Shear is better able
to control its experimental environment, thus avoiding a mul-
titude of optimizations that are common in storage systems.
Also crucial to Shear is the inclusion of a variety of statistical
clustering techniques; through these techniques, Shear can au-
tomatically come to the necessary conclusions and thus avoid
the need for human interpretation.

We demonstrate the effectiveness of Shear by running it
upon both simulated and real RAID configurations. With sim-
ulation, we demonstrate the breadth of Shear, by running it
upon a variety of simulated configurations and verifying its
correct behavior. We then show how Shear can be used to dis-
cover interesting properties of real systems. By running Shear
upon the Linux software RAID driver, we uncovered a poor
implementation of parity updates in its RAID-5 mode. By run-
ning Shear upon an Adaptec 2200S RAID controller, we find
that the card uses the unusual “left asymmetric” parity encod-
ing scheme [11].

Finally, we demonstrate the utility of the Shear tool through
two case studies. In the first, we show how administrators can
use Shear to verify the correctness of their configuration and to
determine whether a disk failure has occurred within the RAID
array. Second, we show how a file system can use knowledge
of the underlying RAID to improve performance. Specifically,
we show that a modified Linux ext2 file system that performs
stripe-aware writes improves sequential I/O performance on a
hardware RAID system by over a factor of two.

The rest of this paper is organized as follows. In Section 2
we describe Shear, illustrating its output on simpler simulated
configurations, and present more detailed results across many
different redundancy schemes in Section 3. Then, in Section 4,
we show the results of running Shear on software and hard-
ware RAID systems, and in Section 5, we show how Shear
can be used to improve storage administration as well as file
system performance. Finally, we discuss related work in Sec-
tion 6 and conclude in Section 7.

2. SHEAR

We now describe Shear, our software for identifying the
characteristics of a storage system containing multiple disks.
We begin by describing our assumptions about the underlying
storage system. We then present details about the RAID sim-
ulator that we use to both verify Shear and to give intuition
about its behavior. Finally, we describe Shear’s algorithms.

2.1 Assumptions

In this paper, we focus on characterizing block-based stor-
age systems that are composed of multiple disks. Specifically,
given certain assumptions, Shear is able to determine the map-

Disk 0 Disk 1 Disk 2 Disk 3
00 01 02 03|04 05 06 07|08 09 10 11|i2 13 14 15
16 17 18 19|20 21 22 23|24 25 26 27(28 29 30 31
Striping: RAID-0. Stripe size = Pattern size = 16

00 01 02 03]04 05 06 0708 09 10 11|12 13 14 IS
28 29 30 31|24 25 26 27}20 21 22 23(16 17 18 19

Striping: ZIG-ZAG. Stripe size = 16; Pattern size = 32

00 01 02 03)04 05 06 07|00 01 02 03|04 05 06 07
08 09 10 1112 13 14 15{08 09 10 1112 13 14 15

Mirroring: RAID-1. Stripe size = Pattern size = 8

00 0l 02 03|04 05 06 07|08 09 10 11|12 13 14 IS
12 13 14 15700 01 02 03|04 05 06 07|08 0% 10 11
16 17 18 19|20 21 22 23|24 25 26 27128 29 30 3l
28 29 30 31]16 17 18 1920 21 22 23|24 25 26 27

Mirroring: Chained Declustering. Stripe size = Pattern size = 16

00 01 02 0304 05 06 07|08 09 10 11|PP PP PP PP
16 17 18 19|20 21 22 23;P P P P12 13 14 15
32 33 34 35/P P P P |24 25 26 27|28 29 30 31
P P P P |36 37 38 39|40 41 42 43|44 45 46 47

Parity: RAID-5 Left Symmetric. Stripe size = Pattern size = 16

00 01 02 03|04 05 06 07|08 09 10 11|PP PP PP PP
12 13 14 15|16 17 18 19{P P P P |20 21 22 23
24 25 26 27| P P P P |28 29 30 31|32 33 34 35
P P P P |36 37 38 39|40 41 42 43|44 45 46 47

Parity: RAID-5 Left-Asymmetric. Stripe = 16; Pattern size = 48

Figure 1: Examples and Terminology. The picture depicts a
variety of 4-disk systems; the chunk size is set to 4 blocks. A
full pattern is indicated by italics for each redundancy scheme.

ping of logical block numbers to individual disks as well as the
disks for mirrored copies and parity blocks. Our model of the
storage system captures the common RAID levels 0, 1, and 5,
as well as variants such as chained declustering [9].

We assume a storage systern with the following properties.
Data is allocated to disks at the block level, where a block is the
minimal unit of data that the file system reads or writes from
the storage system. A chunk is the unit of data that is allocated
contiguously within a disk; we assume that the chunk size is
constant. A stripe is a set of chunks across each of D disks; a
stripe may include mirrored copies and/or parity blocks.

Shear assumes that the mapping of logical blocks to individ-
ual disks follows some repeatable, but unknown, pattern. The
pattern is the minimum sequence of blocks such that block
offset i within the pattern is always located on disk j; like-
wise, the mirror and parity blocks within the pattern, im and
ip, are always on disks kr and kjp, respectively. Note that in
some configurations, the pattern size is identical to the stripe
size (e.g., RAID-0 and -5 left-symmetric), whereas in others
the pattern size is larger (e.g., RAID-5 left-asymmetric).

Figure 1 illustrates a number of the layout configurations
that we analyze in this paper. Each configuration is performed
on four disks with a chunk size of four blocks, but we vary the
layout algorithm and the level of redundancy.

RAID systems typically contain significant amounts of mem-
ory for caching. Shear currently does not attempt to identify
the amount of storage memory or the policy used for replace-
ment; however, techniques developed elsewhere may be appli-
cable [20, 24]. Due to its use of random accesses and steady-
state behavior, Shear does operate correctly in the presence of
a cache, as long as the cache is small relative to the storage ar-
ray. With this assumption, Shear is able to initiate new read re-
quests that are not cached and perform writes that overwhelm

the capacity of the cache.

Our framework makes a few additional assumptions. First,
we assume that all of the disks are relatively homogeneous in
both performance and capacity. However, the use of random
accesses again makes Shear more robust to heterogeneity, as
described in more detail below. Second, we assume that Shear
is able to access the raw device; that is, it can access blocks
directly from the storage system, bypassing the file system and
any associated buffer cache. Finally, we assume that there is
little traffic from other processes in the system; however, we
are robust to small perturbations.

