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Abstract

We advocate that the OS community should stop all file
systems research, because file systems are fundamen-
tally the wrong place in the storage hierarchy to innovate.
Three factors combine to limit the impact of file systems
research: the constraints of legacy, the diversity of im-
plementations, and a lack of information about storage-
system internals. We instead suggest that researchers fo-
cus their innovations on storage systems, namely within
disk or RAID subsystems. To enable a full range of func-
tionality within the storage system, we posit that the disk
system must be “semantically smart”; that is, it must un-
derstand the on-disk structures and recognize the on-line
operations of the file system above. We discuss the con-
cepts underlying semantically-smart disk systems, present
a taxonomy of the different axes of semantic knowledge,
and discuss the important remaining research challenges.

1 Background

File systems have long been a topic of study within the
realm of systems research. Perhaps the modern era of file
systems research began with the introduction of the UNIX
operating system [22], an operating system that is cen-
tered around the concept of a file and a hierarchical nam-
ing system [4]. Soon after its introduction, researchers
realized that a serious contribution could be made to the
field by replacing the standard UNIX file system with a
new and improved one. An early example of such inno-
vation is the Berkeley Fast File System (FFS) [18]; later,
more sweeping changes were proposed [23, 29].

For a more quantitative study of the history of file sys-
tems research, consider publications in popular systems
conferences such as the Symposium on Operating Sys-
tems Principles (SOSP), Operating Systems Design and
Implementation (OSDI), and the USENIX Technical Con-
ferences. Figure 1 presents the percentage of file systems
papers published in each of those conferences since their
inception. From the figure, we can observe that there has
been a steady stream of file systems research. SOSP typi-
cally has one to two tracks devoted to the topic, peaking in
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Figure 1: File Systems Research. The figure presents the per-
cent of all papers published in SOSP, USENIX, and OSDI, that
were “file systems” papers. We define a file systems paper as one
that is primarily concerned with the design, implementation, or
measurement of some aspect of a file system. Note that until
1994, USENIX ran two conferences per year, the Summer and
Winter conferences; in 1995, these were merged into the single
Annual Technical Conference.

1991, when almost half of the accepted papers were about
file systems; USENIX and OSDI follow similar trends.
Although the fever pitch surrounding file systems seems
to have slowed, we can still expect a reasonable number
of publications on the topic.

2 The Pending File Systems Crisis:
Lots of Research, Little to Show

Unfortunately, while research in file systems has prolif-
erated, the transfer of this wealth of research ideas into
the commercial world has been quite limited. As a sim-
ple example, let us examine the evolution of UNIX file
systems. Introduced originally in the early 1970’s [22],
the UNIX file system received a substantial change in the
early 1980’s due to the work on the Fast File System at
Berkeley [18]. The major innovation put into place was




the cylinder group, which allowed the file system to take
locality into account during layout decisions. Many mod-
ern UNIX file systems still utilize the same on-disk struc-
tures as FFS, now nearly twenty years old. For example,
the Linux ext2 file system [32], the many BSD FFS vari-
ants [6], Solaris UFS [21], and HP-UX HFS [14] all have
the same basic organization as FFS.

Another advance in file systems has come in the form of
journaling; many modern file systems support write-ahead
logging in order to reduce crash recovery time. However,
even this advance points back fifteen years, specifically to
Hagmann’s work on Cedar [13].

Why are file systems so slow to change? Three funda-
mental reasons combine to limit the deployment of new
ideas within file systems. First, file systems suffer from a
legacy effect. Once data is stored in a particular on-disk

“format, migrating to a new (and perhaps improved) or-
ganization is problematic; all older file system data must
be transformed into the newer format, or the file-system
code must explicitly account for multiple data formats.
Hence, as new innovations are developed, they must be
retrofitted into the existing on-disk structures [6]. Those
file systems that require more radical restructuring may
find mainstream acceptance more difficult [23].

Second, there is the problem of file system diversity.
As there are many extant file systems, a new idea that is
implemented within one file system leaves all other file
systems unchanged; to have widespread impact, the idea
must be adopted and supported by many diverse interests.
Such a transfer of ideas may even be challenging among
systems that support similar internal file-system inter-
faces, such as the the ubiquitous vnode/VFS layer [24].

