Computer

Sciences
Department

Global Intrusion Detection in
the DOMINO Overlay System

Vinod Yegneswaran
Paul Barford

Somesh Jha

Technical Report #1471

March 2003

UNIVERSITY OF

WlSCONSlN

M A D S O N

UW TECHNICAL REPORT - 1471

Global Intrusion Detection in the DOMINO
Overlay System

Vinod Yegneswaran, Paul Barford and Somesh Jha

Abstract—Sharing data between widely distributed intrusion detection
systems offers the possibility of significant improvements in speed and accu-
racy over systems operating in isolation. In this paper, we describe and eval-
uate DOMINO (Distributed Overlay for Monitoring InterNet Outbreaks);
an architecture for a distributed intrusion detection system that fosters col-
laboration among heterogeneous nodes organized as an overlay network.
The overlay design enables DOMINO to be heterogeneous, scalable, and
robust to attacks and failures. An important component of DOMINQO’s de-
sign is the use of tarpit nodes which respond to and measure connections
on unused IP addresses. This enables efficient detection of attacks from
spoofed IP sources, reduces false positives, enables attack classification and
production of timely blacklists.

We evaluate the capabilities and performance of DOMINO using a large
set of intrusion logs collected from over 1600 providers across the Inter-
net. Our analysis demonstrates the significant marginal benefit obtained
from distributed intrusion data sources coordinated through a system like
DOMINO. We also evaluate how to configure DOMINO in order to maxi-
mize performance gains from the perspectives of blacklist length, blacklist
freshness and IP proximity. We perform a retrospective analysis on the
2002 SQL-Snake and 2003 SQL-Slammer epidemics that highlights how
information exchange through DOMINO would reduce reaction time and
false alarm rates during outbreaks. Finally, we provide preliminary results
from our prototype tarpit deployment that illustrates the limited variability
in the tarpit traffic and the feasibility of efficient classification and discrim-
ination of attack types.

I. INTRODUCTION

Internet intrusions and large scale attacks can have a catas-
trophic affect, including stolen or corrupted data, wide spread
denial of service, huge financial losses and even disruption of
essential services. For example, the CodeRed I virus infected
more than 359, 000 hosts resulting in financial losses of over $2
billion [1], [2]. Given their potentially profound impact, detect-
ing network intrusions and attacks is an important goal.

However, protecting networks from nefarious intrusions and
attacks remains challenging for a number of reasons. First,
and perhaps the foremost, is the fact that the problem is a con-
stantly moving target due to continued innovation, easy access
to new portscanning tools and the Internet’s basic vulnerability
to certain types of widespread intrusions from different classes
of worms [3]. Second, even when new exploits are identified,
the primary means for propagating this information is through
informational services, such as CERT [4], which can result in
unacceptably slow response times for installing counter mea-
sures. Third, while infrastructures such as IP supported trace-
back [5] or pushback [6] offer promise in combating intrusions
and attacks, these and other similar measures are not yet widely
deployed.

Current best practice for protecting against intrusions is
through the use of firewalls [7] or network intrusion detection
systems (NIDS) [8]. Firewalls are choke points that filter traf-
fic at network gateways based on local security policies. NIDS

V. Yegneswaran, P. Barford and S. Jha are members of the Computer

Science Department at the University of Wisconsin, Madison. E-mail:
vinod,pb,jha@cs.wisc.edu.

systems are monitors residing on end systems that passively ob-
serve the local network traffic and react to specific signatures
(misuse detection) or anomalies. Examples of NIDS that em-
ploy misuse detection are Snort [9] and Bro (10]. One of the
major drawbacks of misuse-based NIDS is their inability to de-
tect new types of intrusions. Anomaly detection techniques es-
tablish statistical profiles of network traffic and flag any traffic
deviating from the profile as anomalous. The high variability
common in network packet traffic limits the effectiveness of this
approach [11]. In general, current NIDS suffer from two major
drawbacks: high false alarm rates and the limited perspective
from a single vantage point which limits their ability to detect
distributed or coordinated attacks.

One promising approach to addressing the above-mentioned
shortcomings is through the use of distributed network intrusion
detection systems (DNIDS). In this environment alerts from dif-
ferent NIDS are combined to address above-mentioned short-
comings. Valdes and Skinner [12] show that “merging” alerts
from different NIDSs deployed in a single administrative do-
main can reduce the overall false alarm rate. Improvements even
from this limited perspective indicate the potential for DNIDS.

The first contribution of this paper is in the description of a
new architecture for distributed intrusion information sharing.
The DOMINO architecture enables DNIDS deployed at diverse
locations to securely share intrusion information. DOMINO’s
overlay design facilitates scalable data sharing, heterogeneous
participation and robustness to nodes joining and leaving the in-
frastructure. DOMINO’s data sharing architecture describes the
methods of transfer and summarization of information between
nodes. This architecture is flexible so as to enable consideration
of local policies.

A important part of DOMINO’s architecture are nodes that
monitor unused IP addresses. We call the collection of these
nodes the DOMINO tarpit. These data sources are devoid of
false positives since they monitor unused IPs. The tarpit pro-
vides better mechanisms to detect spoofed sources and allows
for efficient classification of attack packets into well defined cat-
egories. There is an important additional benefit in monitoring
unused IPs in that there may be fewer privacy concerns associ-
ated with collecting this data.

The second contribution of this paper is in the evaluation of
the DOMINO’s design and performance characteristics. Our
evaluation is based on the use of a set of intrusion logs gath-
ered from over 1600 different networks across the Internet over
a four month period. To our knowledge, this is the first evalua-
tion of DNIDS capability using a large, distributed dataset, and
it provides key insights into effectiveness of distributed intru-
sion detection. It is important to note that this is an ex post facto
analysis based on DOMINO’s specification. We also evaluate
data from a prototype tarpit deployment. Our experiments focus

UW TECHNICAL REPORT - 1471

on evaluating the following aspects of DOMINO:

« The marginal utility of adding measurement nodes in detect-
ing worst offenders and creating port summaries.

« Ideal configuration parameters for DOMINO nodes focused
on blacklist (a sorted list of the worst offending sources) size
and frequency of blacklist generation.

o The reaction time in identifying worm outbreaks.

« The effect on false alarm rates.

« The variability in payload distributions in tarpit data.

There are several important results of our experimental inves-
tigation:

« Improved Summaries: Through our marginal utility exper-
iments we demonstrate that through a small network of collab-
orating peers (around 40), individual networks can significantly
improve their perspective on global attack behavior. The size of
the individual peering nodes is less significant than the number
of collaborating peers.

« Blacklists (Worst Offender List): We show that few (tens
of) attack sources are responsible for a significant portion of
all scans on any given day and that significant benefit can be
acheived even through relatively stale blacklists.

« Decreased reaction time: We evaulate the reaction time of
our system using data from two different outbreaks: SQL Snake
2002 and SQL Sapphire 2003. We provide examples of rules
that DOMINO could employ to react favorably to each of these
scenarios without significant false alarms. We demonstrate that
reaction time to exploit recognition can be substantially reduced
in DOMINO under each of these conditions.

o Utility of tarpit data: We provide preliminary results from
our tarpit deployment that highlight the limited variability in ob-
served payloads and motivate our approach towards building a
robust classifier.

Our results have a number of important implications. First,
the DOMINO architecture demonstrates a framework within
which systems from different administrative domains can par-
ticipate in coordinated intrusion detection. Second, the clear
improvements in ability to identify intrusions through coordi-
nated data sharing should make this a compelling consideration
for network administrators. Third, the deployment of DOMINO
tarpit nodes on unused address space in the Internet would sig-
nificantly increase the fidelity and speed of alert generation in
intrusion detection systems.

II. RELATED WORK

There are several techniques for intrusion detection, such as
misuse detection [13], [14], statistical anomaly detection [15],
[16], [17], information retrieval [18], data mining [19], and in-
ductive learning {20]. For a survey of intrusion detection reader
can consult existing literature on this topic [8], [21], [22]. A
classification of intrusion detection systems appears in [23, Sec-
tion IT]. In DOMINO, NIDS, firewalls and tarpits [24] partici-
pate as leaves in the infrastructure, i.e., they provide the raw data
and alerts. Therefore, one of the major contributions of this pa-
per is that DOMINO’s design enables the use of heterogeneous
system at the leaf nodes of a DNIDS.

Several researchers have started investigating distributed net-
work intrusion detection [25], [26], [27]. Our general architec-
ture for the DOMINO DNIDS is presented in Section III. To

our knowledge, with the exception of Indra [26] all other pro-
posed DNIDS use a hierarchical structure. While Indra proposes
a peer-to-peer approach to intrusion detection, its organization
is completely ad-hoc and serves only as a rule dissemination
mechanism. DOMINO’s design uses a combination of peer-to-
peer and hierarchical components providing significant advan-
tages over a purely hierarchical architecture. These advantages
include simplified information sharing, scalability and fault tol-
erance.

Currently, DOMINO uses a a “flat tuple space” to express
various alerts. Several researchers are developing languages to
express alerts [28]. As these languages are standardized, we
plan incorporate them into DOMINO. Merging alerts from var-
ious sources has also been studied by various authors [12], [29].
The merging algorithm in DOMINO is influenced by our exper-
imental results. We are also investigating algorithms from data
fusion [30] for this purpose. The goal of intention recognition
is to correlate alerts (possibly emerging from different sources)
to infer the plan of the adversary [25], [31]. In the context of
DOMINO we are not working on this problem. However, we
plan to incorporate an existing intention recognition module into
DOMINO.

