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Abstract

We consider the problem of how to combine
structure indexes and inverted lists to answer
queries over a native XML DBMS, where the
queries specify both path and keyword con-
straints. We augment the inverted list entries to
integrate them with a given structure index. We
give novel algorithms for evaluating branching
path expressions. Our experiments show the
benefit of integrating the two forms of indexes.

We also consider the problem of incorporating
relevance ranking into path expression queries.
By integrating the above techniques with the
Threshold Algorithm proposed by Fagin et al.,
we obtain instance optimal algorithms to push
down top k computation.

1 Introduction

Recently, there has been a great deal of interest in
the development of techniques to evaluate path expres-
sions over collections of XML documents. In general,
these path expressions contain both structural and key-
word components. Unfortunately, while there are good
techniques for evaluating structural components (for ex-
ample, structural summaries), and good techniques for
evaluating keyword components (for example, inverted
lists), we are not aware of any techniques in the literature
that work well on their combination. Furthermore, while
an important application of this kind of query is to find
the “top-k” documents that match the query, the pub-
lished literature has not considered such “top-k” queries
in conjunction with structural summaries. This paper at-
tempts to fill this gap by proposing and evaluating an
approach that merges structural summaries and inverted
lists, and that works in the presence of top-k queries.

In more detail, consider the query //sec-
tion/figureftitle/’Graph”.  This query looks for the
keyword “Graph” appearing at the end of a the sequence
of structural containments //sectionffigureftite. To
efficiently evaluate such queries, the XML query

processing community first turned to inverted lists like
those proposed by the structured document processing
community [20]. Briefly, in the inverted list approach,
the system builds inverted lists on the element names
and text words appearing in the document. By per-
forming “joins” of these inverted lists, one can verify
containment relationships. To “follow” a path, the
system computes a join for each step in the path. In our
example, the system would compute three joins over the
inverted lists for section, title, figure, and “graph”. This
is essentially the approach taken in native XML query
systems including Niagara [9] and Timber [8].

While inverted list processing has proven very ef-
fective for keyword searches in the information re-
trieval (IR) community, when applied to path expression
queries over XML documents they are less universally
effective. The problem is that evaluating a path may re-
quire many joins over large inverted lists, and these joins
may be slow.

In view of this, there has been an orthogonal research
effort into alternative indexes. Perhaps the most com-
mon and promising approach involves graph summariza-
tion [13, 16, 18]. Briefly, the idea here is to compute a
“summary” of the XML documents. Ideally, this sum-
mary has the property that it is much smaller than the
original documents, and that following a path p in the
summary leads one to a set of node ids that corresponds
to the nodes that would have been reached by following
p in the original documents.

The graph summarization approach has proven to be
very effective when applied to queries that examine the
“coarse” structure of documents. For example, for many
documents, a query //section/figure/title would be eval-
uated very efficiently by a graph summary index. In such
an instance the graph summary functions as a kind of
“path index” or “join index,” and at query processing
time the system can exploit the fact that the index build-
ing process has in effect precomputed a lot of the joins
that would be time consuming in the inverted list-based
approach.

Unfortunately, the graph summarization indexing ap-
proach is much less successful when we consider queries




on “values” or text words in the documents. This is
roughly because any summary that retains enough de-
tail to answer such queries has to be big (it has to encode
a lot of details about specific values) so running queries
over the summary will be no more efficient than running
them over the original data.

Our contributions in this regard are:

« Evaluating path expressions using structure in-
dexes and inverted lists (Section 3) We show how
we can use structure indexes in conjunction with
inverted lists to efficiently answer queries with both
structure and value components. Our approach is to
augment the inverted list entries with information
derived from a structure index. Our query evalua-
tion algorithm uses these modified entries to elimi-
nate most inverted list joins.

o Evaluation of these techniques (Section 7) We
have implemented our approach in the Niagara
XML data management system [9]. Our prelim-
inary experiments using Niagara demonstrate that
we can derive substantial benefits by integrating the
two forms of indexes.

While finding all documents or elements that satisfy
a given path expression is a common use of path ex-
pression querying, users who specify keyword-based IR
queries typically want just the k most relevant answers.
To facilitate this kind of querying, we expand the IR no-
tion of relevance to apply to path expression queries (in
Section 4). Given a query, we rank all documents that
match the query and return the top k documents in or-
der of relevance, along with the specific elements that
matched the query in each of these documents. The op-
timization challenge here, of course, is to try to find the
top k answers without evaluating the entire query.

Our contributions here are:

o Algorithm to Merge Ranked Inverted Lists (Sec-
tion 5) We adapt Fagin et al.’s Threshold Algo-
rithm [11] to join ranked inverted lists. This is inter-
esting because our setting poses novel challenges,
as discussed in Section 4.2.

e Using Structure Indexes for top-k Computation
(Section 6) The above algorithm is “instance op-
timal” across a broad class of algorithms. How-
ever, in our domain, the presence of additional ac-
cess paths leads to new algorithms that are better
on some instances. The above algorithm thus fails
to be instance optimal in the presence of these new
access paths. However, we show that a structure
index can be used in conjunction with the ranked
inverted lists to design a new algorithm that is in-
stance optimal even in the presence of these access
paths. We have implemented this algorithm in the

Niagara system and present the results of prelimi-
nary experiments in Section 7.