Third, file systems have a limited understanding of the
internals of the storage system. Built upon standardized
interfaces such as SCSI or IDE, file systems typically do
not understand the low-level details of the storage system.
A block-based interface such as SCSI abstracts many of
the details of storage management from the client, thus
inhibiting many opportunities for improvements in func-
tionality and performance [15, 30]. Although there is
some desire to evolve the interface between file systems
and storage [10], the reality is that current interfaces will
likely survive much longer than anticipated. As Bill Joy
once said, “systems may come and go, but protocols live
forever.”

Thus, file systems technology is fundamentally diffi-
cult to transfer to the “real world”, due to the constraints
of legacy, the diversity of implementations, and the inher-
ent lack of storage information available at the file-system
level. By its very nature, file systems research is likely
to have little impact. We conclude that the community
should immediately stop all file systems research.

3 A Caveat

In fairness, not all of the file systems research has been on
local file systems, i.e., file systems that sit on top of a disk
or RAID within a single machine. Indeed, much of the lit-
erature concentrates upon distributed file systems, such as
the classic USENIX paper on NFS [26]. Approximately
half of the papers shown in Figure 1 focus on the topic of
distributed file systems.

Work on distributed file systems continues today in the
form of peer-to-peer systems, such as Ivy [19], FAR-
SITE [1], and PAST [25]. In this paper, we take the po-
sition that research on local file systems should stop. In
contrast, we believe that distributed file systems research
should continue, due to the ever-increasing presence and
importance of remote and possibly mobile data access.

4 A Solution: Storage Systems

Let us assume we all agree: stop all file systems re-
search. However, as the data demands of applications in-
crease, and both users and companies increasingly rely
upon prompt and reliable access to their data, data man-
agement is clearly an area that should not be ignored. New
problems are on the horizon as well, as users demand
low-cost, reliable, available, and even easy-to-manage “no
futz” systems [27].

How can researchers address these important chal-
lenges while avoiding the pitfalls of file systems research?
By innovating at a lower-level in the storage hierarchy,
within a disk array [20] or perhaps even within the disk
itself [8, 31]. We will refer to this layer in this hierarchy
as the “storage system”.

Innovation within the storage system avoids many of
the problems found within the file system. First, there
is no legacy effect; new storage systems are plugged in
and can be used immediately. Second, there is no worry
of diversity; RAIDs can be deployed easily underneath all
file systems that are built upon a standard abstraction such
as SCSI [34]. Third, within a disk or a RAID, one has
access to all of the low-level details of the storage system,
enabling many optimizations that would be difficult if not
impossible to implement within the file system proper.

Storage systems also offer a number of other advan-
tages over file systems. For example, modern RAID sys-
tems from companies such as EMC consist of large num-
bers of processors and copious amounts of memory, e.g.,
the top of the line EMC Symmetrix consists of up to 80
processors and 64 GB of memory [7]. Such a RAID sys-
tem has the hardware resources to implement many dif-
ferent and interesting optimizations. Perhaps more im-
portantly, industry prefers to sell hardware over software;
sometimes referred to as the “metal box/cardboard box”



issue, many companies have found that it is simpler to
sell a hardware product than it is to sell packaged soft-
ware [12]. As some evidence of this, consider the success
of storage products from companies such as Network Ap-
pliance and EMC, and contrast this to the relative dearth
of file systems one can purchase. Even Google prefers to
market a Google Search Appliance instead of packaging
their software for general use [11].

Not surprisingly, researchers have not solely focused
upon file systems; they also have invested a large amount
of effort into building smarter disks and RAIDs {3, 8, 17,
28,33, 34, 36]. This sampling of references only scratches
the surface of storage-systems research — as a crude but
indicative measure, a citation search for “RAID” on Cite-
Seer [2] returns 1670 entries.

5 And Now The Bad News:
Limited Innovation

Given the wealth of storage-systems research, one must
wonder why we should be concerned; even if file systems
research continues, surely the researchers in storage sys-
tems will tackle the difficult problems that arise and solve
them. However, in performing research in the context of
storage systems, a new problem arises: only a small set of
limited innovations are realizable.