Our work is also influenced by empirical studies of intrusion
and attack activity. Moore et. al. examined the prevalence
of denial-of-service attacks using backscatter analysis in [32].
In [1], the authors analyze the details of the Code Red worm out-
break and provide important perspective on the speed of worm
propagation. In a follow-on work, Moore et. al. provide in-
sights on the speed at which counter measures would have to be
installed to inhibit the spread of worms like Code Red [33]. The
work that is perhaps most closely associated with ours is in [34].
In that paper, the authors explore the statistical characteristics of
Internet intrusion activity from a global perspective. That work
informs DOMINO’s design from the perspective of the potential
use of multiple sites in coordinated intrusion detection.

III. DOMINO ARCHITECTURE
A. DOMINQ Overview

A DOMINO network is a dynamic infrastructure composed
of a diverse collection of nodes located in networks spanning
the Internet. The objective of this system is to provide a frame-
work for information sharing aimed at improving intrusion de-
tection capability for all participants. There are several overar-
ching requirements, properties and challenges in organization of
this network. These requirements are not unlike those of other
large information sharing infrastructures and include the follow-
ing:

« Availability: Since all networks are prone to sysiem failures,
congestion and attacks, the infrastructure must be resilient to
temporary network instabilities. Furthermore, it is crucial that
the network remain available in the face of worm outbreaks,
denial-of-service attacks and other Internet catastrophes.
 Scalability: The success and utility of this network for its par-
ticipants relies on its ability to scale gracefully to a large number
of nodes.

« Decentralization: A decentralized architecture provides for
greater flexibility and eliminates any single point of failure. The
goal of this network is to advance the state of intrusion detection

UW TECHNICAL REPORT - 1471

.+ v DOMINO JATELLITE3

Fig. 1. DOMINO Topology

by enabling peer-to-peer collaboration between a large number
of independent networks. In principle, however there could be
instances of the DOMINO network that strictly operate locally
inside an organization’s Intranet.

» Pervasiveness: The network would be most effective in iden-
tifying attack trends and characterizing global Internet intrusion
phenomenon, if it obtains representative participants across a
moderate size portion of IP space.

» Privaey: The network should not reveal data that individ-
ual participants consider sensitive. It should also not increase
the probability or possibility of attack against individual partic-
ipants.

« Heterogeneity: The network must be able to harmonize
systems from disparate networks of varying sizes that run a
wide range of NIDS/firewall technologies. This would allow
DOMINO to overcome any weaknesses associated with individ-
ual NIDS rules or organizational topologies.

« Inducement: Finally there must be an incentive (a direct ben-
efit) for networks to join this infrastructure. The critical mass of
participants required for obtaining immediate benefit should be
reasonably low.

As shown in Figure 1, a DOMINO network is comprised of
three sets of participants: axis overlay, satellite communities
and terrestrial contributers. We describe each of these in the
following sections. All communication between the axis overlay
nodes and the satellites is secure and encrypted. We provide a
brief description of the key distribution strategy in Section III-
B.

A.1 Axis Overlay

The axis nodes are the central component of the DOMINO
architecture. They are responsible for the bulk of the intrusion
information sharing hence their scalability and availability is vi-
tal to the success of infrastructure. An important requirement
for DOMINO is that it be seamlessly resilient to failure of in-
dividual axis nodes. It must also possess the ability to quickly
detect and adapt to topological changes through node joins and
leaves.

Overlay networks have been shown to be highly resilient to
disruption and possess the ability deliver messages even during
large-scale failures and network partitions [35]. We have chosen
to organize the DOMINO axis nodes as a peer-to-peer overlay.

11554200 116
110800 48

Fig. 2. Chord Routing Table

We use the Chord lookup protocol [36] to facilitate the overlay.
Chord has been demonstrated to provide the high availability
and fault tolerance for peer-to-peer systems. However, the use
of Chord itself is not essential. Extensions of this concept to
other peer-to-peer key searching strategies like Pastry [37], or
Tapestry [38] would be straightforward.

A Chord network is organized as a m-bit ring operating over
a space of 2™ identifiers. Given any particular identifier, the
Chord protocol allows efficient location and retrieval of the as-
sociated key/data in a probabilistically bounded small number
of hops. The Chord protocol provides a consistent hashing algo-
rithm to ensure uniform distribution and supports key replication
to tolerate failure of servers. The DOMINO network utilizes the
Chord lookup protocol for two purposes: 1) to map IP ranges to
axis nodes 2) to store and retrieve axis summaries. As an exam-
ple, Figure 2 illustrates the routing information maintained by a
chord ring with 3 servers and 5 identifiers. In Chord, a server
is associated with a set of data that accessible via an identifier.
The analog in DOMINO is that axis nodes are servers and are
associated with intrusion data from their satellites.

In order to enhance robustness and extend the availability of
the architecture, external connectivity (from nodes not partici-
pating in DOMINO) to the axis overlay is maintained through a
set of DOMINO access points (DAP). These nodes also partici-
pate in the Chord key distribution and lookup just like any other
axis nodes. However, they do not perform any local monitoring
or support Satellite communities which are primary function of
axis nodes. Participation at the axis node level in DOMINO is
achieved through an administrative procedure, described in Sec-
tion HII-B.

Each axis node in the overlay is described in terms of its fol-
lowing components:

« Intrusion Data Collection: Axis nodes will act as intrusion
data collection points in DOMINO. Axis nodes typically belong
to large, well managed networks since there is a high level of
trust required to participate at this level. In each of these net-
works NIDS and/or firewalls and/or DOMINO tarpits are de-
ployed.

1. NIDS/Firewall: NIDS and firewall logs provide data on
specific intrusion signatures and on rejected packets respec-

UW TECHNICAL REPORT - 1471

Tarpit Client

SYN

SYN/ACK

/

ACK

e
o

]
4

Cd

AN

Fig. 3. Time line diagram of tarpitted TCP connection

tively. Both of these are fundamental intrusion data sources in
DOMINO.

2. DOMINO Tarpit: The idea of a tarpit was first proposed

by Liston in his tool LaBrea [24]. LaBrea was developed as
a mechanism for slowing CodeRed I propagation by creating
a “sticky honey-pot” or persistent connections in otherwise un-
used IP space. LaBrea listens to initial TCP connection attempts
(SYNs) and responds with an acknowledgment. Thus, it cre-
ates virtual nodes in the unused IP space. These virtual nodes
cause the infecting machines to temporarily get stuck thus slow-
ing propagation of an outbreak. There are of course obvious
means to side step such an impasse, like multithreading, how-
ever our goal is in measurement, not in slowing a worm.
We extend this idea in DOMINO by creating tarpit software that
monitors potentially large amounts of unused IP space. Scala-
bility is achieved in part by the fact that a DOMINO tarpit is
stateless and does not respond to any packets other than a SYN.
A timeline diagram for a typical TCP transaction in a tarpit is
shown in Figure 3. This approach to monitoring has important
auxiliary benefits to DOMINO that includes the following:

(a) Tarpits enable examination of the first payload packet. This
helps in associating an attack with a particular vulnerability. For
example examination of the “GET” request helps distinguish be-
tween Code Red, Nimda and other variants. This is not possible
in traditional NIDS unless you have a service running on that
port.

(b) Tarpits enable elimination of spoofed sources from black-
lists since spoofed sources would send a RESET, instead of the
first payload packet.

(c) Spoofed sources behave differently to a tarpit response.
They do not send the payload packet, instead they respond with
a reset or simply drop the SYN/ACK received from the tarpit.
Thus any source that sends a payload to the tarpit is guaranteed
to be malicious or misconfigured. This enables creation of high
confidence blacklists and attach greater accountability to attack
sources.

Each axis node ideally maintains both an NIDS and a large tarpit

TABLE
AX1S DATABASE SCHEMA (PACKETL.OGS)

a) Timestamp

b) Protocol

c) Sequence No

d) SourceIP

e) Source Port

f) TargetIP

g) Target Port

h) Tcp Flags

i) Payload (250 bytes)

jy TIPTTL

k) Vulnerability ID [index into the vulnerability table]
I) Sensor ID (if it is data from a satellite node)
m) Episode Type

n) Episode ID

of unused IP space. Our experience with similar datasets as dis-
cussed in Section VII indicates that a collection of around 20
such data sources are sufficient to identify global attack char-
acteristics with a high degree of accuracy. Hence, we expect
the number of axis nodes to be consistently over 20 in order to
maximize effectiveness of the system.

o Axis Database - The schema of the axis database has five
important relations: packet logs, local and global summary, vul-
nerabilities and alerts. To simplify discussion we treat these as
flat relations. However, a hierarchical/object oriented approach
might be more suitable for implementation. For every packet
that is received a DOMINO axis node logs the information in
Table 1. Fields k,l,m and n are updated periodically by an anal-
ysis daemon since they might require examination of multiple
packets.

o DOMINO Summary Exchange Protocol - The DOMINO
axis nodes in the overlay participate in a periodic exchange of
intrusion information. We refer to the data sets exchanged as
summaries - the actual format of the summaries is described
later in this section. The summaries are exchanged in 3 granular-
ities: hourly, daily and monthly. A summary exchange involves
the following steps:

1. Pulling data from the satellites. Alternatively this could also
be implemented as a periodic push. The choice is left to the
satellites.

