MRNet: A Software-Based Multicast/Reduction Network
for Scalable Tools

Philip C. Roth, Dorian C. Arnold, and Barton P. Miller

Computer Sciences Department
University of Wisconsin, Madison
1210 W. Dayton St.
Madison, WI 53706-1685 USA
{pcroth,darnold,bart}@cs.wisc.edu

Abstract systems [1] in the USA, Japan’s Earth Simulator [9],
and HPCx[26] in the UK. Coupled with the low

We present MRNet, a software-based multicast/reductiorprice/performance ratio of commodity hardware, this
network for building scalable performance and systemdesire has also led to the proliferation of clusters with
administration tools. MRNet supports multiple simultaneous,hundreds and even thousands of nodes (e.g., [7,13,23]).
asynchronous collective communication operations. MRNet iynfortunately, performance, debugging, and system
flexible, allowing tool builders to tailor its process network zqministration tools that work well in small-scale envi-
topology to suit their tool’s requirements and the underlying ronments often fail to scale well as systems and applica-
system’s capabilities. MRNet is extensible, allowing tooItions get larger. To address this problem we have

builders to incorporate custom data reductions to augment itsd | d MRNet infrastruct idi lab|
collection of built-in reductions. We evaluated MRNet in a @€VEIOP€ €L, an Infrastructure providing scalable

simple test tool and also integrated into an existing, real-world Multicast and data aggregation support especially
performance tool with up to 512 tool back-ends. In the real- designed for scalable tools.
world tool, we used MRNet not only for multicast and simple A parallel tool's functionality can be divided into
data reductions but also with custom histogram and clock skewwo categories: (1) data collection, analysis, and presen-
detection reductions. In our experiments, the MRNet-basedation; and (2) control of application processes. These
tools showed Significantly better performance than the tOOlSactivities are imp'emented by one or more Components
without MRNet for average message latency and throughputwithin the tool system. The components of a typical tool
overall tool start-up latency, and performance data processmgsystem are shown in Figure 1a; tools like TotalView [10]
throughput. and Paradyn [23] follow this organization. Data collec-
tion and process control occurs in the tool’'s back-end
components (often called todaemonysrunning on the
nodes of a parallel or distributed system. The user inter-
. acts with the tool via the user interface component. Data
1 Introduction analysis and high-level control may be implemented in a

The desire to solve large-scale problems in areaseparate component or be co-located with the tool back-
like climate modelling, computational biology, and par- ends. Often, analysis and user interface are implemented
ticle simulation has driven the development of increas-in the same component, commonly called the tool's
ingly large parallel computing resources. There has beefront-end
a steady deployment of traditional high-end parallel sys-  All tool activity comes at a cost. If any activity’s
tems with many processors, such as the various ASCtost is larger than the underlying system can support,
that activity limits the tool's overall scalability. These
costs can be placed into one of several categories:
(T;his t""glrzk':ié g;%%‘gggsil”?ga[t by Depirtment ofNEr:_ergyl « Computation. Tools incur a computation cost when-

ran - - , Lawrence Livermore National H
Lab grant 8504964, and NSF grants CDASe23632 and ot SO0HE PUPERE BT (EOE TS TIRRES
EIA-9870684. The U.S. Government is authorized to repro- . : .
cost is for data analysis, but the tool pays a computa-

duce and distribute reprints for Governmental purposes not-  ~ R . .
withstanding any copyright notation thereon. tion cost for other activities like data collection and
user interaction.

Keywords: Scalability, tools, multicast, reduction,
aggregation.

Permission to make digital or hard copies of all or part H H H ; ;

of this work for personal or classroom use is granted « Communication. Tools incur a communication cost
without fee provided that copies are not made or dis- whenever they transfer data between tool compo-
tributed for profit or commercial advantage, and that . K R

copies bear this notice and the full citation on the nents. For example, tools incur a communication cost
first page. To copy otherwise, to republish, to post on . : .
servers or to redistribute to lists, requires prior if they transfer data from their back-ends for analysis,
specific permission andjor a fee. either because the analysis occurs on a different sys-
SC'03, November 15-21, 2003, Phoenix, Arizona, USA tem than the one on which it was collected or because

Copyright 2003 ACM 1-58113-695-1/03/0011...$5.00



User Interface

CAnaIysis and Control >

Back-End |, ;

@ack—End (D
I
CProcess 0)

(Back—End D nn
I
C Process 1) .

Process .1

@)

User Interface

(Analysis and Control

J

$9sS900Id
[eulsiu] 18NN

Back-End L]

Back-End ,_;

Process (

Process |

Process .1

(b)

Figure 1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b).
Shaded boxes show potential machine boundaries.

the analysis is centralized. There is a communicatiorbetween the tool's front-end and back-ends as shown in
cost for transferring control requests and responsefigure 1b. MRNet uses thesaternal processeto dis-
within the tool system. Tools with a parallelized anal- tribute tool activities, reducing analysis time and keep-
ysis incur a communication cost for exchanging dataing tool front-end loads manageable. MRNet-based
between analysis components. Finally, if a tool'stools send data between front-end and back-ends on log-
analysis and user interface activities are not imple-cal flows of data calledtreams MRNet internal pro-
mented in the same tool component, there is a comeesses ushiters to synchronize and aggregate data sent
munication cost to transfer analysis results to the useto the tool's front-end. Using filters to manipulate data

interface component for display.

in parallel as it passes through the network, MRNet can

» Storage.Tools that do not analyze data when it is col- efficiently compute averages, sums, and other more

lected (often calleghost mortem toolsmust store the
data for later analysis. These tools pay a storage cost

wherever the data is stored. For examples, some toolsxamined

complex aggregations on back-end data.

This type of communication structure has been
previously  (e.g., [3,11,17,20,21,25,28]).

leave the data on storage local to the nodes where #However, several features make MRNet especially well-
was collected, while others transfer the data to a censuited as a general facility for building scalable parallel

tralized file server.
Different types of tools pay these costs at differente
times. We can characterize a tool based on when it per-
forms the bulk of its data analysis. Am-line toolana-
lyzes data while the monitored system or application is
running. Consequently, such a tool pays the communi-
cation cost for transferring data for analysis as the sys-
tem or application runs. On-line tools are usually
closed-looptools that dynamically control the applica-
tion or system based on their analysis. A tool may also
use an on-line analysis to avoid the cost of storing data
between collection and analysis. In contrast, a post mor-
tem tool stores the collected data in files or in a database
for off-line analysis. Depending on where the data ise
stored and where it must be for the analysis, such a tool
may incur a pre-analysis communication cost as the data
is being collected, after all data is collected, or not at all.

MRNet is a parallel tool infrastructure that reduces

the cost of many of these important tool activities.
MRNet-based tools incorporate a tree of processes

tools:

Flexible organization. MRNet does not dictate the
organization of MRNet and tool processes. MRNet
process organization is specified in a configuration
file that can specify common network layouts like

ary andk-nomial trees, or custom layouts tailored to
the system(s) running the tool. For example, MRNet
internal processes can be allocated to dedicated sys-
tem nodes or co-located with tool back-end and appli-
cation processes. Furthermore, MRNet can off-load
all data aggregation processing from a tool's front-
end by using a single connection between the front-
end and the top-most MRNet internal process.
Scalable, flexible data aggregationMRNet's built-

in filters provide efficient computation of averages,
sums, concatenation, and other common data reduc-
tions. Custom filters can be loaded dynamically into
the network to perform tool-specific aggregation
operations. For example, Paradyn uses custom filters
to implement a scalable algorithm for detecting the



clock skew between the tool front-end and each Paraintermediate nodes interposed between the front-end
dyn daemon. Paradyn also uses a custom histogramnd back-ends. The MRNet library exports an API that
filter to place its back-ends into equivalence classe€nables interaction between the front-end and groups of
based on the program resources (e.g. functions) didack-ends via MRNet. The mrnet_commnode program
covered by each back-end. distributes data processing functionality across multiple
» High-bandwidth communication. MRNet transfers computer hosts and implements efficient and scalable
data within the tool system using an efficient, packedgroup communications. We present an overview of the
binary representation. Zero-copy data paths are useiRNet architecture, followed by discussions of the
whenever possible to reduce the cost of transferringnterface, internal process implementation, data aggre-
data through internal processes. gation mechanisms, system instantiation, and process
» Scalable multicast. As the number of back-ends network topology issues.
increases, serialization when sending control request, .
limits the scalability of existing tools. MRNet sup- i'l MRNet Overview

