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Abstract

Network abuse monitoring (eg., for intrusions and de-
nial of service attacks) is an important component in se-
curity architecture. Monitoring unused IP addresses of-
fers opportunities to significantly improve perspective on
abuse activity without many of the problems associated
with typical network intrusion detection and firewall sys-
tems. In this paper, we describe a scalable architecture
for an IP traffic monitoring system called an Internet Sink
(iSink). The objective of this system is to measure abuse
activity on unused or “dark” IP addresses in an efficient
and scalable fashion. A distinguishing feature of an iSink
in contrast to traditional intrusion detection systems or
firewalls, is that it includes a stateless active component
that generates response packets to incoming traffic. This
gives the iSink an important advantage in discriminating
between different types of attacks (through examination
of the response payloads). In the second part of the pa-
per, we report a case study of live deployment and perfor-
mance results of our iSink implementation in controlled
laboratory experiments. The case study demonstrates the
utility of iSink by revealing interesting network phenom-
ena such as periodic probing and SMTP hot-spots. The
laboratory results demonstrate the efficiency and scala-
bility of our implementation.

1 Introduction

Network abuse in the form of intrusions by port scan-
ning or self propagating worms is a significant, on-going
threat in the Internet. Clever new scanning methods are
constantly being developed to thwart identification by
standard network intrusion detection systems (NIDS).
Work by Staniford ef al. [32] and by Moore et al. [23]
project and evaluate the magnitude of the threat of new
classes of worms and the difficulty of containing such
worms. The conclusions of both papers is that address-
ing these threats presents the research community with
serious challenges. An important step in protecting net-
works and systems against malicious intrusions is to im-
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prove measurement and detection tools.

One means for improving the perspective and effec-
tiveness of detection tools is to monitor both used and
unused address space in a given network. Monitoring
unused addresses is not typically done since packets to
those addresses are often dropped by a network’s gate-
way or border router. However, tracking packets des-
tined for unused addresses offers a number of important
advantages. First, other than misconfiguration, packets
destined to unused addresses are almost always mali-
cious, thus false positives - a significant problem in NIDS
- are minimized. Second, unlike NIDS that monitor traf-
fic passively, a detection tool that monitors unused ad-
dresses can actively respond to connection requests, thus
enabling the capture of data packets with attack-specific
information. Third, a detection tool that monitors unused
address space can masquerade in different ways, thus of-
fering the possibility of slowing attacks (so-called tarpit-
ting). The possibility for unused address space moni-
toring is perhaps most significant in class A and class
B networks, where the number of unused addresses is
often substantial. The idea of monitoring unused ad-
dress space has been adopted in a number of different
studies and on-going projects including the DOMINO
project [37], Honeyd [13], the Honeynet project [34],
LaBrea tarpits [17] and in the backscatter analysis con-
ducted by Moore et al. in [24].

This paper makes two contributions. The first is our
description of a new system architecture and implemen-
tation for measuring IP packet traffic. An Internet Sink
or iSink, is a system we have developed for monitoring
abuse traffic by both passive and active means. An iSink
falls in a unique design space including capabilities of
both high speed monitoring systems and flexible routing
systems. The key design requirements of an iSink are
extensibility of features and scalability of performance
since it is meant to be used to monitor potentially large
amounts of address space.

Our design of an iSink includes capabilities to trace
packets, to actively respond to connection requests, to
masquerade as several different application types, to fin-
gerprint source hosts and to sample packets for increased
scalability. The passive component of our implementa-
tion (which we call Passive Monitor) is based on Ar-



gus [4] - a freely available IP flow measurement tool.
The active component of our implementation (which we
call Active Sink) is based on the Click modular router
platform [15]. Click is open source software designed to
be extensible and to provide high performance on com-
modity hardware. Click was a natural choice for our
implementation since it directly addresses our design re-
quirements. Development with Click required us to write
modules for each of iSink’s active capabilities. Our fo-
cus in this regard was on developing a set of “respon-
ders” which generate response packets for connections
targeted at different network services. The resulting im-
plementation was deployed and tested to assess its per-
formance capabilities.

The second contribution of this paper is a measure-
ment and evaluation case study of our iSink implementa-
tion. We use results from the case study to demonstrate
the scale and diversity of traffic characteristics exposed
by iSink based monitoring. These results provide valida-
tion for our architectural requirements and rationale for
subsequent evaluation criteria. We deployed the iSink in
situ to monitor four class B address spaces within our
campus for a period of 4 months and one entire class A
address space to which we have access. From these data
sets we report results that demonstrate the iSink’s capa-
bilities and the unique information that can be extracted
from this measurement tool. One example is that traffic
characteristics from our class B monitor are substantially
different from those on the class A monitor. This sug-
gests that the location of the iSink in IP address space is
important. Another example is the identification of peri-
odic probing in our class A monitor which we were able
isolate to the LovGate worm [1]. We also uncover an
SMTP hot-spot within the class A network that has been
unreported prior to our study. We were able to attribute
this anomaly to misconfigured wireless routers from a
major vendor. Finally, we assess basic performance of
the iSink in controlled laboratory experiments, and show
our implementation to have a highly scalable active re-
sponse capability.

These results demonstrate that our iSink architecture
is able to support a range of capabilities and to provide
scalable performance. The results also demonstrate that
Active Sinks are a simple and very useful way to extend
basic intrusion monitoring capabilities in individual net-
works or in the Internet as a whole.

2 Related Work

The notion of monitoring unused IP addresses as a
source of information on intrusions has been in use
in various forms for some time. While we coin
the terms “Internet Sink” and “iSink”, these moni-
tors have variously been referred to as “Internet Sink-
holes” [10], “Blackhole Routers” [11] and “Network

Telescopes” [20]. Traditional Honeypots are defined as
systems with no authorized activity that are deployed
with the sole purpose of monitoring intrusions. Hon-
eynets are network of honeypots (typically set up as
VMware hosts). Their deployment is often associated
with significant managment and scalability challenges
[34]. The systems that are perhaps most similar to the
Active Sink have been developed in the Honeyd and
Labrea Tarpit projects [13, 17]. Active Sink’s design dif-
fers in significant ways from these two systems. Much
like the Active Sink, Honeyd is designed to simulate vir-
tual honeypots over unused IP addresses, with the poten-
tial for a diverse set of interactive response capabilities.
However, Honeyd’s stateful active responder design has
significant scalability constraints that make it inappropri-
ate for monitoring large IP address ranges which is one
of iSinks primary objectives. LaBrea’s primary design
objective is to slow the propagation of Internet worms
(i.e., a sticky honeypot), and as such, it lacks the rich-
ness of interaction capabilities that is required to gather
important response information. In addition to a richer
response set, our Active Sink’s performance greatly ex-
ceeds that of LaBrea as will be seen in Section 5.