2. Generation of the summary data and multicast to other axis
nodes.

3. Generating appropriate Chord identifier and executing the

store operation to enable persistent availability of this data.
+ DOMINO Query Engine - The DOMINO axis nodes export
a queriable interface that can be used to tune firewall parameters
and to expeditiously react to outbreak situations. Queries from
external sources are directed through the DAPs and their acces-
sibility is controlled to protect the integrity of the infrastructure.
Finally, the query engine also supports a “trigger” mechanism
that allows the axis nodes to pull data from the satellites on a
real-time basis. Such mechanisms can prove extremely valu-
able for gathering fine-grained information in analyzing new
outbreaks.

UW TECHNICAL REPORT - 1471

A.2 Satellite Communities

Satellite nodes are typically smaller networks that implement
a local version of the DOMINO protocol. There is potentially
a wide disparity in the sizes and underlying NIDS/firewall soft-
ware running in these networks, and extensions to provide sup-
port for DOMINO would be implemented as plug-ins for these
systems.

The satellite nodes are composed in a hierarchy such that each
node routes all communication with the larger network through
a parent node that is either another DOMINO satellite or an axis
node. Data collected at the satellite nodes is transmitted to the
axis nodes through a combination of push and pull mechanisms.
The data obtained from satellites is considered to be less trust-
worthy than what is collected at the axis nodes.

The satellites have the potential to generate a large volume
of spontaneous alerts. Due to their limited perspective, these
nodes may also be incapable of performing local analysis or
classification of attack severity. Hence, these nodes are orga-
nized into ad-hoc hierarchies that allows for efficient cluster-
ing of neighboring alerts and robust construction of pertinent
digests. Preserving hierarchical attributes towards the edges of
the DOMINO overlay also facilitates efficient data aggregation,
intelligent routing of queries/trigger responses, establishment of
trust levels and simplifies administrative demands.

Axis nodes and satellites enjoy a symbiotic relationship. The
representation of the satellites allows the network wider cover-
age across the IP space. The inducement for the satellites is a
global vantage point that allows for rapid outbreak recognition,
dynamic content filtering and application specific source black-
listing to protect their networks in a timely manner.

A.3 Terrestrial Contributers

The terrestrial contributers form the least trustworthy but po-
tentially a very large source of data. These nodes do not im-
plement the DOMINO protocol, may not have tarpits and are
not bound to any particular software installation. Rather, these
nodes could run any firewall or NIDS software and simply sup-
ply daily summaries of port scan data. Terrestrial contributers
are simply a means for expanding coverage by including intru-
sion data sets from outside of the infrastructure.

A.4 DOMINO Messages

To foster interoperability and maximize extensibility the
DOMINO protocol messages are represented in XML. We ex-
tend the schema proposed by the IDWG (Intrusion Detection
Working Group) in IDMEF (Intrusion Detection Message Ex-
change Format) draft [39]. Our schema adds five new message
types to the two provided by the IDMEF (alerts and hearbeats).
The seven message categories in DOMINO are as follows:

« Alerts - Alerts are spontaneous responses to events as defined
by NIDS/firewall or custom policies. Most alerts are generated
at the small networks or satellites, however they might get pro-
pogated to the axis level depending on the pervasiveness and
severity. Alert clustering and suppression is a very challenging
problem and vital to the operational success of the infrastruc-
ture. Section V provides a discussion of our approach to this
problem. The IDMEF draft defines a few alert classifications:

tool alert, correlation alert and overflow alert. The DOMINO
axis nodes also exchange alerts when there is a significant devia-
tion from the periodic summaries. For example, outbreak alerts,
blacklist alerts and denial-of-service attack alerts. The DTD for
an alert is as follows:

<!ELEMENT Alert (CreateTime, DetectTime?,
AnalyzerTime?, Classification, Source*, Target*,
AdditionalData?)}>

<!ATTLIST Alert version CDATA #FIXED “1’, ident
CDATA #REQUIRED, impact CDATA ‘unknown’>

o Summary Messages - DOMINO summaries are typically ex-
changed by the axis peers in one of three possible formats relat-
ing to the type of information being transmitted. The summary
message types include: PortSummaries, SourceSummaries and
ClusterSummaries. DOMINO also defines three levels of trust
(low, medium and high) for summary messages based on their
source (axis/satellite). The choice of three levels of trust is
somewhat arbitrary and are used as cues for intelligent aggre-
gation. The DTD for summary messages is as follows:

<!ELEMENT Summary (CreateTime,
IPBlockSummary+}>

<!ATTLIST Summary version CDATA #FIXED ‘1‘, ident
CDATA #REQUIRED>

<!ELEMENT IPBlockSummary (MinIP, MaxIP, IPCount,
Trustlevel, PortSummary?, SourceSummary?,
ClusterSummary?)>

<!ELEMENT PortSummary {VulnID/PortNum, NumUnigSrcIP,
NumUniqPestIP, ScanCount>)

<!ELEMENT SourceSummary {(VulnID/PortRange, ScanCount,
BggregateScanCount, NumUnigTargets)>

<!ELEMENT ClusterSummary(SrcIPList, DestIPList,
vulnID/PortRange, ScanCount)>

«» Heartbeats - In DOMINO the Satellite Nodes periodically
exchange heartbeat messages with the parent nodes. These are
used to indicate the current status to higher level nodes and vice-
versa. These interval of heartbeats is left up to the satellites, it
could be say every 10 minutes or every hour.

SummaryDuration,

<!ELEMENT Hearbeat (CreateTime, AnalyzerTime,
AdditionalData*)>
<t{ATTLIST Heartbeat ident CDATA #REQUIRED>

« Topology Messages - There are four different types of topol-
ogy messages: adopt, detour, recall, and divorce. When a satel-
lite node is disconnected from its parent, it tries to reconnect
through the normal heartbeat exchange protocol. If this fails, it
issues an adopt message to a DAP that is then multicast to the
overlay of axis nodes. An axis node might forward the adopt
message to any applicable children. The satellite analyzes the
acknowledgments and responds with a detour message to the
most eligible parent. When an axis or satellite parent restarts, it
issues a recall message to all its children. The child can accept
the invitation to rejoin by issuing a divorce message to the foster
parent and a simultaneous derour message to the original parent.
<!ELEMENT TopologyMessage (CreateTime, Type,
IPBlockSummary?>)

<IATTLIST TopologyMessage version CDATA #FIXED
r1’, ident CDATA #REQUIRED>}

« Queries - The DOMINO Query Messages are exchanged in
XQuery format. Since the axis nodes maintain a consistent
schema inter-axis queries could be done in SQL. However, we
chose to use XQuery to maximize interoperability with satel-
lites. We provide an example query which is to create a top 10
blacklist for port 1433 between two specified times:

UW TECHNICAL REPORT - 1471

for $src in distinct (document ("localscans.xml"))//source
let $scan :
let Stime := $scan/timestamp, $port = $scan/port
where Sport = 1433 and $time > 1044206900
and Stime < 1044206960
return
<blacklist>
<source> {$src} </source>
<num_scans> {sum{$scan/count}} </numscans>
</blacklist>
} sortby {sum{$scan/count}} limit 10

« DB Updates - The DOMINO protocol also provides an auto-
matic mechanism for updating NIDS rulesets and the axis vul-
nerability database. This can also be considered as a means for
dispensing timely content based filters to the satellites. The for-
mat of these messages is straightforward.

<!ELEMENT DBUpdate {CreateTime, VulnerabilityID,
Signature)>

<!ATTLIST DBUpdate version CDATA #FIXED '1l’, ident
CDATA #REQUIRED, description CDATA>

<!ELEMENT Signature (TargetPorts+, Payload?,
SourcePort*, Protocol+, Seqno?)>

« Triggers - Triggers can be issued by DOMINO axis and Satel-
lites to nodes that are lower in the hierarchy. A trigger has three
components 1) Query 2) Constraint and 3) Action. We define
two types of actions alerts and filter rules. An example of an
trigger is the generation of an outbreak alert when the number
of scans exceeds a certain threshold.

<!ELEMENT Trigger (CreateTime, Query, Constraint, Action)>
<!ATTLIST Trigger version CDATA #FIXED ’'1’, ident

CDATA #REQUIRED, description CDATA>
<!ELEMENT Action (Alert?, Filter?)>

B. Authentication

The axis nodes in DOMINO are associated with a high de-
gree of trust so authenticating all inter-axis communication is
vital. We currently use public-key cryptography (specifically
RSA [40]) for this purpose. However, other schemes for source
authentication could also be used. We do not anticipate the
number of axis nodes to scale at the same rate as the overall
DOMINO infrastructure, so key distribution among these nodes
is not envisioned as a big hurdle. In fact, there could easily be
a special certificate authority (CA) for the DOMINO network,
and when a new axis node joins DOMINO, it can engage in a
key distribution protocol with the DOMINO CA. The axis pub-
lic keys are stored and retrieved through the Chord lookup pro-
tocol, much like all other data.

When an axis node multicasts an intrusion summary, it first
computes an SHA-1 hash of the summary and appends the dig-
ital signature of the hash to the summary which is verified by
all recipients. This approach is scalable in DOMINO because
axis nodes broadcast summaries relatively infrequently and the
summaries are lightweight (order of KBs). For example, in
our current implementation the broadcasting period is approx-
imately one hour. However, we plan to undertake an experi-
mental evaluation of the overhead of computing digital signa-
tures in the context of DOMINO. We are also investigating other
mechanisms for source authentication (eg. [41], [42]), including
elliptic-curve based public-key systems [43]. The public key of
an axis node can also be used for authentication using a standard
challenge-response protocol (eg. [44]).