2.2 Simulation Framework

To demonstrate the correct operation of Shear, we have de-
veloped a storage system simulator. We are able to simulate
storage arrays with a variety of striping, mirroring, and parity
configurations; for example, we simulate RAID-0, RAID-1,
RAID-5 with left-symmetric, left-asymmetric, right-symmetric,
and right-asymmetric layouts {11], P+Q redundancy [3], and
chained declustering [9]. We can configure the number of
disks and the chunk size per disk. The storage array can also
include a cache.

The disks within the storage array are configured to perform
similarly to an IBM 9L.ZX disk. The simulation of each disk
within the storage array is fairly detailed, accurately modeling
seek time, a fixed rotation latency, track and cylinder skew-
ing, and a simple segmented cache. We have configured our
disk simulator through a combination of three methods [20]:
issuing SCSI commands and measuring the elapsed time, by
directly querying the disk, and by using the values provided
by the manufacturer. Specifically, we simulate a rotation time
of 6 ms, head switch time of 0.8 ms, a cylinder switch time of
1.8 ms, a track skew of 36 sectors, a cylinder skew of 84 sec-
tors, 272 sectors per track, and 10 disk heads. The seek time
curve is modeled using the two-function equation proposed by
Ruemmler and Wilkes [17]; for short seek distances (less than
400 cylinders) the seek time is proportional to the square root
of the cylinder distance (with endpoints at 0.8 and 6.0 ms),
and for longer distances the seek time is proportional to the
cylinder distance (with endpoints of 6.0 and 8.0 ms).

2.3 Algorithm

The basic idea of Shear is that by accessing sets of disk
blocks and timing those accesses, one is able to detect which
blocks are located on the same disks and thus infer basic prop-
erties of block layout, Intuitively, sets of reads that are “slow”
are assumed to be located on the same disk; sets of reads that
are “fast” are assumed to be located on different disks. Beyond
this basic approach, Shear employs a number of techniques
that are key to its correct operation:

o Randomness: The key insight employed within Shear is
to use random accesses to the storage device. Random ac-
cesses are important for a number of reasons. First, random
accesses increase the likelihood that each request will actually
be sent to a disk (i.e., is not cached or prefetched by the RAID).
Second, the performance of random access is dominated by
the number of disk heads that are servicing the requests; thus
Shear is able to more easily identify the number of disks in-
volved. Third, random accesses are less likely to saturate in-
terconnects and hide performance differences. Finally, ran-
dom accesses tend to homogenize the performance of slightly
heterogeneous disks: historical data indicates that disk band-

g8 ® -} PRI N : L) @I
2 Blocks (8 KB) 4 Blocks (16 KB) 6 Blocks (24 KB) 8 Blocks (32 KB) 10 Blocks (40 KB) 12 Blocks (48 KB) 14 Blocks (56 KB) 16 Blocks (64 KB)

Figure 2: Pattern Size Detection: Sample Execution. Given four disks and a chunk size of 4 blocks, the shaded blocks are read
as Shear increments the assumed pattern size. For compactness, the figure starts with an assumed pattern size of 2 blocks and
increases each time by 2 blocks. The figure shows all blocks at the given stride are read; in reality, only N random blocks are read.

width improves by nearly 40% per year, whereas seek time
and rotational latency improve by less than 10% per year [8];
as a result, disks from different generations are more similar
in terms of random performance than sequential performance.

o Steady-state: Shear measures the steady-state performance
of the storage system by issuing a large number of random
reads or writes (e.g., approximately 500 outstanding requests).
Examining steady-state performance ensures that the storage
system is not able to prefetch or cache all of the requests. This
is especially important for write operations that could be tem-
porarily buffered in a write-back RAID cache.

o Statistical inferences: Shear automatically identifies the
parameters of the storage system with statistical techniques.
Although Shear provides graphical presentations of the results
for verification, a human user is not required to interpret the
results. This automatic identification is performed by cluster-
ing the observed access times with k-means and x-means [15];
this clustering helps Shear determine which access times are
similar and thus which blocks are correlated.

o Safe operations: All of the operations that Shear per-
forms on the storage system are safe; most of the accesses are
read operations and those that are writes are performed safely,
by first reading the existing data into memory and then writing
out the same data. As a result, Shear can be run on storage sys-
tems containing live data and allows Shear to inspect RAIDs
that appear to have disk failures or other performance anoma-
lies over time.

Shear has four steps; in each step, a different parameter of
the storage system is identified. First, Shear determines the
pattern size. Second, Shear identifies the boundaries between
disks and the chunk size. Third, Shear extracts more detailed
information about the actual layout of blocks to disks. Finally,
Shear identifies the standard RAID levels.

Although Shear behaves correctly with striping, mirroring,
and parity, the examples in this section begin by assuming a
storage system without redundancy (i.e., mirroring or parity).
We show how Shear operates with redundancy with additional
simulations in Section 4. We now describe the four algorith-
mic steps in more detail.

2.3.1 Pattern Size

In the first step, Shear identifies the pattern size. This pat-
tern size, P, is defined as the minimum distance such that, for
all blocks B, B and B + P are located on the same disk.

Shear operates by testing for an assumed pattern size, vary-
ing the assumed size p from a single block up to a predefined
maximum (a slight but unimplemented refinement would sim-
ply continue until the desired output results). For each p, Shear
divides the storage device into a series of non-overlapping,
consecutive segments of size p. Then Shear randomly selects
N segments and issues a read to the same offset, or, within
each segment in parallel. This workload of random requests

RAID-0 4 Disks 16 KB Chunks

1.5

10

Time (s}

0.5 4

00

T T T T T ¥ T T T
0 32 64 88 128 160 192 224 256

Pattern Size Assumed (KB)
RAID--0 6 Disks 16 KB Chunks

Time (s}

¥ T T T T T T T T
0 32 64 96 128 160 192 224 256

Pattern Size Assumed (KB}
RAID-0 8 Disks 16 KB Chunks

Time (s}

05 - x j

- - m::ﬁw*mﬁ Bl
00 -

T 1 L T 1 H i T T
o 32 64 86 128 160 192 224 256

Pattern Size Assumed (KB)

Figure 3: Pattern Size Detection: Simulations. Pattern size
detection on RAID-0 with 16 KB chunks and 4, 6, and 8 disks.

is repeated R times and the completion times are averaged.
Increasing IV has the effect of concurrently examining more
segments on the disk; increasing R repeats this workload more
times with different random offsets.

The intuition behind this algorithm is as follows. By def-
inition, if p does not match the actual pattern size, P, then
the requests will be sent to different disks; if p is equal to P,
then all of the requests will be sent to the same disk. When
requests are sent to different disks, the bandwidth delivered by
the storage system is expected to be greater than that when all
requests are serviced by the same disk.