2 Background
2.1 Data Model

Each XML document is a tree. An XML tree is
a directed graph G = (Vg,Vr, Eg,m00t,Xq, oid,
label, ord). Ve is the set of element nodes while V7
is the set of text nodes, one per keyword in the XML
document. Er is the set of edges which are constrained
to induce a spanning tree over Ve U V7. Each edge in
Er is a parent-child edge. There is a distinguished node
in Vi called the root with no incoming edges. Nodes
in Vr have no outgoing edges, that is, they occur at the
leaves of the tree. Nodes in Vg U Vi are labeled through
the label function. We assume that the labels of nodes in
Vi are the respective keywords they represent and that
they are distinct from those of nodes in V. The labels
of nodes in Vr are placed in quotation marks to distin-
guish them. All nodes in Vg U Vr are assigned unique
ids through the oid function. Each node is assigned a
unique ordinal number, through the ord function, which
corresponds to its sibling position. We can define a to-
tal ordering on all nodes in Vg U V7 by ordering parents
before children and using the ordinal number between
siblings. We refer to this as the document order. The
document order corresponds to the order in which the
data appears in the XML document.

Figure I is an example XML tree. This data repre-
sents one of the XQuery use cases available at [4]. The
data represents an XML document that stores the con-
tents of a book, in this case “Data on the Web”. The book
has a root book element along with tags for sections, fig-
ures, titles and paragraphs (p). These tags induce a tree
structure on the document. The actual contents of the
book appear at the leaf level of this tree. Some of these
contents are omitted for clarity.

An XML database is a collection of XML
trees/documents. The oids are constrained to be unique
across the whole database. The id of the root node of
a document is the document id. The whole database
consists of an artificial root node with the special label
ROOT that has as its children the roots of each individ-
ual document. An example would be a database of books
where each book is an XML document, like the one in
Figure 1.

2.2 Path Expression Queries

A simple path expression has the form “s; ly80ls... 5
I, where each [; except [, is a tag name, [, is a tag name
or keyword, and each s; is either / or // denoting respec-
tively parent-child and ancestor-descendant traversal.



book

title
“Data on the Web™
author

author author

“Dan Suciu”

"Serge Abi v “Peter

section

title P

Audicnce”

section

title .
section

section
lim title p

figure

P figure P

title image
section

title p title image

figure

title image

Figure 1: Sample data

book *

tile 2 author 3 section *

titleS p & segtion 7 ﬁgurea
title ¢ pt0 tile?? image3

ﬁgure11
title® image®®
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A branching path expression has the form
“sy li[Predi] sz lo|Preds]... sk li[Predy]” where
ecach Pred; is an optional predicate, each I; except Ik
is a tag name, [;; is a tag name or keyword, and each s;
is either / or // denoting respectively parent-child and
ancestor-descendant traversal. If {j is a keyword, then
Pred, must be absent. A predicate is a simple path
expression.

The result is the set of all nodes that match the path
expression query. This is standard notation for path ex-
pressions, with the exception that we allow the trailing
label to be a keyword.

Some example queries on the data in Figure 1 are:

1. //section//title/“web”
2. //section[/title}//figure
3. //section/title/“web’}//figure[//*‘graph”]

If a branching path expression has at least one key-
word, we call it a text query. Otherwise, we call it a
structure query. Queries 1 and 3 are instances of text
queries while Query 2 is an instance of a structure query.
The structure component of a text query T'Q) is the struc-
ture query SQ(T'Q) obtained by dropping all keywords
from TQ. For instance, the structure component of
Query 3 above is Query 2.

2.3 Structure Indexes

A structure index I (G) for the data graph G correspond-
ing to an XML database is another labeled, directed
graph. The idea is to preserve all the paths in the data

graph in the summary graph, while having far fewer
nodes and edges. A structure index is used for query
answering by associating an extent with each node in the
index. In general, any partition of the element nodes de-
fines a structure index where we (1) associate an index
node with every equivalence class, (2) define the extent
of each index node 7, ext(n), to be the equivalence class
that formed it and (3) add an edge from index node Ato
index node B if there is an edge from some data node
in ext(A) to some data node in ext(B). Henceforth,
whenever we refer to a structure index, we mean an in-
dex obtained from a partition of the data nodes through
the above construction. Thus, even a simple grouping of
the data nodes by label defines a structure index. Each
node A in the index has a unique identifier id(A). Notice
that a structure index indexes only the structural part of
the XML database — it ignores the text nodes.

Figure 2 shows an example structure index. The num-
bers shown beside each node indicate the id of that node
in the index. Each element node is associated with ex-
actly one index node inducing a partition on the data
nodes.

The index result of executing a path expression R on
I(G) is the union of the extents of the index nodes that
match R. The extent mapping has the property that it
is safe, that is, the result of any path expression R on
G is contained in the result of R on I(G). A structure
index is said to be precise if the converse holds. For a
particular path expression query Q, if the index result is
equal to the result of Q on the data graph, then I(G) is
said to cover Q. A structure index that is precise covers
all queries.

2.4 Inverted Lists

Several native XML database systems [9, 8] create in-
verted lists on tag names and keywords. Algorithms to
effectively process queries using these lists have been
proposed [21, 23].

We assume the following representation for inverted
lists.




e For each element node n with tag ¢, there is an en-
try in the corresponding inverted list of the form
<docid, start, end, level, indexid>. We denote
start as n.start and likewise for the other fields.

e For each text node with label K, there is an en-
try in the corresponding inverted list of the form
<docid, start, level, indexid>.

Here, docid refers to a unique document identifier and
level is the depth of the node in the tree. The start and
end numbers need to satisfy the following properties:

1. For each element node n, n.start < n.end.

2. If (element) node n; is an ancestor of element
node no, then ny.start < ng.start < ng.end <
ny.end.

3. If (element) node n; is an ancestor of text node nz,
then ny.start < nap.start < nj.end.

4. If element nodes n; and ng are siblings and
ord(ny) < ord(ny), then nj.end < na.start. A
similar property holds when one or both of n; and
119 are text nodes.

In order to integrate structure indexes with inverted
lists, we add a new indezid field to the list entries. For
a specific structure index I, the indexid field is set as
follows.

¢ For an element node n, let the unique index node in
whose extent n appears be N. Then, n.indezid =
id(N).

e For a text node n, let the unique index node in
whose extent the parent of n appears be N. Then,
n.indezid = id(N).