ports efficient message multicast to reduce the cost of  The MRNet library, libmmet, allows a tool to use a
issuing control requests from the tool front-end to its N€twork of internal processes as a communication sub-

back-ends. strate between the tool's front-end and back-end pro-
« Multiple concurrent data channels. MRNet sup- ¢€sses. The internal processes are instances of the

ports multiple logicalstreamsof data between tool MmMet_commnode program. The connection topology
components. Data aggregation and message multicadf'd host assignment of these processes is determined by
takes place within the context of a data stream, and? configuration file, thus the geometry of MRNet's pro-
multiple operations (both upward and downward) canCess tree can be customized to suit the physical topology
be active simultaneously. of the underlying hardware. While MRNet can generate
MRNet is part of a larger effort to improve the SCa|_av§1riety of standgrd topologie;, users can easily specify
ability, reliability, and resiliency of parallel performance heir own topologies. See Section 2.6 for further discus-
and system administration tools. MRNet addresses th&!0N 01 MRNet process topologies.
problem of non-scalable global data processing and MRNet usescommunicatorso represent groups of
non-scalable global command and contlobal data  Network end-points. Like communicators in MPI [22],
processings the aggregation of data taken from all pro- MRNet commumcators prowde a handle_ that identifies
cesses in an application or nodes in a system, wheredsSet of end-points for point-to-point, multicast or broad-
local data processings the collection and analysis of C€ast communications. In contrast to MPI applications
data taken from a single process or system node. Othdpat typically have a non-hierarchical layout of poten-
aspects of our scalability work involve a distributed tially identical processes, MRNet enforces a tree-like
strategy for automatically finding application perfor- layout _of all processes roote_d at the tool front-end.
mance problems, distributed performance data managé:ccordingly, MRNet communicators are created and
ment, and scalable visualizations of performancenanaged by the front-end, and communication is only
analysis results. This paper introduces MRNet and eval@/lowed between a tool's front-end and its back-ends,
uates its scalability; its reliability and resiliency charac-i-€- back-ends cannot interact with each other directly
teristics will be addressed in future work. The contextVia MRNet. This limitation reflects the design of current
for our work is Paradyn [23], a parallel performance tool run-time tools but might be relaxeq in the future if there
supporting automated application performance problenfPPears to be a demand for such interaction.
searches. A streamis a logical channel that connects the
In the next section, we detail MRNet concepts,front'e”d to the end-points of a communicator. All tool-
implementation, and API. Section 3 describes our expelevel communication via MRNet uses streams. Streams
rience integrating MRNet into the Paradyn performancec@’ty data packets downstream, from the front-end
tool. Section 4 presents a quantitative analysis investifoward the back-ends, and upstream, from the back-ends
gating MRNet's impact on tool scalability. We discuss toward the front-end. Each stream has a uniguieam
how MRNet relates to previous work in this area in id that is used to identify packets sent on that stream.
Section 5. MRNet uses this stream id to support multiple, simulta-
. . neous streams of communication among the same com-
2 The Multicast/Reduction Network ponents within a tool instance. However,
MRNet is a customizable, high-throughput commu- communication via MRNet between separate tool
nication software infrastructure for parallel tools. jnstantiations is not supported; each tool has its own
MRNet has two main componentbmrnet, a library  MRNet network instantiation.
that is linked into a tool’s front-end and back-end com- Data packets carry typed data, enabling data aggre-
ponents, andnrnet_commnode program that runs on  gation operations to be associated with a stream. Types



front_end_main(){ back_end_main(){

1. MR_Network * net; 1. MR_Stream * stream;

2. MR_Communicator * comm; 2. intval;

3. MR_Stream * stream,; 3. MR_Network::init_backend();

4. float result; 4. MR_Stream::recv(“%d”, &val, &stream);
5. net = new MR_Network(config_file); 5. if(val == FLOAT_MAX_INIT){

6. comm = net->get_broadcast_communicator( ); 6. stream->send(“%f”, rand_float);
7. stream = new MR_Stream(comm, FMAX_FIL); }

8. stream->send(“%d”, FLOAT_MAX_INIT); }

9. stream->recv(“%f", result);

}

Figure 2: MRNet front-end and back-end sample code.

are specified using a format string similar to that used byand await the single floating point value result. The
C formatted I/O primitivesprintf  and scanf . For  back-end code reflects the actions of the front-end. Each
example, a packet whose data is described by the formabol back-end first connects to the MRNet network via
string “%d %f %s” contains an integer, float, and char-the init_backend call in line 3. In contrast to the
acter string. MRNet also adds specifiers for arrays offront-end’s stream-specificecv call, the back-ends
simple data types. call a stream-anonymou®cv that returns both the
Data aggregation is the process of transforminginteger sent by the front-end and a stream object repre-
multiple input data packets into one or more outputsenting the stream that the front-end used to send the
packets. Though it is not necessary for aggregation télata. Finally, each back-end sends a scalar floating point
result in less data or even different data, aggregationsalue upstream toward the front-end.
that reduce or modify data values are most common
MRNet usesfilters to aggregate data packets. A filter 2.3 MRNet Internal Processes

may be bound to a stream when the stream is created, VVhile libmmet provides access to MRNet capabili-
thus specifying the aggregation operation to performt'es’ it is the internal processes of a MRNet tree that pro-
ide the core functionality. MRNet internal processes

and the expected type(s) of the data sent on the streant' i
MRNet uses two types of filters: synchronization filters IMPlement logical channels for the flow of control mes-
and transformation filters. Synchronization filters orga-S29€s and data between the tools components and per-
nize data packets from downstream nodes into synchrd°'m data aggregation or reduction operations as

nized waves of data packets. Transformation filters2PPropriate. Consequently, an internal process’ main

operate on input data packets flowing either upstream of3SK iS to create and manage these logical channels or

downstream, yielding one or more output packets. streams and correctly control the flow of packets
through the system.

2.2 MRNet Interface Internal processes usesiream manageobject to

The MRNet API consists of network, end-point, manage control flow and route packets. When a stream
communicator, and stream C++ objects that a tool'sis established, an internal process creates a new stream
front-end and back-end use for communication. The netmanager and initializes it with the set of end-points to be
work object is used to instantiate the MRNet network associated with the stream and the filter(s) to be used on
and access end-point objects representing available todlata packets sent on the stream. The stream manager
back-ends. The communicator object is a container fomlso maintains an appropriate list dfildren nodedor
groups of end-points, and streams are used to send datfae stream; a child hode object represents a connection
to the end-points in a communicator. directly to an end-point or to another internal process

Simplified code for an example tool front-end and through which at least one end-point in the set can ulti-
back-end is shown in Figure 2. In the front-end code,mately be reached. Figure 3 illustrates the organization
after the variable definitions in lines 1-4, an instance ofof the functional layers within an internal process. We
the MRNet network is created in line 5 using the topol- describe these layers by discussing the path that user
ogy specification frormconfig_file . At line 6, the data packets take on upstream and downstream flows.
newly created network object is queried for an auto-gen-  Upstream data flow exercises all the layers of inter-
erated broadcast communicator that contains all availnal process functionality bounded by the dashed line in
able end-points. In line 7, this communicator is used toFigure 3. Packets must be unbatched, demultiplexed,
build a stream that will use a “floating point maximum” synchronized, perhaps aggregated, and re-batched
filter to find the maximum value of floating point data before continuing their upstream journey toward the
sent upstream. The front-end then might send one ofront-end. Incoming packet buffers must first be
more initialization messages to the back-ends; on line Ynbatched into individual packets. Data packets are
of our example code, we broadcast an integer initializebatched into packet buffers, which logically represent a

4



| ters do no data transformation and can operate on pack-
/ ( Packet Batching/Unbatching ) \ ets in a type-independent fashion. MRNet currently
[ supports three synchronization modes:
\ » Wait For All: wait for a packet from every child node;
I « Time Out wait a specified time or until a packet has
| arrived from every child (whichever occurs first); and
| « Do Not Wait output packets immediately.
I
I