To illustrate this behavior, we consider a four disk RAID-0
array with a block size of 4 KB and a chunk size of 4 blocks
(16 KB); thus, the actual pattern size is 16 blocks (64 KB).
Figure 2 shows the location of the reads as the assumed pattern
size is increased for a sample execution. The top graph of
Figure 3 shows the corresponding timings when this workload
is run on the simulator.

The sample execution shows that when the assumed pattern
is 2, 4, or 6 blocks, the requests are sent to all disks; as a result,
the timings with a stride of 8, 16, and 24 KB are at a minimum.
The sample execution next shows that when the assumed pat-
tern is 8 blocks, the requests are sent to only two disks; as a
result, the timing at 32 KB is slightly higher. Finally, when the
assumed pattern size is 16 blocks, all requests are sent to the
same disk and a 64 KB stride results in the highest time.

Block 0 (0 KB) Block 1 (4 KB) Block 2 (8 KB) Block 3 (12KB) Block 4 (16 KB) Block 5(20KB) Block 6 (24 KB) Block 7 (28 KB)

Figure 4. Boundary Detection: Sample Execution Given four disks and 4-block chunks, the shaded blocks are read as Shear
increments the offset within the pattern. Although requests are shown accessing every pattern, only N are selected at random.

RAID-0 4 Disks 16 KB Chunks
15 -k ¥
w
5 10
E
= 05 -
00 -
T T T T T T T T T
0 8 16 24 3 40 48 56 64
Boundary Offset Assumad (KB)
RAID-0 8 Disks 8 KB Chunks
15
g
= 1.0 4
E
F 05+
00 -
T T T T T T T T T
0 8 16 24 32 40 48 56 64
Boundary Offset Assumed {KB)
RAID-0 16 Disks 4 KB Chunks
15
a 1.0 -
@
E
F 05
0.0

T T T T T T T T 1
0 8 16 24 32 40 48 56 64

Boundary Offset Assumad (KB)
RAID-0 Zig-Zag 6 Disks 8 KB Chunks

20 - #a+
1.0 -

0.5 -
0.0 -

Time (s}

T T T T T T T T T T T T T
0 8 16 24 32 40 48 56 64 72 80 B8 86

Boundary Otfset Assumad (KB}

Figure 5: Boundary Detection: Simulations. The first three
graphs use RAID-0 configurations: 4 disks with 16 KB chunks,
8 disks with 8 KB chunks, and 16 disks with 4 KB chunks. The
last graph uses the ZIGZAG striping configuration in which
alternating stripes are allocated in the reverse direction; this
has 6 disks and 8 KB chunks.

To detect pattern size automatically, Shear clusters the ob-
served completion times using a variant of the x-mean clus-
ter algorithm [15]; this clustering algorithm does not require
that the number of clusters be known a priori. Shear then se-
lects that cluster with the greatest mean completion time. The
correct pattern size, P, is calculated as the greatest common
divisor of the pattern size assumptions in this cluster.

To demonstrate that Shear is able to detect different pattern
sizes, we configure the simulator with six and eight disks in
the remaining two graphs of Figure 3. As desired, blocks with
a stride of 96 KB (i.e., 6 disks * 16 KB) and 128 KB (i.e.,
8 disks * 16 KB) are located on the same disk and mark the
length of the layout pattern.

2.3.2 Boundaries and Chunk Size

In the second step, Shear identifies the data boundaries be-
tween disks and the chunk size. A data boundary occurs be-
tween blocks a and b when block a is allocated to one disk and
block b to another. The chunk size is defined as the amount of
data that is allocated contiguously within a single disk.

Shear operates by assuming that a data boundary occurs at
an offset, ¢, within the pattern. Shear then varies ¢ from 0 to
the pattern size determined in the previous step. For each ¢,
Shear selects N patterns at random and creates a read request
for offset ¢ within the pattern; Shear then selects another N
random patterns and creates a read request at offset (c~1)%P.
All of the requests for a given c¢ are issued in parallel and the
completion times are recorded. This workload is repeated for
R trials and the completion times are averaged.

The intuition is that if ¢ does not correspond to a disk bound-
ary, then all of requests are sent to the same disk and the
workload completes slowly; when ¢ does correspond to a disk
boundary, then the requests are split between two disks and
complete quickly (due to parallelism).

To illustrate, we consider the same four disk RAID-0 array
as above, Figure 4 shows a portion of a sample execution of
the boundary detection algorithm and the top graph of Figure
5 shows the timings. The sample execution shows that when
c is equal to 0 and 4, the requests are sent to different disks;
for all other values of ¢, the requests are sent to the same disk.
The timing data validates this result in that requests with an
offset of 0 KB and 16 KB are faster than the others.

Shear automatically determines C by dividing the observed
completion times into two clusters using the K-Means algo-
rithm and selecting the cluster with the smallest mean comple-
tion time. The data points in this cluster correspond to the disk
boundaries; the RAID chunk size is calculated as the differ-
ence between these boundaries.

To show that Shear can detect different chunk sizes, we con-
sider a few striping variants. We begin with RAID-0 and a
constant pattern size (i.e., 64 KB); we examine both 8 disks
with 8 KB chunks and 16 disks with 4 KB chunks in the next
two graphs in Figure 5. As desired, the accesses are slow at
8 KB and 4 KB intervals, respectively. To further stress bound-
ary detection, we consider ZIGZAG striping in which alternat-
ing stripes are allocated in the reverse direction; this layout is
shown in Figure 1. The last graph shows that the first and last
chunks in each stripe are twice as large, as expected.

2.3.3 Pattern Layout

The previous two steps allow Shear to determine the pattern
size and the chunk size. In the third step, Shear infers which
chunks within the repeating pattern fall onto the same disk.

To determine which chunks are allocated to the same disk,
Shear examines in turn each pair of chunks, ¢1 and cz, in a
pattern. First, Shear randomly selects NV patterns and creates
read requests for chunk ¢; within each pattern; then Shear se-
lects another N patterns and creates read requests for chunk

w

<+
x ™ X
[« [~
=3 =
£ =
O o ©

o

[2 3 4 5
Chunk Chunk

Figure 6: Pattern Layout Detection: Simulations The first
graph uses a RAID-0 layout; the second graph uses ZIGZAG.
The points in the graph correspond to pairs of offsets within
a pattern that are accessed simultaneously. Lighter points in-
dicate the workload finished more slowly and therefore those
offsets reside on the same disk.

co within each pattern. All of the requests for a given pair are
issued in parallel and the completion times are recorded. This
workload is repeated over R trials and the results are averaged.
Shear then examines the next pair.