There are a number of empirical studies of intrusion
and attack activity that motivate and inform our work.
In [38], the authors explore the statistical characteris-
tics of Internet intrusion activity from a global perspec-
tive. That study is based on the use of intrusion logs
from NIDS and firewalls located broadly across the In-
ternet. Moore et al. examined the global prevalence
of denial-of-service attacks using backscatter analysis
in [24]. That work was conducted by gathering packet
traces from a relatively quiescent class A network. Char-
acteristics of the Code Red worm have been analyzed
in a number of studies. In [22] the authors investigate
the details of the Code Red outbreak and provide im-
portant perspective on the speed of worm propagation.
The authors do a similar post-mortem analysis on the re-
cent SQL-Slammer worm in [21]. Staniford er al. ex-
tend prior work on Code Red evaluation by providing a
model for its propagation based on epidemiological anal-
ysis in [32]. Moore et al. provide further insights on
the speed at which countermeasures would have to be
installed to inhibit worms propagation [23]. While the
prospects for successful containment are rather grim, it
is clear that rapid detection will be a key component in
any quarantine strategy.

Intrusion detection systems are a standard component
in network security architectures. These tools typically
monitor packet traffic at network ingress/egress points
and identify potential intrusions using a variety of tech-
niques. Standard methods for intrusion identification in-
clude misuse detection (eg. [26, 30]), statistical anomaly
detection (eg. [31]), information retrieval (eg. [2]), data




Table 1: Design Space of Sink-Hole Responders

Configurability | Modularity | Flexibility | Interactivity | Scalability
Active Sink High High High Low-Medium High
Honeyd High Low-Medium High Low-Medium | Low-Medium
Honeynet Low Medium Medium High Low-Medium
LaBrea Low Low Low Limited High

mining (eg. [16]), and inductive learning (eg. [33]). Our
work is distinguished from general NIDS in that they
operate on active IP addresses and must deal with the
problem of identifying the nefarious traffic mixed in with
all of the Jegitimate traffic. We expect iSinks and NIDS
to complement each other in future operational environ-
ment.

High performance packet monitors have been used for
collecting packet traces in the Internet for years. These
systems relate directly to our iSink design in that they
must scale to reliably log packets on very high speed
links. Exampies of these include systems that have been
developed with a variety of commodity and special pur-
pose hardware such as [5, 7, 14]. Our iSink differs sig-
nificantly from these systems (as well as the NIDS men-
tioned above) in that it not only passively monitors and
logs packets, but it also actively responds to incoming
TCP connection requests and has application level re-
sponse capability.

3 Internet Sink Architecture

In this section we describe the iSink requirements, ar-
chitecture and implementation. The implementation is
described within the context of deployments on two dif-
ferent sets of address spaces.

3.1 Design Requirements

The general requirements for an iSink system are that it
be secure and possess scalable capability for both passive
and active monitoring. We discuss the issues of security
in more detail in Section 7.

Passive monitoring capability must be able to capture
packet header and payload information accurately. While
there are many standard tools and method for packet
capture, if either these or new tools are employed, they
should be flexible and efficient in the ways in which data
is captured and logged.

Active response capability is included in iSink’s de-
sign as a means to gather more detailed information on
abuse activity. This capability is enabled by generating
appropriate response packets (at both transport and appli-
cation levels) to a wide range of intrusion traffic. While
active responses also have the potential to interfere with
malicious traffic in beneficial ways such as tarpitting, this
is not a focus of iSink’s design.

We expect Internet Sinks to measure abuse activity
over potentially vast unused IP address spaces. For ex-

ample, in our experimental setup, we needed the abil-
ity to scale to an entire class A network (16 million ad-
dresses). With the continued growth in malicious Inter-
net traffic, and transition to IPv6, we expect the scal-
ability needs to grow significantly for both the active
and passive components of our system. Qur basic ap-
proach to scalability is to maintain as little state as possi-
ble in our active responders. Another means for increas-
ing scalability is through the use of sampling techniques
in both active and passive components of the system.
If sampling is employed, then the measurement results
must not be substantially altered through their use.

Finally, our intent is to develop iSink as an open plat-
form, thus any systems that are used as foundational
components must be open source.

3.2 Active Response: The Design Space

In this section we explore the architectural alternatives
for sink-hole response systems. The choices we consider
are LaBrea, Honeyd, Honeynets and Active Sink (iSink’s
active response system) as shown in Table 1. We com-
pare these systems based on the following characteris-
tics.

1. Configurability describes the ability of the config-
uration language to define the layout and compo-
nents of response networks. Honeyd’s strengths are
in fine-grained control of virtual network topolo-
gies and network protocol stacks. However Hon-
eyd’s language does not provide support for assign-
ing large blocks of IP addresses to templates (except
for the default template)!. Active Sink’s configura-
tion language (inherited from Click) uses a BPF like
language and provides excellent support for both
fine-grained and coarse-grained control of a virtual
network topology. Active Sink’s design is stateless
and hence does not replicate network stack retrans-
mission timers. LaBrea and Honeynets only allow
for limited configurability.

2. Flexibility relates to the ability to mix and match
services with operating systems. For example, the
ability to define two types of Windows Servers: one
with a telnet service and FTP service and another
with NetBIOS Service and a Web server. The de-
sign of Honeyd and Active Sink both provide a high

IThis feature is particularly necessary for large network sinks



degree of flexibility. It is somewhat harder to do the
same with Honeynets. LaBrea’s flexibility in this
regard is limited as it was designed with a different
objective.

3. Modularity describes the ability to compose and
layer services on top of one another. For example,
layering Server Message Block (SMB) service over
NetBIOS or layering Web services over SSL. Ac-
tive Sink’s design is inherently modular which di-
rectly facilitates service composition. In contrast,
Honeyd’s design is more monolithic and hence less
straightforward to layer services.

4. Interactivity refers to the scope of response capa-
bility. The levels of interactivity of Honeyd and
Active Sink are comparable. Obviously, Honeynets
could provide more complete response capabilities.
However, to mitigate the risk of Honeynets being
used as a stepping-stone for additional attacks, data
controls are required to be placed which limit inter-
activity. There are other practical configuration is-
sues that also could limit interactivity. For example,
Active Sink’s NetBIOS responder grants session re-
quests for all NetBIOS names and all nser/password
combinations, while a Honeynet Windows moni-
tor would only allow NetBIOS session requests if
it matches its list of valid names. Hence, the real-
ized degree of interaction could be lower than low-
interaction responders in Honeyd or Active Sink.

5. Scalability refers to the number of connections that
can be handled in a given time period. In our mon-
itoring envionment we typically see hundreds of
thousands of connection attempts per minute. Ac-
tive Sink’s stateless kernel module design provides
high degree of scalability by eliminating unneces-
sary system calls and interrupt handling overheads.
LaBrea’s stateless design also provides reasonable
scaling properties, however its user level imple-
mentation makes it inferior to the Active Sink. A
weakness of Honeyd’s design is its inherent state-
fulness that limits its scalability (Honeyd forks a
process per connection attempt). Our experience
suggests that Honeyd works well in environments
that see tens of connection atterpts per minute. The
scalability of Honeynet systems vary from low to
medium depending on the service and licensing is-
sues.