Synchronization filters use one of these three criteria to
determine when to return packets to the stream manager.
Although we do not anticipate a need for it, new types of
synchronization filters can be added by the user.
k( Packet Batching/Unbatching )/ Transformation_filters combine_data fror_n multiple
I packets by performing an aggregation that yields one or
I more new data packets. Since transformation filters are
Figure 3: Functional layers within an MRNet expected to perform computational operations on data
internal process. packets, there is a type requirement for the data packets

series of communications destined for the same procest be passed to this type of filter: the data format string
to allow for fewer larger messages to be sent over busgf the stream’s packets and the filter must be the same.
connections, reducing overall communication costs.fransformation operations must be synchronous, but
Each packet is tagged with its stream id that is used t&an carry state from one transformation to the next using
demultiplex the packets into their appropriate streamsStatic storage structures. MRNet provides several trans-
At the demultiplexing phase, packets are passed to thiormation filters that should be of general use:
appropriate stream manager instance that delegates coh-Basic scalar operationsmin, max, sum and average
trol to filter objects for synchronization and aggregation. ©On integers or floats. - _
After aggregation, packets destined for the upstreant Concatenation operation that input$ scalars and
node are re-batched into a single packet buffer that is OUtputs a vector of lengtiof the same base type.
then scheduled for transmission to the upstream node in  MRNet is designed to allow tool developers to add
the tree. Note that packets are manipulated by referencéew filters to the provided set. This discussion focuses
whenever possible as they are passed between the laye¥s transformation filters; however, synchronization fil-
shown in Figure 3 to avoid unnecessary copying. ters share the same basic design with transformation fil-
Downstream data flow is identical to upstream datat€rs and may be added using similar techniques. In order
flow except in two respects. First, synchronization filtersto establish a new filter, a tool developer must provide a
are not supported for downstream data flows. Second, filter function that implements the data transformation
data packet flowing downstream may be placed in multi-operation. Filter functions have the following signature:
ple output packet buffers because the packet may be void filter_func( std::vector<Packet*>& inPackets,

Data-Specific Aggregation

[
N Packet Synchronization )

destined for multiple back-ends. Like the upward path, std::vector<Packet*>& outPackets,
packets are buffered by reference to avoid copying. void** clientData );
2.4 Filters The filter function takes a vector of data packets and

Filters operate on data flowing throughout the net-outputs a vector of data packets of arbitrary size. Each
work. Synchronization filters receive packets one at gpacket contains an array of data elements, where each
time and do not output any packets until the specifiedelement consists mainly of a C union of type integer,
synchronization criteria has occurred. Transformationfloat, character, or a pointer to arrays of these types.
filters input a group of packets, perform some type of Filter functions implemented by the tool developer
data transformation on the data contained in the packetsiust be named and made known to MRNet. Both tasks
and output one or more packets. A distinction betweerare accomplished using thead_filterFunc func-
synchronization and transformation filters is that syn-tion provided by the MRNet API. The
chronization filters are independent of the packet datdoad_filterFunc function takes the name of a fil-
type, but transformation filters operate on packets of aer function to be used by the filter and the name of the
specific type. shared object file that contains the filter function, and

Synchronization filters provide a mechanism to dealreturns an id that identifies the new filter. MRNet front-
with the asynchronous arrival of packets from childrenend and internal processes access the filter function
nodes; the synchronization filter collects packets andising the operating system’s API for managing shared
typically aligns them into waves, passing an entire waveobjects (e.g.dlopen anddisym on UNIX systems).
onward at the same time. Therefore, synchronization fil-

5



2.5 MRNet Instantiation 2.6 MRNet Process Layout

While conceptually simple, creating and connecting MRNet allows a tool to specify a node allocation
the MRNet process network is complicated by interac-and process connectivity tailored to its computation and
tions with the various job management systems. In theeommunication requirements and to the system running
simplest environments, we can launch jobs manuallythe tool. Choosing an appropriate MRNet configuration
using facilities likersh or ssh.In more complex environ- can be difficult due to the complexity of the tool's own
ments, it is necessary to submit all requests to a jokactivity and its interaction with the system. We briefly
management system. In this case, we are constrained laiscuss the issues related to process layout, but because
the operations provided by the job manager (and theseur current work focuses on tool scalability a full treat-
vary from system to system). We currently support twoment of optimal MRNet configurations is beyond the
modes of instantiating MRNet-based tools. scope of this paper. The configurations we used for our

In the first mode of process instantiation, MRNet experiments in Section 4 were chosen for their ability to
creates the internal and back-end processes, using tisiow MRNet's effect on tool scalability. We anticipate
specified MRNet topology configuration to determine future research will examine the issue of MRNet topol-
the hosts on which the components should be located2gy in more detail.

First, the front-end consults the configuration and uses When choosing the process configuration for an
rsh or ssh to create internal processes for the first levalIRNet-based tool, there are two key issues to consider:
of the communication tree on the appropriate hostswhether the MRNet internal processes are co-located
Each newly created process establishes a connection teith the application processes under study, and how the
the process that created it. The first activity on this con-internal processes are connected. Our primary measures
nection is a message from parent to child containing thef a configuration’s quality are its: (1) latency for a sin-
portion of the configuration relevant to that child. The gle broadcast operation, measured from initiation by the
child then uses this information to begin instantiation offront-end to the last receipt by a back-end; (2) latency
the sub-tree rooted at that child. When a sub-tree hafor a single data aggregation operation, measured from
been established, the root of that sub-tree sends a repartitiation by the back-ends to receipt by the front-end;
to its parent containing the end-points accessible via that3) throughput for streams of broadcasts and data aggre-
sub-tree. Each internal node establishes its children pragations; and (4) CPU utilization of the MRNet internal
cesses and their respective connections sequentiallprocesses.

However, since the various processes are expected to The first issue to consider when choosing an
run on different compute nodes, sub-trees in differentMiRNet configuration is whether to co-locate MRNet
branches of the network are created in concurrentlyinternal processes and application processes on the same
maximizing the efficiency of network instantiation. nodes. While the literature on broadcast/reduction net-

In the second mode of process instantiation, MRNetworks assumes that internal processes will be co-located
relies on a process management system to create somath application processes, we believe this approach has
or all of the MRNet processes. This mode accommo-erious flaws in practice. First, the internal processes
dates tools that require their back-ends to create, moniwould contend with application processes for CPU and
tor, and control the application processes. For examplenetwork resources, perhaps seriously impacting the
IBM’s POE uses environment variables to pass informa-application’s performance. Second, differing loads
tion, such as the process’ rank within the application’'sacross MRNet internal processes could create an imbal-
global MPI communicator, to the MPI run-time library ance among the application processes, skewing their
in each application process. In cases like this, MRNefperformance. Because a parallel program’s speed is
cannot provide back-end processes with the environeften limited by its slowest process, this performance
ment necessary to start MPI application processes. As skew would increase the tool’'s impact on the applica-
result, MRNet creates its internal processes recursivelyion. As a result, we recommend that MRNet’s internal
as in the first instantiation mode, but does not instantiatgprocesses be located on resources distinct from those
any back-end processes. MRNet then starts the toalunning the application processes. Regardless of
back-ends using the process management system tohether the MRNet internal processes and application
ensure they have the environment needed to creatgrocesses are co-located or are run on distinct nodes,
application processes successfully. When starting théheir overall resource usage is similar. Therefore, we
back-ends, MRNet must provide them with the informa-advocate separate location to achieve more predictable
tion needed to connect to the MRNet internal processand understandable application behavior.
tree, such as the leaf processes’ host names and connec- The second issue to consider when choosing an
tion port numbers. This information is provided via the MRNet configuration is the internal process topology.
environment, using shared filesystems or other informaBoth balanced and unbalanced tree topologies have
tion services as available on the target system. attractive properties for MRNet configurations. The lit-



@ (b)

Figure 4: Comparable MRNet internal process topologies with the same number of back-ends.
The latency of a single broadcast or aggregation operation might be better with the unbalanced
topology (b), but the balanced topology (a) has better throughput for pipelined operations.

erature on parallel collective communication algorithmsanced tree topology, then it could use a balanced topol-
argues for unbalanced tree topologies in many situaegy with a six-way fan-out throughout the tree to reach
tions. For example, Bernaschi and lannello [5] show thafar more than sixteen tool back-ends. Therefore, in this
the optimal communication tree for broadcast is somepaper we chose to experiment using balanced tree topol-
where between a single-level flat tree and a binomiabgies, leaving an examination of unbalanced trees and
tree, depending on the latency for transferring messagesptimal communication topologies for future work.
between processes and the minimum interval betweeBecause the ability of each internal process to keep up
message send operations in a process. Similarly, optimavith its upward and downward data flow, the fan-out at
algorithms for several broadcast and data aggregatioaach internal process is limited. Therefore, our experi-
problems evaluated under the LogP [8,16] andments use multi-level balanced trees with moderate fan-
LogGP [3] models use unbalanced communicationouts of four and eight.