For example, for the data shown in Figure 1, with first
level section elements (that is, children of the root), we
store an index id of 4. For the keyword “web” occurring
under book/title, we store an index id of 2 corresponding
to bookditle in the index.

3 Evaluating Path Expression Queries

We first present a simple scenario to illustrate how we
can integrate structure indexes and inverted lists. We
then present the details of how a structure index can be
used to convert a simple path expression query into an in-
verted list scan. For branching path expressions, it turns
out that the number of joins to be performed can be re-
duced using a structure index. Finally, we show that even
for simple path expressions, performing multiple joins
can out-perform a scan. We introduce the notion of ex-
tent chaining to address this issue.

3.1 A Simple Example

Consider the following query over the data shown in Fig-
ure 1:

//section[figure/title/”graph”]
that asks for all sections that have a figure whose ti-
tle contains the keyword “graph”. Here, // refers to
the ancestor-descendant separator while / refers to the
parent-child separator in the XML. tree.

Evaluating the above query over a native XML
database system like Niagara [9] or Timber [8] would
involve joining the inverted lists corresponding to the
tag names section, figure and title, and the key-word
“graph”. Now suppose that we have a structure index on
this data, for instance the 1-Index [18], which is shown
in Figure 2.

Now consider the following evaluation strategy.

1. Execute the structure component //sec-
tion[//figure/title] on the structure index to obtain a
set of pairs of index ids corresponding to matching
<section,title> pairs. In this case, this step would
return S§ = {<4,12>,<4,14>,<7,14>}.

2. Evaluate the join section[//*“graph”] using the re-
spective inverted lists, with the additional condition
that a joining <section,*“graph”> pair satisfies: the
corresponding index id pair must be in S.

This strategy is correct since for any joining node pair
<ng,ny> (here, n, is an element node with label sec-
tion and m., is a text node with label “graph™):

1. The fact that the parent of n,, has index id 12 or 14
means that n., is under the path figure/title.
2. Since n, has some path to n,, and since n,, is under

figureftitle, n satisfies the query.

Notice that we replace three joins with one, in the pro-
cess incurring an index evaluation cost. The structure in-
dex is typically much smaller than the data. Hence, the
evaluation using the structure index is likely to do well.

3.2 Simple Path Expressions

The algorithm for evaluating a simple path expression g
using a structure index [ is given in Figure 3. Steps 2-
4 extract the structure component ¢’ of ¢ and check
whether I covers ¢’. We assume that I comes with an
interface to check this property. The algorithm uses [
only if it covers ¢’. In this case, it evaluates ¢’ on I to
obtain a set S of index ids. If ¢ is a tag name, then since [
covers ¢’ = g, Step 11 returns exactly the entries match-
ing q.

If ¢ is a keyword and sep is /, then for each entry e
returned in Step 11, the following holds: e.indexid € S
which means that the parent of e matches ¢’ = p. Hence
e matches g. The algorithm handles the case when sep



procedure evaluateSPEWithIndex(g, [)
/* evaluate simple path expression ¢ using index I */

begin
Letg=psept
if (i is a keyword) then g’ = p
else g’ =g
if (I does not cover q’) then

evaluate WithoutIndex(q)
Evaluate ¢’ on [
Let S be the set of indexids returned
if (¢ is a keyword and sep is //) then

foreach (2 € §) do
10. put all descendants of i in S
11. Scan the inverted list for ¢ returning

only those entries e where e.indexid € §

end

D00 OV LA R WD e

Figure 3: Using structure index for simple path expres-
sion

is // by adding the (index) ids of descendants of all (in-
dex) nodes matching p (Steps 8-10).

3.2.1 Branching Path Expressions

A branching path expression consists of multiple simple
path expressions. We adapt the solution for simple path
expressions to address each individual branch and then
Jjoin appropriate lists.

We discuss the evaluation algorithm for branching
path expression queries with one predicate. These
ideas extend to generic branching path expressions in a
straightforward manner. Queries with one predicate can
be represented as pi [p2 sep tlps where p1,p; and p3 are
simple structure expressions, sep is / or // and t is a key-
word. Examples of queries of this kind are:

Q1 //section[/section/title/web”)/figureftitie
Q2 /Isection|/section//title/“web”/figure/title
Q3 //section|/section/title/web”)/figureftitle
Q4 //section[/sectionftitle/“web”)/figure/title

We assume that the structure index covers p1, //p2
and //ps. Depending on the presence of // in pa, p3 or
sep, we get the following cases.

Case 1: None of py, p3 and sep contains //, as in

Ql.

Case 2: pp contains //, as in Q2.
Case 3: p3 contains //, as in Q3.
Case 4: sepis //, as in Q4.

Cases 2,3 and 4 are not disjoint.

In addition to the usual parent-child and ancestor-
descendant join, we make use of the level numbers in
the inverted list entries to perform level joins. For in-
stance, section/2title returns all title elements that are
grand-children of a section element. In general, we use
the notation e1/%ey to denote a binary level join. This
can be trivially implemented by comparing level num-
bers during an ancestor-descendant check.

procedure evaluateWithIndex(q, /)

begin

Let g = p1[p2 sep t]ps

if (I does not cover p; or //p2 or //ps) then
evaluateWithoutIndex(g)

Let 1, 3 be the trailing tag names of p1, ps respectively

Let d2 = number of tag names in p2 -+ 1

Let d3 = number of tag names in p3

Let pg = /%t

Let p/3 = /d3l3 ,

Evaluate ¢’ = p1[pa]pa on I

0. Let indexTriplets = {< 41,12,13 >: 11,42, %3 match

l1,12, 13 respectively in the evaluation of ¢ onl}
11. if (sep is //) then /* matches case 4 */
12.  foreach (< 41, 12,13 >€ indexTriplets) do