Finally, authentication schemes based on secret key ex-
changes could also be considered. We chose not to pursue an
authentication scheme based on sharing secret keys, since this

document ("localscans.xml")//:scan{source = §$src]

would entail sharing a secret key between every pair of axis
nodes. This approach would be less scalable and require more
maintenance than our choice of using a public key system.

IV. INFORMATION SHARING

Every axis node maintains a local and global view of the in-
trusion and attack activity. The local view considers activity in
its own network and its satellites. Axis nodes periodically re-
ceive summaries from peers which are then used to create the
view of global activity. Issues in creating these views include
scalability, timeliness and trust. Each axis node can employ its
own strategy for creating both local and global views. Potential
strategies include the following:

« Simple aggregation: The most straight-forward way to fuse
logs from multiple sites is through a simple addition or average
across each dimension of data. While this approach provides a
simple means for organizing and summarizing data, it also has
the risk of inaccuracy. As an example, consider the case of a
PortSummary. It makes sense to add the the number of scans
and the number of unique destinations, but simply adding the set
of unique sources across axis nodes is almost certainly not ap-
propriate. DOMINO currently performs simple aggregation for
PortSummaries (but does not consider the results for sources).

o Weighted merging: A potentially important consideration in
fusing summaries is IP proximity. In particular, summaries gen-
erated from “neighboring” IP blocks might be more germane
than those generated in a “distant” network (since it is not un-
common for scans or attacks to proceed horizontally through IP
space). A weighted merging approach that emphasizes proxim-
ity might be more appropriate. DOMINO currently performs a
very simple weighted merging of blacklists.

« Sampling: Sampling is the standard method for reducing the
scale of measurement data. The goal in any sampling approach
is to balance quantity of data with precision of measurement.
In the case of DOMINO, this is challenging since intrusions
can take the form of attacks (which would be easy to sample)
and stealthy scans (rare events). Any sampling method used in
DOMINO would have to have the ability to expose both types of
events. We are investigating the feasibility of employing sam-
pling as a technique for data sharing.

A related issue that is important in DOMINO is the aging of
local data. The packet data accumulated in large tarpits could be
on the order of 100’s of Megabytes per day. Summaries, how-
ever, are meant to be light weight so simply purging data older
than a certain number of days might be a reasonable approach
in practice. However, care must be taken to ensure that peri-
odic patterns like monthly rise and fall of CodeRed are not lost.
At present, DOMINO maintains summaries at several granulari-
ties and uses weighted averaging to merge older summaries with
more timely data.

V. ALERT CLUSTERING

Once intrusion information has been gathered at an axis node,
the next step is to consider how to organize and refine the data
to create a coherent picture of malicious activities. Cuppens
describes a cooperative intrusion detection module or CRIM
as a means for combining alerts from different IDSs in [28].

UW TECHNICAL REPORT - 1471

Local alerls 1 Al

lert clustering Alg_l_t__(_:lmters

k

Alert database

} Alert correlation
firewall} IDS tarpit S
intention 3

reoognltlon J

Fig. 4, Cooperative Intrusion Detection Module

DOMINO adopts and extends this design. An important bene-
fit of a CRIM is in its potential to reduce false alarm rates. A
generic architecture (see [29]) for a CRIM is shown in Figure 4.
Local alerts from various NIDS (we are speaking generically
about alerts which could also be a rejected packet from a fire-
wall or an access measured by a tarpit) are sent and logged to
an alert database. The local alerts are the classified into clusters
by an alert clustering module. Once the alert clustering mod-
ule decides which cluster a local alert belongs to, it is merged
into a cluster. Information contained in a cluster of local alerts
is aggregated into a global alert. These global alerts are then
used by a correlation module to infer the intention of a mali-
cious adversary (e.g., that an adversary is planning to mount a
denial-of-service attack on a specific host).

A. Formalizing Alerts and Functions in a CRIM

In order to simplify our discussion, we will use a very simple
database schema - a flat tuple space - to describe various alerts
(see Table I)!.

Local alert database schema: The schema used by the alert
database is represented by Dy, 4. We assume that the alerts from
the local IDSs are all “normalized” to conform to this schema.
Cluster database schema: All the alerts in a cluster conform
to the cluster database schema D¢. Each cluster C is a database
with the schema D¢. Given a local alert a and a cluster C,
sim(a, C) is the similarity function that determines how “sim-
ilar” is the local alert a to the alerts in the cluster C. The sim-
ilarity function will be used for the purposes of clustering. For
examples of similarity function see [28], [12].

Clustering and merging: Assume that there are m clusters
of alerts Cy,Cy, - - -, Cp (each cluster C; is a database with
schema Dc¢). Assume that a local alert a arrives in the alert
database. Alert a is merged into cluster C; with the maxi-
mum similarity function sim(a, C;).2. The merging function
merge(a, C;) merges the local alert a into cluster C;. Since the
schemas D¢ and D¢ may not be the same, the merging func-
tion might have to transform the tuple corresponding to the local
alert before merging.

1We could have multiple database schema (for example, a schema for each
type of alert). However, such complexities are not germane to our discussion
since the model can always be enhanced.

2We assume that the domain of the similarity function is totally ordered, so
that one can compute the maximum of a set of elements.

Generating global alerts: The two functions associated
with this functionality are global alert trigger (denoted by
GAtrigger(C)) and the generate global alert (denoted by
G Agenerate(C)). The global alert trigger function is a boolean
function which evaluates to true if a global alert for that cluster
needs to be generate. For example, if cluster C' corresponds
to a port scan, then the trigger function will evaluate to true if
more than a certain number of ports on a specific host receive
packets from the same source address. The generate global alert
function creates a global alert corresponding to the cluster. The
global alert incorporates information from all the alerts in the
cluster and conforms to the schema Dg 4.

Alert correlation and intention recognition: The alert corre-
lation module associates global alerts and attempts to recognize
the intention of the adversary, e.g., a malicious adversary is plan-
ning a denial-of-service attack on a victim. We will not address
these two analysis in this paper. In our system, we plan to use
existing correlation analysis [25].

B. Adaptation of CRIM in DOMINO

There are many possible implementations of the compo-
nents of CRIM described above. DOMINO’s architecture does
not enforce the selection of any one choice over another. At
present, it is not clear which implementations of the sim(a, C),
merge(a,C;), and global alert generation functions provides
the most accurate and timely results. Investigations in these ar-
eas is future work.

In order to evaluate DOMINO’s performance in Section VII
we choose simple approaches for both clustering (sim(a, C))
and merging data (merge(a, C;)). For clustering, we consider
static (eg. port information) temporal (eg. scans occurring
within the same approximate time windows), and proximal (eg.
distance between IP addresses) constraints. Since we have full
packet data, merging is done by simple aggregation. Finally,
our selection of alert database schema was driven by the format
of the logs available for evaluation which is described in Sec-
tion VL

VI. INTRUSION TRACE DATA

We use a set of firewall/IDS logs of portscans collected over
a 4 month period from over 1600 firewall adminstrators dis-
tributed throughout the globe as the basis for our study. The
logs provide a condensed sumimary (smallest common denom-
inator) of portscan activity obtained from various firewall/IDS
platforms. Some of the platforms supported include Blacklce
Defender, CISCO PIX, ZoneAlarm, Linux IPchains, Portsen-
try and Snort. This approach significantly increases the cover-
age and reduces reliance on individual IDS’s interpretation of
events. Table I illustrates the format of a typical log entry. The
date and time fields are standardized to GMT and the provider
hash allows for aggregation of destination IP addresses that be-
long to the same administrative network.

Table III provides a high level summary of the data that
was used in this analysis®. The dataset was obtained from
DSHIELD.ORG - a research effort funded by SANS Institute as

3We also used DHSIELD data for port 1433 from January, 2003 for our SQL-
Sapphire analysis.

UW TECHNICAL REPORT - 1471

TABLE I
SAMPLE LOG ENTRIES FROM PORTSCAN LOGS
| Date Time Sub. Hash No: Scans Src IP SrcPort TargtIP Targt Port TCP Flags]
2002-03-19 18:35:18 provider2323 3 211.10.7.73 1227 10.3.23.12 21 S
2002-03-19 18:35:19 provider2323 16 211.10.7.73 1327 10.3.23.12 53 SF
2002-03-19 18:35:20 provider2323 1 211.10.7.73 1231 10.3.23.12 111 F
2002-03-19 18:35:21 provider2323 1 211.10.7.73 1331 10.3.23.12 22 SA
TABLE Il 005
MONTHLY SUMMARY OF STUDIED DSHIELD LOGS o T e
[Month | Number of Scans | Number of Dest IPs | § "
May. 2002 48 million 375,323 1 o N
June. 2002 61 million 382,224 . \\
July. 2002 68 million 402,050 A Nt e

part of its Internet Storm Center [45]. The goals of DSHIELD
include detection and analysis of new worms and vulnerabili-
ties, notification to ISPs of exploited systems, publishing black-
lists of worst offenders and feedback to submitters to improve
firewall configuration. The data is comprised of logs submit-
ted by a diverse set of networks and includes 5 Class B net-
works, over 45 Class C sized networks and a large number of
smaller subnetworks. The networks represented in this data set
are widely distributed both geographically and topologically in
autonomous system space. This provides a unique perspective
on global intrusion activity highlighted by DHSIELD’s contri-
bution in the detection and early analysis of CodeRed, Nimda
and SQL worm(s) outbreaks.

