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Abstract

We present the design, implementation, and evaluation of
D-GRAID, a gracefully-degrading and quickly-recovering
RAID storage array. D-GRAID ensures that most files
within the file system remain available even when an un-
expectedly high number of faults occur. D-GRAID also
recovers from failures quickly, restoring only live file sys-
tem data to a hot spare. Both graceful degradation and
live-block recovery are implemented in a prototype SCSI-
based storage system, demonstrating that powerful “file-
system like” functionality can be implemented behind a
narrow block-based interface.

1 Introduction

“If a tree falls in the forest and no one hears it, does
it make a sound?” George Berkeley

Storage systems comprised of muitiple disks are the
backbone of modern computing centers, and when a stor-
age array is down, entire systems grind to a halt. Down-
time is expensive in any setting where computing is at the
core of operations; in the on-line business world, for ex-
ample, millions of dollars per hour are lost when systems
are down [20, 28].

Storage system availability is formally defined as the
mean time between failure (MTBF) divided by the sum
of the MTBF and the mean time to recovery (MTTR):
«M-T—é\’frl—-—%-ﬁ [11]. Hence, to improve availability, one
can either increase the MTBF or decrease the MTTR. Not
surprisingly, researchers have studied both of these com-
ponents of availability.

To increase the time between failures of a large stor-
age array, data redundancy techniques can be applied [2,
4, 6, 12, 17, 25, 26, 27, 36, 40]. By keeping multiple
copies of blocks, or through more sophisticated redun-
dancy schemes such as parity-encoding, storage systems
can be engineered to tolerate a (small) fixed number of
faults. To decrease the time to recovery, “hot spares”
can be employed [16, 23, 26, 30]; when a failure oc-
curs, a spare disk is activated and filled with reconstructed
data, thus moving the system back into a normal operating
mode relatively quickly.

However, in traditional systems, both failure avoidance
and recovery techniques are limited, due to the narrow in-
terface between file systems and storage [8]. For exam-
ple, in a RAID-5 storage array, if one disk too many fails
before another is repaired, the entire disk system is cor-
rupted. The reason for this “availability cliff” is that the
file system treats the storage array as a single large disk,
and therefore obliviously spreads pointers to blocks and
other meta-data across all of the disks. When that extra

disk fails, recovering a semantically meaningful data unit,
such as a file or perhaps some portion of the directory tree,
is difficult if not impossible. To restore the system, expen-
sive and error-prone recovery from backup storage is re-
quired. Until completed, the entire array remains unavail-
able, even though most of its disks are still operational.

Further, in a typical storage array, the recovery process
must restore all blocks from a failed disk, whether or not
they are live in the file system, hence slowing recovery
time. In a storage array that is not highly utilized (e.g.,
it has been configured for performance and not capacity),
this is particularly onerous, because only a small fraction
of the disks are utilized. To summarize, because of the
lack of file system knowledge within the array, many op-
portunities to improve both the MTBF and MTTR of stor-
age arrays have not been realized.

An ideal storage array fails gracefully. For example, if
one-third of the disks of the system are down, only one-
third of the data should be unavailable. An ideal storage
array recovers more intelligently, restoring live data. In
both cases, an ideal storage array ensures that more “im-
portant” data is less likely to disappear under failure, and
that such data is restored earlier in the recovery process if
it does become unavailable. This strategy for data avail-
ability stems from Berkeley’s observation about falling
trees: if a file isn’t available, and no process tries to ac-
cess it before it is recovered, is there really a failure?

To explore these concepts and provide a storage ar-
ray with more graceful failure semantics, we present the
design, implementation, and evaluation of D-GRAID, a
RAID system that Degrades Gracefully (and recovers
quickly). D-GRAID exploits semantic intelligence [37]
within the disk array to place file system structures across
the disks in a fault-contained manner, analogous to the
fault containment techniques found in the Hive operating
system [5]. Thus, when an unexpected “double” failure
occurs [11], D-GRAID continues operation, serving those
files that can still be accessed. D-GRAID also utilizes
semantic knowledge during recovery; specifically, only
blocks that the file system considers live are restored onto
a hot spare. Both aspects of D-GRAID combine to im-
prove the effective availability of the storage array. Note
that D-GRAID techniques are complementary to existing
redundancy schemes; thus, if a storage administrator con-
figures a D-GRAID array to utilize RAID Level 5, any
single disk can fail without data loss, and additional fail-
ures lead to a proportional fraction of unavailable data.

In this paper, we present a prototype implementation of
D-GRAID, which we refer to as Alexander. Alexander
is an example of a semantically-smart disk system [37].
Built underneath of a narrow block-based SCSI stor-
age interface, such a disk system understands file sys-
tem data structures, including the superblock, allocation
bitmaps, inodes, directories, and other important struc-



tures; this knowledge is central to implementing grace-
ful degradation and quick recovery. Because of their in-
tricate understanding of file system structures and oper-
ations, semantically-smart arrays are tailored to particu-
lar file systems; Alexander currently functions underneath
of both the Linux ext2 and FAT file systems. In this pa-
per, we make three important contributions to semantic
disk technology. First, we deepen the understanding of
how to build semantically-smart disk systems that oper-
ate correctly even with imperfect file system knowledge.
Second, we demonstrate that such technology can be ap-
plied underneath of widely varying file systems. Third,
we demonstrate that semantic knowledge allows a RAID
system to apply different redundancy techniques based on
the type of data, thereby improving availability.

There are two key aspects to the Alexander implemen-
tation of graceful degradation. The first is selective meta-
data replication, in which Alexander replicates naming
and system meta-data structures of the file system to a
high degree while using standard redundancy techniques
for data. Thus, with a small amount of overhead, excess
failures do not render the entire array unavailable. In-
stead, the entire directory hierarchy can still be traversed,
and only some fraction of files will be missing, propor-
tional to the number of missing disks. The second is a
fault-isolated data placement strategy. To ensure that se-
mantically meaningful data units are available under fail-
ure, Alexander places semantically-related blocks (e.g.,
the blocks of a file) within the storage array’s umit of
fault-containment {(e.g., a disk). By observing the natu-
ral failure boundaries found within an array, failures make
semantically-related groups of blocks unavailable, leaving
the rest of the file system intact.

Unfortunately, fault-isolated data placement improves
availability at a cost; related blocks are no longer striped
across the drives, reducing the natural benefits of paral-
lelism found within most RAID techniques [10]. To rem-
edy this, Alexander also implements access-driven diffu-
sion to improve throughput to frequently-accessed files,
by spreading a copy of the blocks of “hot” files across the
drives of the system. Alexander monitors access to data to
determine which files to replicate in this fashion, and finds
space for those replicas either in a pre-configured perfor-
mance reserve or opportunistically in the unused portions
of the storage system.

We evaluate the availability improvements possible
with D-GRAID through trace analysis and simulation, and
demonstrate how our prototype Alexander behaves under
microbenchmarks and trace-driven workloads. We find
that the construction of D-GRAID is feasible; even with
imperfect semantic knowledge, a powerful set of func-
tionality can be implemented within a block-based stor-
age array. We also find that the run-time overheads of
D-GRAID are small, but that the CPU costs as compared

to a standard array are high. We show that access-driven
diffusion is crucial for performance, and that live-block
recovery is effective when disks are under-utilized. The
combination of replication, data placement, and recovery
techniques results in a storage system that improves avail-
ability while maintaining a a high level of performance.