trees. Unfortunately, this literature assumes all Pro-3 A Real-World Tool Example

cesses involved in the operation are data sources (for .
P ( To evaluate MRNet's usefulness for building real-

reductions) or sinks (for broadcasts), which is not the -
case for MRNet's internal processes. world scalable parallel tools, we modified the Paradyn

Balanced tree topologies provide several attractive’ arallel performance tool to use MRNet. There are two
pologies p main ways that Paradyn can use MRNet: to simplify the

advantages over unbalanced tree topologies for Oucr:omplex interactions between front-end and tool dae-

work. Their regularity makes them easier to analyzemons during process start-up and initialization, and to

when choosing the most appropriate size and shape for ;
the MRNet internal process tree. Also, although theOﬁ load the performance data processing tasks from the

. ) . Paradyn front-end. Here we report on our experience
latency of individual collective communication opera-

tions may be worse with balanced trees than unbalanced: "9 MRN.et within Pa“?‘dy”- A quantitative evaluation
. of this use is presented in Section 4.2.
trees, they can provide better throughput for sequences

of collective communication operations. For example,3.1 Scalable Tool Start-Up

consider the MRNet tree topologies shown in Figure 4 Tgols such as debuggers and performance tools may
connecting a tool front-end to sixteen tool back-endsyransfer large amounts of data during tool start-up when
Assuming a LogP model with a minimum ga@  they create or attach to an application's processes. For
between successive send operations in a process, @ample, a debugger that sets breakpoints by function
overheado for each send and receive, and a messag@ame might deliver the names and addresses of all func-
transfer latencyl, the time required to complete a tions to the tool's user interface. In parallel tools that
broadcast operation to all sixteen back-ends using theyjiow the process organization shown in Figure 1a, the
balanced tree topology shown in Figure4a iSfont-end becomes a bottleneck when connected to a
8g+40+2L, but the tool can start a new broadcast eacharge number of application processes. Besides reducing
4g cycles. A comparable unbalanced tree topologyigo| interactivity, the start-up latency caused by this bot-
reaching sixteen back-ends is shown in Figure 4b. Thigjeneck may create problems for parallel runtime sys-
topology is constructed from a binomial tree with four tems that fail if the application processes are not created
nodes providing low-latency broadcast to each binomial, g timely fashion. Our modified version of Paradyn
tree node, with four MRNet back-ends attached to eachses poth built-in and custom MRNet aggregation filters
binomial tree node. Depending on the relative values ofgy gj| activities involving the tool’s daemons (i.e., its
g, 0, andL, a single broadcast operation using this toPO"back-ends) during the tool start-up phase, including:
ogy may complete before the balanced tree’s broadcast, reporting data about Paradyn daemons to the front-
but a tool using this topology needs at leégtcycles end:

between each broadcast operation due to the larger fan- gistributing data about known performance data met-
out at the tree’s root. Furthermore, if the tool supports  rics to all daemons:

six-way fan-out as is being used at the root of the unbals  getecting clock skew between the front-end process



and each daemon process; and the Paradyn Metric Definition Language [15]. The front-
» reporting data about application processes to theend uses simple broadcast operations to deliver the met-
front-end. ric definitions to all tool back-ends.
Although most of these activities manipulate Paradyn-  Clock skew detection is the only start-up activity
specific data, our techniques for using MRNet to imple-that does not fall neatly into the two communication
ment them are applicable to many activities commonlyparadigms mentioned earlier. The MRNet-based clock
performed by parallel tools. skew detection scheme occurs in two phases. The first
During Paradyn start-up, most of the data trans-phase consists of repeated broadcast/reduction pairs on
ferred within the tool system can be placed into one ofa special stream reserved for finding clock “local” clock
two categories: data describing the daemon and applicaskew between each process and the downstream pro-
tion processes sent from the back-ends to the front-endiesses to which it is directly connected (i.e., its children
and configuration data sent from the front-end to allin the MRNet process tree). The second phase consists
back-ends. At tool start-up, the Paradyn back-end®f a single broadcast to all daemons requesting them to
examine application processes to identify the relevantnitiate the collection of skew results. Each daemon ini-
parts of the program, such as modules, functions, andalizes its “cumulative skew” value to zero, and passes
process ids. Such items are calledourcesn Paradyn it upstream into the MRNet network. When an MRNet
terminology. Once the back-ends have identified appli-internal process receives a cumulative skew value from
cation resources, they are reported to the front-end alongne of its downstream connections, it adds its observed
with statically-determined call-graphs for all application local clock skew value for that connection to the cumu-
processes. The bulk of the start-up information sentative value, thereby computing the skew of its clock
from the front-end to the back-ends is a collection ofwith each daemon reachable along that connection. By
performance metric definitions that specify how toinduction, when the algorithm finishes the Paradyn
instrument processes to collect performance data. front-end holds the skews between its clock and the
Paradyn uses MRNet in two ways to reduce the costlocks of each tool back-end.
of reporting data from daemons to the front-end. The . .
method used depends on whether the data is likely to b§.2 Distributed Performance Data Aggregation

the same across a significant number of processes (e.g., k€ many parallel performance tools, Paradyn
function names and their addresses) or is likely to berd9regates performance data collected by its back-ends
different across processes (e.g., process ids and ho@ €xa@mine an application’s global behavior. For each
names). If the data is likely to be the same across a sigd/oPal performance measure being monitored, each
nificant number of processes, then most of the datd @radyn back-end produces a sequence of data samples
transferred during tool start-up is redundant (especiallyf€Presenting the measure’s value for the processes and
if the application processes are created from a smafifféads that it controls. For example, to obtain a
number of executables and run on a collection of homoS€duence of samples representing an application's over-
geneous hosts). To report this data, each Paradyn dall CPU utilization, each Paradyn back-end collects a

mon first computes a summary of the data (i.e., a>¢duence of CPU utilization samples for its processes,

checksum). Next, the daemons write the checksums tgnd Paradyn aggregates corresponding samples across

an MRNet stream created to use a custom binning filter?!! S€quences into a single global sample sequence.
This filter partitions the daemons into equivalence©rdinal aggregation is a common technique for con-
classes based on their checksum values. When the frorgiructing a global sample sequence; that is, aggregating
end receives the final set of equivalence classes, i€ first sample from each sequence, then the second,
requests complete function resource information only2nd SO On as shown in Figure 5a. The Paradyn design
for each class’ representative process. Unlike functiorf€C0dnizes that its back-ends collect data asynchro-
names, data like process identifiers and host names aR®Usly, so ordinal aggregation may combine samples
likely to be different across hosts. Nevertheless, ParadyfEPresenting different intervals of the application’s exe-
also leverages MRNet for reporting this data. Paradyrfution- As aresult, Paradyn represents a data sample as
uses a parallel concatenation aggregation to construd:l}, Wherev is the sample’s value andis the time
larger resource report messages that are more efficientftérval to which the value applies. The interval's start

delivered by the underlying communication subsysten"d €nd timestamps are set by the back-ends when the
than many small resource report messages. sample is collected. Paradyn’s performance data aggre-

Paradyn uses MRNet to deliver configuration da,[agation takes into account each sample’s time interval as
efficiently from the front-end to all back-ends. In Para- well as its value, so that aggregation is done with values

dyn, metric definitions describing how to instrument Ic;yer csot:nparable time intervals as illustrated in
processes to collect metric performance data are pro—Igure )

vided to the front end in a configuration file written in

8



interval i Lol 42 i+3

DS, [ 1 2] 3 & = DSp . [ 1 2] 3 [a] F

Ds; [ 1 [ 3 [T s DS, [ 1 [T s AT s

Ds, [1 [T27 0 3 [T7470 o DS, [[1 T[22 s [TTa7q]7s

DS, 1 [ 2] 3 [ =& DSz [+ [27] 3 [ 4

oDs [+ [ 2 T 3 [ ¢ ODS | 1 2 [ 3 [ *
> >
= .

Time Time

(a) (b)
Figure 5: Performance data aggregation using ordinal aggregation (a) and time-aligned aggregation (b).