In a traditional system, the file system is the entity that
has all high-level knowledge. The file system implements
basic abstractions such as files, directories, and a hierar-
chical namespace. It also manages data layout, using on-
disk structures such as bitmaps and superblocks to track
file-system state. The file system also typically imple-
ments some form of consistency management, likely in
the form of journaling, to safely move the disk from one
consistent state to the next as files are created and deleted.

The storage system, in contrast, has very little knowl-
edge, due to the narrow interface between file systems and
storage [5, 9]. All that is seen at this lower level in the hi-
erarchy is a series of block read and block write requests;
no meaning is attached to each operation.

Unfortunately, this lack of “semantic” knowledge
starkly limits the types of innovations that can be imple-
mented within the storage system. Not surprisingly, all
previous research has thus been limited to optimizations
that are oblivious to the nature and meaning of file system
traffic. Without semantic knowledge, the scope of new
functionality that can be implemented within the storage
system is severely curtailed.

6 A Better Solution:
Semantically-Smart Disks

To enable a wider range of “file-system like” innova-
tions within storage systems, while retaining the same
narrow interface between file systems and storage, we
advocate research in the area of semantically-smart disk
systems. A semantically-smart disk system (SDS) has
detailed knowledge of how it is used by the file system
above, including an understanding of the on-disk struc-
tures and the on-line behavior of the file system. The SDS
can then exploit this knowledge to improve performance,
enhance functionality, or even to increase reliability.

With semantic knowledge, storage system researchers
are free to innovate in a “best of both worlds” environ-
ment, for the following reasons. The systems they de-
velop have access to high-level semantic knowledge typ-
ically isolated within the file system. In addition, these
systems can exploit the raw computing and memory re-
sources and low-level information that is often available
within a modern storage system.

Our early experience with semantically-smart disks is
described in [30]. Therein, we present a tool, EOF, that
assists the SDS in obtaining file system on-disk layout in-
formation, and discuss the challenges in inferring the on-
line behavior of the file system.

We also present four case studies to demonstrate the
potential of semantically-smart disks, including on-disk
caching schemes that utilize file system knowledge to per-
form better second-level caching, track-aligned file place-
ment, secure-deletion of files via repeated over-write, and
journaling within the disk itself. Each study demonstrates
that “file-system like” optimizations can be developed
within the disk system.

However, many general and important questions are left
unanswered. How much knowledge is required to imple-
ment various types of functionality? Can the information
that the SDS has be wrong (occasionally), or must it be
perfect? How should the system as a whole be designed to
enable more effective implementations? To answer these
questions, we need to better understand the different de-
grees of freedom an SDS designer has.

7 Axes of Semantic Knowledge

We now present a taxonomy of semantic knowledge. Such
a taxonomy should be of use in the design of a semantic-
disk system, in deciding what types of semantic informa-
tion are required, given the particular functionality that a
researcher or company wishes to implement.

Similar in spirit to the different levels of RAID sys-
tems [20], we will use the taxonomy to distinguish differ-
ent types of semantically-smart systems that could be de-




veloped. However, instead of a linear ordering, we believe
that there are three main axes which must be considered:
extent of knowledge, certainty of knowledge, and the level
of expected assistance from the file system above.

7.1 Extent of knowledge

The first axis is the extent of file system knowledge
present within the semantically-smart disk. At one ex-
treme, the disk has no file system knowledge, which is
the situation in most traditional systems. At the other ex-
treme, the disk has full knowledge about file system struc-
tures and behavior.

Of course, there are many interesting knowledge-levels
between the two extremes. For example, a system that
needs free space on disk in order to store additional data
may only need to understand file system bitmaps. A com-
pany developing a disk that performs intelligent file-based
prefetching might only require knowledge of inodes and
their pointers in their product. Finally, a more sophisti-
cated semantically-smart disk would know about the cur-
rent state of the file system cache, to implement a more
effective exclusive second-level caching scheme [35].