The rest of this paper is structured as follows. In Sec-
tion 2, we present an extended motivation for graceful
degradation. Then, in Section 3, we discuss the design
principles that underly D-GRAID. We present trace anal-
ysis and simulations in Section 4, demonstrating the po-
tential of graceful degradation. In Section 5, we discuss
semantic knowledge and its limitations in the context of
D-GRAID, and in Section 6, we present the Alexander
prototype implementation. In Section 7, we present a de-
tailed evaluation of our prototype, discuss related work in
Section 8, and conclude in Section 9.

.2 The Case for

Graceful Degradation

RAID redundancy techniques typically export a simple
failure model. If D or fewer disks fail, the RAID will
continue to operate correctly, but perhaps with degraded
performance. If more than D disks fail, the RAID be-
comes entirely unavailable until the problem is corrected,
perhaps via a restore from tape. In most RAID schemes,
D is small (often 1); thus even though most of the disks
are working, the user observes a “failed” disk system.

With graceful degradation, we believe that a RAID sys-
tem should be able to absolutely tolerate some fixed num-
ber of faults (as before), but that excess failures should not
be catastrophic; most of the data (an amount proportional
to the number of disks still available in the system) should
continue to be available, thus allowing access to that data
while the other “failed” data is restored. It does not mat-
ter to users or applications whether the entire contents of
the volume are present; rather, what matters is whether a
particular set of files are available.

One question that may arise is whether it is realistic
to expect a catastrophic failure scenario within a RAID
system. For example, in a RAID-5 system, although one
disk might fail, it seems highly unlikely that another disk
will fail before the one is repaired, especially given the
high MTBF’s reported by disk manufacturers. We believe
these failure scenarios do occur, for two primary reasons.
First, correlated faults are often more common in sys-
tems than expected [13]. If the RAID has not been care-
fully designed in an orthogonal manner, a single controller
fault or other component error can render a fair number of
disks unavailable [6]; such redundant designs are expen-
sive, and therefore may only be found in higher end stor-
age arrays. Second, Gray points out that system admin-
istration is the main source of failure in systems [11]. A
large percentage of human failures occur during mainte-



nance, where (in Gray’s words) “the maintenance person
typed the wrong command or unplugged the wrong mod-
ule, thereby introducing a double failure” (page 6) [11].

Other evidence also suggests that multiple failures can
occur. For example, IBM’s ServeRAID array controller
product includes directions on how to attempt data recov-
ery when multiple disk failures occur within a RAID-5
storage array [18]. Within our own organization, data is
stored on file servers under RAID-5. In one of our servers,
a single disk failed, but the indicator that should have in-
formed administrators of the problem did not do so. The
problem was only discovered when a second disk in the
array failed; full restore from backup ran for days.

One might think that the best approach to dealing with
multiple failures would be to employ a higher level of re-
dundancy [4], thus enabling the storage array to tolerate
a greater number of failures without loss of data. How-
ever, these techniques are often expensive {e.g., three-way
data mirroring) or slow (e.g., updates in a P+Q redundant
store). Graceful degradation is complementary to such
techniques. Thus, storage administrators could choose the
level of redundancy they believe necessary for common
case faults; graceful degradation is enacted when a *“‘worse
than expected” fault occurs, mitigating its ill effect.

3 Design: D-GRAID Expectations

In this section, we discuss the design of D-GRAID.
We first present background information on file systems.
Then, we discuss the general data layout strategy required
to enable graceful degradation, the important design is-
sues that arise due to new layout techniques, and the pro-
cess of live-block recovery.

3.1 File System Background

Semantic knowledge is obviously highly system specific.
In this paper, we discuss the D-GRAID design and im-
plementation in light of two widely differing file systems:
Linux ext2 [38] and the Microsoft FAT [24] file system.
Inclusion of the FAT file system represents a significant
contribution as compared to previous research, which op-
erated solely on UNIX file systems.

The ext2 file system is an intellectual descendant of the
Berkeley Fast File System (FFS) [22]. The disk is split
into a set of block groups, akin to cylinder groups in FFS,
each of which contains bitmaps to track inode and data
block allocation, inode blocks, and data blocks. The allo-
cation strategy for files is also quite similar to FFS, in that
ext2 tries to group “related” files and their inodes into the
same block group; files in the same directory are consid-
ered related. Most information about a file, including size
and block pointers, are found in the file’s inode.

The FAT file system descends from the world of PC op-
erating systems. In this paper, we consider the Linux vfat
implementation of FAT-32, although our work is general

and applies to other variants. FAT operations are centered
around the eponymous file allocation table, which con-
tains an entry for each allocatable block in the file system.
These entries are used to locate the blocks of a file, in
a linked-list fashion, e.g., if a file’s first block is at ad-
dress b, one can look in entry b of the FAT to find the next
block of the file, and so forth. An entry can also hold
an end-of-file marker or a setting that indicates the block
is free. Unlike UNIX file systems, where most informa-
tion about a file is found in it§ inode, a FAT file system
spreads this information across the FAT itself and the di-
rectory entries; the FAT is used to track which blocks be-
long to the file, whereas the directory entry contains more
information than a typical UNIX directory, including size,
permission, and type information.

3.2 Graceful Degradation

To ensure partial availability of data under multiple fail-
ures in a RAID array, D-GRAID needs to employ two
main techniques. The first is a fault-isolated data place-
ment strategy, in which D-GRAID should place each
“semantically-related set of blocks” within a “unit of fault
containment” found within the storage array. For simplic-
ity of discussion, we assume that a file is a semantically-
related set of blocks, and that a single disk is the unit of
fault containment. We will generalize the former below,
and the latter is easily generalized if there are other failure
boundaries that should be observed (e.g., SCSI chains).
We refer to the physical disk to which a file belongs as the
home site for the file. When a particular disk fails, the goal
of fault-isolated data placement is to ensure that only files
that have that disk as their home site become unavailable,
while other files remain accessible as whole files.

The second technique is selective meta-data replica-
tion, in which D-GRAID replicates naming and system
meta-data structures of the file system to a high degree,
e.g., directory inodes and directory data in a UNIX file
system. By widely replicating these meta-data structures,
D-GRAID can ensure that all live user data is reachable
and not orphaned due to failure. The entire directory hi-
erarchy remains traversable, and the fraction of missing
user data is proportional to the number of failed disks.

Thus, D-GRAID lays out logical file system blocks in
such a way that the availability of a single file is dependent
on as few disks as possible. In a traditional RAID array,
this dependence set is normally the entire set of disks in
the group, thereby leading to entire file system unavail-
ability under an unexpected failure. A UNIX-centric ex-
ample of typical layout, fault-isolated data placement, and
selective meta-data replication is depicted in Figure 1.

Because D-GRAID treats each file system block type
differently, the traditional RAID taxonomy is no longer
adequate in describing how D-GRAID behaves. Instead,
a finer-grained notion of a RAID level is required, as D-
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starting at the root inode and following down the directory tree to the file data. The example assumes no data redundancy for user
file data for simplicity. On the left is a typical file system layout on a non-D-GRAID disk system; because blocks (and therefore
pointers) are spread throughout the file system, any single fault will render the blocks of the file “bar” inaccessible. In the middle is
a fault-isolated data placement of files and directories. In this scenario, if one can access the inode of a file, one can access its data
(indirect pointer blocks would also be constrained within the same disk). Finally, on the right is an example of selective meta-data
replication. By replicating inodes and directory blocks of elements high up in the tree, D-GRAID can guarantee that users can get
to all files that are available. Some of the requisite pointers have been removed from the rightmost figure for simplicity. Color codes
are white for user data, light shaded for inodes, and dark shaded for directory data.