In both examples, four sample data streamg B&re being aggregated into one output sample stream ODS.
Ordinal aggregation aggregates the first sample from each stream, then the second, and so on. Time-aligned
aggregation considers the samples start and end times to aggregate data taken from the same interval

during the program’s execution.

Without MRNet, Paradyn aggregates data samplesemove the overlap (Figure 6c). Note that because the
entirely within its front-end. The computation and com- sample’s value is attributed proportionally to the current
munication cost of aggregation causes the front-end toutput interval, and the remainder used in the next out-
become a scalability barrier when Paradyn monitors gloput sample interval, there is no lost performance data
bal performance measures on a large nhumber of nodedue to round-off issues. Bs arrival caused the current
Using MRNet, Paradyn distributes its aggregation activ-output sample interval to be full (i.e., to have sample
ity to filters running throughout the MRNet network, data from all input connections over all input connec-
reducing its front-end data processing load. Paradyn’sions), the filter reduces the aligned samples (Figure 6d)
distributed data aggregation scheme uses a custom Pend advances its output sample interval (Figure 6e). The
formance Data Aggregation filter within each MRNet output sample uses the same interval as the aligned input
internal process that aligns data samples from all itssamples.
inputs and then reduces them to form a single output  Paradyn’s MRNet-based performance data aggrega-
sample. Collectively, these filters produce a singletion scheme exhibits a common trade-off between cen-
aggregated sample for the tool’s front-end. tralized and distributed algorithms. The centralized

Paradyn’s Performance Data Aggregation filter col-aggregation scheme has complete knowledge of all of
lects data samples on all of its inputs, aligns the datahe samples to be aggregated, so it only considers each
samples, and then reduces them. To determine how tsample once when finding the aggregated sample’s start
align the samples and when to deliver the aligned samand end times. On the other hand, the distributed
ples to the aggregation filter, the filter maintains thescheme performs multiple alignments throughout the
notion of an output sample interval This interval network, leading to more overall work in the tool sys-
defines the start and end times for the aligned data santem. Nevertheless, because distributed scheme does
ples, and therefore the start and end time for the aggrethese alignments in parallel and reduces the computa-
gated output sample. Consider the example illustrated ition cost for data aggregation in the tool’s front-end, the
Figure 6, showing the Performance Data AggregationVIRNet-based distributed scheme exhibits better overall
filter in an internal process with four input connections. scalability than the centralized scheme.

Samples ha_ve already arrived for some of_ the input coNz Evaluation

nections (Figure 6a). When a samg@earrives on an .

input connection, the filter places it on a queue associ- To e_va.luate MRNet, we measured |t.s performange
ated with that input connection (Figure 6b). The filter alone within a test harness and then integrated with
then checks to see whether the interval of the newly—Paradyn' a real-world parallel performance tool. Our

arrived sample overlaps with the current output samplémcro'beg(:hl\q]sl;k ﬁxpe?mtents ‘lN':h the t?;t harnesdsttQOI
interval. If so, it attributes a percentage $§ value to measure ets start-up fatency, the round-rip

the input connection’s current output sample, Ieavinglatency of a single broadcast followed by a reduction,

the remainder irand adjusting its interval start time to and MRNets redqctlon throughput using ;everal pro-
cess tree topologies. Our Paradyn experiments com-



|
|

— N |
|

T I I
Output Sample Interval Output Sample Interval Output Sample Interval

b Time &4 - fo Time 1 . f Time o
(@) (b) (©)
L T | L T |
Output Sample Interval Output Sample Interval
> -
to Time 4 4 Time f2

(d) (e)
Figure 6: Distributed data aggregation using Paradyn’s custom MRNet filter.

The initial situation with four sample data streams (a). When a sample arrives, it is placed on a queue associated
with its input connection (b). If the sample’s interval overlaps the current output sample interval, it is split to
attribute the overlap to the output sample interval (c). If the newly-arrived sample completes the data for the

output sample interval, the samples are reduced (d), and the output sample interval is advanced (e).

pared the performance of both start-up and performanceured three MRNet performance characteristics: the
data aggregation activities with and without MRNet. latency to instantiate the MRNet network, the latency of
Our experiments were run on the ASCI Blue Pacifica broadcast operation followed by a data reduction, and
system [19] at Lawrence Livermore National Labora-the MRNet's throughput during a sequence of data
tory. Blue Pacific contains 280 nodes (256 computereductions. The results of these experiments are shown
nodes) connected by an IBM SP switch interconnectin Figure 7.
Each node contains four 332 MHz PowerPC 604e pro- Our micro-benchmark measurements show the
cessors, 1.5 GB RAM, and runs AIX 5.1 with Parallel necessity of infrastructure like MRNet for building scal-
System Support Programs version 3.4. Our results showble parallel tools. Using a flat, single-level topology
that MRNet significantly improves the scalability of key (which closely approximates the architecture of many
activities in parallel performance and system adminis-parallel tools), instantiation latency grows quickly as the
tration tools. number of tool back-ends increases due to the serializa-
4.1 Micro-benchmark Results tion of the process creation operations_. The instantiz_ition
: latency grows quite slowly when using MRNet with
We began by measuring the low-level performance . nopulated balanced tree topologies with four- and
of MRNet within a minimal test harness. For each run Ofeight-way fan-outs because MRNet creates the process
our test harness tool, we requested an appropriatelyzee in parallel. The round-trip latency and data reduc-

sized partition from the Blue Pacific batch schedulingyjq, throughput measurements also show the benefits of
system. Once we were given our partition, we deteriznet to parallel tools. In the flat topology, each

mined the partition nodes’ host names and used an autQsgadcast or reduce is implemented using serialized
matic configuration generator program to build angint to-point message transfers. Although each mes-
MRNet configuration file with the desired to,pology sage transfer is less time-consuming than the rsh used to
within the partition. We then executed the tool's front- oreate processes during tool instantiation, the effect of

end program, passing the configuration file’s name as ageyjg|ization is similar: the latency grows rapidly as the
argument. During each run of the test harness, we mea-

10



900 1.4+

800_' —e— Flat 4 o Flat
—e— 4-way Fanout 1.2 4 —e— 4-way Fanout
1 —#&— 8-way Fanout —=— 8-way Fanout
700 —
600 —
8 500 8
T E T
E 400 £
[ ] [
300
200 —
100
e e e F N S S S S o777 717 T
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Back-Ends Back-Ends
(a) start-up latency (b) round-trip latency
80
—e— Flat
70 —e— 4-way Fanout

—#— 8-way Fanout

Throughput (ops/sec)

0 1

T T T T T T T T T |
0 100 200 300 400 500 600
Back-Ends
(c) reduction throughput

Figure 7: MRNet micro-benchmark experiment results.

Tool instantiation latency (a), round-trip latency of a single broadcast followed by a single reduction (b), and
data reduction throughput (c) using single- and multi-level MRNet topologies. Compared to the “flat” (i.e., single-
level) topology commonly found in parallel tools, multi-level MRNet topologies exhibited dramatically better
scalability and overall performance, showing the necessity of multi-level process networks like MRNet for building

scalable parallel tools.

number of back-ends increases. Also, the tool front-endrends in MRNet’s micro-benchmark scalability studies
is involved in every message transfer, so it cannot start are perhaps to be expected; previous tool infrastructures
subsequent reduction before the previous operationsing a hierarchy of processes such as the Ladebug par-
completes. Multi-level MRNet process configurations allel debugger [4] and Lilith [11] show similar scalabil-
allow MRNet to perform point-to-point message trans-ity trends.

fers in parallel. Furthermore, the moderate fan-outs ah 2 Intearated Performance Results

each MRNet process allows data reductions to be pipe-- 9
lined as they pass through the network, keeping reduc- 10 evaluate MRNet's real-world performance, we
tion throughput high as application size increases. Thénodified the Paradyn parallel performance tool to use

11



Report Self

Report Metrics

Find Clock Skew J
Parse Executable
Report Process [peeer—————————1

40 _ Report Machine Resour ces |:|

Report Code Eq Classes

—— No MRNet
60- —e— 4-way Fanout
—=— 8-way Fanout
—&— 16-way Fanout

Latency (sec)

Report Code Resources

Report Callgraph Eq Classes

° ] Report Callgraph [ No MRNet
— T T T ]
0 100 200 300 400 500 600 B 8-way Fanout
Report Done
Daemons ——1T———
0 5 10 15 20 25
Time (sec)

() (b)
Figure 8: Paradyn start-up latency for increasing numbers of daemons (a) and by activity for 512 daemons (b).
In (b), bold activity names indicate use of MRNet for data aggregation or concatenation for some part of the activity.