7.2 Certainty of knowledge

Orthogonal to the extent of the knowledge is the
semantically-smart disk’s certainty of the knowledge that
it possesses. At one end of the spectrum, the disk does not
trust any file system knowledge it has; this might occur
before the disk has configured itself for the first time. At
the other end of the spectrum, the disk is absolutely cer-
tain of its knowledge, i.e., it can prove to itself that what
it thinks is true is indeed true. Achieving this extreme cer-
tainty will likely require a careful verification procedure.

Along this continuum, the points between the extremes
all bear some similarity, in that they represent partial cer-
tainty. If the knowledge turns out to be wrong (i.e., it
is a “hint” [16]), correctness should not be endangered,
aithough performance might suffer. For example, a disk
could assume that certain blocks are indirect blocks and
upon access, decide to prefetch the blocks to which the
pointers within the indirect block point. If the disk is in-
correct about the type of the indirect block (e.g., it is a
data block), all that is wasted is disk bandwidth. This
type of optimization might be particularly well-suited in
a FireWire disk product, as the internal bandwidth of
modern drives currently outstrips the maximum FireWire
transfer speeds of roughly 80 MB/s.

Certainty may also have a time-variant aspect. For ex-
ample, when a data block is written out, the disk may not
be able to infer whether it is a file data, directory, or indi-
rect block. However, when its inode is written to disk, the
disk will then be able to draw the proper conclusion.

7.3 Assistance from above

Finally, we can categorize a semantically-smart disk sys-
tem by the level of assistance it expects or requires from
the file system above. The completely independent SDS
needs nothing from the file system beyond its normal be-
havior. The completely dependent SDS relies solely on
the file system for all of its information.

There are many points in between the two extremes.
For example, file systems such as the original FFS imme-
diately reflect all meta-data operations through to the stor-
age systemn; this type of information can be useful within
an SDS, as meta-data updates are indicative of higher-
level file system activity [30]. Some modern file systems
can behave in this manner without modification, e.g., by
mounting Linux ext2 in synchronous mode. More assis-
tance could be given as well; for example, the file system
could pass explicit information to the disk about different
types of file-system level knowledge. Of course, for this
to be realized, an explicit communication channel must
be established between the file system and the disk, likely
in the form of a log file in which the file system records
information it wishes the disk to observe.

Note that the type of information passed from the file
system from above can be either static or dynamic. For
example, the file system could inform the disk about the
structure of an inode (i.e., static). The file system could
also inform the SDS upon every data block write whether
the data block was a file data, directory, or indirect block
(i.e., dynamic).

8 Discussion

With a taxonomy in place, we can apply it in order to
better understand previous work, and to point us towards
the remaining research challenges. We consider our initial
work on semantically-smart disk systems [30].

We make the following observations in the context of
the taxonomy. First, all of the case studies generally re-
quire a great deal of knowledge about file system struc-
tures and behaviors. In the extreme case, the journaling
semantically-smart disk must be able to understand all on-
disk structures, including many fields of the inodes, and
observe high-level operations such as file creations and
deletions. Second, most of the case studies require infor-
mation to be correct, and there is little understanding of
what happens if information about the file system is in-
correct. One small exception to this arises in the caching
study, which can tolerate a late classification of an indirect
block. Finally, our previous work assumes that file sys-
tems provided little or no assistance to the disk, although
both the secure-deleting and journaling disks required a
synchronous mount of ext2.



When placed into the taxonomy, future research ques-
tions come into clear focus. How can we minimize the
amount of information required by a particular SDS? How
sensitive is a particular SDS to the correctness of its infor-
mation? What kinds of functionality require what kinds
of knowledge, both in terms of the amount of knowledge
as well as its certainty? Finally, perhaps as the exception
that proves the rule, how much more effective can an SDS
become given assistance from the file system?

9 Conclusions

Stop all file systems research — but continue research in
storage, in the context of semantically-smart disk sys-
tems. A semantically-smart disk represents a “best of both
worlds” environment; by developing functionality within
storage system, researchers can avoid the problems that
plague the dissemination of file systems research while
opening up new avenues for their innovations.
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