S0 N R LN

13 foreach (2'12 descendant of i2) do’
14. add < 11, i’z,z'a > to indexTriplets
15. pa=//t

16. if (g matches case 2) then
17.  skipJoins2 = true

/#* verify if we can use index to skip joins in p2 */
18. foreach (< 1,142,143 >€ indexTriplets) do
19. skipJoins2 = exactlyOnePath(i; ,i2)
20. if (skipJoins2 is true) then plz =//t
21.  else plg =pg sept
22. if (¢ matches case 3) then /* symmetric to case 2 */
23.  skipJoins3 = true

/* verify if we can use index to skip joins in p3 */
24. foreach (< i1,12,13 >€ indexTriplets) do
25. skipJoins3 = exactlyOnePath(é1,23)
26. if (skipJoins3 is true) then ps=//ls
27. else pls = p3
28. if (skipJoins2 is false) then
29, foreach (< 41, 12,43 >€ indexTriplets) do
30. ig =T
31. if (skipJoins3 is false) then
32. foreach (< i1, 42,13 >€ indexTriplets) do
33. i3 = |
34. Perform the join [ [p'g]plg using indexTriplets

and return the results

end

procedure exactlyOnePath(i1,i2)
/* 41 and 15 are nodes in I */
/* returns true if there is exactly one path from i1 to iz */
begin
Go backwards from ip to 41 in [
Let p be a path from 43 to 42
if (any node in p has > one in-coniing edge in I} then
if (sources of > 1 are reachable from ;) then
/* found 2 paths from 4; to ip */
return false
if (4; is part of a cycle) then
return false
return true

Ealb ol s

PN

end

Figure 4: Evaluation algorithm for branching path ex-
pressions using structure index




In Section 3.2, we saw how we can augment the scan
of an inverted list to incorporate a set of indexids. Using
this idea, we were able to convert a simple path expres-
sion query into a scan of a single list. We generalize this
approach to inverted list joins as follows. For a 2-way
join, we use a set .S of indexid pairs obtained using the
structure index to filter the result of the join so that only
those pairs of entries whose indexids match some pair
in S are returned. For n-way joins, we use a set S of
n-tuplets of indexids. We use the special entry T for an
indexid to denote that any value is a match.

The algorithm for evaluating a path expression query
using a structure index is shown in Figure 4. We explain
it by discussing how it handles Cases 1 and 2 above.
Cases 3 and 4 can be similarly handled.

Consider Q1. Let the structure index I be the one
shown in Figure 1. [ is applicable since it covers
the three expressions //section, //section/title and //fig-
ureftitle. By evaluating the structure component of the
query, //section[/section/title}/figureftitle on I, we ob-
tain a set S of triplets of ids of index nodes match-
ing section, section/title and figure/title nodes (steps 9
and 10). In this case, S = {< 4,9,12 >}. We
then evaluate the join /section[/3“web”]/title using S.
This strategy is correct since if <ng, Ny, N> 1s 2 node-
triplet returned finally (with corresponding labels sec-
tion, “web” and title):

1. n, matches //section, n, matches //sec-
tion/title/“web” and n, matches //figureftitie.

2. n, is the great grand-parent of n,, (due to a level
difference of 3), so <ng,n,> matches //sec-
tion[/section/titie/“web”].

3. n, is the grand-parent of n; (level difference of 2),

S0 <Tg, Ny, T > matches Q1.

We now move on to Case 2. Consider Q2. The
main difference from Case 1 is that there is a //
as part of the predicate which means that, for Q2,
the distance between a section node and a “web”
node is not known in advance. Suppose evaluating
the structure component of Q2 on [ returns a set of
triplets S. Now, the idea is to check if we can
skip the section/ftitle join in the predicate. In or-
der to replace e; =//section|/section/Aitle/“web”] with
ey =//section[//“web”] using S, we need to verify the
following. If an entry s (corresponding to node ni5) in the
inverted list for section and an entry w (corresponding
to node ny,) in the inverted list for “web” satisfy ep and
some triplet < i1, 42,13 >€ S, then there must actually
be a path from n, to n,, matching /section//titie/“web”.
We ensure this by checking that there is exactly one path
in the structure index from i; to ip through the func-
tion exactlyOnePath(i1,i2). Now, we know that there is
some path p/ “web” from n to n,, because of the con-

tainment check. By the property of structure indexes,
there is a path matching p from 7; to ip. Also, since
< 11,190,413 >€ S, there is a path p’ matching sec-
tion//title from i; to i. But since there is exactly one
path from 4; to iz, p = p'. Hence, we can skip the joins.
As for the /figure/title join, since there is no // separator,
it can be replaced with /title (as in Case 1). Putting this
together, we evaluate the join //section[//“web”]/ Zitle
using S.

3.3 Extent Chaining

In the above algorithm, we attempt to skip joins when-
ever possible using the structure index. As we will see
next, it turns out that skipping joins is not always ben-
eficial. We introduce the notion of extent chaining to
address this deficiency.

Consider the query ¢ =//figureftitie. Using I, the al-
gorithm converts ¢ into a scan on the title inverted list
with § = {< 12 >,< 14 >}. Suppose a document
has 100 titles. In this case, the scan would examine
the 100 title entries. Suppose only 10 occur directly un-
der a figure, the other 90 being section titles. In [5], the
authors introduce algorithms to make use of B-tree in-
dices on the inverted lists while performing containment

joins. The algorithm skips those parts of the inverted lists

that do not participate in the join. Depending on the doc-
ument structure, the join could return the 10 figure/title
nodes by examining far fewer than 100 entries. Next, we
discuss how to address this problem using the structure
index.

The algorithm in [5] uses the fact that title is con-
strained to be under figure to skip irrelevant parts of the
title inverted list. Observe that we can achieve a similar
effect using the set of indexids corresponding to //fig-
ure/title. This is done by chaining all title entries based
on indexids. That is, each entry has a pointer to the next
entry in the same document with the same indexid. We
refer to this as extent chaining. Now the inverted list en-
try for an element and keyword has an additional next
field for this pointer.