MRNet as described in Section3. We evaluatedour largest experimental configuration; these results are
MRNet'’s performance during tool start-up and while the shown in Figure 8b. The individual activities shown in
tool was collecting and processing performance data. the figure are:
* ReportSelf: Using an MRNet concatenation filter,

4.2.1 Tool Start-Up Performance Results each daemon reports basic characteristics to the front

Paradyn's start-up protocol was already highly end such as the host on which it is running;
tuned to reduce redundant data transfer. For several data ReportMetrics: The front-end broadcasts Metric
transfers from tool daemons to the front-end, it used a Definition Language data to all daemons; the dae-
technique whereby each tool daemon computes a check- mons respond using the equivalence class algorithm
sum over its own data, the front-end partitions the dae- described above to report all metrics that they support
mons into equivalence classes based on the checksum (including internal metrics not specified in the MDL
values, and then requests the complete data from only a data);
single representative of each equivalence class. We mea- Find Clock Skew: The front-end finds its clock skew
sured the latency of Paradyn’s start-up activities when with respect to each daemon using the clock skew
preparing to monitorsmg2000 [6], a parallel linear detection algorithm described in Section 3;
equation solver. Themg2000 executable is relatively * Parse ExecutableEach daemon examines the appli-
small, containing approximately 434 functions in a cation executable and the shared libraries it uses to
290 KB executable. We started the timer when all dae- find names and addresses of all functions, and parses
mons were known to have been started (but not yet the code to discover the application’s static call
reported themselves to the tool front-end), and stopped graph;
the timer after the daemons had reported informatiorr Report Process: After creating or attaching to an
about themselves and the application processes they cre- application process, each daemon reports data about
ated, and were ready to run the application. the process to the front end including its process id,

The results of our scalability study with several its command-line arguments, whether it was created
MRNet topologies are shown in Figure 8a. Without by the daemon or was already created when the dae-
MRNet, serialization of the communication between mon attached to it, and whether the front-end should
Paradyn’s front-end and daemons causes overall start-up issue the command to resume the process when all
latency to rise exponentially as the number of daemons start-up activities are complete;
increases. Using MRNet and process topologies witlt Report Machine Resources:Using a concatenation
moderate fan-outs, the start-up latency curves are much filter, each daemon defines Paradyn resources for the
flatter and growth is nearly linear, indicating a signifi- ~ host, process, and initial thread of its application pro-
cant improvement in overall tool scalability. To investi- ~ cesses via Paradyn’s resource definition protocol;
gate how much of the overall start-up latency that* Report Code Eq Classesand Report Code
MRNet could affect, we measured the latency of indi- Resources:Using the equivalence class algorithm,
vidual start-up activities with and without MRNet for ~ the daemons define resources for all functions and

12



modules in the application executable; mon topology with four-way fan-out (a three-level
* Report Callgraph Eq Classes and Report topology), the MRNet-based clock skew detection algo-
Callgraph: Using the equivalence class algorithm, rithm produced skews with an average error of 10.5% as
the daemons report their static call-graph informationcompared to the skews computed using the globally-
(built during the “Parse Executable” activity synchronous switch clock, while the average error in the

described above) to the front-end; and skews produced by the direct-connection method was
* Report Done: The daemons indicate the end of the 17.5%. However, the standard deviation of the errors
start-up phase. produced by the MRNet-based algorithm was 80.4,

Each activity that used MRNet to communicate with all slightly higher than the standard deviation in the direct
daemons showed a significant latency reduction byconnection method’s errors at 78.9. In short, MRNet's
using MRNet. The activities that did not show a signifi- clock skew detection algorithm produced results compa-
cant improvement from using MRNet are activities thatrable to the direct-connection method but is significantly
consist either of work done entirely in parallel by the more scalable.
daemons (“Parse Executable”) or point-to-point com-
munication between a small number of daemons and thé.2.2 Tool Data Aggregation Performance Results
front-end (“Report Code Resources”, “Report To assess the impact of MRNet on Paradyn’s per-
Callgraph”). In fact, the point-to-point communication formance data processing capabilities, we measured
activities transferred data via MRNet; the additional how well Paradyn could consume and process the vol-
overhead of passing through intermediate MRNet pro-ume of performance data samples generated by its dae-
cesses was observed to be negligible. Overall, the bengnons in a variety of configurations. We varied the load
fit of using MRNet increased as we increased theplaced on the tool's front-end by varying the number of
number of tool daemons. With our largest configurationdaemons and the number of performance metrics for
of 512 back-ends, the latency for performing all start-upwhich data was collected by each daemon. To simplify
activities was 3.4 times faster with MRNet and a bal-the evaluation, we ran Paradyn on a synthetic parallel
anced, fully-populated tree configuration with eight-way application with known behavior and easily-controllable
fan-out than without MRNet. Based on our investigationrun time. To keep the data rate high, we configured the
of MRNet's benefit for each individual activity during Paradyn daemons to use a fixed sampling rate for the
Paradyn start-up, we expect this trend to continue withduration of the experiments. We fixed each daemon’s
configurations significantly larger than 512 daemons. sampling rate to Paradyn’s default initial rate of five
Clock skew detection was the Paradyn start-upsamples per second per metric. Therefore, for a given
activity that benefitted most from using MRNet, becausenumber of daemon® and metricaM, the overall rate at
it uses repeated broadcast/reduction operations to disvhich samples are generated within the tool5BM
tribute and collect clock samples and intermediate skevsamples per second.
results whereas the other activities perform only one or  The results of our integrated performance data pro-
two collective operations. We evaluated the clock skewsessing experiments are shown in Figure 9. Each figure
computed by the MRNet-based clock skew detectionshows Paradyn’s performance when collecting data for
algorithm by comparing them to skews computed usingup to 32 metrics for configurations with between 4 and
Blue Pacific’'s SP switch clock (a globally-synchronous 256 daemons. Each data point marks the ratio of the rate
clock) and to skew results computed using a commonly-at which the Paradyn front-end processed performance
used direct-communication scheme. To compute itslata samples to the rate at which the daemons generated
clock skew with respect to a given daemon under thehe samples. This ratio represents the fraction of offered
direct communication scheme, the front-end sends #ad processed by the Paradyn front-end. While there
small amount of data to the daemon. The daemon samwere minor start-up transients, the steady-state rate at
ples its clock when it receives the data and sends thigvhich the front-end consumed performance data did not
sample to the front-end. When the front-end receives th@uctuate significantly. Therefore, we report only the
daemon’s sample, it samples its own clock and comsteady-state ratio. In these figures, a level curve at value
putes the round-trip latency of the sends and receivesl.0 indicates the Paradyn front-end was able to keep up
The front-end approximates the one-way latency fromwith the performance data volume generated by its dae-
the round-trip latency, adds the one-way latency to thanons as the number of daemons was increased.
daemon’s clock sample, and uses the difference between Quyr results show that when Paradyn relies on
this value and the front end’s receive timestamp as th@jRNet for some of its performance data processing
clock skew. In our experiments, the front-end measuredctivity, it scales significantly better with increases in
the skew using the direct communication scheme 10@he number of tool daemons and number of metrics for
times and used the observed skew with the smallesfhich data is collected. When increasing the number of
absolute value as the actual clock skew. Using a 64-dagnetrics for which data is being collected, Paradyn’s

13



1.0 mx—= T u 1.0 ® ]
% 0.8 % 0.8 -
o o
| - —e— Flat
-g 0.6 -g 0.6 4 —e— 4-way Fanout
e e —&— 8-way Fanout
o (@) —— 16-way Fanout
ko] B
c 04+ c 044
% —e— Flat -2
8 —e— 4-way Fanout 8
L 024 —m— 8-way Fanout L 02

—>— 16-way Fanout
L e L e S S S L e L L e S
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Daemons Daemons
(a) 1 Metric (b) 8 Metrics

1.0 X u 1.0 x ]
% 0.8 4 % 0.8
o o
| —e— Flat — —e— Flat
ki 0.6 —e— 4-way Fanout ki 0.6 —e— 4-way Fanout
g ' —=— 8-way Fanout ;?':5 ' —=— 8-way Fanout
o —>— 16-way Fanout (@) —x— 16-way Fanout
ko] B
= 047 = 044
° 2
g 8
L 024 L 024