3.3 Implementation

The objective of our monitoring infrastructure imple-
mentation was to create a highly scalable backplane with
sufficient interactivity to filter out known worrms, attacks
and misconfigurations. To accomplish this, the iSink de-
sign includes a Passive Monitor, an Active Sink and a

ISP Backbone/Core

T .. ISP router

§ advertises "dark” [P
networks/prefixes via iBGP

SNMP--capable
ethernet switch
with port monitoring

IP nexthop

NIDS :
: VWware Honeynet

Figure 1: Internet Sink Implementation. In our current imple-
mentation the NIDS is run offline.

Honeynet component. Unsolicited traffic can be directed
to each of these components which provide unique mea-
surement capabilities. These components, in addition
to MRTG [25] and FlowScan [28], were run on Linux-
based commodity PCs. Details of our implementation as
illustrated in Figure 1 and include:

1. Passive Monitor - This component is based on Ar-
gus which is a generic libpcap based IP network
auditing tool. It allows for flow level monitoring
of sink traffic and can be interfaced with FlowScan
which is a flow level network traffic visualization
tool.

2. Active Sink - The standard collection of elements
provided with Click enabled most of the basic ca-
pabilities required for building active responses in
iSink. Figure 2 illustrates iSink’s configuration
based on Click’s modular design. Some of the im-
portant elements include: Poll Device which con-
stantly polls the interface for new packets; IP Clas-
sifier which routes ARP packets to the ARP Re-
sponder, ICMP ping packets to the Ping Respon-
der and TCP packets to the Windows Responder
(all other packets are discarded); Windows Re-
sponder which responds to connection attempts on
open ports and forwards HTTP requests to the
‘Web Responder and SMB data packets to the Net-
BIOS Responder. As far as we know, we are
the first non-commercial Honeypot system to pro-
vide emulation capabilties for Windows Network-
ing(NetBIOS/SMB/CIFS}).

3. NAT Filter - This module serves two purposes.
It routes requests to appropriate responders (Ac-
tive Sink or Honeynets) through network address
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Figure 2: Active Sink Configuration based on Click’s modular
design

translation. It also filters requests that attempt to
exploit known vulnerabilities or misconfigurations.
The motivation behind filtering is to reduce the vol-
ume of traffic generated by active responders. This
makes mapping of iSinks more difficult and in-
creases scalability of analysis daemons that have to
process large volumes of data. We experimented
with several filtering strategies:

For each source IP allow only:

(a) first N connections
(b) first N connections per <destination port>

(c) connections to first N destinations IPs targeted
by the source

Of the three strategies, option (c) [N destination IPs
per source IP] seemed the most attractive. The per-
formance of options (a) and (c) were comparable.
They both provided two orders of reduction in the
volume of packets and bytes) and were significantly
better than option(b). We chose option (c) because
it has the additional advantage of providing a con-
sistent view of the network to the scan sources thus
allowing the iSink to appear as if it were a subnet
with N live hosts 2.

4. VMware Honeynets - These are, quite simply,
commodity operating systems running on VMware.
Currently, we route packets of services for which
we don’t have complete responders to fully patched
Windows systems.

5. NIDS - This system can be used to evaluate the
packet logs collected at the filter. We plan to imple-
ment support for NIDS rules that can communicate
with the filter and implement real time filtering de-
cisions. For example, the decision to ronte packets
or migrate connection to VMware Honeynet could
be triggered upon the absence of a signature in the
NIDS ruleset for the connection.

2The set of N destination hosts varies with each source depending
on the order in which the source scans the adddress space.

For this study, we built and deployed two separate
iSinks: a “campus-enterprise” iSink and a “service-
provider” iSink. These were used to assess our iSink
design and demonstrate its capabilities.

3.4 Deployment: Campus-Enterprise Sink

The campus iSink received unsolicited traffic destined
for approximately 100,000 unused IPv4 addresses within
4 sparsely-to-moderately utilized class-B networks that
are in use at our campus. Essentially, these unused ad-
dresses are in the “holes” between active subnets, each of
which typically contains 128 to 1024 contiguous host ad-
dresses (i.e., 25 through 22-bit netmasks, respectively).

A so called “black-hole” intra-campus router was con-
figured to also advertise the class B aggregate /16 routes
into the intra-campus OSPE. The result was that there
were persistent less-specific (16 bit netmask) routes for
every campus address. Unsolicted traffic, whether from
campus or outside sources, destined for unuséd cam-
pus IP addresses always “falls through” to those less-
specific /16 routes, and therefore is routed to the iSink
and measured. Furthermore, occasionally traffic des-
tined for campus addresses that are normally in use can
fall through to the iSink if its subnet’s more specific route
disappears. Typically, this only happens during network
outages, making the iSink a potential warning system of
problems because it can passively detect routing failures.
‘Whenever traffic that was destined for a campus IP ad-
dress known to be in use reaches the iSink instead, the
operators know that there is a problem.

It was important in our environment that the iSink ma-
chine was not capable of actively participating in the
intra-campus routing, other than to respond via ARP as
the IP nexthop on its transit link. The iSink is not an
OSPF router, but instead is the destination of a static
route. This limits the possible damage that could be
caused if ever the iSink system was compromised and
was attempted to be used maliciously.

3.5 Deployment: Service-Provider Sink

The service-provider iSink received unsolicted traffic
destined for 16 million IPv4 addresses in one class A
network. An ISP router, located at our campus’ service~
provider, served as the gateway for the service-provider
iSink. The service-provider was reponsible for advertis-
ing the class A network via BGP to our service provider’s
commercial transit providers, Internet2’s Abilene net-
work, and to various other peers. SNMP-based measure-
ments at the Ethernet switch’s ports were used to com-
pute any packet loss by the libpcap-based Argus soft-
ware.



4 Experiences with Internet Sink

This section demonstrates iSink’s capabilities and il-
lustrates the complementary roles of the Passive Moni-
tor and the Active Sink using results from our two iSink
deployments. We first discuss issues of perspective by
comparing the passive-monitoring results observed in the
campus-enterprise sink with that of the service-provider
sink. We then demonstrate the utility of the Active Sink
in investigating network phenomenon revealed by the
Passive Monitor including periodic probing and SMTP
hot-spots. Finally, we measure the impact of active re-
sponse in attracting additional flows and provide results
from passive fingerprinting of network scanners.