GRAID may employ different redundancy techniques for
different types of data. For example, D-GRAID com-
monly employs n-way mirroring for naming and sys-
tem meta-data, whereas it uses standard redundancy tech-
niques, such as striping, mirroring, or RAID-5 parity en-
coding, for user data. Note that n, a value under admin-
istrative control, determines the number of failures under
which D-GRAID will degrade gracefully. In Section 4,
we will explore how data availability degrades under vary-
ing levels of namespace replication.

3.3 Design Considerations

The layout and replication techniques required to enable
graceful degradation introduce a host of design issues
which must be addressed within D-GRAID. We highlight
the major challenges that arise.

Semantically-related blocks. ~With fault-isolated data
placement, D-GRAID places a logical unit of file system
data (e.g., a file) within a fault-isolated container (eg.,a
disk). Which blocks D-GRAID considers “related” thus
determines which data remains available under failure.
The most basic approach is to consider a single file (in-
cluding its data blocks, inode, and indirect pointers) as
the logical unit of data; with this file-based grouping tech-
nique, however, a user may find that some files in a given
directory become unavailable while others do not, a situ-
ation that is likely to cause frustration and confusion. We
thus must consider alternatives that preserve more mean-
ingful portions of the file system volume under failure.
With directory-based grouping, D-GRAID ensures that
the files of a directory are all placed within the same unit
of fault containment. Less automated options are also pos-
sible, allowing users to specify arbitrary semantic group-
ings which D-GRAID then treats as a unit.

Load balance. With fault-isolated data placement, in-
stead of placing the blocks of a file across many disks
of a system, we instead isolate the blocks to a single
home site. Isolated placement improves availability but

introduces the problem of load balancing, which has both
space and time components. In terms of space, the to-
tal amount of utilized space in each disk should be main-
tained at roughly the same level, so that when a fraction of
disks fail, roughly the same fraction of data becomes un-
available. Such balancing can be addressed in either the
foreground (when data is first allocated) or through back-
ground migration or both. !

More pressing are the performance problems intro-
duced by fault-isolated data placement. Previous work
indicates that striping of data across disks is better for
performance even when compared to sophisticated file
placement algorithms [10, 41}. Thus, D-GRAID should
make additional copies of user data that are spread across
the drives of the system, a process which we call access-
driven diffusion. Whereas standard D-GRAID data place-
ment is optimized for availability, access-driven diffusion
is used to increase performance for those files that are fre-
quently accessed. Not surprisingly, access-driven diffu-
sion introduces policy decisions into D-GRAID, includ-
ing where to place replicas that are made for performance,
which files to replicate, and when to create the replicas.
Meta-data replication level. The degree of meta-data
replication within D-GRAID determines how resilient it
is to an excessive number of failures. Thus, a high de-
gree of replication is desirable. Unfortunately, meta-data
replication comes with costs, both in terms of space and
time. For space overheads, the trade-offs are obvious:
more replicas implies more resiliency. One difference be-
tween traditional RAID and D-GRAID is that the amount

1A comner case arises when a file is bigger than the available space
on any single disk and cannot be placed in a fault-isolated manner. This
problem can be addressed in D-GRAID either through a (expensive) data
reorganization or by reserving large extents of free space ona subset of
drives in order to be prepared for large file allocations. However, due to
the ever-increasing size of disks [14] and the increasing amount of free
space found on drives [1], this may not be a first-order concern.



of space needed for replication of naming and system
meta-data is dependent on usage, i.e., a volume with more
directories induces a greater amount of overhead. For time
overheads, a higher degree of replication implies lowered
write performance for naming and system meta-data up-
date operations. However, others have observed that there
is a lack of update activity at higher levels in the directory
tree [29], and lazy update propagation can be employed to
reduce costs [36].

3.4 Fast Recovery

Because the main design goal of D-GRAID is to ensure
higher availability, fast recovery from failure is also crit-
ical. The most straight-forward optimization available
with D-GRAID is to recover only “live” file system data.
Assume we are restoring data from a live mirror onto a hot
spare; in the straight-forward approach, D-GRAID simply
scans the source disk for live blocks, examining appropri-
ate file system structures to determine which blocks to re-
store. This process is readily generalized to more complex
redundancy encodings. D-GRAID can potentially priori-
tize recovery in a number of ways, e.g., by restoring cer-
tain “important” files first, where importance could be do-
main specific (e.g., files in /etc) or indicated by users in
a manner similar to the hoarding database in Coda [21].

4 Exploring Graceful Degradation

We now use simulation and trace analysis in order to eval-
uate the potential effectiveness of graceful degradation
and the impact of different semantic grouping techniques.
The simulations use file system traces collected from HP
Labs [31], and cover 10 days of activity. In total, there are
250 GB of data spread across 18 logical volumes.

4.1 Space Overheads

We first examine the space overheads that are typical with
D-GRAID-style redundancy, specifically due to selective
meta-data replication. Table 1 presents the space over-
heads as measured across all volumes of the HP trace
data, for both the Linux ext2 and FAT file systems. We
present the data in the most pessimistic manner possible,
that is, assuming no replication of user data, and showing
the cost of selective meta-data replication as a percentage
overhead. Assuming that user data is mirrored, for exam-
ple, would cut the overheads in half.

As we can see from the table, selective meta-data repli-
cation induces only a mild space overhead even under ex-
tremely high levels of meta-data redundancy. Even with
16-way redundancy of meta-data, only an extra 8% of
space is required in the worst case (FAT-32 with 1 KB
blocks). One interesting item to note is that with in-
creasing block size, ext2 uses more space (as expected),
but with FAT the overheads actually decrease. This phe-
nomenon is due to the structure of FAT; as block size

Level of Replication
l-way 4-way 16-way
ext2igp | 0.15% 0.60% 241%
ext24xp | 043% 1.71% 6.84%
FATi1x5 | 0.52% 2.07% 8.29%
FATsx5 | 050% 2.01% 8.03%

Table 1: Space Overhead of Selective Meta-data Replica-
tion. The table shows the space overheads of selective meta-
data replication as a percentage of total user data, and as the
level of naming and system meta-data replication increases. In
the lefimost column, the percentage space overhead without any
meta-data replication is shown. The next two columns depict the
costs of modest (4-way) and paranoid (16-way) schemes. Each
row shows the overhead for a particular file system, either ext2
or FAT, with block size set to 1 KB or 4 KB.

grows, the file allocation table itself shrinks, although the

blocks that contain directory data grow.

4.2 Static Availability

We next examine how D-GRAID availability degrades un-
der failure. Figure 2 presents the percent of directories
available under two different semantic grouping strate-
gies; a directory is considered available if all of its files
are accessible (although subdirectories and their files may
not be). The first strategy is file-based grouping, which
keeps the information associated with a single file within a
failure boundary (i.e., a disk), and the second is directory-
based grouping, which allocates files of a directory to-
gether. For this analysis, we place the entire 250 GB of
files and directories from the HP trace onto a sirnulated
32-disk system, remove simulated disks, and measure the
percentage of whole directories that are available. We as-
sume no user data redundancy (i.e., D-GRAID Level 0).