The scan of an inverted list is modified to take ad-
vantage of extent chaining as follows. The algorithm is
shown in Figure 5. In step 3, we obtain the first entry in
a list corresponding to a given indexid. We maintain a
directory for this purpose. If the database contains only
one document, for instance, then the structure index it-
self can store this information.

Generalizing this approach to joins of inverted lists,
we pass the projection of the appropriate column of S
(set of indexid n-tuples for an n-way join) to the corre-
sponding scan.



procedure scanWithChaining(L, 5)
/* returns entries in list L with indexide S */
begin
1. currEntries = ¢
2. foreach (id € S)do
3. add first entry in L with indexid id to currEntries
4. while (currEntries # ¢) do
5 minEntry = entry with minimum
start number in currEntries
get entry e in L corresponding to minEntry
delete minEntry from currEntries
if (minEntry.next ¢ NULL) then
add minEntry next to currEntries
0. outpute
end

=0 N

Figure 5: Scan with extent chaining
4 Ranked IR-Style Path Expression
Queries

We now consider how to support information retrieval
style relevance-based querying over a corpus of XML
documents. We first define the class of queries we con-
sider and describe the associated relevance semantics.
We then discuss the challenges involved in pushing down
top k computation.

4.1 Query Language and Ranking Metric
In the classical information retrieval world view, each

document is a bag of words and the query is also mod-
eled as a bag of words. In our context, the database is a
collection of XML documents that are modeled as trees.
Hence, we expand the class of queries beyond keyword
specification to allow simple structure constraints. More
precisely, a relevance query is a bag of simple path ex-
pressions.

We next examine one way of defining the relevance
of a document with respect to a relevance query. This
definition is consistent with various proposals made for
this purpose in the information-retrieval literature [12,
15, 19]. Let D be an XML document and p be a simple
path expression query. The term frequency of p in D,
tf(p, D), is defined to be the number of (distinct) nodes
in D that match p. As a special case, if pis //t where t is
a tag name or keyword, we refer to ¢ f (p, D) as the term
frequency of ¢. The relevance of D with respect to p is
calculated through a ranking function R(p, D) that satis-
fies the following property: for path expressions p; and
D2, tf(pl,D> < tf(p21D) Ad R(plaD) < R(p27D)

Let @Q = {p1,...,p} be a bag of simple path
expressions.  Using the ranking function, we can
talk about the relevance of document D for each
p;. The relevance of D with respect to @ is com-
puted by combining all R(p;, D) through a merg-
ing function M R(R(p1, D), ..., R(p, D)) (Merge Rel-
evances). We require that this merging func-
tion be monotonic [11], that is, for documents D;
and Dy, if R(pi,D1) > R(pi, D) for each ¢

from 1 to I, then M R(R(p1,D1),...,R(pi, D1)) 2
MR(R(p1,Ds), ..., R(pi, Dz)). Any pair of ranking
and merging functions that satisfy the above properties
is sufficient for our algorithm to work.

4.2 Challenges in Pushing Down Top k£ Computa-
tion

The main problem in this domain is to try to find the
top k answers without evaluating the entire query. In
order to push down the top k computation, we need ac-
cess paths based on relevance. We assume that for each
tag name (keyword) ¢, there is an additional inverted list
rellist(t) where the entries within a document are in
document order and the inter-document order is in de-
scending order of relevance of t (R(t, D)).

Fagin et al. proposed the threshold algorithm (TA) to
merge ranked lists in middleware [11]. There are two
main differences in our setting.

e When we join two inverted lists, the relevance
of the result is not “monotonic” in the rele-
vance of the inputs. In other words, suppose
we are evaluating a//b. If we were to directly
apply the threshold algorithm, then we need the
following property: for documents dl and d2,
if R(a,d1)>R(a,d2) and R(b,d1)>R(b,d2) then
R(a sep b,d1)>R(a sep b,d2). This is not true in
our scenario.

o TA is a middleware algorithm and is provably op-
timal under certain assumptions. Our focus is on
the XML database server where additional access
paths, like the original inverted lists, are available.
These access paths violate the assumptions under
which TA is proved to be optimal.

We next explore how each of these differences can be
handled.

5 Adapting TA to Inverted List Joins

We present the details for two-way join queries. The
adaptation for more joins is straight-forward. Consider
the path expression @ sep b. The algorithm for this case,
compute_top_k, is given in Figure 6. For steps 10 and 15,
we can use any standard algorithm that merges two in-
verted lists {21, 23].

The procedure compute top.k executes & sep bona
per-document basis in the process maintaining the top k
documents (based on relevance) among the documents
processed so far in the set topKresults. When it real-
izes that none of the future documents can be part of the
top k, it stops processing and returns the results. This
termination condition is shown in Step 7. The maximum
relevance any future document can have is the total num-
ber of b entries in the current document in ListB. If the




procedure compute_top_k(k.a,sep,b)
/* query is: @ sep b; sep is/or // */

begin
ListA = rellist(a) /* relevance list for a */
ListB = rellist(b) /* relevance list for b */
topKresults = ¢
mintopKrank = 0
while (more entries in both ListA and ListB) do

currDocB = next document in ListB

if (R(b,currDocB) <= mintopKrank) and

(number of documents in topKresults is k)) then

8. break
9. if (currDocB ¢ topKresults) then
10. Evaluate a sep b on currDocB
11 Let the result be currDocResult
12. Add currDocResult to topKresults
13.  currDocA = next document in ListA
14. if (currDocA ¢ topKresults) then
15. Evaluate a sep b on curtDocA
16. Let the result be currDocResult
17. Add currDocResult to topKresults
18. Retain only top k documents in topKresults
19.  Set mintopKrark appropriately
20. return topKresults
end
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Figure 6: top k algorithm for 2-way join

latter value is smaller than the relevance of the k" docu-
ment in topKresults, then no more documents need to be
processed since the list is ordered by relevance. In ad-
dition, if we have seen all entries in either list, then the
join terminates. This is so since we have executed the
join for all documents containing both a and b.