0.0 —T T T T T 0.0 — T T T : —

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Daemons Daemons
(c) 16 Metrics (d) 32 Metrics

Figure 9: Fraction of offered load serviced by the Paradyn front-end.
When not using MRNet and increasing the number of metrics for which data is being collected (shown by the curves
labelled “flat”), Paradyn’s ability to process the offered performance data sample load degrades quickly as the
number of daemons increases. However, using MRNet to off-load some of the performance data processing allows
Paradyn to scale much better as the number of daemons and metrics increases with four-, eight-, and sixteen-way
MRNet fan-outs.

ability to process the offered performance data sampléiRNet fan-outs, the front-end was able to process the
load degraded quickly. For example, when collectingentire offered load for all configurations we tested.

data from only 64 daemons for 32 metrics per daemo

without MRNet, the Paradyn front-end processed thg5 Related Work
data at only about 60% of the rate at which it was gener-
ated. With 256 daemons and 32 metrics, the front-en

processed data at a rate of less than 5% of the offere

load. Note that as the number of metrics per daemoI 100l q licati di lel datab d
increases, Paradyn increases the size of its messagg 00IS and applications, and In parailel databases an
9verlay networks.

containing performance data rather than the number o o )
MRNet, Lilith [11], and Ygdrasil [3] are parallel

messages. ) 4 C
Using MRNet allowed the Paradyn front-end to too! mfrastru.cture.s providing multlcast and d.:?\ta aggre-
tion functionality. MRNet differs from Lilith and

scale much better as the number of daemons and metri(%ad i in it icati del. tool architect
were increased. With four-, eight-, and sixteen-way gdrasitin Its communication modet, toot .arf: lecture,
and software engineering trade-offs. In Lilith’s commu-

nication model, synchronous waves of messages are sent

MRNet provides data aggregation and multicast
ervices for building scalable parallel tools. Similar
nctionality has been found previously in software-
ased collective communication infrastructure for paral-

14



to or from the tool's front-end at the root of the processing Interface [22] standard defines broadcast and a few
tree [12]. Generalizing the multicast/reduction capabili-data reduction operations. Whereas some MPI imple-
ties of the Ladebug [4] parallel debugger, Ygdrasil ismentations use serialized point-to-point operations to
best suited to a synchronous request/response model fanplement these collective operations, others provide
tools like parallel debuggers. In contrast, MRNet's com-optimized implementations. For example, MagPle [17]
munication model supports multiple simultaneous asyn{provides MPI collective communication primitives opti-
chronous collective communication operations. Toolsmized for applications run in a geographically-distrib-
built with MRNet and Ygdrasil share a similar architec- uted environment like the Grid. MagPle uses a process
ture with internal processes distinct from the tool's tree consisting of a flat, single-level tree at the root for
back-ends. Lilith’s architecture allows tool back-end efficient communication across a WAN, followed by a
code at each process throughout the Lilith process nethinary tree for efficient communication within the local
work. For tool extensibility, both Lilith and Ygdrasil are network. As another example, the ACCT [27] system
implemented in Java and take advantage of that lanautomatically tunes its MPI collective communication
guage’s natural ability to load code dynamically. MRNet algorithms based on modelling and experimental results,
trades this ease of extensibility for the higher potentialtailoring the algorithms to the system on which the MPI
data throughput of C++-based data serialization. application runs. Unfortunately, because optimized MPI
A network of processes as is used in MRNet isimplementations are not universally available, we can-
often called aroverlay networlbecause it defines a log- not depend on the availability of a high-performance
ical network that overlays a physical network. SeveralMPI layer for efficient collective communication in par-
overlay network projects have data aggregation funcallel tools. Also, MPI reductions are more restrictive
tionality similar to MRNet. Ganglia [21] defines a hier- than MRNet's data aggregations because they are
archical overlay network like MRNets in an applied ordinally to the operands. Finally, a tool's use of
infrastructure for monitoring clusters and federations ofMPI may conflict with MPI use in the monitored appli-
clusters, and Supermon [25] servers can be organizegation. For example, in a common tool start-up scenario,
into a hierarchical infrastructure for data aggregation.a process manager creates tool back-end processes,
Neither of these systems is designed to support highwvhich then create application processes. The back-end
throughput, and would be ill-suited for collecting and processes are supposed to be transparent to the process
manipulating application performance data samplednanager, but may not be if they are also MPI-based pro-
with high frequency. Also, Ganglia relies on the avail- grams. MRNet does not use MPI for collective commu-
ability of IP multicast within clusters which may not be nication, so it is safe to use in tools that monitor MPI
enabled for all target systems. applications. We would advocate using MRNet as a sub-
Data aggregation has also been studied in the Corﬁtitute for MPI's implementation for efficient broadcast
text of parallel databases. Shatdal and Naughton [24fnd data reduction support.
suggest several algorithms for efficient data aggregat'orACknOWIedgments

in parallel databases. Gray et al [14] suggest ways for i i
efficiently implementing their “data cube” aggregation This paper benefited from the hard work of many

operator. Neither approach uses a separate network ®@St and present members of the Paradyn research
aggregator processes as is used in MRNet. Like a parafifouP- We especially wish to thank Victor Zandy and
lel database, TAG [20] provides a SQL-based interfacdryan Wylie for several fruitful discussions on the topic.
for expressing data aggregation queries, and a relationd/€ also thank John Gyllenhaal, Jeff Vetter, Chris Cham-

database model for representing aggregation results cof’€au, Barbara Herron, and Charlie Hargreaves for help
lected from wireless sensor networks. Similar toWith the computing environment on ASCI Blue Pacific.

MRNet, TAG supports multiple simultaneous aggrega-References

tion operations and supports streams of aggregated d Advanced Simulation and Computing program,

in response to an aggregation request. However, TA! National Nuclear Security Administration, United

only supports ordinal data aggregation, whereas States of America Department of Energy.

MRNet'’s flexibility allows filters that align and aggre- <http://www.nnsa.doe.gov/asc/home.htm>, February
gate timestamped data. TAG uses a SQL/relational inter- 6, 2003.

face, in contrast to our RPC-style interface. Also, TAG[2] ~ A. Alexandrov, M.F.lonescu, K.E.Schauser, and
organizes its sensors with an ad-hoc routing tree, C. Scheiman. LogGP: Incorporating Long Messages
whereas MRNet's network configuration is specified into the LogP Model. Journal of Parallel and

Distributed Computing4, 1, July 1997, pp. 71-79.

riori via a configuration file. P
P 9 [3] Susanne M. Balle. Personal communication, November

Most work in software-based collective communi- 2002.
cation has focused on providing multicast and datg,; s M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance-
aggregation support for applications. The Message Pass-  [ijnden. A New Approach to Parallel Debugger

15



[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Architecture. Sixth International Conference PARA
2002 Espoo, Finland, June 2002. Published asture
Notes in Computer Scien@367 J. Fagerholm et al
(Eds), Springer, Heidelberg, June 2002, pp. 139-149.
M. Bernaschi and G. lannello. Collective
Communication Operations: Experimental Results vs.[20]
Theory.Concurrency: Practice and Experiend®, 5,
April 1998, pp. 359-386.

P.N. Brown, R.D. Falgout, and J.E. Jones.
Semicoarsening Multigrid on Distributed Memory
Machines.SIAM Journal on Scientific Computir@y,

5, 2000, pp. 1823-1834.

Center for Computational Research, University at
Buffalo, The State University of New York.
<http://www.ccr.buffalo.edu>, February 6, 2003.

D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay,
E. Santos, K.E. Schauser, R. Subramonian, and22]
T.von Eicken. LogP: A Practical Model of Parallel
Computation.Communications of the ACM9, 11,

(19]

(21]

November 1996, pp. 78-85. [23]
Earth Simulator Center.
<http://www.es.jamstec.go.jp>, February 6, 2003.

Etnus LLC, “TotalView User's Guide”, Document
version 6.0.0-1, January 2003.
<http://www.etnus.com> [24]

D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C.
Armstrong. Lilith: Scalable Execution of User Code for
Distributed Computing. Sixth IEEE International
Symposium on High Performance Distributed
Computing (HPDC ‘97) Portland, Oregon, August
1997, pp. 306-314.

D.A. Evensky. Personal communication, November
2001. [27]
Forecast Systems Laboratory, National Oceanic and
Atmospheric Administration.
<http://hpcs.fsl.noaa.gov>, Feb 6, 2003.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. [28]
Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Mining and Knowledge Discovery,1, April

1997, pp. 29-53.