From the figure, we observe that graceful degradation
works quite well, with the amount of data available pro-
portional to the number of working disks (indeed, avail-
ability sometimes degrades in a manner that is better
than expected from a strict linear fall-off; this is due to
a slight imbalance in data placement across disks and
within directories). Further, even a modest level of names-
pace replication (e.g., 4-way) leads in practice to very
good data availability under failure. Compare this to the
worst possible behavior under failure, in which a few disk
crashes lead to complete data unavailability. We also can
conclude that if file-based grouping is used, it is likely
that some files in a directory will “disappear” under fail-
ure, perhaps leading to user dissatisfaction.

4.3 Dynamic Availability

While static data availability under failure is a good indi-
cator that our approach for graceful degradation will work
as expected, it fails to answer a more fundamental ques-
tion: how often will users or applications be oblivious
that the D-GRAID is operating in degraded mode? To
answer this question, we present a simulation of dynamic
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Figure 2: Static Data Availability. The percent of entire di-
rectories available is shown under increasing disk failures. The
simulated system consists of 32 disks, and is loaded with the
250 GB from the HP trace. Two different strategies for semantic
grouping are shown: file-based and directory-based. Each line
varies the level of replication of namespace meta-data. Each
point shows average and deviation across 30 trials, where each
trial randomly varies which disks fail.

availability. Specifically, we run a portion of the HP trace
through a simulator with some number of failed disks, and
record which percent of processes observed no I/O failure
during the run. In Figure 3, we show that namespace repli-
cation is not enough; certain files, that are needed by most
processes, must be replicated as well.

In this experiment, we set the degree of namespace
replication to 32 (full replication), and vary the level of
replication of the contents of popular directories, ie.,
/usr/bin, /bin, /1ib and a few others. As the figure
shows, without replicating the contents of those directo-
ries, the percent of processes that run without ill-effect is
lower than expected from our results in Figure 2. How-
ever, when those few directories are replicated, the per-
centage of processes that run to completion under disk
failure is much better than expected. The reason for this
is clear: a substantial number of processes (e.g., who, ps,
etc.) only require that their executable and a few other li-
braries be available in order to run correctly. With popular
directory replication, excellent availability under failure is
possible. Fortunately, almost all of the popular files are
found in “read only” directories; thus, wide-scale replica-
tion will not cause a write performance problem.

5 Semantic Knowledge

With a basic understanding of D-GRAID, we now move
towards the construction of a D-GRAID prototype under-
neath a block-based SCSI-like interface. The enabling
technology underlying D-GRAID is semantic knowledge
[37]. Understanding how the file system above utilizes
the disk enables a D-GRAID to implement both graceful
degradation under failure as well as quick recovery. The
exact details of acquiring semantic knowledge within a
disk or RAID system have been described elsewhere [37];
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Figure 3: Dynamic Data Availability. The figure plots the per-
cent of processes that run unaffected under disk failure from one
busy hour from the HP trace. The degree of namespace repli-
cation is set aggressively to 32. Each line varies the amount of
replication for “popular” directories; 1-way implies that those
directories are not replicated, whereas 8-way and 32-way show
what happens with a modest and extreme amount of replication.
Means and deviations of 30 trials are shown.

here we just assume that a basic understanding of file sys-
tem layout and structures is available within the storage
system. Specifically, we assume that D-GRAID has static
knowledge of file system layout, including which regions
on disk are used for which block types and the contents of
specific block types, e.g., the fields of an inode.

Unfortunately, static knowledge of file system layout
and structures does not imply that the storage system has a
complete understanding of file system behavior. Consider
simple classification of blocks by their type. This process
is straightforward for blocks that can be directly classi-
fied by location on disk. For example, in the Berkeley
Fast File System (FFS) [22], the regions of disk that store
inodes are fixed at file system creation; thus, any traffic
to those regions is known to contain inodes, which can
then be further interpreted. However, type information is
sometimes spread across multiple blocks. For example,
a block filled with indirect pointers can only be identified
as such by observing the corresponding inode, specifically
that the inode’s indirect pointer field contains the address
of the given indirect block. This process of indirect clas-
sification is one example of the complexities involved in
the implementation of semantically-smart disks.

In this paper, we extend understanding of semantically-
smart disks by formally demonstrating both the extents
and limits of semantic knowledge, and then later (in Sec-
tion 6) show how a successful implementation can be
achieved in spite of these limitations. Previous work
required the file system to be mounted synchronously,
for implementing complex functionality within the disk;
we relax that requirement in this paper. Below, we first
demonstrate that a semantic disk can never know for cer-
tain the type of a block when that block changes its type



during operation. We then demonstrate how a semantic
disk can safely estimate block liveness.

5.1 File System Behaviors

To illustrate the extents and limitations of semantical
knowledge within disks, we must first make assumptions
about the behavior of file systems; how file systems re-
flect operations to disk has a strong impact on what types
of knowledge can be garnered within the disk system. We
assume the following generic behaviors of a file system.
We believe that many if not all modern file systems adhere
to these behavioral guidelines. We refer to a file system
that exhibits all of these properties as a typical file system.
Dynamic Type: A Dynamic Type file system is willing
to locate different types of blocks at the same physical
location on disk over the lifetime of the file system; the
prototypical example is a data block in a UNIX file sys-
tem, which can be a user-data block, directory-data block,
or indirect-pointer block at any given time. We assume
that the type of the block is determined via information
within another block, e.g., an inode. We call the block
that contains this information the type-determining parent
of this block. A group of dynamically-typed blocks may
share the same type-determining parent.

Arbitrary Order: An Arbitrary Order file system orders
updates to the file system arbitrarily; hence, no particular
update order can be relied upon to garner extra informa-
tion about the nature of disk traffic. For example, in FFS,
meta-data updates are forced to disk synchronously, and
thus will arrive at the disk before the corresponding data.
Other file systems are very careful in how they order up-
dates to disk [9], and therefore some ordering could be
assumed; however, to remain as general as possible, we
avoid any such assumptions.

Delayed Update: A file system that delays updates to
disk (often for performance reasons) is said to be a De-
layed Update file system. Delays are found in writing data
to disk in many file systems, including LFS [32], which
buffers data in memory before flushing it to disk; this im-
proves performance both by batching small updates into
a single large one, and also by avoiding the need to write
data that is created but then deleted. A contrast to delayed
updates is a file system that immediately reflects file sys-
tem changes to disk; for example, ext2 can be mounted
synchronously to behave in this manner.

Hidden Operation: A file system that does not reflect all
operations to disk is said to be a Hidden Operations file
system. This property goes hand-in-hand with Delayed
Updates, e.g., a file system delays the disk update asso-
ciated with file creation; a subsequent delete obviates the
need to reflect the create to disk.

5.2 Dynamic Block Types

We now demonstrate that semantically-smart disks cannot
be certain of the type of dynamically-typed blocks.

Assertion: The type of a block which is dynamically
typed cannot be positively identified through observation
of the disk traffic underneath of a typical file system.
Reasoning: 7o determine the type of such a block, we
must observe traffic until both the block and its type-
determining parent have been seen. Because a typical
file system arbitrarily orders blocks, the block and what
seems to be its type-determining parent can be written to
the disk in one of two orders.
Case 1: Dynamically-typed first
1: Create file F3, with type-determining parent Py
and dynamically-typed block D of type T3, de-
noted Dr,. P; and Dy, are in memory and dirty.
2: Write D, to disk.