The simplicity and generality of DHSHIELD’s lowest com-
mon denominator approach makes our analysis of DOMINOs
potential straightforward. There are, however, some pitfalls that
need to be considered. The logs do not provide information
about packet headers, or what happens during active connec-
tions. There is also a certain degree of vulnerability to flooding
by malicious users and by misconfigured firewalls. For example,
local broadcast traffic and network games like Half-life can re-
sult in many false positives. These instances were filtered from
the dataset before analysis.

VII. RESULTS

In this section, we first provide background results that
demonstrate the utility of sharing intrusion information. In par-
ticular, we measure the amount of information that is gained
by adding additional measurement nodes. We next investigate
temporal attributes like the stability of blacklists, effectiveness
of blacklist in terms of blacklist size and IP proximity of at-
tack sources. We also explore how information sharing infras-
tructure would affect reaction times during a worm outbreak.
The aforementioned results are all based on data obtained from
DSHIELD [45]. Finally, we provide some preliminary results
obtained from our deployed tarpit.

A. Marginal Utility

We use an information theoretic approach to quantify the ad-
ditional information that is gained by adding additional nodes in

Fig. 5. Utility of additional subnets for detecting top target ports

a distributed intrusion detection framework. Our approach uti-
lizes the well known Kullback-Leibler distance metric for prob-
ability distributions to measure the information gain.

A framework for evaluating the marginal benefit of adding
additional measurement sites in the context of Internet topol-
ogy discovery has been presented in [46]. They present two
methodologies for quantifying the marginal benefit obtained by
incorporating results from an additional experiment: online and
offline marginal utility metric. The offline metric considers the
benefit of each experiment on an ex post facto basis, measuring
each experiment’s usefulness after all the experiments have been
conducted. In our study, each experiment corresponds to an ad-
ditional intrusion log submitted from a different network and we
choose the offline metric as we are not concerned with the order
in which the logs are submitted.

Assume that we have n intrusion logs S, - -+, S™. Each log
S defines a distribution P* over the source ports that originate
a scan, i.e., P*(s) is the probability that a scan originated from
port s given the intrusion log S¢. We rank the intrusion logs by
the entropy of the corresponding distribution, i.e., for i < j, P?
has higher entropy than P?. Intuitively, a probability distribu-
tion with higher entropy contributes “more” to the overall distri-
bution. Let P14 be the distribution when the information in
the logs S%,- -+, S* is combined and let P be the overall distri-
bution (when all the intrusion logs are combined). The marginal
utility of S¢ (denoted by U(S?)) is:

U(S) = dgo(Ph P)
B PlLi(s)
= Sptens (Spi)

In the equation given above, the sum ranges over all the source
ports that appear in the intrusion log.

We use this framework to measure the effectiveness of shar-
ing logs in identifying the worst offenders and the effectiveness
of identifying the most frequently scanned target ports. For each
day in the month of June, we randomly select 100 /24’s and 100
/16°s from the DSHIELD logs to determine the number of par-