4.1 Campus Enterprise iSink Case Study

Because the campus iSink is located inside one au-
tonomous system and advertised via the local interior
routing protocol, this system sees traffic from local
sources in addition to traffic from sources in remote net-
works. Traffic observed from local sources included:

» Enterprise network management traffic attempting
to discover network topology and address utiliza-
tion (such as ping sweeps and SNMP query at-
tempts)

e Traffic from misconfigured hosts. For instance,
a few hosts continually send domain queries to
what is now an unused campus IP address. Pre-
sumably, an operational DNS server used to be at
that address. We also see traffic from misconfig-
ured AFS clients and NetBIOS name registration
requests from local windows hosts with incorrect
WINS address.

s Malicious probes and worm traffic that has an affin-
ity for hosts within their classful network.

Figure 3 shows the traffic observed from only remote
sources in a typical week at the campus-enterprise iSink.
There are several notable features. The dominant proto-
col is TCP since the campus border routers filter scans
to port 1434 (ms-sql-m) that was exploited by the SQL-
Slammer worm [21]. The peak rate of traffic is about
1Mb/s and 1500 packets per second. There is no obvious
periodicity in this dataset. Finally, because TCP is the
dominant protocol, the packet sizes are relatively con-
stant and the number of bytes, packets, and flows follow
a predictable ratio. Hence, the graphs of flow, byte, and
packet rate show very similar trends.

4.2 Service Provider iSink Case Study

The volume of unsolicited inbound traffic to the class A
network varied between average rates of 5,000 packets-
per-second (pps) when we brought the system on line to
over 20,000pps six months later at the end of our study.

Table 2: Top Services (Service Provider Sink)

| Service: | Inbound flows per second |
udp-netbios-ns_dst 1932
udp_ms-sql-m.dst 1187
http_dst 197
netbios-ssn_dst 133
microsoft-ds_dst 115
smtp.dst 67
http_src 44
https_dst 11
ms-sql-s-dst 10
telnet_dst 2

Table 3:  Active backscatter sources (victims) in service
provider sink (12 hours - 5 minute averages)

] Type [ NumIPs | % IPs |
TCPRST 205 38%
TCP_SYN.RST 105 14%
TCPACK 81 10%
TCP.ACK.RST 80 10%
[CMP.INTRANS.TIME EXCEEDED 58 7%
[CMP_PORT.UNREACH 29 4%
[CMP_PKT.FILTERED_UNREACH 23 3%
TCP.SYN_ACK 10 1%
ICMP_HOST_UNREACH 6 1%
OTHER 87 1%

One consequence that was relayed to us by experienced
network operators is that it is not possible to effectively
operate even this relatively quiescent class A network
at the end of a 1.5 megabit-per-second T1 link because
the link becomes completely saturated by this unsolicited
traffic.

To operate the service-provider iSink continuously,
we originally assumed that we could safely introduce
the class A least-specific /16 route for the iSink and
still allow operators to occasionally introduce more-
specific routes to draw the network’s traffic elsewhere
in the Internet when need-be. While sound in theory
(according to “CIDR and Classful Routing” [29]), it
didn’t work in practice. Because today’s Internet is bi-
furcated into commercial/commodity networks and re-
search/education networks (Internet2’s Abilene), some
institutions connected to both types employ creative rout-
ing policies. We found that some sites prefer less-specific
routes over more-specific when the less-specific route is
seen on what is likely to be a higher-performance (or
fixed cost) service such as Internet2.

Figure 4 depicts the traffic observed in a typical
week at the service-provider iSink. Unlike the campus-
enterprise network, the dominant protocol is UDP, most
of which can be attribute to Windows NetBIOS scans on
port 137 and the ms-sql-m traffic from worm attempting
to exploit the vulnerable MS-SQL monitor. Since UDP
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Figure 5: Time-volume graph of backscatter packet types on
service-provider sink over a typical 12 hour period

traffic with payloads of varying sizes dominates, there is
no strong correspondence between the graphs for bytes,
flows and packets. The most interesting feature is the
striking periodic behavior of the TCP flows, discussed
in more detail in the section 4.2.2. Table 2 provides a
summary of the inbound per second flow rate of the top
services.

4.2.1 Amnalysis of Backscatter Packets

Backscatter packets are responses to spoofed DoS at-
tacks and have been effectively used to project Internet
wide attack behavior [24]. Figure 5 provides a time se-
ries graph of the backscatter packet volume observed in
our service-provider sink. Noteworthy features include
the following:

1. TCP packets with ACK/RST dominate as might be
expected. This would be the most common re-
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Figure 6: Inbound flows (per second) observed at service-
provider sink on ports 139 and 445 over a typical week

sponse to a SYN flood from forged sources.

2. Less common short duration spikes of SYN/JACK
and SYN/ACK/RST.

3. ICMP TTL exceeded packets could be attributed to
either routing loops or DoS floods with a low initial
TTL.

Table 3 provides a summary of the number of active
sources of backscatter traffic, i.e., the estimated count of
the victims of spoofed source attacks. These numbers are
an average during the 12 hours shown in Figure 5 of the
number of sources in each 5 minute sample. In terms of
the distribution of the volumes of Bacscatter scan types,
our results are consistent with those published in [24].
Backscatter made up a small percentage (under 5%) of
the overall traffic seen on our service-provider sink.
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Figure 7: Volume/Count of type-1 port 139 scanners: 24 hours,
Dec 14, 2003, (no. sources per peak = 100, total sources =
2,177)

4.2.2 Investigating Unique Periodic Probes

The periodicity observed in the service provider iSink
data is an excellent example of the perspective on in-
trusion traffic afforded by iSink. The first step in our
anlaysis of this periodicity was to understand the ser-
vices that contributed to this phenomenon. We found that
most of the periodicity observed in the TCP flows could
be isolated to sources scanning two services (port 139
and 445) simultaenously. Port 139 is SMB (Server Mes-
sage Block protocol) over NetBIOS and port 445 is direct
SMB. However, this did not help us isolate the attack
vector because it is fairly common for NetBIOS scan-
ners to probe for both these services. Passive logs pro-
vided three additional clues: 1) scans typically involve
256 IP successive addresses that span a /24 boundary, 2)
the probes had a period of roughty 2.5 hours, 3) the small
timescale periodicity seemed to be super imposed over a
diurnal periodic behavior at larger timescales.

Figure 6 shows the number of flows scanning both
services in a week. To simplify our analysis we then fo-
cused on a single day’s data and classified scanners on
these services based on their scan footprints. We defined
scanners that match our profile (between 250-256 suc-
cessive IP addresses spanning a /24 boundary) as type-1
sources. We also defined sources that scan five or more
subnets simultaneously as type-5 sources. This includes
processes that pick destination IP addresses randomly
and others that are highly aggressive. Figure 7 showsa
time-volume graph of the type-1 scanners. The interest-
ing aspect of this figure is that the number of sources
in each peak (around 100) is more than an order of
magniture smaller than the total number of partici-
pants observed in a day (2,177). From Figure 8, we can
see that most of the diurnal behavior could be attributed
to type fype-5 sources.