: Delete Fi, freeing in-memory blocks P and D, .

4: Create file F», with type-determining parent P
and (reused) block D now with type T5. Both P,
and Dy, are in memory and dirty.

5: Write P, to disk.

: Wrongly conclude from P that D, is of type T5.

Case 2: Type-determining parent first

: As above.

: Write P; to disk.

: As above.

: As above.

: Write Dr, to disk.

: Wrongly conclude from P; that D1y, is of type T3.

o
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Note that waiting after step 6 in case 1 (or 2) to see the
updated version of D, (or P5) just leads us to case 2 (or
1), continuing the uncertainty.

Thus, no matter which order the disk observes the
two blocks, the disk cannot know for sure whether a
dynamically-typed block is of a particular type. (|

This limitation has strong implications for D-GRAID,
which must understand the contents of indirect-pointer
blocks to implement graceful degradation.

5.3 Block Liveness

We also show that block liveness information can be
safely utilized within a semantically-smart disk system.
Specifically, we show that a block cannot be live on disk
when the disk considers it dead, which is required to im-
plement live-block recovery correctly. In general, blocks
become “live” when a file is created or extended, and
“dead” when a file is deleted or truncated.

For simplicity, we also assume the presence of a set of
allocation blocks, which can be used to determine which
blocks are free and which are allocated. For example, in
Linux ext2, this is the set of inode and data bitmap blocks;
in FAT, it is the file allocation table. Thus, for each block
in the file system, there exists a unique allocation block
that determines its liveness.



A semantic disk could use conservative liveness esti-
mation (CLE) to classify live blocks. With CLE, a block
is marked live when the disk sees a write to the block or a
write to its allocation block with the block marked live.
Assertion: With CLE, a live block on disk will not be
classified as dead through observation of the disk traffic
underneath of a typical file system.

Reasoning: We must consider two cases: block alloca-
tion and deletion. Assume block B is allocated or freed;
its allocation block is Ag. We now consider allocation.
Case la: Allocation
1: Allocate B and update Ap to indicate allocation.
Both blocks are in memory and dirty.
2: Write Ap to disk.
3: Write B to disk.
Case 1b: Allocation
1: As above.
2: Write B to disk.
3: Write Ap to disk.
In case la, the allocation block reaches disk first, and thus
B is considered live even before it reaches the disk. In
case 1b, since the disk observes a write to a block B, CLE
would conclude that the block has been allocated, even
though the on-disk state of Ap indicates otherwise.
We now consider deletion.
Case 2: Deletion
1: Free B. Update Ap to indicate deletion.
Ap is in memory and dirty.
2: Write Ap to disk.

When the write occurs, the disk is safe to consider block
B free. If the block was previously allocated, the disk will
consider it as such until the file system writes Ap to disk.

Because the disk can conservatively estimate liveness,
a live on-disk block will not be classified as dead. O

We note that it is possible for the disk to consider a
block live far longer than it actually is. This situation
would arise if for example the file system is willing to
write deleted blocks to disk, or if an allocation block can
be dirtied but then cleaned without being forced to disk.

6 Implementation:
Making D-GRAID

We now discuss the prototype implementation of D-
GRAID known as Alexander. Alexander uses fault-
isolated data placement and selective meta-data replica-
tion to provide graceful degradation under failure, and
employs access-driven diffusion to correct the perfor-
mance problems introduced by availability-oriented lay-
out. Currently, Alexander replicates namespace and sys-
tem meta-data to an administrator-controlled value (e.g.,
4 or 8), and stores user data in either a RAID-0 or RAID-
1 manner; we refer to those systems as D-GRAID Lev-
els 0 and 1, respectively. We are currently pursuing

a D-GRAID Level 5 implementation, which uses log-
structuring [32] to avoid the small-write problem that is
exacerbated by fault-isolated data placement.

In this section, we present the implementation of grace-
ful degradation and live-block recovery, with most of the
complexity (and hence discussion) centered around grace-
ful degradation. For simplicity of exposition, we focus
on the construction of Alexander underneath of the Linux
ext2 file system. At the end of the section, we discuss
differences in our implementation underneath of FAT.

6.1 Graceful Degradation
We now present an overview of the basic operation of
graceful degradation within Alexander.

6.1.1 The Indirection Map

Just as any other SCSI-based RAID system, Alexander
presents host systems with a volume to which they can
issue block read and block write requests. Internally,
Alexander must place blocks so as to facilitate graceful
degradation. Thus, to control placement, Alexander in-
troduces a transparent level of indirection between the
logical array used by the file system and physical place-
ment onto the disks via the indirection map (imap); simi-
lar structures have been used by others [7, 39, 40]. Unlike
most of these other storage systems, this imap only maps
every live logical file system block to all physical loca-
tions of a block (i.e., all of its replicas). All other blocks
are considered free (unmapped) and are candidates for use
by the D-GRAID.

6.1.2 Reads

Handling block read requests at the D-GRAID level is
straightforward. Given the logical address of the block,
Alexander looks in the imap to find the replica list and is-
sues the read request to one of its replicas. The choice of
which replica to read from can be based on various crite-
ria [40]; currently Alexander uses a randomized selection.

6.1.3 Writes

In contrast to reads, write requests are much more com-
plex to handle. Exactly how Alexander handles the write
request depends on the fype of the block that is written.
We now discuss the different cases.

If the block is a static meta-data block (e.g., an inode
or a bitmap block) that is as of yet unmapped, Alexander
allocates a physical block in each of the disks where a
replica should reside, and writes to all of the copies. Note
that Alexander can easily detect inode and bitmap block
types underneath of many UNIX file systems simply by
observing the logical block address.

When an inode block is written, D-GRAID scans the
block for newly added inodes. For every newly added in-
ode, D-GRAID selects a home site to layout blocks be-
longing to the inode. This selection of home site is done



to balance space allocation across physical disks. Cur-
rently, D-GRAID uses a greedy approach where it selects
the home site that currently has the least amount of disk
space committed.

However, if the write is to an unmapped block in the
data region (i.e., adata block, an indirect block, or a direc-
tory block), the allocation cannot be done until D-GRAID
knows which file the block belongs to, and thus, its actual
home site. In such a case, D-GRAID places the block in
a deferred block list and does not write it to disk until it
learns which file the block is associated with.

D-GRAID also looks for newly added block pointers
when an inode (or indirect) block is written. If the newly
added block pointer refers to an unmapped block, D-
GRAID adds a new logical-to-physical association in the
imap, which maps the logical block to a physical block in
the home site assigned to the corresponding inode. If any
newly added pointer refers to a block in the deferred list,
D-GRAID removes the block from the deferred list and
issues the write to the appropriate physical location(s).
Thus, writes are deferred only for those blocks that are
written before the corresponding owner inode blocks. If
the inode arrives at the disk first, subsequent data writes
will be already mapped and sent to disk immediately.