UW TECHNICAL REPORT - 1471

s 11 6 Nt O S
~~~~~~~~ 24 Notworks

Nunber of Nodes

Fig. 6. Utility of additional subnets for detecting worst offenders

ticipating networks that are required to obtain a stable distribu-
tion.

Figure 5 depicts the diminishing marginal benefit of adding
additional network logs for developing port summaries. The
curves for /16 and /24 networks show a very similar trend with
the additional benefit declining to almost zero at 20 and 40 net-
works respectively. The message here is that there is some ben-
efit to having a bigger measurement networks, but clearly it is
more important to have measurements from multiple vantage
points.

The graph of the marginal benefit for developing worst of-
fender list (or blacklist) is given in Figure 6. The story is even
more pronounced in this graph; clearly size does not matter,
but more is better! Together the graphs imply that a collabo-
ration of 40-60 networks is able to develop port summaries and
blacklists with a high degree of confidence. It is also interesting
to note that the actual marginal utility values for worst offenders
is higher than that for port summaries. This suggests that it is
more important to add additional sites for developing blacklists
than it is for creating port summaries.

Summary: Marginal utility of information used to detect target
and source ports (for port scans) is very small after 40 nodes.
This suggests that with respect to identifying target ports and
the worst offenders for port scans, a DOMINO network with
approximately 40 axis nodes will suffice.

B. Blacklist Effectiveness

One of the crucial operational parameters for the DOMINO
overlay is the size of the blacklists that are exchanged between
the participants. The DOMINO axis nodes develop and ex-
change service specific blacklists at multiple granularities.

To study this, we generated a combined blacklist for all
the DSHIELD providers at three different granularities (daily,
weekly and monthly). Figure 7 illustrates the relationship be-
tween the blacklist length and its effectiveness in terms of the
percentage of all scans blocked.

The graph shows that at any given hour, around 90% of all
scanning activity can be attributed to about 1024 source IPs.
More surprisingly, a global hourly blacklist of 16 sources, ac-
count for more than 60% of all scans. Similar benefits can be
achieved by a stale (monthly) blacklist of around 250 sources.
Summary: Few sources are responsible for a large fraction of
all scans and many sources persist. Therefore, the size of the
blacklists in the DOMINO network does not have to be very
large.

®
80
-
-
g ™ . "
3
3 0 ’x ~ L, 4
a 80 “/ e
ﬁ “ /‘/ -~
° 2 ~ - O Dy Blachl
ﬁ ,/ x - e - wa a»:n“
20 o o v Monitiy Blnck et
i P e e e
-~ lo?/-‘ e I et e
ux—*-‘"“‘“'x AAAAA i
1 2 4 [ 16 32 &4 128 256 512 024
Length of Blacklist (§ IPs)
Fig. 7. Effectiveness of Blacklists with length
10000 —

s One Weak
s Qv Manth

10000

Average Rusber of Scens

f 16 2 26 3 38 4 4 S s 61 66 M 7 H 86 N N
Source Rank

~r
1 L]

Fig. 8. Effectiveness of Blacklists with Age

C. Blacklist Aging

Figure 8 provides another means to visualize the aging of
blacklists. We again create blacklist of the top 100 sources at
multiple granularities and graph the “average daily number of
scans” generated by each rank. For the higher ranks (top 10),
the hourly blacklists clearly deliver superior performance. How-
ever, for the lower ranks there are instances where the monthly
blacklist performs as well or better than the daily blacklist. This
validates the need for maintaining blacklists at multiple granu-
larities, and suggests that at lower granularities there is greater
benefit to creating longer blacklists.

D. IP Proximity

IP proximity is an important consideration in the organiza-
tion of the DOMINO topology. There are two conflicting is-
sues that must be resolved in the allocation of satellites to axis
nodes. First, to minimize false alarms and to effectively clus-
ter related scans and attack episodes, it would be beneficial to
organize nearby nodes (or networks) under the same hierarchy
(since scanning and attack tools are often designed to sequen-
tially traverse IP space). However, for every axis node to obtain
a composite view of the attack activity, it would be ideal to have
data from a diverse set of IP blocks. We would like to under-
stand the appropriate granularity of aggregation that maxirnizes
this tradeoff.

We randomly selected 100 /24 networks and measured the
similarity in their monthly blacklists for June 2002. We defined
the IP distance between two networks A.B.C and X.Y.Z as fol-
lows:

abs(A — X) % 256 x 256 + abs(B —Y) * 256 + abs(C ~ 7Z)

To express the similarity between blacklists of two networks,
we needed a metric that provides greater weight for a match




UW TECHNICAL REPORT - 1471

5000

wod 8§

* .

4000
B amo b Y
'E 3000 ‘ -
A 20 W e
k]
a 2000
2w

100¢

0

o 4 & Aot —tre-Be-
' © 100 100 10000 100000 1000000 10D000D  100DC000D
1P Distance

Fig. 9. Similarity of Blacklists with IP proximity

of higher rank. The asymmetric similarity of list By to By is
denoted by sim( By, Bz). The symmetric similarity between lists
By and B, (denoted by SymSimilar(By, B2)) is the average of
sim(By, By) and sim(Bo, B1). Formally, the similarity metrics
are defined as follows (I denotes the length of the lists By and
BQ)Z

sim(B1,B2) = Z [l — rank(si, Ba))
3;EB1NBy
sim(Bi, B2) + sim(Bg, By)

SymSimilar(B1, B2) =

2

Figure 9 shows the similarity between blacklists as a func-

tion of the IP distance between two networks. The figure clearly
shows that there is a high degree of similarity between the black-
lists of /24 networks that are close together (in the same /16) and
little similarity farther away.
Summary: Similarity of the two blacklists is positively corre-
lated with the IP distance between their respective networks.
This observation has several consequences in the context of
DOMINO. First, satellite nodes in the same /16 IP address
should be organized under a single axis node and that the set
of /16 address spaces should be randomly distributed among the
axis participants. Second, when an axis node generates its ver-
sion of global summary, simple aggregation would work just as
well as weighted merging.

E. Retrospective Analysis: SQL Snake

In this section, we perform a retrospective analysis on the
SQL-Snake Outbreak from May 2002. Unlike its precedents
(CodeRed and Nimda) SQL-Snake was a relatively slow spread-
ing worm, due to the small size of the susceptible population and
its mode of propagation (TCP). We wanted to measure how in-
formation sharing through a system like DOMINO would affect
reaction time and alarm rate during such an outbreak. We ran-
domly selected 100 /24 networks and trained them with the port
summary data of port 1433 (MS-SQL) for the first two weeks
of May. In particular, for each network we measured the hourly
average number of scans and the average number of sources.

Figure 10 shows the hourly scanning rate in terms of the num-
ber of scans and the number of distinct sources scanning port
1433 during the 48 hours surrounding the outbreak. We denote
the first visually apparent point of an outbreak (5/21, 00:00) as
the inflection point.

We simulated 100 random iterations of DOMINO networks
of axis nodes and in each iteration we measured the number of

O $ oG 0E
ot § Scrnz

1800 4
1600 -
1400
1200
1000 4
800 4
600
400 4
200

inflection point

Ho. Unique Sources

P vntes 44

0 990 $ P GRGTeky:
520(Q00 520(600) S20(R00) 520(B0Y) 521(000 S21(GMm S521(R00 521(]D)

160000
140000
120000
100000
80000
60000
40000
20000

No. Scens

Fig. 10. Scan Rate of 48 hrs surrounding SQL-Snake outbreak

Reection Tine

05

Reaction Time (Hours)

ol A A o

Number of Nodes

Fig. 11. Reduction in Reaction Time as we add more networks

outbreak alarms generated in networks of of size ranging from 1
to 100 nodes. We assumed that the DOMINO nodes exchanged
hourly summaries of scanning activity but did not have any trig-
gers that fired appropriate spontaneous alerts. In this experi-
ment, we used a voting scheme to generate an outbreak alarm,
i.e., an outbreak alarm is generated if atleast 20% of the nodes
to vote for an alarm. A node votes for an alarm if the following
holds:*

o 200% increase in number scans from hourly average, and

o 100% increase in the number of sources from hourly average,
and

« number of sources is greater than five.

The reaction time is defined as the elapsed time between the
inflection point and the first alarm after that point. Figure 11
shows the decrease in observed reaction time from an average
of more than an hour with a single node to almost zero as we add
sufficient axis nodes (approximately 50). Figure 12 displays the
average number of alarms, which decreases with topology size
and stabilizes at about 8. These alarms are not false alarms, but
correspond exactly to the 8 preceding hours before the inflec-
tion point that show a gradual increase in the source rates and
are points when the outbreak could have been predicted earlier
by DOMINO. The oscillatory behavior of the alarm rate is an
artifact of the rule that requires at least an integral 20% of the
participants to vote for an outbreak.

Summary: By adding sufficient nodes, outbreaks can be de-
tected early with minimal reaction time and no false alarms.

E. Retrospective Analysis: SQL-Sapphire

The SQL-Sapphire worm also known as SQL-Slammer was
released in January 2003, and wreaked significant havoc on the
networking infrastructures in under ten minutes. The worm dis-
tinguished itself from its predecessors by its small payload size

4We could have chosen a more complicated rule for generating alarms (for

example, one based on statistical anomaly detection). However, this simple rule
suffices to illustrate our point.



UW TECHNICAL REPORT - 1471

Aoms

P AAAA A A A e

Nuaber of Alarms

Nunber of Nodes

Fig. 12. Change in Alarm Rate as we add more networks

(single UDP packet of 404 bytes) that enabled a rapid propaga-
tion rate in spite of a small susceptible population (75000) [47].
The reality of such high speed worms [3] implies that distributed
architectures, such as DOMINO, might have the best opportu-
nity to detect and react to such worm outbreaks.

Figure 14 shows the exponential increase in the number of
scans and number of sources in the minutes following the out-
break. For such epidemics, alarms generated through hourly
axis summaries do not suffice. DOMINO’s mechanism to
deal with such scenarios are spontaneous alerts that are issued
through triggers.

Wherever possible, DOMINO nodes associate related pack-
ets with episodes, e.g., horizontal scan episode (sequential scan
of several machines in the same subnet aimed at the same tar-
get port), vertical scan episode (scan of multiple ports of sin-
gle IP to survey several vulnerabilities), and a coordinated scan
episode (distributed scan of a subnet through multiple sources).
For episodes on every port, DOMINO nodes maintain the aver-
age number of scans, the average number of attack sources and
the duration. A trigger for a spontaneous alert can be defined as
an episode that deviates from the average as follows:

« number of sources is > 3, and

» the number of scans is > 10 times the average, or

« the number of sources is > 10 times the average, or
o the duration is > 10 times the average.

We recognize the existence of an outbreak when at least 10%
(rule 1), 20% (rule2) or 30%(rule 3) of the participants gener-
ate a spontaneous alert in the last hour. We repeated the pre-