This mystery motivated our development of NetBIOS
and SMB responders. By observing the packet logs gen-
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Figure 8: Volume of type-5 port 139 scanners: 24 hours, Dec
14, 2003

erated by the active response system shown in Figure 9,
we concluded that the scanning process was the LovGate
worm [1] which creates the file Net Services.exe
among others.

We proceeded to setup a controlled experiment which
began by trying to infect a Windows 2000 host running
on VMware with LovGate. LovGate uses a dictionary
attack, so we expected a machine with blank administra-
tive password to be easily infected. However, the Net-
BIOS sessions were continually getting rejected due to
NetBIOS name mismatches. So we modified the Imhosts
file to accept the name *SMBSERVER enabling us to
capture the worm.

We verified that LovGate’s NetBIOS scanning process
matched the profile of the fype-1 scanners®. To date, we
have not been able to disassemble the binary as it is a
compressed self-extracting executable. So we monitored
the scans from the infected host. There were two relevant
characteristics that provide insight into the periodicity:
1) The scanning process is deterministic, i.e., after every
reboot it repeats the same scanning order 2) During the
course of a day there are several 5-10 minute intervals
where it stops scanning. Our conjecture is that these gaps
occur due to approximately synchronized clocks in the
wide area thus producing the observed periodicity.

4,23 SMTP Hot-spot

Analysis of SMTP (Simple Mail Transfer Protocol)
scans in the service provider sink is another important
demonstration of active sink’s capabilities. From pas-
sive measurements, we identificd an SMTP hot-spot i.e.,
there was one IP address that was attracting a dispropor-
tionately large number of SMTP scans (20-50 scans per
second). Hot-spots in unused address space are typically
good indicators of misconfigurations. During a 10 day
period in December we observed over 4.5 million scans
from around 14,000 unique IP addresses all bound to one

3Besides the NetBIOS scanning LovGate also sent SMTP probes to
www.163.com




Client: 61.110.200.170
NB_SESSIION_REQUEST
NB_SESSION_RESPONSE
SMB_COM_NEGOTIATE TYPE=REQUEST
SMB_COM_NEGOTIATE TYPE=RESPONSE
SMB_SESSION_SETUP_ANDX IYPE=REQUEST

\IPC$22?7?

SMB_SESSION_ANDX TYPE=REPLY
SMB_NT_CREATE_ANDX TYPE=REQUEST

\svectl
NB_SESSION_REQUEST
NB_SESSION_RESPONSE
SMB_COM_NEGOTIATE TYPE=REQUEST
SMB_COM_NEGOTIATE TYPE=RESPONSE
SMB_SESSION_SETUP_ANDX TYPE=REQUEST
\ADMINS??22?
SMB_NT_CREATE_ANDX TYPE=REQUEST

\system32\NetServices.exe

Figure 9: Trace of LovGate interaction with Active Sink

destination IP within our monitor. A cursory analysis
suggested that these scans were all from cable-modem
and DSL subscribers. Finally, the scans also seemed to
have an uncommon TCP SYN fingerprint (win 8192, mss
1456).

The possibility of spam software as a source of this
anomaly was ruled out due to the non-standard TCP
fingerprint. We then hypothesized that this could be
from a specific cable-modem or DSL. device. We set up
an SMTP responder on the target IP address and cap-
tured the incoming email. This revealed the source of
the email to be misconfigured wireless-router/firewall
systems from a major vendor®. The emails are actual
firewall logs. Figure 10 is an anonymized example where
we have replaced original IP addresses with private ad-
dresses.

To better understand the reasons behind this SMTP
hot-spot, we examined to examine the firewall system’s
firmware. The unarj utility was used to extract the
compresseed binary. However, searching for the hot-spot
IP address string in the binary proved fruitless. Exami-
nation of the firmware “application” revealed that there
was an entry for SMTP server that was left blank by de-
fault. This led us to conpjecture that the target IP address
was the result of an uninitialized garbage value that was
converted to a network ordered IP address. It also turns
out that every byte in our hot-spot address is a print-
able ASCII character. So we searched for this four byte
ASCII string and found a match in almost all versions of
firmware for this device. The string occured in both the
extracted and compressed versions of the firmware. As a

“We are in the process of notifying the manufacturer and plan to
reveal the name of the vendor once this is completed

Table 4: Passive OS Fingerprinting (Discriminant Fields)

| 0S | IP TTL | Window | TCP Options |
Linux 2.2 64 32120 mss, sack, ts, ws, nop
Linux 2.4 64 5840 mss, sack, ts, ws, nop
FreeBSD-4.0 64 16384 mss
Solaris 7 255 8760 mss
‘Windows 128 (16384) mss, sack, 2 nops
2000/NT variable mss, wscale, 3 nops, sack

Table 5: Passive fingerprinting summary for a typical day on
the service provider iSink

| OS Num Scans |

All 97,197,009
Window 2000/NT 86,054,187
Linux 2.4 5,373,467
Linux 2.2 26,054

Solaris 7 1,106,032
FreeBSD 112,760

Other® 4,524,509

sanity check, we looked for other similar ASCII strings,
but did not find them. These kind of hot-spots can have
very serious ramifications in network operations. For ex~
ample, one the authors discovered a similar problem with
Netgear routers that inadvertantly flood our campus NTP
servers [27]. '

4.3 Attack Source Fingerprinting

The ability to fingerprint operating systems often proves
valuable in characterizing attack sources and identifying
exploited vulnerabilities in attack drones. iSink naturally
lends itself to this activity. We identify three different
techniques that can be used in combination to categorize
offending hosts.

* Passive Fingerprinting techniques try to identify
the operating system or attack tools without send-
ing any packets. There are several fields in the
TCP and IP headers that enable identification of
attackers. Table 4 provides an illustration of the
notable discriminants among contemporary proto-
col stacks [19]. These techniques are all vulnerable
to spoofed headers, however by combining multi-
ple techniques it is usually possible to narrow can-
didates down to one or two systemns.

We performed passive OS fingerprinting on one
day’s data from the service-provider iSink. We were
able to fingerprint 95% of the nearly 100 million
TCP scans that were observed. The summary of our
results is given in Table 5.

Passive techniques can also be used to discriminate
between various tools used by the blackhats. In [3]
Arkin describes techniques to distinguish between
five popular ICMP tools.