The main difference from the original threshold al-
gorithm is the use of R(b,currDoc) in Step 7 above.
Also, unlike the original threshold algorithm, we do not
assume that each document appears in every list. We
handle this through the condition for the while loop in
Step 5.

For a generic simple path expression query Q, we
modify compute_top_k by using the list corresponding
to the result node of @ to define the terminating con-
dition like in Step 7 above, and evaluating @ for each
document accessed, using any standard query evaluation
algorithm [3, 21, 23]. The details are omitted.

5.1 Instance Optimality

In [11], the notion of instance optimality is introduced
and it is shown that the threshold algorithm is instance
optimal among a certain class of algorithms. Similar re-
sults apply in our context. We use the following termi-
nology from [11] to formalize this claim.

We consider the following modes of access to the rel-
evance lists. For a particular list L, we can obtain the
entries for the next document in relevance order — this
corresponds to a sorted access to that document. Alter-
natively, we can specify a document id and ask for all
entries pertaining to it. This is a random access to that

document. Either access to a document returns all entries
in that document. An algorithm to compute the top &
documents is said to make a wild guess if it makes a ran-
dom access on list L for a document id without having
seen it under sorted access under some (possibly other)
list.

We now recall the notion of instance optimality [11].
Let A be a class of algorithms, and'let D be a class
of legal inputs to the algorithms. We assume that we
are considering a particular non-negative cost measure
cost(A, D) of running algorithm A over input D. We
say that an algorithm B € A is instance optimal over
A and D if for every A € Aand D € D, we have:
cost(B, D) = O(cost(A, D)). In other words, there are
constants ¢, ¢’ such that cost(B, D) < ¢ x cost(A, D) +
¢ for every choice of A and D. We note that instance
optimality is a stronger notion of optimality than worst-
case, Or even average-case optimality.

In our context, we define cost(A, D) of running al-
gorithm A over input D to be the number of document
accesses, both sorted and random, by A across all lists.
If a document is accessed on multiple lists, it is counted
once per list. Similarly, if a document is accessed multi-
ple times in the same list, it is counted once per access.

Theorem 1: Let g be a simple path expression query.
Let D be the class of all databases. Let A be the class of
all algorithms that correctly find the top k documents
(and corresponding nodes) for q over every database
and that do not make wild guesses. Then, compute_top k
is instance optimal over A and D.

5.2 Issues With Additional Access Paths
Recall that we have inverted lists sorted on document id

in addition to lists in relevance order. Just as in Sec-
tion 3.3, where we skip parts of an inverted list within
a document using secondary indexes, it is possible to
skip documents during a containment join over all doc-
uments. We illustrate this next with an example. Con-
sider the simple path expression query g = a/b. Suppose
the XML database has 201 documents with ids from 1
to 201. Let documents 1 to 100 have only & elements
and documents 101 to 200 have only b elements. Let
document 201 have an a element with child b. Consider
the following algorithm for evaluating g.

1. Look at the first document in the two lists — 1
and 101.

9. Since the document ids are different, use the larger
id (in this case, 101) to seek to the first document
in the list for a with document id greater than or

equal to 101.
3. The list for a is now positioned at document 201.
4. Since the document ids are still different, seek on
the list for b to the first document with id > 201.
5. Now both lists are positioned at 201.



procedure compute.top_k_with.sindex(k,q,sep,b)
/* query is: q sep b; sepis/or//,
q is a simple path expression */
begin
1. ListB = rellist(b) /* relevance list for b */
2. if (b is a tag name) then
flevaluate q sep b on the structure index
indexidList = list of ids of index nodes
matching q sep b
else /* b is a keyword */
if (sepis/) then
indexidList = list of ids of index nodes matching q
else /* sepis // */
indexidList = list of ids of index nodes matching q
and their descendants in the structure index
9. topKresults = ¢
10. mintopKrank =0
11. while (more entries in ListB) do
12.  currDoc = next documnent in ListB with at least
one entry e such that e.indexid € indexidList
(use extent chaining)
13.  if ((R(b,currDoc) < mintopKrank) and
(number of documents in topKresults is &)) then
14, break
15. currDocResult = {e : e € ListB corresponding to
currDoc and e.indexid € indexidList}
(use extent chaining)
16.  Add currDocResult to topKresults
17.  if (topKresults has k + 1 documents) then
18. remove document with least relevance
19.  Set mintopKrank appropriately
20. return topKresults
end

w
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Figure 7: top k algorithm using structure index

6. Perform the join over document 201.
7. Since there are no more documents on both lists,

return.

This evaluation accesses only three documents. On the
other hand, compute_top_k accesses all documents. The
above algorithm performs efficiently on this instance due
to the presence of a secondary index. Notice that in
Step 3, the list for a is positioned at document 201 as a
result of the random access in Step 2. But document 201
is not accessed through sorted access before this. This
classifies as a wild guess and is not permitted in the class
of algorithms considered in the instance optimality dis-
cussion.

We next show how we obtain an instance optimal al-
gorithm even in the presence of these access paths. We
use a structure index along with extent chaining for this

purpose.

6 Instance Optimality Using A Structure
Index

We show how structure indexes can be used to obtain

an instance optimal algorithm even in the presence of

these access paths. We first consider the case when the

relevance query has a single path expression. We then
extend our algorithm in Section 6.1 to the case when the
relevance query is a bag of path expressions.