Another block type of interest that D-GRAID looks for
is the data bitmap block. Whenever a data bitmap block
is written, D-GRAID scans through it looking for newly
freed data blocks; to understand which bits are new, the
D-GRAID compares the newly written block with its old
copy, a process referred to as block differencing. For ev-
ery such freed block, D-GRAID removes the logical-to-
physical mapping if one exists and frees the correspond-
ing physical blocks. Further, if a block that is currently
in the deferred list is freed, the block is removed from
the deferred list and the write is suppressed; thus, data
blocks that are written by the file system but deleted be-
fore their corresponding inode is written to disk do not
generate extra disk traffic, similar to optimizations found
in many file systems [32]. Removing such blocks from
the deferred list is important because in the case of freed
blocks, Alexander may never observe an owning inode,
thereby resulting in the block remaining in the deferred
list indefinitely. Thus, every deferred block stays in the
deferred list for a bounded amount of time, until either an
inode owning the block is written, or a bitmap block indi-
cating deletion of the block is written. The exact duration
depends on the delayed write interval of the file system.

6.1.4 Block Reuse

We now discuss a few of the more intricate issues involved
with implementing graceful degradation. The first such
issue is block reuse. As existing files are deleted or trun-
cated and new files are created, blocks that were once part
of one file may be reallocated to some other file. Since D-

GRAID needs to place blocks onto the correct home site,
this reuse of blocks needs to be detected and acted upon.
D-GRAID handles block reuse in the following manner:
whenever an inode block or an indirect block is written,
D-GRAID examines each valid block pointer to see if its
physical block mapping matches the home site allocated
for the corresponding inode. If not, D-GRAID changes
the mapping for the block to the correct home site. How-
ever, it is possible that a write to this block (that was made
in the context of the new file) went to the old home site,
and hence needs to be copied from its old physical loca-
tion to the new location. Blocks that must be copied are
added to a pending copies list; a background thread copies
the blocks to their new home site and frees the old physi-
cal locations when the copy completes.

6.1.5 Dealing with Imperfection

Another difficulty that arises in semantically-smart disks
underneath typical file systems is that exact knowledge of
the type of a dynamically-typed block is impossible to ob-
tain, as shown in Section 5. Thus, Alexander must handle
incorrect type classification for data blocks (i.e., file data,
directory, and indirect blocks).

For example, consider indirect pointers. The D-GRAID
must understand the contents of such blocks, because it
uses the pointers therein to ensure placement of blocks
of a file onto the correct home site. The main difficulty
that arises due to our lack of perfect knowledge is that the
fault-isolated placement of a file might be compromised
(note that data loss or corruption is not an issue). Our
goal in dealing with imperfection is thus to conservatively
avoid it when possible, and eventually detect and handle
it in all other cases.

Specifically, whenever a block construed to be an indi-
rect block is written, we assume it is a valid indirect block.
Thus, for every live pointer in the block, the D-GRAID
must take some action. There are two cases to consider.
In the first case, a pointer could refer to an unmapped log-
ical block. As mentioned before, D-GRAID then create
a new mapping in the home site corresponding to the in-
ode to which the indirect block belongs. If this indirect
block (and pointer) is valid, this mapping is the correct
mapping. If this indirect block is misclassified (and con-
sequently, the pointer invalid), D-GRAID detects that the
block is free when it observes the data bitmap write, at
which point the mapping is removed. If the block is al-
located to a file before the bitmap is written, D-GRAID
detects the reallocation during the inode write correspond-
ing to the new file, creates a new mapping, and copies the
data contents to the new home site (as discussed above).

In the second case, a potentially corrupt block pointer
could point to an already mapped logical block. As dis-
cussed above, this type of block reuse results in a new
mapping and copy of the block contents to the new home



site. If this indirect block (and hence, the pointer) is valid,
this new mapping is the correct one for the block. If in-
stead the indirect block is a misclassification, Alexander
wrongly copies over the data to the new home site. Note
that the data is still accessible; however, the original file
to which the block belongs has a window of vulnerability,
because one of its blocks now lies in the incorrect home
site. Fortunately, this situation is transient, because once
the inode of the file is written, D-GRAID detects this as a
reallocation and creates a new mapping back to the origi-
nal home site, thereby restoring its correct mapping. 2

Thus, without any optimizations, D-GRAID will even-
tually move data into the correct home site, thus pre-
serving graceful degradation. However, to reduce the
number of times such a misclassification occurs, Alexan-
der makes an assumption about the contents of indirect
blocks, specifically that they contain some number of
valid unique pointers, or null pointers. Alexander can
Jeverage this assumption to greatly reduce the number of
misclassifications, by performing an integrity check on
each supposed indirect block. The integrity check, which
is reminiscent of work on conservative garbage collec-
tion [3), returns true if all the “pointers” (4-byte words in
the block) point to valid data addresses within the volume
and all non-null pointers are unique. Clearly, the set of
blocks that pass this integrity check could still be corrupt
if the data contents happened to exactly evade our condi-
tions. However, a test run across the data blocks of our file
system indicates that only a small fraction of data blocks
(less than 0.1%) would pass the test; only those blocks
that pass the test and are reallocated from a file data block
to an indirect block would be misclassified.

6.1.6 Access-driven Diffusion

Another issue that a D-GRAID must address is perfor-
mance. Fault-isolated data placement improves availabil-
ity but at the cost of performance. Data accesses to blocks
of a large file, or, with directory-based grouping, to files
within the same directory, are no longer parallelized. To
improve performance, Alexander performs access-driven
diffusion, monitoring block accesses to determine which
are “hot”, and then “diffusing” those blocks via replica-
tion across the disks of the system to enhance parallelism.

Access-driven diffusion can be achieved at both the log-.
ical and physical levels of a disk volume. In the logical ap-
proach, access to individual files is monitored, and those
considered hot are diffused. However, per-file replication
fails to capture sequentiality across multiple small files,
for example, those in a single directory, and requires a
great deal of bookkeeping. Therefore we instead pursue
a physical approach, in which Alexander replicates seg-

2Fjles which are never accessed again are properly laid out by an
infrequent sweep of inodes that looks for rare cases of improper layout.

ments of the logical address space across the disks of the
volume. Since file systems are generally good at allocat-
ing contiguous logical blocks for a single file, or to files in
the same directory, replicating logical segments is likely
to identify and exploit most sequential access patterns.

To implement access-driven diffusion, Alexander di-
vides up the logical address space into multiple segments,
and during normal operation, gathers various statistics
about the utilization and access patterns to each segment.
A background thread selects logical segments that are
likely to benefit most from access-driven diffusion and
diffuses a copy across the drives of the system. Subse-
quent reads and writes first go to these replicas, with back-
ground updates sent to the original blocks.

The amount of disk space to allocate to performance-
oriented replicas presents an important policy decision.
The initial policy that Alexander implements is to reserve
a certain minimum amount of space (specified by the sys-
tem administrator) for these replicas, and then opportunis-
tically use the free space available in the array for addi-
tional replication. This approach is similar to that used by
AutoRAID for mirrored data [40], except that AutoRAID
cannot identify data that is considered “dead” by the file
system once written; in contrast, a D-GRAID system can
use semantic knowledge to identify which blocks are free.

6.2 Live-block Recovery

To implement live-block recovery, the D-GRAID must
understand which blocks are live. This knowledge must
be correct in that no block that is live is considered dead,
as that would lead to data loss. Alexander tracks this
information by observing bitmap and data block traffic.
Bitmap blocks tell us the state of the file system that has
been reflected to disk. However, due to reordering and de-
layed updates, it is not uncommon to observe a write to a
data block whose corresponding bit has not yet been set
in the data bitmap. To account for this, D-GRAID main-
tains a duplicate copy of all bitmap blocks, and whenever
it sees a write to a block, sets the corresponding bit in the
local copy of the bitmap. This conservative bitmap table
thus reflects a superset of all live blocks in the file system,
and can be used to perform live-block recovery.