vious experiment with 100 random iterations. In each itera-
tion, we picked 100 random class-C subnets and used the data
from first 2 weeks of January to train the system. We measured
episode rates, simulated spontaneous alerts and then cataloged
the change reaction time as we add additional subnets under
each of the 3 rules. Figure 13 shows that by adding sufficient
nodes, the reaction time can be reduced to a few seconds. The
goal of DOMINO is not outbreak containment but rather out-
break recognition and insulation of maximal number of partici-
pants [33].

G. Preliminary Results: Tarpit

A Tarpit also known as a “sticky honeypot” resides over an
unused IP space and artificially simulates persistent TCP con-
nections.

5As in the previous subsection, we can use a more sophisticated rule to gen-
erate a spontaneous alert. However, a simple rule will suffice to illustrate our
point.

am Reaction Time (SQl-Saprhire) o e el
| s k2
- uked
)
{
& o
Hn.
0 . — S g AT
~ e = B K KR B A % ¥ B ARG H KRB 8 B R
Nunber of Subnas
Fig. 13. Reaction Time for SQL-Sapphire Outbreak
riny SAL Sapphire ((5-2HDB5 00 an-60am) o
&0
200 s
g o0t00e000P00ct 700 3
£ om0 6000 =
re a
£ wm a f
& ™o 0w 3
bl @
£ s et
0 o
BNEQEENZEEENRKRRNsEROUTLOHNLRS
mmmmmuiu—iuimmmmmm?y«mmmmmmmmmmmmmm
ime

Fig. 14. Scan rates on port 1434 surrounding SQL.-Sapphire Outbreak

Deployment: To assess the feasibility and scalability of a large
scale tarpit deployment, we bave been running an instantiation
of a tarpit on 3 class B networks over the last 4 weeks. The
number of IPs monitored were increased from around 500,00 to
100,000 during the measurement period. Figures 15 and 16
show the number of packets and flows per second respectively
that were inbound and outbound from the tarpit. The positive
flows/packets are outbound and the negative are inbound. As
might be expected, the number of inbound packets is higher than
outbound because the tarpit does not respond to the persistent
payload packets. The difference in the number of inbound and
outbound flows is an artifact of the way flows are accounted over
5 minute intervals. It should not be surprising that there are no
outbound UDP packets.

The number of inbound packets was typically between
2007300 packets or about 40-50 connection attempts per second.
The tarpit server running on a Pentium 4 Linux PC, had no prob-
lem coping with this traffic rate since no per-connection state is
maintained. The connection attempts spanned a wide variety of
ports and originated from hundreds of thousands of sources. A
typical summary of the top ports for a given week is shown in
Table IV. The ms-sql-s and ms-sql-m scans correspond to the
recent SQL-Sapphire worm and SQL-Snake respectively. The
HTTP probes are CodeRed/Nimda. The microsoft-ds scans, port
139, port 135 scans are from the Lioten worm [48]. These are
followed by scans for four different open proxy servers (often
used as a means obfuscate Internet activity).

An important application of the traffic captured by the tarpit
nodes is generating signatures for malicious payloads, e.g., pay-
load of a worm. Currently, NIDS use simple pattern matching
to identify malicious payloads. This method can lead to signif-
icant number of false positives because variations in malicious
payloads cannot be detected. We demonstrate how the traffic
captured by the tarpit nodes can be used to create a more “ro-
bust” signature for a malicious payload.




UW TECHNICAL REPORT - 1471

12

TABLE 1V
SAMPLE WEEKLY SUMMARY TOP PROBED SERVICES
| Service Port Protocol Flows Octets Packets |

ms-sql-s 1434 UDP 548838 388453676 1371925
microsoft-ds 445 TCP 541528 42580046 545867
ms-sql-m 1433 TCP 301428 115385725 997172
http 80 TCP 249569 66851055 728766
netbios-ss 139 TCP 99075 10894702 230539
AnalogX (Proxy Server) 6588 TCP 82707 8594185 134813
https 443 TCP 69025 7988260 158725
HyView Proxy 3128 TCP 27483 1146324 27970
http-alt 8080 TCP 27109 1109656 27374
Win NT/2000 RPC 135 TCP 6765 291224 7279

Tarpit 1/0, Packets by Protocol, one week (+outbound, -inbound)

1 1

phts/sec {squt/-iny

wed Thu Fri sat sun Mon

100.0%  (ainw0 aves24 mx=128) L2 tep 1n_pkts 03.5X (minwd ave«tdt mExwiS4)
0.0¢ (wine0 avemd max+0} O udp In pkes 146X (wine0 avemR2  MAx=44)

{mineD avew2d maxwtS) 8 total In_pkes (RineD ave=1?1 Aax=1034)

. [ tep out_pkts
0 udp out_pkrs
I # total out pkis

Fig. 15. Protocol Breakdown of tarpit flows Jan 28 - Feb 4

Tarpit 1/0, Flows by Protocol, one week (+outbound, ~inbound)

| = il i S

T tiowsssec Gouts-m

[ TR M T [ T TN A St Tt ST Ml e
: wed Thy Fri ) sat sun non
i B rep out_flows 100 0% (winw0 avew2d maxw34) £ tep in.flows £9.7% {winsD AVEsEE RAX2IE)

i [ udp out flows 00X (minsQ avewD WAX*0) L3 udp 1n.flows 281X (Wine0 aves2t  BAX%38)
£ total out flows (rined aves2d Bax=100) B total in_flovs {win=G ayesBt Bax=330)

Fig. 16. Protocol Breakdown of tarpit flows Jan 28 - Feb 4

Our first step is to cluster the payloads of the traffic observed
at the tarpit node. Intuitively, each cluster corresponds to mali-
cious payload. Next, we construct a classifier for each cluster.
These classifiers can then be used by a NIDS to identify mali-
cious payloads. We have only performed the clustering step. In
the future, we will investigate constructing classifiers and their
use in identifying malicious payloads. However, the results of
the clustering are encouraging.

We performed clustering on data collected between Jan 6,
2003 and Jan 28, 2003. First, we constructed a fingerprint for
each payload. A fingerprint for a payload is the distribution over
bytes between Ox1F and Ox7E. Each fingerprint also records the
number of bytes that were outside this range. These are the same
bytes that are used by Snort in displaying payloads. The distance
between two payloads is the Kullback-Leibler distance between
their fingerprints. Payloads were clustered using the k-means
algorithm and the sum of squared metric was used to determine
the optimal number of clusters.

Our results show that there are six distinct clusters (see Table
V). Figure 17 provides a cumulative distribution function of the
distance from the cluster centers. Clusters 1 and 3 are perfect
clusters (distance of zero). The clusters with port 80 (2 and 5)
and port 1433 seem to have little more variability. The port 8080

oo PPEETR YT TR 3
ia ’
4 ;.[; = o
F ol popem® O Eop e 4
~ 80
- -]
o 2 O
L] ~TF 5
¥ 2
g 20
i oogm

mmmmmmm

Fig. 17. Variability in the payload clusters

scans in cluster 2 and 5 seem to be CodeRed/Nimda variants.
The variability in these clusters can be attributed to two reasons:
each attack of CodeRed/Nimda and SQL Snake is a series of
similar packets that attempt to open a shell and execute a series
of commands. There are several variants of these worms (es-
pecially true of port 80) that try a slightly different search path
from the default for the presence of an exploit. Therefore, our
experiments demonstrate that clusters naturaily correspond to
classes of malicious payload, so classifiers generated from these
clusters should be successful in identifying malicious payloads.

TABLE V
CLUSTER SUMMARY
[ Cluster Port (No. Scans) |
clusterl 445 (1090338)
cluster2 80 (1315982), 3128 (10995), 8080 (24066)
cluster3 139 (160668), 443 (27377), 3128 (7181)
clusterd 135 (5791)
cluster5 23 (29108), 80 (2309958), 8080 (10770)
cluster6 1433 (2167842)

VIII. THREAT VULNERABILITY

As a widely deployed infrastructure, DOMINO itself must
be considered a target for attacks. To be effective, DOMINO
must be resilient to variety of attacks. While it’s design is ro-
bust, we have not attempted to remove all possible vulnerabili-
ties of DOMINO to attack. By virtue of the fact that it’s archi-
tecture enables heterogeneous client participation, it may well
be infeasible to address all possible vulnerabilities. We address
threats to DOMINO through a model that considers the most



UW TECHNICAL REPORT - 1471

likely forms of attacks that may be attempted. These include at-
tacks intent upon denying service in the infrastructure, attempts
to infiltrate the infrastructure, and attacks intent upon reducing
the effectiveness.

A. Denial of Service

Threat: An attempt to effectively remove node(s) through
DoS attack from systems outside of DOMINO.

Remedy: In the face of standard packet flood attacks, itis cer-
tainly possible that some set of DOMINO nodes could be effec-
tively removed from the infrastructure. In fact, it is a non-goal
of the infrastructure to protect nodes from Do§ attack. However,
the distributed, coordinated nature of the infrastructure makes it
robust to the removal of nodes through failures or attacks.

Threat: A compromised DOMINO node begins sending
large amounts of what appears to be legitimate data in an at-
tempt to mount a DoS attack on another axis node.

Remedy: An axis nodes can apply filters to incoming data
such that data sent by any node or set of nodes cannot exceed a
specified threshold. The configuration of filters will be depen-
dent both upon system resources and upon historical variability.
If multiple axis nodes have been compromised, then filtering
could cease to be effective.

B. Infiltration

Threat: An attempt to gain unauthorized access to an axis
node.

Remedy: DOMINO is not specifically concerned with indi-
vidual system security. We assume that standard best practices
for hardening networked systems to intrusions such as keeping
up with operating system patches, closing all unused services,
etc. will be employed. Furthermore, we expect that the vul-
nerability of DOMINO specific software such as buffer-overrun
exploits can be limited through best practices for software engi-
neering.

Threat: An attempt to masquerade as an axis node.

Remedy: As discussed in Section III-B an axis node can be
authenticated by other axis nodes. We assume that axis nodes
are intermittently forced to participate in a mutual authentication
protocol by other axis nodes. If an axis node NV fails the authen-
tication protocol initiated by a specific axis node, it broadcasts a
message to axis nodes in the DOMINO network informing them
that axis node N might be compromised.

C. Obfuscation

Threat: A compromised node sends data (perhaps large
amounts) that is supposed to be real in an attempt to obfuscate
some other activity.

Remedies: There are two remedies for this threat. First,
nodes attach SHA-1 digest with each block of data. The col-
lision resistant property of SHA-1 will make it very hard for the
adversary to tamper with the data sent by an axis node. The
second remedy stems from the distributed nature of DOMINO.
When results are forwarded between axis nodes, filters can be
applied during the data fusion process such that no single node
has the ability to skew results through simply increasing data
volume. Filtering within a node set below an axis node can
also be applied at the discretion of the axis node. The effect

will be the same as the axis level filter. For obfuscation attacks
not based on volume, the fusion process is designed to empha-
size the coordinated perspective which significantly reduces or
eliminates the effectiveness of this attack.

Threat: Attempts at stealthy and/or coordinated scanning.

Remedy: Perhaps the most important strength of DOMINO
is the enhanced perspective afforded through coordination of
multiple sites. This enhanced perspective can expose both
stealthy and coordinated scans at much finer granularity than
detection at a single site. However, if the adversary is willing
to sufficiently slow their scanning or employs sufficiently many