Figure 6 shows that these results can be visualized in an
interesting way. For these experiments, we configure our sim-
ulator to model both RAID-0 and ZIGZAG. Each point in the
graph corresponds to a (c1, c2) pair; light points indicate slow
access times and thus fall on the same disk. The diagonal line
in each graph corresponds to pairs where ¢; = c2 and thus
always fall on the same disk. In RAID-0, no chunks within a
pattern are allocated to the same disk; thus, no pairs are shown
in conflict. However, in ZIGZAG, the second half of each pat-
tern conflicts with the blocks in the first half, shown as the
second (upper-left to lower-right) diagonal line.

To automatically determine which chunks are on the same
disk, Shear divides the completion times into two clusters us-
ing K-means and selects the cluster with the largest mean com-
pletion time. Shear infers that the chunk pairs from this cluster
are on the same physical disk. This step also allows Shear to
infer the number of disks in the system (assuming they are not
simple mirrors of each other).

2.3.4 Redundancy

In the fourth step, Shear identifies how redundancy is man-
aged within the array. Generally, the ratio between write band-
width and read bandwidth is determined by how the disk array
manages redundancy.

Therefore, to detect how redundancy is managed, Shear com-
pares the bandwidth for random reads and writes. Shear cre-
ates IV block-sized random reads, issues them in parallel, and
times their completion. Shear then times N random writes is-
sued in parallel; these writes can be performed safely if needed,
by first reading that data from the storage system and then writ-
ing out the same values (with extra intervening traffic to flush
any caches). The ratio between the read and write bandwidth
is then compared to our expectations to determine the amount
and type of redundancy.

For storage arrays with no redundancy (e.g., RAID-0), the
read and write bandwidths are expected to be approximately
equal. For storage systems with a single mirror (e.g., RAID-
1), the read bandwidth is expected to be twice that of the write
bandwidth, since reads can be balanced across mirrored disks

but writes must propagate to two disks. More generally, the ra-
tio of read bandwidth to write bandwidth exposes the number
of mirrors. For systems with RAID-3 parity, write bandwidth
is roughly one fourth of read bandwidth, since a small write
requires reading the existing disk contents and the associated
parity, and then writing the new values back to disk.

One problem that arises in our redundancy detection algo-
rithm is that instead of solely using reads, Shear also uses
writes. Using writes in conjunction with reads is essential to
Shear as it allows us to observe the difference between the case
when a block is being read and the case when a block (and any
parity or mirrors) is being committed to disk.

Unfortunately, depending on the specifics of the storage sys-
tem under test, writes may be buffered for some time before
being written to stable storage. Some systems do this at the
risk of data loss (e.g., a desktop drive that has immediate re-
porting enabled), whereas higher-end arrays may have some
amount of non-volatile RAM that can be used to safely de-
lay writes that have been acknowledged. In either case, Shear
needs to avoid the effects of buffering and move to the steady-
state domain of inducing disk I/O when writes are issued.

The manner in which Shear achieves this is through a sim-
ple, adaptive technique. The basic idea is that during the re-
dundancy detection algorithm, Shear monitors write bandwidth
during the write phase. If write performance is “significantly”
faster than the previously observed read performance, Shear
concludes that some or all of the writes were buffered and not
written to disk. The number of writes is then doubled and the
write test reinitiated. Eventually, the writes will flood the write
cache and induce the storage system into the desired steady-
state behavior of writing most of the data to disk; Shear detects
this transition by observing the writes are no longer “signifi-
cantly” faster than reads (indeed, they are often slower).

The major weakness of our current approach is that setting
this threshold value is difficult. We explore this issue more
thoroughly via experimentation in Section 4.

2.4 Shear Overhead

We now examine the overhead of Shear, by showing how it
scales as more disks are added to the system. Figure 7 plots the
total number of I/Os that Shear generates during simulation of
a variety of disk configurations. On the x-axis, we vary the
configuration, and on the y-axis we plot the number of /Os
generated by the tool. Two plots of the same data are shown,
one with a log scale on the y-axis and one without.

From the graphs, we can make a few observations. First, we
can see that the total number of I/Os issued for simple patterns
such as RAID 0 and RAID 1 is low (in the few millions), and
scales quite slowly as disks are added to the system. Thus,
for these RAID schemes (and indeed, almost all others), Shear
scales well to much larger arrays.

Second, we can see that when run upon RAID-5 with the
left-asymmetric (I.A) layout, Shear generates many more I/Os
than with other redundancy schemes, and the total number of
1/Os does not scale as well. The reason for this poor scal-
ing behavior can be seen from the pattern layout detection bar,
which accounts for most of the I/O traffic. As discussed be-
fore, RAID-5 LA has quite a large pattern size; because the
pattern layout algorithm issues requests for all pairs of chunks
in a pattern, large patterns lead to large numbers of requests
(although many of these can be serviced in parallel); thus,
RAID-5 LA represents a worst case behavior for Shear. In-

Shear Overhead (Not Log Scale)

0.001

120
a Redundancy 2
S 100 Pattern Layout €23
g Boundary and Chunk e
< 80 Pattern Size =a
g 60 Total oo
«
5 40
&
0 20

0

4 8 16 4 8 16 4 8 16
RAID-0 RAID-1 RAID-5LA
Shear Overhead (Log Scale)
1000
2 Redundancy £33
] 100 Pattern Layout &=
g Boundary and Chunk sax
= 10 Pattern Size mmm
2 1 Total =
2
o1 »
& i
o 0.01 ",
4

4 8 16
RAID-5LA

8 16 4 B 16
RAID-0 RAID-1

Figure 7: Shear Overhead. The plots show the number of
I/Os generated by each phase of Shear. Three simulated re-
dundancy schemes are shown (RAID-0, RAID-1, and RAID-5
left-asymmetric), and for each scheme, three different number
of disks (4, 8, and 16). Each bar save the last in each group
plots the number of I/0s taken for a phase of Shear; the last
(rightmost) bar shows the total. In all experiments, the chunk
size is set to 32 KB.

deed, in its current form, Shear would take roughly a few days
to complete the pattern layout detection for the 16 disk RAID-
5 LA. However, we believe we could reduce this by a factor of
ten by issuing fewer disk I/Os per pairwise trial, thus reducing
run time but decreasing confidence in the pattern layout result.

3. REDUNDANCY SIMULATIONS

- In this section, we describe how Shear handles storage sys-
tems with redundancy. We begin by showing results for sys-
tems with parity, specifically RAID-5 and P+Q. We then con-
sider mirroring variants: RAID-1 and chained declustering.

In all simulations, we consider a storage array with six disks
and an 8 KB chunk size. For the purpose of comparison, we
present a base case of RAID-0 in Figure 8.