Received: from XXX

From:

Subject: XXX Log
Sender: XXX

To:

Jan/04/2004 00:20:38
Jan/04/2004 00:20:32
Jan/04/2004 00:20:29

Jan/04/2004 00:20:25

by localhost (8.9.3/8.9.3) with id h242udeJ41951
for <>; Sun, 4 Jan 2004 08:22:24 -0600 (CST)

Drop TCP packet from WAN src 192.168.10.10:2853 dst:192.168.10.19:80 Rule: Default deny
Drop TCP packet from WAN src:192.168.10.10:2853 dst:192.168.10.19:80 Rule: Default deny
Drop TCP packet from WAN src:192.168.10.10:2853 dst:192.168.10.19:80 Rule: Default deny

Drop TCP packet from WAN src:10.42.42.10:1825 dst:192.168.10.19:25 Rule: Default deny

Figure 10: Sample email captured at the SMTP Hot-spot

Proactive Fingerprinting refers to techniques that
proactively establish one or more new connections
for the purpose of network or host reconnaissance.
These techniques can provide highly accurate infor-
mation, for instance, minor version of host operat-
ing systems and services. However, they are limited
by ethical and practical considerations. They also
do not provide information on the tools used by the
attacker.

Reactive Fingerprinting techniques try to gather
more information about the intruder, by exchanging
packets within the context of the existing connec-
tion. In the case of a tarpit, the intervals between
retransmission timeouts and window probes in per-
sist mode can yield valuable clues about the source
TCP stack. For example, in our measurements the
Windows 2000 and Linux TCP stacks have com-
pletely different timeout intervals for resending the
response packet for the tarpit’s SYN-ACK. These
numbers are repeatable to 10 ms granularity.

- Windows 2000: 7y = 2.92% ro = 6.02, 3 =
12.04, r4 = 24.08, r5 = 48.15 and then stops.

- Linux 2.4: 71 = 21, ro = 42, r3 = 99, 14
= 1.58, 7‘5=3.36, 76 = 6.72, T = 13.44, rg =
26.88, 9 = 5376, 710 = 107.52, T11-.-T18 = 2
minutes.

4.4 Differentiated Responses

We investigated how probe traffic is affected by network
responses. For this purpose, we dedicated 10 of the /16’s
from the service-provider iSink to emulate responses
from systems running various commodity operating sys-
tems and a few popular applications. Table 6 provides an
outline of our designated partitions. These active subnets

SHere 71 refers to interval in seconds between original and st du-
plicate packet, 2 refers to interval between 1st duplicate and 2nd du-
plicate packet and so on.

Table 6: Differentiated Response Networks (service provider
sink)

D: Name

.1.0/16 Synacker

3.0/16 Synacker + Ping Resp
.5.0/16 Windows

.1.0/16 Windows + Kazaa (1214)
9.0/16 | Windows + Gnutella (6346)
.11.0/16 RedHat Linux
.13.0/16 | RedHat Linux + HTTP(80)
.15.0/16 Solaris

17.0/16 Solaris + HTTP
.19.0/16 ICMP Unreachable

were interleaved with passive control group networks
(even numbered partitions of same sizes, omitted from
the table).

The observed rate of inbound flows for the active and
passive (control) subnets is shown in Figure 11. The av-
erage rates for each type are provided in the legend. If
probe behavior were unaffected by responses, we would
expect the active subnets to see the same number of in-
bound flows (although different number of packets) as
the passive pets. However, that is clearly not the case.
The passive networks all see very similar scanning rates
except for the rare event spikes. Our results suggest that
responding to all connection attempts (synacker) or re-
sponding to Windows ports and in particular the Kazaa
port, significantly increases the network’s affinity to ad-
ditional probing. Responding to ICMP pings, Gnutella
and HTTP also seem to introduce additional scanning.
Finally, responding with ICMP unreachable reduced the
incoming flow rate to 13 flows per second in compari-
son with passive subnets which averaged 15 flows per
second. This suggests that firewall rules might be best
served by responding with ICMP unreachable to anoma-
lous traffic (rather than dropping packets).
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Figure 11: Service Provider Sink: Differentiated Responses (inbound flows per second) active (left) and passive-control(right)

subnets for a 12 hour period

5 Basic Performance

One of the primary objectives of the iSink’s design is
scalability. We performed scalability tests on our Active
Sink implementation using both TCP and UDP packet
streams. The experimental setup involved four 2GHz
Pentium 4 PCs connected in a common local area net-
work. Three of the PCs were designated as load gener-
ators and the fourth was the iSink system that promis-
cuously responded to all ARP requests destined to any
address within one class A network. Figures 12 demon-
strates the scalability under of LaBrea’ and Active Sink
under TCP and UDP stress tests. The primary differ-
ence between the TCP and UDP fests is that the TCP
connection requests cause the iSink machine to respond
with acknowledgments, while the UDP packets do not
elicit aresponse. Ideally, we would expect the number of
outbound packets to equal the number of inbound pack-
ets. The Click-based Active Sink scales well to TCP load
with virtually no loss up to about 20,000 packets (con-
nection attempts) per second. LaBrea performance starts
to degrade at about 2,000 packets. The UDP test used
300 byte UDP packets (much like the SQL-Slammer
worm). In this case, both the LaBrea and Active Sink
perform admirably well. LaBrea starts to experience a
2% loss rate at about 15,000 packets/sec.

6 Sampling

There are three reasons why connection sampling can
greatly benefit an iSink architecture: (i) reduced band-
width requirements, (ii) improved scalability, (iii) sim-
plified data management and analysis.

If sampling is to be used, the task then becomes se-
lecting a sampling design that meets the requirements
of reduced resource demands and accurate estimation of
probe population characteristics. In our application, sam-
pling could be applied either to the packets that are pas-

"We compare Active Sink with LaBrea because unlike LaBrea,
Honeyd is stateful(forks a process per connection), and hence is much
less scalable. Since Honeyd also relies on a packet filter LaBrea’s scal-
ability bounds affect Honeyd as well.

sively logged or to those for which active responses are
sent. In the former case, the overhead reduction objec-
tive must be balanced with the error introduced in the
measurements based on the selected sampling method.
In the latter case, simple random sampling would be ap-
propriate as a first step although we leave treatment of
this topic to future work. While there is a large literature
on sampling design and analysis (e.g., see [36]), recent
results from several studies provide insight on how to ap-
proach the problem of sampling in the network measure-
ment context including [8, 9, 18].

We considered two different resource constraint prob-
lems in the passive portion of the iSink and evaluated
the use of sampling as a means for addressing these con-
straints. We first considered the problem of a fixed re-
source in the iSink itself. Estan and Varghese in [6]
describe sampling methods aimed at monitoring “heavy
hitters” in IP flows through routers with a limited amount
of memory. We adapted one of these methods for use in
iSink. Second, we considered the problem of bandwidth
as the limited resource. In this case, the idea is to reduce
the total amount of traffic routed to an iSink by selecting
subnets within the total address space available for mon-
itoring. These methods would be used in combination
with the filtering methods described in Section 3.3.