nodes in a coordinated fashion, they could still elude detection
in DOMINO. The issue is to include enough nodes in DOMINO
to make the threshold on stealthy or coordinated scanning high
enough to render this alternative infeasible.

Threat: An attempt to avoid tarpit nodes.

Remedy: The most basic function of tarpit nodes is to track
scanning activity on unused IPs. In this sense they will always
be useful even if some adversaries can isolate their use to spe-
cific networks or IPs within networks. The combined use of an
NIDS (on live IPs) and tarpit (unused IPs) will mean that all in-
trusion attempts have the possibility of being tracked. A simple
way to confuse tarpit identification is to employ probabilistic
responses. Namely, instead of responding to all SYN packets
in an IP block, only respond to some number of them. We be-
lieve that as long as attackers spoof source addresses and tarpit
nodes monitor significant fraction of the unused IP space, traffic
captured by the tarpit nodes will provide valuable insight into
network intrusions.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we describe and evaluate DOMINO: a cooper-
ative intrusion detection system. DOMINO is designed to en-
able intrusion information sharing in a globally distributed net-
work consisting of: 1) trusted axis nodes organized in a peer-to-
peer overlay, 2) satellite nodes associated with each axis node
that are hierarchically arranged, 3) terrestrial nodes not directly
connected to the infrastructure that provide daily intrusion sum-
maries. DOMINO’s design is based on heterogeneous data col-
lection through the use of NIDS, firewalls and tarpits (which
measure intrusion activity on unused IPs). This architecture en-
ables DOMINO to be secure, scalable, fault-tolerant, and facili-
tates data sharing.

Our evaluation of DOMINO is based on using data from two
sources. The first is a set of intrusion logs collected over a four
month period from over 1600 networks world wide. The second
is from a prototype tarpit implementation on a single network
which monitors over 100K IPs. Our evaluation clearly demon-
strates the utility of sharing information between multiple nodes
in a cooperative infrastructure. We use an information theoretic
approach to show that perspective on intrusions can be greatly
enhanced by cooperation of a relatively small number of nodes.
Using the 2002 and 2003 SQL worm outbreaks, we demonstrate
that false alarm rates can be significantly reduced in DOMINO
and that reaction time for outbreak detection can be similarly re-
duced. Finally, we provide an initial evaluation of the effective-
ness of tarpits in discriminating between types of attacks based
on examining payload data. Our results clearly demonstrate that




UW TECHNICAL REPORT - 1471

tarpits provide important insight in this regard. Based on these
analysis, we conclude that DOMINO offers a significant oppor-
tunity to improve intrusion and outbreak detection capability in
the Internet.

We intend to pursue future work in a number of directions.
First, we plan to expand the DOMINO infrastructure signifi-
cantly. This expansion will enable us to test and further de-
velop the DOMINO topology creation and maintenance proto-
cols. The expanded infrastructure will also enable case studies
of future intrusion and outbreak activity. Next we plan to investi-
gation alternative methods for information merging and sharing
with the goal of improving efficiency and precision. Finally, we
plan to develop tools for automating firewall rule generation.

ACKNOWLEDGEMENTS

The authors would like to thank Johannas Ullrich for provid-
ing access to the DShield logs. Thanks also go to David Plonka
for his great help in getting the DOMINO tarpit up and running.

REFERENCES

[1] D. Moore, C. Shannon, and K. Claffy, “Code red: A case study on the
spread and victims of an internet worm,” in Proceedings of ACM SIG-
COMM Internet Measurement Workshop, November 2002,

[2] IDG, “Study: Code red costs top $2 billion,” http://www.thestandard.com,
August 2001.

[3] Stuart Staniford, Vern Paxson, and Nicholas Weaver, “How to Own the
Internet in Your Spare Time,” in Proceedings of the 11 th USENIX Security
Symposium, 2002.

[4] CERT Coordination Center, ,” http : //www.cert.org, 2001,

[5] = Stefan Savage and David Wetherall et al, “Practical Network Support for
1P Tracback,” in Proceedings of ACM SIGCOMM 2000, 2000.

[6] R.Mahajan, S. Bellovin, S. Fioyd, J. Ioannidis, V. Paxson, and S. Shenker,
“Controlling high bandwidth aggregates in the network,” in Computer
Communications Review V32, N3, July 2002.

[71 S.Bellovin and W, Cheswick, “Network firewalls,” JEEE Communications
Magazine, September 1994,

[8] B. Mukherjee, L. Todd Heberlein, and K.N. Levit, “Network intrusion
detection,” IEEE Network, May/June 1994,

[9] Marty Roesch, “The SNORT Network Intrusion Detection Systern,”
hup://www.snort.org, 2002.

[10] Vemn Paxson, “BRO: A System for Detecting Network Intruders in Real
Time,” in Proceedings of the 7th USENIX Security Symposium, 1998.

[11] W. Leland, M. Tagqu, W. Willinger, and D. Wilson, “On the self-similar
nature of Ethernet traffic (extended version),” /IEEE/ACM Transactions on
Networking, pp. 2:1-15, 1994.

[12] Alfonso Valdes and Keith Skinner, “Probabilistic alert correlation,” in Pro-
ceedings of Recent Advances in Intrusion Detection (RAID 2001), 2001,
pp. 54-68.

{13] V. Paxon, “Bro: A system for detecting network intruders in real-time,” in
Proceedings of the 7-th USENIX Security Symposium, San Antonio, Texas,
1998.

[14] M. Roesch, “Snort- lightweight intrusion detection for networks,” in Pro-
ceedings of the 1999 USENIX LISA conference, November 1999.

(15] T. Lunt, A, Tamaru, E. Githam, R. Jagannathan, P. Neumann, H. Javitz,
A. Valdes, and T. garvey, “A real-time intrusion detection expert sys-
tem (IDES)-final technical report,” Tech. Rep. Technical report, Computer
Science Laboratory, SRI international, Menlo Park, California, February
1992,

[16] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” in [EEE Symposium on Security
and Privacy, 1999, pp. 133-145.

{171 S. Staniford, J. Hoagland, and J. McAlemney, “Practical automated detec-
tion of stealthy portscans,” in Proceedings of the ACM CCS IDS Workshop,
November 2000.

[18] R. Anderson and A. Khattak, ““The use of information retrieval techniques
for intrusion detection,” in Proceedings of First International Workshop
on the Recent Advances in Intrusion Detection (RAID), September 1998,

{19] W.Lee, S.J. Stolfo, and K. W. Mok, “A data mining framework for building
intrusion detection models,” in IEEE Symposium on Security and Privacy,
1999.

[20]

(21}

[22]

(23]

[24]
[25]

[26]

[27]

[28]

[29]

(303

31]

[32]

[33]

[34]

[35]

[36]

373

{38]

[39]
[40]

{41]

[42]

[43]
{44]

[45]
[46]

{47

H.S. Teng, K. Chen, and S. C-Y Lu, “Adaptive real-time anomaly detec-
tion using inductively generated sequential patterns,” in JEEE Symposium
on Security and Privacy, 1999, pp. 278-284.

S. Northcutt, Nerwork Intrusion Detection: An Analyst’s Handbook, New
Riders, 1999.

J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner,
“State of the practice of intrusion detection technologies,” Tech. Rep.
CMU/SEI-99-TR-028, Software Engineering Institute, Camnegie Mellon,
January 2000,

K. Iigun, R.A. Kemmerer, and P.A. Porras, “State transition analysis: A
rule-based intrusion detection approach,” IEEE Transactions on Software
Engineering, vol. 21, no. 3, pp. 181-199, March 1995.

“Labrea homepage,” http://www.hackbusters.net, 2003.

Frederic Cuppens and Alexandre Miege, “Alert correlation in a coopera-
tive intrusion detection framework,” in Proceedings of IEEE Symposium
on Security and Privacy (Oakland 2002), 2002, pp. 202-215.

R. Janakiraman, M. Waldvogel, and Q. Zhang, “Indra: A peer-to-peer
approach to network intrusion detection and prevention,” 2003.

J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, Eugene H.
Spafford, and Diego Zamboni, “An architecture for intrusion detection us-
ing autonomous agents,” in I4th Annual Computer Security Applications
Conference (ACSAC’98), December 7-11 1998, pp. 13-24.

Frederic Cuppens and Rodolphe Ortalo, “Lambda: A language to model
a database for detection of attacks,” in Proceedings of Recent Advances in
Intrusion Detection (RAID 2000), 2000, pp. 197-216.

Frederic Cuppens, “Managing alerts in a multi-intrusion detection envi-
ronment,” in Proceedings of the 17-th Annual Computer Security Applica-
tions Conference (ACSAC), 2001.

LR. Goodman, R.P.S. Mahler, and H.T. Nguyen, Mathematics of data
fusion, Kluwer Academic Publishers Group, Dordrecht, 1997.
Christopher Krugel, Thomas Toth, and Clemens Kerer, “Decentralized
event correlation for intrusion detection,” in Proceedings of Information
Security and Cryptology - ICISC 2001, Seoul, Korea, December 6-7 2001,
pp. 114-131.

D. Moore, G. Voelker, and S. Savage, “Inferring internet denial of ser-
vice activity,” in Proceedings of the 2001 USENIX Security Symposium,
Washington D.C., August 2001.

D. Moore, C. Shannon, G. Voelker, and S. Savage, “Internet quarantine:
Requirements for containing self-propagating code,” in Proceedings of
IEEE INFOCOM (To Appear), April 2003.

V. Yegneswaran, P. Barford, and J. Ullrich, “Internet intrusions: Global
characteristics and prevalence,” in Proceedings of ACM SIGMETRICS (To
Appear), June 2003.

D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proceedings of 18th SOSP, Lake Louise, Alberta,
October 2001.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications,” in Pro-
ceedings of ACM SIGCOMM °01, San Diego, CA, August 2001.

P. Druschel and A. Rowstron, “Storage management and caching in PAST,
a large-scale, persistent peer-to-peer storage utility,” in Proceedings of
ACM SOSP '01, Lake Louise, Alberta, October 2001,

B. Zhao, A. Joseph, and J. Kubiatowicz, “Tapestry: An infrastructure for
fault-tolerant wide-area location and routing,” Tech. Rep., Univeristy of
California, Berkeley, Computer Science Department, April 2001.
Intrustion Detection Working Group, J
http://www.ietf.org/html.charters/idwg-charter.html, 2003.

R.L. Rivest, A. Shamir, and L.M. Adelman, “A method for obtaining
digital signatures and public-key cryptosystems,” Coommunications of
the ACM, vol. 21, pp. 120-126, 1978.

P. Rohtagi, “A compact and fast hybrid signature scheme for multicast
packet,” in Proceedings of the 6th ACM Conference on Computer and
Communications Security (CCS), 1999, pp. 93-100.

A. Perrig, “The biba one-time signature and broadcast authentication pro-
tocol,” in Proceedings of the 8th ACM Conference on Computer and Com-
munications Security (CCS), November 5-8 2001.

N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, pp. 203-209, 1987.

R.M. Needham and M.D. Schroeder, *“Using encryption for authentication
in large networks of computers,” Communications of the ACM, vol. 21,
pp- 993-999, 1978.

Johannes Ullrich, “DSHIELD,” http : //www.dshield.org, 2000.

P. Barford A. Bestavros, J. Byers, and M. Crovella, “On the marginal
utility of network topology measurements,” in Proceedings of ACM SIG-
COMM Internet Measurement Workshop, San Francisco, CA, November
2001.

David Moore, Vern Paxson, Stefan Savage, Collen Shan-
non, Stuart Staniford, and Nicholas Weaver, “The



UW TECHNICAL REPORT - 1471

Spread  of  the  Sapphire/Slammer Worm,” http :
//www.caida.org/outreach/papers /2003 /sapphire/sapphire.html,
2003.

[48] CERT, “Cert Incident Note IN-2002-06,"  hitp
//www.cert.org/incidentnote /IN — 2002 — 06.html, 2002.

15