3.1 Parity

Shear handles storage systems that use parity blocks as a
form of redundancy. To demonstrate this, we consider four
variants of RAID-5 as well as P+Q redundancy [3].

RAID-5: RAID-5 calculates a single parity block for each
stripe of data; across stripes, the location of the parity block is
rotated between disks. RAID-5 can have a number of different
layouts of data and parity blocks to disks, such as left symmet-
ric and asymmetric, and right symmetric and asymmetric [11].
Left-symumetric is known to deliver the best bandwidth [11],
and is the only layout in which the pattern size is equal to the
stripe size (i.e., the same as for RAID-0); in the other RAID-5
layouts, the pattern size is equal to D — 1 times the stripe size.

The pattern size results for the four RAID-5 systems are
shown in Figure 9. The first graph shows that the left-symmetric
pattern size is 48 KB, which is identical to that of RAID-0; the
other three graphs show that left-asymmetric, right-symmetric,

RAID--0 6 Disks 8 KB Chunks

20~
15 4
10 -
05 -
0.0 -

Time {5)

T T T T T T T T T T T T T
o 8 1 24 32 40 48 56 64 72 80 88 96

Pattern Size Assumed (KB}
RAID-0 6 Disks 8 KB Chunks

20+
1.5 -
10 +

05 -
00

Time {s}

T T T T T T T T T T J T
0 4 8 12 16 20 24 28 32 36 40 44

Boundary Ofiset Assumed (KB)
Figure 8: Pattern Size and Boundary Detection: RAID-0.
We simulate RAID-0 with 6 disks and 8 KB chunks. The first
graph confirms that the pattern size is 48 KB; the second graph
confirms that the chunk size is 8 KB.

and right-asymmetric have longer pattern sizes of 240 KB (i.e.,
30 chunks), as expected. Note that despite the apparent noise
in the graphs, the X-means clustering algorithm is able to cor-
rectly identify the pattern sizes. The chunk size algorithm does
not behave differently for RAID-5 versus RAID-0; therefore
we omit those results.

Figure 10 shows the layout of data chunks within a pattern

to disks for RAID-5. Note that each of the four RAID-5 vari-
ants leads to a very distinct visual pattern. As before, points
that are light correspond to block pairs that are slow, and are
assumed to be located on the same disk; points that are dark are
located on different disks. For example, with left-asymmetric,
chunks 0, 5, 10, 15, 20, and 25 all fall on the same disk. With
this knowledge, Shear is able to identify if the storage system
is using one of these standard RAID-5 variants and can calcu-
late the number of disks.
P+Q: To demonstrate that Shear can handle other parity schemes,
we show the results of detecting pattern size and chunk size for
P+Q redundancy (RAID Level 6). In this parity scheme, each
stripe has two parity blocks calculated with Reed-Solomon
codes; otherwise, the layout looks like left-symmetric RAID-
5. In Figure 11, the first graph shows that the pattern size
of 48 KB is detected; the second graph shows that the chunk
size of 8 KB. We omit the graph showing the layout of blocks
within a pattern since it is identical to RAID-0.

3.2 Mirroring

Using the same algorithms, Shear can also handle storage
systems that contain mirrors. However, the impact of mirrors
is much greater than that of parity blocks, since read traffic can
be directed to mirrors. A key assumption we make is that reads
are balanced across mirrors; if reads are sent to only a primary
copy, then Shear will not be able to detect the presence of mir-
rored copies. To demonstrate that Shear handles mirroring, we
consider both simple RAID-1 and chained declustering.
RAID-1: The results of running Shear on a six disk RAID-
1 system are shown in Figure 12. Note that the pattern size
in RAID-1 is exactly half of that in RAID-0, given the same
chunk size and number of disks. The first graph shows how
the RAID-1 pattern size of 24 KB is inferred. As Shear reads

RAID-S Left Symmetric 6 Disks 8 KB Chunks

2.0 -
w15+
E 10~
=
05 ~
0.0
T T T T T T T T T T T T T
0 8 16 24 32 40 4B 56 64 72 B0 88 98
Pattern Size Assumed {KB)
RAID-5 Left Asymmetric 6 Disks 8 KB Chunks
20
& 154
o
E 10 -
=
05 ~
B S s e S S LA B R S S N
0 32 64 56 128 182 256 320 384 448
Pattern Size Assumed (KB}
RAID-5 Right Symmetric 6 Disks 8 KB Chunks
20 -
B 15
g 104
=
05 -
00 A e T T T T T T
0 32 64 96 128 182 256 320 384 448
Pattern Size Assumed (KB)
RAID-5 Right Asymmetric 6 Disks 8 KB Chunks
20 -
3 15
@
E 1.0
=
05
00 -

0 32 64 96 128 182 256 320 384 448
Pattern Size Assumed (KB)
Figure 9: Pattern Size Detection: RAID-5 We simu-
late RAID-5 with Left-Symmetric, Left-Asymmetric, Right-
Symmetric, and Right-Asymmetric layouts, respectively. Each
configuration uses 6 disks and a chunk size of 8 KB. The pat-
tern size is 48 KB for Left-Symmetric and otherwise 240 KB.

from different offsets throughout the pattern, the requests are
sent to both mirrors. As desired, the worst performance occurs
when the request offset is equal to the real pattern size, but in
this case, the requests are serviced by two disks instead of one.
This is illustrated by the fact that the worst-case time for the
workload on RAID-1 is exactly half of that when on RAID-0
(i.e., 1.0 instead of 2.0 seconds).

The second graph in Figure 12 shows how the chunk size

of 8 KB is inferred. Again, as Shear tries to find the boundary
between disks, requests are sent to both mirrors; Shear now
automatically detects the disk boundary because the workload
time increases when requests are sent to two disks instead of
four disks. Since the mapping of chunks to disks within a sin-
gle pattern does not contain any conflicts, we omit the pattern
layout graph (i.e., it is identical to that for RAID-0).
Chained Declustering: Chained declustering is a redundancy
scheme in which disks are not exact mirrors of one another;
instead, each disk contains a primary instance of a block as
well as a copy of each block from its neighbor. The results of
running Shear on a six disk system with chained declustering
are shown in Figure 13.

The first graph shows that a pattern size of 48 KB is de-
tected, as desired. As with RAID-1, each read request can be
serviced to two disks, and the pattern size is identified when all

Figure 10: Pattern Layout Detection: RAID-5. We simu-
late Left-Symmetric, Left-Asymmetric, Right-Symmetric, and
Right-Asymmetric, respectively, with 6 disks.