6.0.1 Memory Constrained iSink Sampling

The method that forms the basis of our sampling ap-
proach with a memory constrained iSink is called Sam-
ple and Hold [6]. This method accurately identifies
flows larger than a specified threshold (i.e., heavy hit-
ters). Sample and hold is based on simple random sam-
pling in conjunction with a hash table that is used to
maintain flow ID’s and byte counts. Specifically, incom-
ing packets are randomly sampled and entries in the hash
table are created for each new flow. After an entry has
been created, all subsequent packets belonging to that
flow are counted. While this approach can result in both
false positives and false negatives, its accuracy is shown
to be high in workloads with varied characteristics. We
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Figure 12: Scalability of Click-based Internet Sink and LaBrea for TCP (left) and UDP (right) flows

apply sample and hold in iSink to the problem of iden-
tifying “heavy hitters”, which are the worst offending
source addresses based on the observed number of scans.

Adapting the sample and hold method to the iSink re-
quired us to define the size of the hash table that main-
tains the data, and the sampling rate based on empiri-
cal observation of traffic at the iSink. In [6], the ob-
jective is identifying accurately the flows that take over
T% of a link’s capacity. An oversampling factor O
is then selected to reduce the possibility of false nega-
tives in the results. These parameters result in allocating
HTjer, = 1/T # O locations in each hash table. The
packet sampling rate is then set to HT}e,,/C where C
is the maximum packet transmission capacity of the in-
coming link over a specified measurement period . At
the end of each ¢, the hash table is sorted and results are
produced.

6.0.2 Bandwidth Constrained iSink Sampling

In the bandwidth constrained scenario, the sampling de-
sign problem is to select a set of subnets from the to-
tal address space that is available for monitoring on the
iSink. The selection of the number of subnets to monitor
is based on the bandwidth constraints. In this case we
assume that we know the mean and variance for traffic
volume on a “typical” class B or class C address space.
We then divide the available bandwidth by this value to
get the number of these subnets that can be monitored.
The next step is to select the specific subnets within the
entire space that will minimize the error introduced in
estimates of probe populations.

Our analysis in this paper is based on the use of ran-
dom sampling as a means for subnet selection. Our ra-
tionale for this approach is based on the observation that
overall traffic volumes across the service-provider class
A address space that we monitor is quite uniform. The
strengths of this approach are that it provides a simple
method for subnet selection, it provides unbiased esti-
mates and it lends itself directly to analysis. The draw-
back is that sampling designs that take advantage of addi-
tional information such as clustered or adaptive sampling
could provide more accurate population estimates. We

leave exploration of these and other sampling methods
to future work.

After selecting the sampling design, our analysis fo-
cused on the problem of detectability. Specifically, we
were interested in understanding the accuracy of esti-
mates of total probe populations from randomly selected
subsets. If we consider 7 is an unbiased estimator of
a population total 7 then the estimated variance of 7 is
given by:

var(?) = N* [ (%52) 2 + (352) ]
where N is the total number of units (in our case, sub-
nets), n is the sampled number of units, 4 is the pop-
ulation mean (in our case, the mean number of occur-
rences of a specific type of probe), o2 is the population
variance and p is the probability of detection for a par-
ticular type of probe. In the analysis presented in Sec-
tion 6.1, we evaluate the error in population estimates
over a range of detection probabilities for different size
samples. The samples consider dividing the class A ad-
dress space into its component class B’s. The probabil-
ities relate directly to detection of worst offenders (top
sources of unsolicited traffic) as in the prior sampling
analysis. The results provide a means for judging pop-
ulation estimation error rates as a function of network
bandwidth consumption.

6.1 Sampling Evaluation

Our evaluation of the impact of sampling in an iSink
was an offline analysis using traces gathered during one
day selected at random from the service-provider iSink.
Our objective was to empirically assess the accuracy of
sampling under both memory constrained and bandwidth
constrained conditions. In the memory constrained eval-
uation, we compare the ability to accurately generate the
top 100 heavy hitter source list over four consecutive 1
hour periods using different hash table sizes and different
sampling rates. For each hour in the data set, we compare
the percentage difference in the number of scans gener-
ated by the “true” top 100 blacklist and sampled top 100
blacklist sources. In the bandwidth constrained evalu-
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Figure 14: Cumulative distribution of all traffic and TCP
backscatter traffic across half of the class A address space mon-
itor over a one hour period. The average number of probes per
/16 is 1.6K packets per second.

ation, we consider accuracy along three dimensions: 1)
estimating the worst offender population with partial vis-
ibility, 2) estimating black lists of different lengths, 3)
estimating backscatter population.

Our memory constrained evaluation considers hash ta-
ble sizes varying from 500 to 64K entries where each en-
try consists of a source IP and a access attempt count.
Note that the hash table required to maintain the com-
plete list from this data was on the order of 350K en-
tries We consider two different arbitrarily chosen sam-
pling rates - 1 in 100 and 1 in 300 with uniform proba-
bility. In each case, once a source IP address has been
entered into the table, all subsequent packets from that
IP are counted. If tables become full during a given hour
then entries with the lowest counts are evicted to make
room for new entries. At the end of each hour, the top
100 from the true and sampled lists are compared. New
lists are started for each hour. The results are shown in
Figure 13. These results indicate that even coarse sam-
pling rates (1/300) and relatively small hash tables enable
fairly accurate black lists (between 5% - 10% error). The
factor of improvement between sampling at 1/100 and

1/300 is about 1.5, and there is little benefit to increas-
ing the hash table size from 5,000 to 20,000. Thus, from
the perspective of heavy hitter analysis in a memory con-
strained system, sampling can be effectively employed in
iSinks.

As discussed in the prior section in our bandwidth con-
strained evaluation we consider error introduced in pop-
ulation estimates when using simple random sampling
over a portion of the available IP address space. We ar-
gue that simple random sampling is appropriate for some
analyses given the uniform distribution of traffic over our
class A monitor. The cumulative distribution of traffic
over a one hour period for half of the /16 subnets in our
class A monitor is shown in Figure 14. This figure shows
that while traffic across all subnets is relatively uniform
(at a rate of about 1.6K packets per second per /16), spe-
cific traffic subpopulations - TCP backscatter as an ex-
ample - can show significant non-uniformity which can
have a significant impact on sampling.

We use the mean normalized standard deviation (o /1)
as an estimate of error in our analysis. In each case, we
assess estimated error as a function of a randomly se-
lected sample of /16 subnets. The results of this approach
are shown in Figure 15. The leftmost graph shows the
ability to accurately estimate the number of probes from
the single worst offending IP source over a range of de-
tection probabilities (i.e., the probability of detecting a
source in a selected /16). This graph indicates that worst
offenders are detectable even with a small sample size
and error-prone or incomplete measurements. The mid-
dle graph shows the ability to accurately estimate black
lists from a selected sample of /16’s. This graph indicates
that it is easier to estimate larger rather than smaller black
lists when sampling. We attribute this to the variability
in black list ordering across the /16’s. Finally, the right-
most graph shows the ability to accurately estimate TCP
backscatter traffic over a range of detection probabilities.
The graph indicates that while backscatter estimates are
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robust in the face of error-prone or incomplete measure-
ments, estimated error of total backscatter is quite high
even with a reasonably large number of /16’s. This can
be attributed to the non-uniformity of backscatter traf-
fic across the class A monitor shown in Figure 14 and
suggests that alternative sampling methods for backscat-
ter traffic should be explored. On a broader scale, this
indicates that traditional backscatter methodologies that
assumes uniformity could be error prone.