The actual process of implementing live-block recov-
ery is straightforward. Alexander simply locates the con-
servative bitmap table, and then uses that to build a list
of blocks which need to be restored. Alexander proceeds
through the list and performs the necessary data copies in
order to restore all live data.

6.3 Other Aspects of Alexander

There are a host of other aspects of the implementation
that are required for a successful prototype but that we
cannot discuss at length due to space limitations. For
example, we found that preserving the logical contiguity
of the file system was important in block allocation, and
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thus developed mechanisms to enable such placement.
Directory-based grouping also requires more sophistica-
tion in the implementation, to handle the further deferral
of writes until a parent directory block is written. “Just
in time” block allocation prevents misclassified indirect
blocks from causing spurious physical block allocation.
Deferred list management introduces some tricky issues
when there is not enough memory. Alexander also pre-
serves “sync” semantics by not returning success on inode
block writes until deferred block writes that were waiting
on the inode complete. There are a number of structures
that Alexander maintains, such as the imap, that must be
reliably committed to disk or stored in non-volatile RAM.
The most important component that is missing from
Alexander is the decision on which “popular” (read-only)
directories such as /usr/bin to replicate widely, and
when to do so. Though Alexander contains the proper
mechanisms to perform such replication, the policy space
remains unexplored. However, our initial experience in-
dicates that a simple approach based on monitoring fre-
quency of inode access time updates will likely be ef-
fective. An alternative approach allows administrators to
specify directories that should be treated in this manner.
One interesting issue that required a change from our
design was the behavior of Linux ext2 under partial disk
failure. Assume a user data block becomes unavailable.
When a process tries to read the block, ext2 issues the
read and returns an I/O failure to the process. When the
block becomes available again (e.g., after recovery) and a
process issues a read to it, ext2 will again issue the read,
and everything works as expected. However, if a process
tries to open a file whose inode is unavailable, ext2 marks
the inode as “suspicious” and will never again issue an
/O request to the inode block, even if Alexander has re-
covered the block. To avoid a change to the file system
and retain the ability to recover failed inodes, Alexander
replicates inode blocks as it does namespace meta-data,
instead of collocating them with the data blocks of a file.

6.4 Alexander the FAT

Overall, we were surprised by the many similarities we
found in implementing D-GRAID underneath of ext2
and FAT-32; we initially thought the designs would di-
verge substantially. For example, FAT also overloads data
blocks, using them as either user data blocks or directo-
ries; hence Alexander must defer classification of those
blocks in a manner similar to the ext2 implementation.
However, there were a few instances where the FAT
implementation of D-GRAID differed in interesting ways
from the ext2 version. For example, the fact that all point-
ers of a file are located in the file allocation table made a
number of aspects of D-GRAID much simpler to imple-
ment; in FAT, there are no indirect (or doubly indirect,
or triply indirect...) pointers to worry about. We also
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Figure 4: Time Overheads. The figure plots the time overheads
observed on D-GRAID Level 0 versus RAID Level 0 across a se-
ries of microbenchmarks. The tests are run on 1 and 4 disk sys-
tems. In each experiment, 3000 operations were enacted (e.g.,
3000 file creations), with each operation on a 64 KB file.
ran across the occasional odd behavior in the Linux im-
plementation of FAT. For example, Linux would write to
disk data blocks that were allocated but then freed, avoid-
ing an obvious and common file system optimization. Al-
though this was more indicative of the untuned nature of
the Linux implementation, it served as yet another indica-
tor of how semantically-smart disks must be wary of any
assumptions they make about file system behavior.

7 Evaluating Alexander

We now present a performance evaluation of Alexander.
We focus primarily on the Linux ext2 variant, but also
include some baseline measurements of the FAT system.
We wish to answer the following questions:

o Does Alexander work correctly?

e What time overheads are introduced?

e How effective is access-driven diffusion?

e How fast is live-block recovery?

7.1 Platform

The Alexander prototype is constructed as a software
RAID driver in the Linux 2.2 kernel. File systems mount
the pseudo-device and use it as if it were a normal disk.
Our environment is excellent for understanding many of
the issues that would be involved in the construction of
a “real” hardware D-GRAID system; however, it is also
limited in the following ways. First, and most importantly,
Alexander runs on the same system as the host OS and
applications, and thus there is interference due to compe-
tition for resources. Second, the performance character-
istics of the microprocessor and memory system may be
different than what is found within an actual RAID sys-
tem. In the following experiments, we utilize a 500 MHz
Pentium I1I and four 10K-RPM IBM disks.

Does Alexander work correctly? Alexander is a good
deal more complex than simple RAID systems. To ensure
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Figure 5: Access-driven Diffusion. The figure presents the per-
formance of D-GRAID Level 0 and standard RAID-0 under a
sequential workload. In each experiment, a number of files of
size T are read sequentially, with the total volume of data fixed
at 64 MB. The y-axis shows the bandwidth achieved during the
test, with and without access-driven diffusion. D-GRAID per-
forms better for smaller files due to better physical block layout.
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that Alexander operates correctly, we have put the sys-
tem through numerous stress tests, moving large amounts
of data in and out of the system without problems. We
have also extensively tested the corner cases of the sys-
tem, pushing it into situations that are difficult to han-
dle and making sure that the system degrades gracefully
and recovers as expected. For example, we repeatedly
crafted microbenchmarks to stress the mechanisms for de-
tecting block reuse and for handling imperfect informa-
tion about dynamically-typed blocks. We have also con-
structed benchmarks that write user data blocks to disk
that contain “worst case” data, i.e., data that appears to be
valid directory entries or indirect pointers. In all cases,
Alexander was able to (eventually) detect which blocks
were indirect blocks and move files and directories into
their proper fault-isolated locations.

What time overheads are introduced? We first ex-
plore the time overheads that arise due to semantic infer-
ence. This primarily occurs when new blocks are writ-
ten to the file system, such as during file creation. Fig-
ure 4 shows the performance of Alexander under a sim-
ple microbenchmark. As can be seen, allocating writes
are slower due to the extra CPU cost involved in tracking
fault-isolated placement. Reads and overwrites perform
comparably with RAID-0. The high unlink times of D-
GRAID on FAT is because FAT writes out data pertaining
to deleted files, which have to be processed by D-GRAID
as if it were newly allocated data. Given that the imple-
mentation is heavily untuned and the infrastructure suffers
from CPU contention with the host, we believe that these
are worst case estimates of the overheads.

We also played back a portion of the HP traces for 20
minutes against a standard RAID-0 system and D-GRAID
over four disks. The playback engine issues requests at
the times specified in the trace, with an optional speedup
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Figure 6: Live-block Recovery. The figure shows the time to
recover a failed disk onto a hot spare in a D-GRAID Level 1
(mirrored) system using live-block recovery. Two lines for D-
GRAID are plotted: in the worst case, live data is spread across
the entire 300 MB volume, whereas in the best case it is com-
pacted into the smallest contiguous space possible. Also plotted
is the recovery time of an idealized RAID Level 0.
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factor; a speedup of 2x implies the idle time between re-
quests was reduced by a factor of two. With speedup fac-
tors of 1x and 2x, D-GRAID delivered the same per-
second operation throughput as RAID-0, utilizing idle
time in the trace to hide its extra CPU overhead. How-
ever, with a scaling factor of 3%, the operation throughput
lagged slightly behind, with D-GRAID showing a slow-
down of upto 19.2% during the first one-third of the trace
execution, after which it caught up due to idle time.