RAID-6 (P+Q) 6 Disks 8 KB Chunks

20 -
15 -
05 M/\j\«*’v»/»
¥ 1 T ¥ T 1 T T 1 T T T T

0.0

Time (s}
b=t
t

0 8 i 24 32 4D 48 56 64 72 80 88 96

Pattern Size Assumed (KB)
RAID-6 (P+Q) 6 Disks 8 KB Chunks

2.0 -
1.5
10 -

05 -
00 -

Time {s}

T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 36 4D 44

Boundary Offsat Assumed (KB)

Figure 11; Pattern Size and Boundary Detection: P+Q Sim-
ulated results for P+Q redundancy (RAID-6) with 6 disks and
a chunk size of 8 KB. The first graph confirms that the pattern
size of 48 KB is detected; the second graph shows the chunk
size of 8 KB is detected.

of the requests are sent to only two disks in the system. Note
that chained declustering pattern size is twice that of RAID-1
since each disk does contain a unique set of data blocks.

The second graph in Figure 13 shows that four block chunks
are again detected. However, the ratio between best and worst-
case performance differs in this case from RAID-0 and RAID-
1; in chained declustering the ratio is 2:3, whereas in RAID-0
and RAID-1, the ratio is 1:2. With chained declustering, when
adjacent requests are located across a disk boundary, those re-
quests are serviced by three disks (instead of four with RAID-
1); when requests are located within a chunk, those requests
are serviced by two disks.

The mapping conflicts with chained declustering are also
interesting, as shown in the third graph in Figure 13. With
chained declustering, a pair of chunks can be located on two,
three, or four disks; as a result, there are three distinct per-
formance regimes. As shown in the figure, this new case of
three shared disks occurs for chunks that are cyclically adja-
cent (e.g., chunks 0 and 1).

4. RESULTS

In this section, we present results of applying Shear to two
different real platforms. The first is the Linux software RAID
device driver, and the second is an Adaptec 2200S hardware
RAID controller. To understand the behavior of Shear on real
systems, we ran it across a large variety of both software and
hardware configurations, varying the number of disks, chunk
size, and redundancy scheme. Most results were as expected,

RAID-1 6 Disks B KB Chunks

12
1.0 -
08 -
06 -
04
02 -
0.0 -

Time {s)

T T T T T T T T T T 1 T T
0 4 8 12 16 20 24 28 32 36 40 44 48

Pattern Size Assumad (KB)
RAID-1 6 Disks 8 KB Chunks

12

06 -
0.4
0.2
00 -

Time {s)
o =
[-- N -~]
| -

Boundary Offset Assumed (KB)
Figure 12: Pattern Size and Boundary Detection: RAID-1
Simulated results for RAID-1 with 6 disks and a chunk size of
8 KB. The first graph confirms that the pattern size of 24 KB
is detected; the second graph shows the chunk size of 8 KB is
detected.

others revealed slightly surprising properties of the systems
under test (e.g., the RAID-5 mode of the hardware controller
employs left-asymmetric parity placement). Due to space con-
straints, we concentrate here on the most challenging aspect of
Shear: redundancy detection.

We now study redundancy detection across both the soft-

ware and hardware RAID systems. Figure 14 plots the read/write

ratio across a number of different configurations. Recall that
the read/write ratio is the key to differentiating the redundancy
scheme that is used; for example, a ratio of 1 indicates that
there is no redundancy, a ratio of 2 indicates a mirrored scheme,
and a ratio of 4 indicates a RAID-5 parity encoding.

As we can see from the figure, Shear’s redundancy detec-
tion does a good job of identifying which scheme is being
used. There are two other points to make. First, note the
performance of software RAID-5 on 5 disks; instead of the
expected read/write ratio of 4, we instead measure a ratio of 5.
Further inspection of the source code revealed the cause: the
Linux software RAID controller does not implement the usual
RAID-5 “small write” optimization of reading the old block
and parity, and then writing the new block and parity. Instead,
it will read in the entire set of old blocks and then write out the
new block and parity. Second, the graph shows how RAID-5
with 2 disks and a 2-disk mirrored system are riot distinguish-
able; at two disks RAID-5 and mirroring converge.

However, we found two aspects of the redundancy detec-
tion that had to be fine-tuned to result in a robust detection
algorithm. The first of these was the size of the region over
which the test was run. Figure 15 plots the read/write ratio of
a single disk as the size of the region is varied.

As we can see from the figure, the size of the region over
which the test is conducted can strongly influence the outcome
of our tests. For example, with the Quantumn disk, the desired
ratio of roughly 1 is achieved only for very small region sizes,
and the ratio grows to almost 2 when a few GB of the disk are
used. We believe the reason for this undesirable inflation is the
large settling time of the Quantum disk. Thus, we concluded
that the redundancy detection algorithm should be run over as
small of a portion of the disk as possible.

Unfortunately, at odds with the desire to run over a small

Chained Declustaring 6 Disks 8 KB Chunks

12

]
os | A I
06
04 st Srrbens

B
©
£
[
02
00 T 1 1 T 1 T ¥ T T i L] T T
[} 8 16 24 32 40 48 56 64 72 8D 88 96
Pattern Size Assumad (KB)
Chained Declustaring 6 Disks 8 KB Chunks
1.2
10
@ 08
E 06
F 04 -
02+
00

Boundary Ofiset Assumad (KB}

Figure 13: Pattern Size, Boundary, and Pattern Layout De-
tection: Chained Declustering Simulated results for chained
declustering with 6 disks and a chunk size of 8 KB. The first
graph confirms that the pattern size of 48 KB is detected; the
second graph shows the chunk size of 8 KB is detected. The
third graph shows that two neighboring chunks are mirrored
across a total of three disks; this uniquely identifies the pattern
layout of chained declustering.

Read-Write ratios

Software RAID =3
Hardware RAID mam

RW
[N A

2 3 4 4
RAID-0 RAID-1

3 4
RAID-5LA

Figure 14: Redundancy Detection. The figure plots the ratio
of reads to writes over a variety of disk configurations. The
x-axis varies the configuration: RAID-0, RAID-1, or RAID-5
(LA), with either software or hardware RAID.

portion of the disk is the possible presence of a write-back
cache within the RAID. The Adaptec card that we have can be
configured to perform write buffering; thus, to the host, these
writes complete quickly, and are sent to the disk at some later
time. Note that the presence of such a buffer can affect data
integrity (depending on if the buffer is non-volatile).