The evaluation of a simple path expression @ =
q sep b using a structure index I that covers it results
in a scan on the inverted list of b with a set S of index-
ids. The algorithm for computing the top k documents
in this case is shown in Figure 7. We modify the idea of
extent chaining introduced in Section 3.3 to chain all en-
tries in the relevance inverted lists with the same indexid
even across documents. Thus, each entry has a pointer
to the next entry with the same indexid even if it is not
in the same document. We observe the following about
this algorithm.

e Steps 2-8 initialize the indexidList appropriately
depending on whether b is a tag name or keyword
and whether sep is / or //.

e The terminating condition in Step 13 is similar to
the one in the procedure compute.top.k.

e The evaluation of currDocResults in Step 15 (for
a single document) can be performed using intra-
document extent chaining described in Section 3.3.

e In Step 12, we use inter-document extent chaining
to advance to the next document in ListB having at
least one match for q sep b.

Implementation Note
When performing a scan using extent chaining, to get the

next entry in the list (like in Step 5 in Figure 5), we might
need to compare the next pointers of more than one entry
and find which of them appears first in the relevance list.
The relative position of two documents in a relevance
list cannot be obtained by comparing their document ids.
Hence, we introduce relevance document ids (reldocids).
All documents appearing in a relevance list are assigned
reldocids based on their order in the list. The next pointer
of an entry contains the reldocid and start number of the
next entry with the same indexid. Using the reldocids,
we can compare the next pointers of more than one en-
try. An entry in the relevance list for a tag name is of
the form: <reldocid, start, end, level, indexid, docid,
nezt_reldocid, next_start>. An entry for a keyword
is the same except for the absence of end. We empha-
size that the reldocid is used only for extent chaining. In
particular, when we talk about document ids, we refer to
the unique document id that is common to a document
across all lists.

Instance Optimality
In addition to the sorted and random access modes on the

relevance lists, we allow sorted and random access on the
inverted lists sorted on document id. We relax the wild




procedure compute.top k_bag(k,p1 sep: a,p2 sepz b)

begin

1. ListA = rellist(a) /* relevance list for a */

2. ListB = rellist(b) /* relevance list for b */

3. Obtain indexidListA and indexidListB appropriately

using the structure index

//as in Steps 2-8 of compute_top_k_withsindex

topKresults = ¢

mintopKrank = 0

while (more entries in either ListA or ListB) do
currDocA = next document in ListA, as per extent chaining
currDocB = next document in ListB, as per extent chaining
R. =R(a,currDocA)

0. Ry =R(b,currDocB) ’

1. if (MR(Ra,Rs) <= mintopKrank) and
(number of documents in topKresults is k)) then

12. break

13.  if (currDocA ¢ topKresults) then

14. Evaluate the two path expressions on currDocA

15. Let the result be currDocResult

16. Add currDocResult to topKresults

17. Do similarly for currDocB

18.  Retain only top k documents in topKresults

19.  Set mintopKrank appropriately

20. return topKresults

end
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Figure 8: top k algorithm for 2 simple path expressions

guess definition to exclude the following: (1) random
access on any list to first document with id > a given
id, and (2) random access on any list L, to a document
with reldocid obtained from the next field of an entry (in
L). Cost is measured in the same way as in Section 5.1.
In particular, the index evaluation cost is not counted for
the purpose of this discussion.

Theorem 2: Let q be a simple path expression query
covered by structure index I. Let D be the class of all
databases. Let A be the class of all algorithms that
correctly find the top k documents (and corresponding
nodes) for q over every database and that do not make
wild guesses. Then, compute_top k. with_sindex is in-
stance optimal over A and D.

6.1 Extension to Bag of Simple Path Expressions
We now extend the above algorithm to the case when the
query is a bag of simple path expressions; intuitively, this
corresponds to the class of IR queries with multiple key-
words. Consider the evaluation of query @ = {p1,p2}.
Using the structure index, we can convert each p; to a
scan on the appropriate relevance list. What remains
now is to merge these relevance lists and apply the rank-
ing function for @ (which merges the relevances of the
p;). This merge is similar to the merge algorithm in Fig-
ure 6. The algorithm is shown in Figure 8. Since the
merging function is monotonic, this algorithm can easily
be shown to be correct. This algorithm naturally extends
when Q has more than two simple path expressions.
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Figure 9: XMark Schema

We now show that this algorithm is instance optimal
for an interesting class of bag queries, over the class
of algorithms that do not make wild guesses, as de-
fined above. A bag B of simple path expressions is de-
fined to be disjoint if the trailing terms of no two simple
path expressions in B are the same. For example, the
bag {book/author,article/title} is disjoint while the bag
{book/author,article/author} is not.

Theorem 3: Let Q = {q1,92, ..., q} be a disjoint bag
of simple path expression queries covered by structure
index I. Let D be the class of all databases. Let A be
the class of all algorithms that correctly find the top k
documents (and corresponding nodes) for Q@ over every
database and that do not make wild guesses. Then, com-
pute_top_k_bag is instance optimal over A and D.

7 Preliminary Experiments

We have implemented the above algorithms as part of the
Niagara XML database system [9]. We present the re-
sults of some preliminary experiments that yield a sense
for the efficacy of our techniques. We first present our
results for evaluating branching path expression queries
using structure indexes and inverted lists. We then move
on to relevance queries. Our experiments are run on
a Linux Workstation with 256MB of RAM. We use
a 16MB buffer pool.

7.1 Evaluation of Branching Path Queries

We use the XMark XML-benchmark data [22] for this
set of experiments. This data models an auction site. The
element relationships relevant to this paper are shown
in Figure 9. The tag names are self-explanatory. The
data size is 100MB. The structure index we use is the
I-Index [18]. A study of how the choice of structure
index impacts performance is future work. We report the
performance results for four queries involving structure
and value constraints based on warm buffer pool times.
We measure the speedup, defined to be the ratio of the
(execution) time taken in the absence of a structure index
(inverted list join) to the time taken by our algorithm.
In the presence of alternative query plans, we use the
execution time corresponding to the best plan. Table 1
shows the queries and the respective speedups.