J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O.
Naim, Z. Xu, and L. Zheng. MDL: A Language and
Compiler for Dynamic Program Instrumentation.
International Conference on Parallel Architectures and
Compilation Techniques (PACT'Q7pan Francisco,
California, November 1997, pp. 201-213.

R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser.
Optimal Broadcast and Summation in the LogP Model.
Fifth ACM Symposium on Parallel Algorithms and
Architectures Velen, Germany, June 1993, pp. 142—
153.

T. Kielmann, R.F.H.Hofman, H.E.Bal, A.Plaat,
R.A.F. Bhoedjang. MagPle: MPI's Collective
Communication Operations For Clustered Wide Area
SystemsACM SIGPLAN Notice84, 8, August 1999,

(25]

(26]

pp. 131-140.
Lawrence Livermore National Laboratory.
Multiprogrammatic Capability Cluster.

16

<http://www.lInl.gov/linux/mcr>, February 6, 2003.
Lawrence Livermore National Laboratory. Using ASCI
Blue Pacific.
<http://www.lInl.gov/asci/platforms/bluepac>,
February 13, 2003.

S. Madden, M.J. Franklin, J.M Hellerstein, and W.
Hong. TAG: a Tiny AGgregation Service for Ad-Hoc
Sensor Networks.Fifth Symposium on Operating
Systems Design and Implementation (OSBKRston,
Massachusetts, December, 2002.

M.L. Massie, B.N. Chun, and D.E. Culler. The Ganglia

Distributed Monitoring System: Design,
Implementation, and Experience. University of
California, Berkeley Technical Report,

<http://ganglia.sourceforge.net/talks/parallel_computi
ng/ ganglia-twocol.pdf>, February 2003.

Message Passing Interface Forum. MPI: A Message
Passing Interface Standarthternational Journal of
Supercomputing Applicatior8 3/4, Fall/Winter 1994.
B.P. Miller, M.D. Callaghan, J.M. Cargille,
J.K. Hollingsworth, R.B.Irvin, K.L. Karavanic,
K. Kunchithapadam, and T.Newhall. The Paradyn
Parallel Performance Measurement ToolEEE
Computer28, 11, November 1995, pp. 37-46.

A. Shatdal and J.F. Naughton. Adaptive Parallel
Aggregation AlgorithmsACM SIGMOD Recor@4, 2,
May 1995, pp. 104-114.

M.J. Sottile and R.G. Minnich. Supermon: A High-
Speed Cluster Monitoring SystenCluster 2002
Chicago, lllinois, September 2002.

UoE HPCX Ltd. <http://www.hpcx.ac.uk>, February 6,
2003.

S.S. Vadhiyar, G.E. Fagg, and J. Dongarra.
Automatically Tuned Collective Communications.
2000 ACM/IEEE Conference on Supercomputing
(SC2000) Dallas, Texas, November 2000.

A. Waheed, D.T. Rover, and J.K. Hollingsworth.
Modeling and Evaluating Design Alternatives for an
On-Line Instrumentation System: A Case StuldBEE
Transactions on Software Engineerirgfl, 6, June
1998, pp. 451-470.



	MRNet: A Software-Based Multicast/Reduction Network for Scalable Tools
	Philip C. Roth, Dorian C. Arnold, and Barton P. Miller
	Computer Sciences Department
	University of Wisconsin, Madison
	1210 W. Dayton St.
	Madison, WI 53706-1685 USA
	{pcroth,darnold,bart}@cs.wisc.edu
	Abstract
	1 Introduction
	Figure�1: The components of a typical parallel tool (a) and an MRNet-based parallel tool (b). Sha...

	2 The Multicast/Reduction Network
	2.1 MRNet Overview
	Figure�2: MRNet front-end and back-end sample code.

	2.2 MRNet Interface
	2.3 MRNet Internal Processes
	Figure�3: Functional layers within an MRNet internal process.

	2.4 Filters
	2.5 MRNet Instantiation
	2.6 MRNet Process Layout
	Figure�4: Comparable MRNet internal process topologies with the same number of back-ends. The lat...


	3 A Real-World Tool Example
	3.1 Scalable Tool Start-Up
	Figure�5: Performance data aggregation using ordinal aggregation (a) and time-aligned aggregation...

	3.2 Distributed Performance Data Aggregation
	Figure�6: Distributed data aggregation using Paradyn’s custom MRNet filter. The initial situation...


	4 Evaluation
	Figure�7: MRNet micro-benchmark experiment results. Tool instantiation latency (a), round-trip la...
	4.1 Micro-benchmark Results
	Figure�8: Paradyn start-up latency for increasing numbers of daemons (a) and by activity for 512 ...

	4.2 Integrated Performance Results
	4.2.1 Tool Start-Up Performance Results
	4.2.2 Tool Data Aggregation Performance Results
	Figure�9: Fraction of offered load serviced by the Paradyn front-end. When not using MRNet and in...



	5 Related Work
	Acknowledgments

	References
	[1] Advanced Simulation and Computing program, National Nuclear Security Administration, United S...
	[2] A.�Alexandrov, M.F.�Ionescu, K.E.�Schauser, and C.�Scheiman. LogGP: Incorporating Long Messag...
	[3] Susanne M. Balle. Personal communication, November 2002.
	[4] S.M. Balle, B.R. Brett, C.-P. Chen, and D. LaFrance- Linden. A New Approach to Parallel Debug...
	[5] M. Bernaschi and G. Iannello. Collective Communication Operations: Experimental Results vs. T...
	[6] P.N. Brown, R.D. Falgout, and J.E. Jones. Semicoarsening Multigrid on Distributed Memory Mach...
	[7] Center for Computational Research, University at Buffalo, The State University of New York. <...
	[8] D.E.�Culler, R.M.�Karp, D.A.�Patterson, A.�Sahay, E.�Santos, K.E.�Schauser, R.�Subramonian, a...
	[9] Earth Simulator Center. <http://www.es.jamstec.go.jp>, February 6, 2003.
	[10] Etnus LLC, “TotalView User’s Guide”, Document version 6.0.0-1, January 2003. <http://www.etn...
	[11] D.A. Evensky, A.C. Gentile, L.J. Camp, and R.C. Armstrong. Lilith: Scalable Execution of Use...
	[12] D.A. Evensky. Personal communication, November 2001.
	[13] Forecast Systems Laboratory, National Oceanic and Atmospheric Administration. <http://hpcs.f...
	[14] J.�Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. ...
	[15] J.K. Hollingsworth, B.P. Miller, M.J.R. Goncalves, O. Naim, Z. Xu, and L. Zheng. MDL: A Lang...
	[16] R.M.�Karp, A.�Sahay, E.E.�Santos, and K.E.�Schauser. Optimal Broadcast and Summation in the ...
	[17] T. Kielmann, R.F.H.�Hofman, H.E.�Bal, A.�Plaat, R.A.F.�Bhoedjang. MagPIe: MPI’s Collective C...
	[18] Lawrence Livermore National Laboratory. Multiprogrammatic Capability Cluster. <http://www.ll...
	[19] Lawrence Livermore National Laboratory. Using ASCI Blue Pacific. <http://www.llnl.gov/asci/p...
	[20] S. Madden, M.J. Franklin, J.M Hellerstein, and W. Hong. TAG: a Tiny AGgregation Service for ...
	[21] M.L. Massie, B.N. Chun, and D.E. Culler. The Ganglia Distributed Monitoring System: Design, ...
	[22] Message Passing Interface Forum. MPI: A Message Passing Interface Standard. International Jo...
	[23] B.�P.�Miller, M.�D.�Callaghan, J.�M.�Cargille, J.�K.�Hollingsworth, R.�B.�Irvin, K.�L.�Karav...
	[24] A. Shatdal and J.F. Naughton. Adaptive Parallel Aggregation Algorithms. ACM SIGMOD Record 24...
	[25] M.J. Sottile and R.G. Minnich. Supermon: A High- Speed Cluster Monitoring System. Cluster 20...
	[26] UoE HPCX Ltd. <http://www.hpcx.ac.uk>, February 6, 2003.
	[27] S.S. Vadhiyar, G.E. Fagg, and J. Dongarra. Automatically Tuned Collective Communications. 20...
	[28] A. Waheed, D.T. Rover, and J.K. Hollingsworth. Modeling and Evaluating Design Alternatives f...