Because the redundancy detection algorithm needs to be
able to issue write requests to disk to compare with read re-
quest timings, Shear needs to circumvent caching effects. Shear
does so with a simple adaptive scheme that issues a fixed num-
ber W write requests, times them, and then compares them to
the performance of read requests. If the write requests are sig-
nificantly faster, then Shear increases W by a fixed amount,
and repeats the process. At some point, the write bandwidth
drops, indicating that we have successfully moved the RAID
system into the steady-state of writing data to disk instead of
to memory, and thus a more reliable result can be generated.

The Effect of Region Size

2 25 T T
[} 2 | Quantum Atlas —+—)
f, IBM 9LZX --osere- B
£ 157} - - g XK Mo e Bk |
S sl
% 05} 1
@ L 1
4 0
10 100 1000 10000

Region Size (MB)

Figure 15: Sensitivity to Region Size. The figure plots the
ratio of a series of random read requests as compared to a
series of random write requests. The x-axis varies the size of
the region over which the experiment was run. In each run,
500 sector-sized read or write requests are issued. Lines are
plotied for two different disks: a Quantum Atlas 10K 18WLS
and an IBM 9LZX.

The Effect of Write Buffering
20 7 T

Bandwidth (MB/s)
3

0) i
0.1 1 10 100

Amount Written (MB)
Figure 16: Avoiding the Write Buffer. The figure plots
the performance of writes on top of the RAID-5 hardware
with write-buffering enabled. The x-axis varies the number
of writes that are issued in the test, and the y-axis plots the
achieved bandwidth.

5. CASE STUDIES

In this section, we illustrate a few of the benefits of using
Shear. We begin by showing how Shear can be used to detect
RAID configuration errors and disk failures. We then give an
example of how the storage system parameters uncovered by
Shear can be used to better tune the file system; specifically,
we show how the file system can improve sequential band-
width by writing data in full stripes.

5.1 Shear Management

One of our intended uses of Shear is as an administrative
utility to discover configuration, performance, and safety prob-
lems. Figure 17 shows how a failure to identify a known pat-
tern may suggest a storage misconfiguration. The upper set
of graphs are the expected patterns for RAID-0 and the four
common RAID-5 levels. The lower are the resulting patterns
when the disk array is misconfigured such that two logical par-
titions actually reside on the same physical disk. These graphs
were generated using disk arrays comprised of four logical
disks built using Linux software RAID and the IBM disks. Al-
though the visualization makes it obvious, manual detection is
not necessary; Shear automatically determines that these pat-
terns do not match any existing known patterns.

Shear can also be used to detect unexpected performance
heterogeneity among disks. In this next experiment, we run
Shear across a range of simulated heterogeneous disk config-
urations; in all experiments, one disk is either slower or faster
than the rest. Figure 18 shows results when run upon a variety
of heterogeneous disk configurations.

As one can see from the figure, a faster or slower disk makes
it presence known in obvious ways in both the pattern layout

Figure 17: Misconfigured Patterns. For levels 0, 5-LA, 5-
LS, 5-RA, 5-LS, the upper graph shows the pattern when the
RAID of IBM disks is correctly configured and the lower shows
the pattern when two logical partitions are misconfigured such
that they are placed on the same physical device.

RAID-D 6 Disks 8 KB Chunks

25 -
20

18 W
10 -

05
00 -

Time (s)

T T T T T T T T T T T T
0 4 8 12 16 20 24 28 32 3B 40 44

Boundary Ofiset Assumed (KB)

Figure 18: Detecting Heterogeneity. The row of figures shows
the results of the pattern layout algorithm on four different
simulated disk configurations. In each configuration, a single
disk has different capability than the others. A fast rotating,
slow rotating, fast seeking, and slow seeking disk is depicted
in each of the figures. The bottom figure shows the output of
the boundary detection algorithm run upon the configuration
with the fast rotating disk.

graphs as well as in the boundary detection output (the pattern
size detection is relatively unaffected). Thus, an administrator
could view these outputs and clearly observe that there is a se-
rious and perhaps unexpected performance differential among
the disks and take action to correct the problem.

Finally, the boundary detection algorithm in Shear can be
used to identify safety hazards by determining when a redun-
dant array is operating in degraded mode. Figure 19 shows the
boundary detection results for a ten disk software RAID sys-
tem using the IBM disks. The upper graph shows the boundary
detection correctly working after the array was first built. The
lower graph shows how boundary detection is changed after
we physically removed the fifth disk from the array. Recall
that boundary detection works by guessing possible bound-
aries and timing sets of requests on both sides of the bound-
ary. Vertical downward spikes should be half the height of the
plateaus and indicate that the guessed boundary is correct be-
cause the requests are serviced in parallel on two disks. The
plateaus are false boundaries in which all the requests on both
sides of the guessed boundary actually are incurred on just one
disk. The lower graph identifies that the array is operating in
degraded mode because the boundary points for the missing
disk disappear, and its plateau is higher due to the extra over-
head of performing on-the-fly reconstruction.

RAID-5 Left Symmetric 10 Disks 8 KB Chunks

1.5 €3
a
o 10 -
g
0.5 =
08 A T T T T T T T T T T
0 8 16 24 32 40 48 &6 64 72 80
Boundary Offset Assumed (KB}
RAID-5 Laft Symmatric 10 Disks 8 KB Chunks
20+
E 15 A % + +
g 10
=
05 -
00 ~

¥ T T T T T T T T T T
0 8 16 24 32 40 48 56 64 72 80

Boundary Ofiset Assumad (K8)
Figure 19: Detecting Failure, Using the boundary detection
algorithm, Shear can discover failed devices within a RAID
system. The upper graph shows the initial boundary detection
results collected after building a 10 disk software RAID system
using the IBM disks. The lower graph is for the same system
after a fault was induced on one of the disks.

The Effects of Stripe-Alignment

alignecj —— ' : h
not aligned ---x—

T

ittt

Bandwidth (MB/s)

0 500 1000 1500 " 2000
Average File Size (KB)

Figure 20: Benefits of Stripe Alignment. The figure plots
the bandwidth of a series of file creations of an average size,
as varied along the x-axis. Two variants are shown: one in
which the file system generates stripe-sized writes versus de-
fault Linux. The workload consists of creating 100 files. The
x-axis indicates the mean size of the files, which are uniformly
distributed between 0.5 x mean and 1.5 X mean.

5.2 Shear Performance

The striping unit within a disk array can have a large impact
on performance [4, 2]. This effect is especially important for
RAID-5 storagé, since writes of less than a complete stripe
require additional I/O. Previous work has focused on selecting
the optimal striping unit for a given workload. We instead
show how the file system can adapt the size and alignment of
its writes as a function of a given striping unit.