How effective is access-driven diffusion? We now show
the benefits of access-driven diffusion. In each trial of
this experiment, we perform a set of sequential file reads,
over files of increasing size. We compare standard RAID-
0 striping to D-GRAID with and without access-driven
diffusion. Figure 5 shows the results of the experiment.

As we can see from the figure, without access-driven
diffusion, sequential access to larger files run at the rate
of a single disk in the system, and thus do not benefit
from the potential parallelism. With access-driven diffu-
sion, performance is much improved, as reads are directed
to the diffused copies across all of the disks in the system.
How fast is live-block recovery? We now explore the
potential improvement seen with live-block recovery. Fig-
ure 6 presents the recovery time of D-GRAID while vary-
ing the amount of live file system data.

The figure plots two lines: worst case and best case
live-block recovery. In the worst case, live data is spread
throughout the disk, whereas in the best case it is com-
pacted into a single portion of the volume. From the
graph, we can see the live-block recovery is successful
in reducing recovery time, particularly when a disk is less
than half full. Note also the difference between worst case
and best case times; the difference suggests that periodic
disk reorganization {34] could be applied to aid in recov-
ery time, by moving all live data to a localized portion.
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8 Related Work

D-GRAID draws on related work from a number of differ-
ent areas, including distributed file systems and traditional
RAID systems. We discuss each in turn.

Distributed File Systems: Designers of distributed file
systems have long ago realized the problems that arise
when spreading a directory tree across different machines
in a system. For example, Walker et al. discuss the impor-
tance of directory namespace replication within the Locus
distributed system [29]. The Coda mobile file system also
takes explicit care with regard to the directory tree [21].
Specifically, if a file is cached, Coda makes sure to cache
every directory up to the root of the directory tree. By
doing so, Coda can guarantee that a file remains accessi-
ble should a disconnection occur. Perhaps an interesting
extension to our work would be to reconsider host-based
in-memory caching with availability in mind.

More recently, work in wide-area file systems has also
re-emphasized the importance of the directory tree. For
example, the Pangaea file system aggressively replicates
the entire tree up to the root on a node when a file is ac-
cessed [35]. The Island-based file system also points out
the need for “fault isolation” but in the context of wide-
area storage systems; their “one island principle” is quite
similar to fault-isolated placement in D-GRAID [19].

Finally, p2p systems such as PAST that place an entire
file on a single machine have similar load balancing is-
sues [33]. However, the problem is more difficult in the
p2p space due to the constraints of file placement; block
migration is much simpler in a centralized storage array.
Traditional RAID Systems: We also draw on the long
history of research in classic RAID systems. From Au-
toRAID [40] we learned both that complex functionality
could be embedded within a modern storage array, and
that background activity could be utilized successfully in
such an environment. From AFRAID [36], we learned
that there could be a flexible trade-off between perfor-
mance and reliability, and the value of delayed updates;
we believe that there are many remaining components of
D-GRAID where these approaches would help.

Much of RAID research has focused on different re-
dundancy schemes. While early work stressed the ability
to tolerate single-disk failures [2, 26, 27], later research
introduced the notion of tolerating multiple-disk failures
within an array [4]. We stress that our work is comple-
mentary to this line of research; traditional techniques
can be used in order to ensure full file system availability
up to a certain number of failures, and D-GRAID tech-
niques ensure graceful degradation under additional fail-
ures. Further, as the semantic RAID taxonomy demon-
strates, complex redundancy techniques could be applied
differentially to data and meta-data, tailoring each scheme
to the demands of the data type. A number of earlier
works also emphasize the importance of hot sparing to
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speed recovery time in RAID arrays [16, 23, 26]. Our
work on faster semantic recovery is also complementary
to those approaches.

Finally, it should be noted that term “graceful degrada-
tion” is sometimes used to refer to the performance char-
acteristics of redundant disk systems under failure [17,
30]. This type of graceful degradation is much different
than what we discuss within this paper; indeed, none of
those systems continues to operate when an unexpected
number of failures occurs.

9 Summary and Conclusions
“A robust system is one that continues to operate

(nearly) correctly in the presence of some class of
errors” Robert Hagmann [15]

A D-GRAID turns the simple binary failure model
found in most storage systems into a continuum, increas-
ing the availability of storage by continuing operation un-
der partial failure and quickly restoring live data after a
failure does occur. In this paper, we have shown the
potential benefits of D-GRAID, established the limits of
semantic knowledge, and have shown how a successful
D-GRAID implementation can be achieved despite these
limits. Through simulation and the evaluation of a pro-
totype implementation, we found that a D-GRAID can be
built underneath a standard block-based interface, and that
it delivers graceful degradation and live-block recovery,
and, through access-driven diffusion, good performance.

We conclude with a discussions of the lessons we have
learned in the process of implementing D-GRAID:

o Limited knowledge within in the disk does not imply
limited functionality. One of the main contributions of
this paper is a demonstration of both the limits of seman-
tic knowledge, as well as the “proof” via implementation
that despite such limitations, interesting functionality can
be built inside of a semantically-smart disk system. We
believe any semantic disk system must be very careful in
its assumptions about file system behavior, and hope that
our model can serve as a guide to others who pursue a
similar course.

¢ Semantically-smart disks would be easier to build
with some help from above. Because of the way file
systems reorder, delay, and hide operations from disks, re-
verse engineering exactly what they are doing at the SCSI
level is difficult. We believe that small modifications to
file systems could substantially lessen this difficulty. For
example, if the file system could inform the disk whenever
it believes the file system structures are in a consistent on-
disk state, many of the challenges in the disk would be
lessened. This is one example of many small alterations
that could ease the burden of semantic disk development.
¢ Semantically-smart disks stress file systems in unex-
pected ways. File systems were not built to operate on
top of disks that behave as D-GRAID does; specifically,



it is not surprising that file systems do not behave partic-
ularly well when part of a volume address space becomes
unavailable. Perhaps because of its heritage as an OS for
inexpensive hardware, we found that Linux file systems
handled unexpected conditions fairly well. However, the
exact model for how to deal with failure was inconsistent:
data blocks could be missing and then reappear, but the
same was not true for inodes. As semantically-smart disks
push new functionality into storage, file systems would
likely have to evolve to accommodate them.

o Detailed traces of workload behavior are invaluable.
Because of the excellent level of detail available in the
HP traces [31], we were able to simulate and analyze
the potential of D-GRAID under realistic settings. Many
other traces do not contain per-process information, or
anonymize file references to the extent that pathnames are
not included in the trace, and thus we could not utilize
them in our study. One remaining challenge for tracing
is to include user data blocks, as semantically-smart disks
may be sensitive to the contents. However, the privacy
concerns that such a campaign would encounter may be
too difficult to overcome.

We envision a number of interesting avenues for fur-
ther research, including more intelligent semantic group-
ing, better policies and mechanisms for replication, and
file system modifications that ease the construction of D-
GRAID and other semantically-smart storage systems.
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