The main observations to be made from the above
numbers are:



Query in English Path expression Speedup
Find occurrences of “attires” under item descriptions Jlitem/description//keyword/“attires”] 433
Find open auctions that had a bid in 1999 /Topen_auction[/bidder/date/*1999”] 6.85
Find the persons who attended Graduate school JIperson[/profile/education/ *Graduate™] 5.06
Find closed auctions where the happiness level Jiclosed_auction[/annotation/happiness/“10”’} 3.12
was 10

Table 1: Speedups Using Structure Index
Value of k || Speedup for QI | # Documents Accessed || Speedup for Q2 # Documents Accessed
by our algorithm by our algorithm

1 16.04 20 18.07 2

5 14.92 25 10.38 6

10 14.53 25 8.13 10

50 12.42 27 3.67 51

100 12.42 27 2.15 101

300 12.42 27 1.7 301

Table 2: Results for top & queries

o The benefit of using a structure index in conjunction
with inverted lists is considerable with speedups of
as high as about 43 times for simple path expres-
sions and about 7 times for branching path expres-
sions.

e The speedup obtained is dependent on the number
of joins saved. At the extreme, if we remove all
joins replacing them with a scan, then the speedup
obtained is highest. Thus, for the first query above
which is a simple path expression, the speedup ob-
tained is highest.

7.2 Relevance Queries

We have implemented the compute_top k_withsindex al-
gorithm shown in Figure 7. Recall that this is an instance
optimal algorithm for relevance queries consisting of a
single (simple) path expression. We wish to study the
benefit obtained through two aspects of this algorithm
— the early termination condition and extent chaining.
Consider a query ¢ = p//t. In the scenario where ¢ oc-
curs in many documents but very few of these match g,
extent chaining is likely to yield significant performance
benefit. On the other hand, if ¢ occurs in many docu-
ments and most of these occurrences match ¢, the early
termination condition is likely to contribute.

To study this, we use NASA’s public astronomy XML
archive [2]. The data has 2443 XML documents with
a total size of about 33MB. We consider two queries
— QI and Q2 — that search for occurrences of a par-
ticular word “photographic” under two different paths
pi=keyword and py=dataset respectively. There are
very few occurrences of “photographic” under keyword,
while all occurrences are under dataset.

Table 2 shows the results of our experiment. For each
value of k, we report the speedup obtained through our
algorithm, measured as the ratio of the time taken to fully

execute the query on the database to the time taken by
our algorithm. We also report the number of documents
accessed by our algorithm.

We observe first of all that there is a significant benefit
to be obtained by pushing down the top k computation,
instead of evaluating the query completely and then ex-
tracting the top k results. For Q1, notice that the number
of documents accessed by our algorithm varies very little
with k. This indicates that the benefit is chiefly through
extent chaining. On the other hand, for Q2, the number
of documents accessed increases linearly with k, show-
ing the role played by the early termination condition.

8 Related Work

Several methods have been proposed for processing
queries over graph-structured XML data. These meth-
ods can be classified into two broad classes. The first
involves graph traversal where the data graph is tra-
versed using the input query [6, 17]. The other in-
volves information-retrieval style processing using in-
verted lists [3, 21, 23]. Methods have been proposed to
optimize queries in the presence of both these alterna-
tives [6, 8, 17].

In this framework, structure indexes such as the ones
proposed in [13, 16, 18] have primarily been used as a
substitute for graph traversal [17]. However, to the best
of our knowledge, no published work has addressed how
to integrate structure indexes with information retrieval
style inverted list processing. This is the focus of our
paper.

Several proposals have been made for ranked search
over a corpus of document databases combining key-
word and structure components [15, 19]. Recently,
in [12], a query language is proposed to integrate infor-
mation retrieval related features such as weighting, rank-
ing and relevance-oriented search into XML queries.




The focus of our paper is not on defining the best
query model over XML documents. Instead our interest
is in understanding how we can efficiently push down
top k computation and the role of structure indexes in
this. Several previous projects [1, 7, 10, 11, 14] have
dealt with supporting keyword search over structured
databases. Our query language permits a structural com-
ponent in addition to keyword specification. We exam-
ine how structure indexes help in handling the structural
component.

9 (Conclusions

We presented methods of integrating structure indexes
and inverted lists. By appropriately augmenting inverted
list entries, we showed how inverted list joins could
be replaced with an index navigation when evaluating
branching path queries. Our preliminary experiments on
the Niagara native XML database system showed the ef-
ficacy of this approach.

Throughout our discussion, we assumed that an XML
document has two parts — one that is summarized by
the structure index and one that is not. We used element
nodes and text nodes to identify these parts. There can
be several ways of defining these parts. For instance, the
values of some text nodes can be captured in the structure
index by treating them as tag names. The techniques
presented in this paper are applicable irrespective of how
we arrive at these two parts. However, this paper is not
about how we define these parts. This is an interesting
area for future work. Other such areas include looking
at the tradeoffs involved in picking a structure index and
integrating multiple structure indexes with inverted lists.

We also considered the evaluation of top k queries
over XML documents. We showed how the augmented
“relevance” inverted lists combined with adaptations of
the Threshold algorithm proposed by Fagin et al. yields
instance optimal algorithms for pushing down top k
computation. In our context, the ranking function is non-
monotonic and there are additional access paths avail-
able. Using a structure index, we were able to success-
fully adapt the Threshold algorithm preserving the op-
timality properties. While we presented algorithms for
tree structured data, they can be extended to work for
graph-structured data. Several avenues remain for future
work. For instance, incorporating proximity in the merge
function and the problem of running structured queries
over hyper-linked XML documents remain open.
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