The basic idea is that the file system should adjust its writes
to be stripe aligned as much as possible. This optimization can
occur in multiple places; we have modified the Linux 2.4 de-
vice scheduler so that it properly coalesces and/or divides in-
dividual requests such that they are sent to the RAID in stripe-
sized units. This modification is very straight-forward: only
about 20 lines of code were added to the file system.

This very simple change to make the file system stripe-aware
leads to tremendous performance improvements. The exper-
iments shown in Figure 20 are run on the 4-disk hardware
RAID-5 described previously, with caching disabled. These
results show that a stripe-aware file systemn noticeably improves
bandwidth for moderately-sized files and improves bandwidth
for larger files by over a factor of two.

6. RELATED WORK

The idea of providing software to automatically uncover the
behavior of underlying software and hardware layers has been
explored in a number of different domains. Some of the earli-
est work in this area targeted the memory subsystem; for ex-
ample, by measuring the time for reads of different amounts
and with different strides, Saavedra and Smith reveal many in-
teresting aspects of the memory hierarchy, including details
about both caches and TLBs [18]. Similar techniques have
been applied to identify aspects of a TCP protocol stack [7,
13], to determine processor cycle time [22], and CPU schedul-
ing policies [16].

The work most related to ours is that which has targeted
characterizing a single disk within the storage system. For
example, in [24], Worthington et al. identify various charac-
teristics of disks, such as the mapping of logical block num-
bers to physical locations, the costs of low-level operations,
the size of the prefetch window, the prefetching algorithm, and
the caching policy. Later, Schindler ef al. build a similar but
more portable tool to achieve similar ends [20]. We plan to ex-
plore the use of such low-level single-disk tools in conjunction
with Shear. In this scenario, Shear first exposes the boundaries
between disks; a lower-level tool could then be used to under-
stand more specific aspects of each disk.

Evaluations of storage systems have usually focused on mea-
suring performance for a given workload and not on uncover-
ing underlying properties [1, 10, 12]. One interesting syn-
thetic benchmark adapts its behavior to the underlying storage
system [5; this benchmark examines sensitivity to parameters
such as the size of requests, the ratio of reads versus writes,
and the amount of concurrency.

Finally, the idea of using detailed storage-systems knowl-
edge within the file system has been investigated, usually for
systems composed of a single disk. For example, Schindler et
al. investigate the concept of track-aligned file placement [21];
in this work, a modified file system allocates medium-sized
files within track boundaries to avoid head switches and thus
deliver low-latency access to files.

7. CONCLUSIONS

We have presented Shear, a tool that automatically detects
characteristics of modern storage arrays. The key to Shear is
its use of randomness combined with statistical techniques to
deliver reliable detection. We have verified that Shear works
as desired through a series of simulations, and have subse-
quently applied Shear to both software and hardware RAID
systems, revealing properties of both. Finally, we have shown
how Shear could be used by both administrators, to better un-
derstand their storage arrays, and the file system itself, to im-
prove performance by tuning writes to the characteristics of
the RAID underneath.

8. REFERENCES

[T Bray. The Bonnie File System
http://www.textuality.com/bonnie/.

[2] P. Chen and E. K. Lee. Striping in a RAID Level 5 Disk Array. In SIG-
METRICS ’95, May 1995.

{3] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: high-performance, reliable secondary storage. ACM Computing
Surveys, 26(2):145-185, June 1994.

[4] P. M. Chen and D. A. Patterson. Maximizing Performance in a Striped
Disk Array. In ISCA *90, pages 322-331, June 1990.

Benchmark.

fél
7
{8
(91
[10]

[t1]

12
{13]

[14]
[15]
[16]
[m

[18]

(19]
[20]

{21]

P. M. Chen and D. A. Patterson. A New Approach to /O Performance
Evaluation-Seif-Scaling I/O Benchmarks. In SIGMETRICS *93, 1993.
EMC Corporation. Symmetrix Enterprise Information Storage Systems.
http://www.emc.com, 2002,

T. Glaser. TCP/IP Stack Fingerprinting Principles.
http://www.sans.org/ewlook/resources/IDFAQ/TCP fingerprinting.htm.
E. Grochowski. Emerging Trends in Data Storage on Magnetic Hard Disk
Drives. Datatech, September 1999.

H.-1. Hsiao and D, DeWitt. Chained Declustering: A New Availability
Strategy for Multiprocessor Database Machines. In ICDE 90, 1990,

J. Katcher. PostMark: A New File System Benchmark. Technical Report
TR-3022, Network Appliance Inc., Oct 1997.

E.K.Lee and R. H, Katz. Performance Consequences of Parity Placement
in Disk Arrays. In Proceedings of the 4th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS 1V), pages 190-199, Santa Clara, California, Apri} 1991,

W. Norcutt. The I0zone Filesystern Benchmark. http://www.iozone.org/.
1. Padhye and S. Floyd. ldentifying the TCP Behavior of Web Servers. In
SIGCOMMOI, June 2001.

D. Patterson, G. Gibson, and R. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). In SIGMOD ’88, pages 109-116, June 1988.
D. Pelleg and A. Moore. X-means: Extending K-means with Efficient Es-
timation of the Number of Clusters. In ICML '00, 2000.

I. Regehr. Inferring Scheduling Behavior with Hourglass. In FREENIX
'02, June 2002.

C. Ruemmier and J. Wilkes. An Introduction to Disk Drive Modeling,
IEEE Computer, 27(3):17-28, March 1994.

R. H. Saavedra and A. J. Smith, Measuring Cache and TLB Performance
and Their Effect on Benchmark Runtimes. JEEE Transactions on Comput-
ers, 44(10):1223-1235, 1995.

S. Savage and J. Wilkes. AFRAID — A Frequently Redundant Array of
Independent Disks. In USENIX '96, pages 27-39.

J. Schindler and G. Ganger. Automated Disk Drive Characterization. Tech-
nical Report CMU-CS-99-176, CMU, November 1999.

J. Schindler, J. L. Griffin, C. R. Lumb, and G. R. Ganger. Track-aligned
Extents: Matching Access Patterns to Disk Drive Characteristics. In FAST
’02, Monterey, California, January 2002,

C. Staelin and L. McVoy, mhz: Anatomy of a micro-benchmark. In Pro-
ceedings of the USENIX Annual Technical Conference (USENIX ’98),
pages 155-166, New Orleans, Louisiana, June 1998.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID
Hierarchical Storage System. ACM Transactions on Computer Systems,
14(1):108-136, February 1996.

B. L. Worthington, G. R. Ganger, Y. N. Patt, and J. Wilkes. On-Line Ex-
traction of SCSI Disk Drive Parameters. In SIGMETRICS '95.