7 Discussion

In this section we discuss implementation and opera-
tional issues concerning iSink deployment and use. We
also discuss extensions to the architecture which we are
in the process of extending.

7.1 iSink Overhead

The use of iSinks will most certainly increase the amount
of traffic in the Internet for two reasons. First, while un-
solicited traffic destined for “Bogons” [35, 10] or other
unused addresses is typically dropped by border routers,
iSinks require this traffic to be forwarded. Without the
iSink, such traffic could have been discarded by border
routers. Second, since iSinks send active responses, they
themselves contribute additional traffic. The question is,
“is the additional cost for carrying this traffic and the
potential congestion is causes worth the benefit of us-
ing iSinks?”. We argue that the benefits outweigh the
costs for most deployments since response packets sent
by iSinks are of minimal size. For deployments on very
large amounts of address space (eg., multiple class A’s)
costs could be significant but could be justified based on
the perspective gained from the data as well as the po-
tential to expose and perhaps slow propagation of future
worms.

7.2 iSink Security Model

As with any node on a network, iSinks are vulnerable
to a number of potential attacks including denial of ser-

vice, break-in and obfuscation of data collected at a node.
We assume that best practices for system management
(patches, updates, etc.) will be employed at the nodes
and out-of-band management used. If an iSink is not
participating in a federated deployment, then it can be
protected from external intrusions by firewalling any ac-
cess to/from the Internet. If it is participating coopera-
tively with nodes in other networks, then we assume that
the federation will have a security architecture that will
protect individual nodes.

7.3 Legal Issues

Legal issues of consent potentially arise due to the ac-
tive response component of our iSink. An iSink can
be thought of as a “service” that is offered by unadver-
tised servers on a metwork. Thus, consent may be re-
quired from the Internet Service Provider. Another issue
is that Honeypots may be considered a means of entrap-
ment [34]. Finally, active response from an iSink to a
connection request could be considered an act of “disrup-
tion or concealment of communication” which is illegal
in some states. The LaBrea Project [17] recently encoun-
tered such problems. The issues are described in detail
on their web site and is very much up in the air at this
point in time, as laws vary from state to state. However,
the result at this point is that L.aBrea code is no longer
available on their web site.

7.4 Advertising Unused IP space via BGP?

In [12], Greene proposes advertising specific CIDR
blocks via BGP for “dark IP addresses”. Similar to the
Bogon list of unallocated and reserved prefixes, these
dark IP advertisements would essentially form a black-
list in the global BGP table. Service providers could use
this list to short-cut-route unsolicited traffic destined for
blacklisted IP addresses to the nearest sink. This would
have the potential benefit of relieving the Internet back-
bone from the responsibility of delivering this potentially
harmful traffic.




However, one potential issue with this approach is that
the blacklist will appear in the publicly available BGP
routing tables. Would-be attackers could the easily seed
their probes or worms with this information there-by di-
recting their attacks to address space that is more likely
to have vulnerable hosts. Furthermore, with increased
use of the sparsely populated IPv6 (but huge) address
space, a BGP blacklist may effectively focus attacks to
the slices of IPv6 address space where systems are de-
ployed.

7.5 1IPv6

The Internet Protocol version 6 (IPv6) address space is
vast by comparison to the IPv4 address space. Con-
sequently, unsolicited systematic sequential or random
probing will take much more time (assuming the same
amount of probing resources). Thus, the sparsely used
address space presents a challenge for would-be abusers.
However, it also presents a challenge for those intent on
deploying iSinks. It seems likely that the overall amount
of traffic in IPv6 iSinks will be substantially lower (as-
suming the same total amount of address space coverage)
in the short term, thus reducing the effectiveness of their
deployment.

7.6 Appliances and Middleboxes

Internet appliances such as Network/Port Address Trans-
lating (NAT/PAT) routers could act as either passive
or active Internet sinks. An active sink in a PAT de-
vice could be effective with only one globally routable
IP address, which is typical in residential and small-
office/home-office applications. Today teergrube(tarpit)
functionality is present in freely available SMTP Mail
Transfer Agents (MTAs) to slow spam mail dissemina-
tion. Similarly, one could envision sink features pro-
vided in firewall systems and operating in conjunction
with NIDS.

8 Conclusions and Future Work

In this paper we describe the architecture and imple-
mentation of an Internet Sink: a useful tool in a gen-
eral network security architecture. iSinks have several
general design objectives including scalability, the abil-
ity to passively monitor network traffic on unused IP ad-
dresses, and to actively respond to incoming connection
requests. These features enable large scale monitoring of
scanning activity as well as attack payload monitoring.
The implementation of our iSink is based on a novel ap-
plication of the Click modular router, NAT Filter and the
Argus flow monitor. This platform provides an extensi-
ble, scalable foundation for our system and enables its
deployment on commodity hardware. Our initial imple-
mentation includes basic monitoring and active response
capability which we test in both laboratory and live envi-

ronments.

‘We report results from our iSink’s deployment in a live
environment comprising four class B networks and one
entire class A network. The objectives of these case stud-
ies were to evaluate iSink’s design choices, to demon-
strate the breadth of information available from an iSink,
and to assess the differences of perspective based on
iSink location in IP address space. We show that the
amount of traffic delivered to these iSinks can be large
and quite variable. We see clear evidence of the well doc-
umented worm traffic as well as other easily explained
traffic, the aggregate of which can be considered Internet
background noise. While we expected overall volumes
of traffic in the class B monitors and class A monitor to
differ, we also found that the overall characteristics of
scans in these networks were quite different. We also
demonstrate the capability of iSinks to provide insights
on interesting network phenomenon like periodic prob-
ing and SMTP hot-spots, and their ability gather infor-
mation on sources of abuse through fingerprinting tech-
niques.

The evaluation of our iSink implementation demon-
strates both its performance capabilities and expectations
for live deployment. From laboratory tests, we show that
1Sinks based on commodity PC hardware have the abil-
ity to monitor and respond to over 20,000 connection re-
quests per second, which is approximately the peak traf-
fic volume we observed on our class A monitor. This also
exceeds the current version of LaBrea’s performance by
over 100%. Furthermore, we show that sampling tech-
niques can be used effectively in an iSink to reduce sys-
tem overhead while still providing accurate data on scan-
ning activity.

We intend to pursue future work in a number of direc-
tions. First, we plan to expand the amount of IP address
space we monitor by deploying iSinks in other networks.
Next, we intend to supplement iSink by developing tools
for datamining and automatic signature generation.
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