‘Computer
. Sciences
. Department

The Problem with Grand Unified

Technical Report #1492

- November 2003

. UNIVERSITY OF

. WISCONSIN

M A DI S O N




“The Problem with Grand Unified Frameworks” by Douglas Thain
Technical Report 1492, Computer Sciences Department, University of Wisconsin

Copyright (c) 2003 Douglas Thain. This document may be reproduced and distributed by
anyone provided that it is kept whole and unmodified.

I prepared this text as introductory remarks I gave at a panel discussion titled “Is the Web
Services-based OGSA an Architecture for all Grids?” at the IEEE Symposium on High
Performance Distributed Computing (HPDC) on Monday, June 23", 2003.

This text was edited after the fact for grammar and clarity.
What I actually said that day might have been slightly different.

Hello, my name is Douglas Thain; I hail from the University of Wisconsin. I’d like to
thank Brian Tierney for inviting me just a few days ago. I'm a little concerned that he
didn’t ask me what position I would take! One thing I must get out of the way is that I
am not “against” OGSA in the sense that it is an opponent to be eradicated! I’'m sure that
it will be put to some good use. It’s an ambitious task, and I wish the authors good luck.

That said, I believe that the Open Grid Services Architecture (OGSA) is yet another in a
long line of Grand Unified Frameworks. The authors of OGSA need to convince us that
they will avoid the mistakes of their predecessors, and not merely recreate them using
tools starting with popular letters of the alphabet such as X and G. To avoid such
mistakes, we need a little perspective on Grand Unified Frameworks.

Let me explain what I mean by a Grand Unified Framework. When an area of computing
gains a certain level of diversity, we begin to get frustrated at dealing with all of the
fiddly differences between similar systems. So, it’s common to imagine a shiny new
system that will encompass all of our ugly differences and will permit us to ignore solved
problems and move on to more interesting things. That’s what I mean by a Grand Unified
Framework.

There have been many visions of Grand Unified Frameworks in different fields. A few
decades ago, the idea of UNCOL promised to unify all compilers; in the 1980s, Sun RPC
promised to unify all distributed computing; in the 1990s, the Java Virtual Machine
promised to unify all microarchitectures. A favorite project of enthusiastic
undergraduates is a universal framework for 3D shoot-em-up games. Some of these ideas
have been envisioned but not built; some have enjoyed success; most fall somewhere in
between. But none are ever universal, because each has peculiarities that are no better
and frequently worse than the systems that they unify.

The problem with building Grand Unified Frameworks is that it is hard to distinguish
between the fiddly little details and the fundamental structural issues. You can call the
two syntax and semantics. Syntax is just the representation of data, whether it is in



English, ASCII, or XML. Semantics are the meaning behind the information. Most
Grand Unified Frameworks have beautiful syntax but have lurking semantic landmines.

Let’s step back 20 years to Sun Remote Procedure Call (RPC). It is quite a powerful
system for remote execution, with several levels of name resolution, expiration and
rebinding, a structured data language, a stub generator, and several robust applications.
It’s described by several RFCs, one of them an Internet standard. Consider this question:
why wasn’t this Grand Unified Framework used beyond Sun’s own tools? (NFS and YP)
Here we are all today doing distributed computing, and I am positive nobody here is
building new systems with Sun RPC.

Sun RPC failed to become universal because a fiddly little detail had enormous semantic
consequences. Recall that RPC has the flexibility to run over either UDP or TCP. (This
is a false kind of “flexibility” that is common in Grand Unified Frameworks.) The
stateless nature (with respect to clients) of an RPC service requires that any change to
persistent data be done atomically and idempotently. That is a big deal! The semantics
of all potential RPC applications are tied to the semantics of the most hostile transport
method. Because of this, you can’t do large data streaming nor can you do efficient
transaction processing, nor can you discover and react to disconnected clients. That’s
fine for NFS and YP, but for other purposes, you must write a new protocol; this task is
well within the capabilities of your average graduate student.

Even applications that can accept these constraints declined to use Sun RPC. For
example, the Andrew File System (AFS) needed an RPC layer; they simply wrote their
own. If you are a standards advocate, you might stomp and wail “proprietary solution.”
But what’s the harm? There is no need for AFS to be syntactically compatible with NFS,
because it is semantically incompatible. The only savings might be in code re-use, but to
paraphrase Mark Twain, code re-use is a virtue that everyone praises but nobody
practices. If anyone here has figured out the secret to code re-use, I'd like to know it.

Now, what does this have to do with Web Services? I frequently hear things like “SOAP
can be carried over any sort of transport, even e-mail or FTP.” Let me make something
clear: This is nuts. E-mail is just like UDP: messages can be lost, re-ordered, or repeated.
Thus, any “flexible” SOAP implementation is constrained by the properties of E-Mail.
This is exactly the problem of Sun RPC: higher layers are imprisoned by the least
common denominator in a “flexible” infrastructure.

I don’t have time today for an exhaustive critique of Web Services. But let me drive the
main point home: flexibility is not always a virtue. Different services will require
different RPC-like layers for communicating control and data. One framework will not
satisfy all implementations, and trouble results when we try too hard for generality.

Let me conclude with an example of syntax and semantics in a realm outside of
computing. Consider an electrical wall outlet and D-cell battery. Both are similar; they
provide electrical power. Of course, they have different semantics. The wall outlet
provides 120V AC, while the battery provides 1.5V DC. They also have very different



failure semantics. The wall outlet is fail-stop; it has a circuit breaker. The battery is fail-
stutter; it loses voltage as load increases.

But, they also have a different syntax. The wall outlet takes a plug, while a battery takes
a funny little cradle. This difference in syntax discourages unknowing users from mating
the two systems. Now, suppose we got tired of the expense and frustration of using all
these different types of plugs and cradles. Let’s just give wall outlets and batteries
identical interfaces, let’s say an RJ-11 phone jack. You can imagine what sort of chaos
would result.

Syntactic differences are not such a bad thing; they prevent incompatible systems from
injuring each other. Have you ever noticed that the nozzles of diesel fuel pumps are a
different size from the nozzles of gasoline pumps? This prevents you from ruining your
passenger car with fuel meant for a truck. Syntactic differences are almost always a
reflection of semantic differences.

The question is, should we spend our time talking about syntax or semantics? Once a
semantic design is chosen, choosing syntax is easy. It’s a choice between curly braces
and angle brackets. (Frankly, I prefer curly braces.) But, building a complete working
system that stays up for years is a much harder problem. Quite a few people here know
this. (Larry’s keynote, the Globus GRAM designers, The Condor-G group.) At HPDC,
we should spend less time talking about Grand Unified Frameworks, and more time
building and understanding working systems.

Thanks for listening.



