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Abstract

Although information about the internals of the operat-
ing system is useful to applications, such information is
rarely exposed. In this paper, we argue that all informa-
tion about the internal state, algorithms, and costs of the
OS should be exported. We term an OS that exports this
information an infokernel. We show that access to infor-
mation is useful so that applications can both adapt to and
control the behavior of the OS. Given that it is relatively
easy to modify existing systems to expose information, we
believe this is a practical way to obtain many of the bene-
fits of more radical extensible systems.

1 Introduction

“As a general rule, the most successful man in
life is the man who has the best information.”
Benjamin Disraeli (1804-1881)

It is well-known that access to accurate, timely infor-
mation is the key to making intelligent decisions. So-
phisticated applications and middleware components that
want to tune themselves to the underlying OS for the best
performance require information about the current state
of the OS, the algorithms the OS employs, and the cost of
various operations. Despite this value, operating systems
have traditionally hidden much of their information, ad-
hering to the principles of encapsulation and modularity;
after all, even Lampson encourages developers to “keep
secrets of the implementation” [11].

We argue that the functionality of the entire system can
be significantly expanded by having the OS expose more
information; specifically, applications are able to adapt
their behavior to the OS as well as control the OS in new
ways. We name an OS that has been modified to expose
all possible internal information an infokernel. With an
infokernel, functionality that previously required changes
to the OS can now often be placed outside of the OS. This
functionality can be located either directly in an applica-
tion or in a library acting on behalf of applications.

The infokernel approach is in direct contrast to other
research in extensible systerns that has advocated a com-
plete restructuring of the OS [3,7, 9, 16]. Although these

systemns will allow more flexibility than an infokernel, this
extra functionality comes at a high cost: discarding the
hundreds of millions of dollars and thousands of devel-
oper years spent on commodity operating systems [22].
We believe that within modern OS research, an evolution-
ary approach is essential. Introducing a radically new op-
erating system that will be accepted by users and ported to
the wide range of hardware systems is not a realistic goal.
Therefore, we advocate a design in which any existing OS
can be transformed into an infokernel.

In this paper, we begin by addressing the pri-
mary issues, advantages, and challenges to building an
infokernel. We then discuss two case studies where ap-
plications can control an OS that has been converted to an
infokernel; specifically, applications can control the lay-
out of their files on disk and can modify the page replace-
ment algorithm. Finally, we compare infokernel to three
related philosophies: exokernel [7, 9], open implementa-
tion {10}, and gray-box systems [2].

2 Infokernel Issues

“It is a very sad thing that nowadays there is 50
little useless information.” Oscar Wilde (1854 -
1900)

In this section, we discuss four questions related to
exposing information from an operating system. ‘What
types of information exist in the OS? Why is this infor-
mation useful to applications? What are the goals of an
infokernel? How can an infokernel be implemented?

2.1 What information exists in the OS?

From the perspective of an application, the operating sys-
tem has a number of pieces of useful information. We
believe that this information can be grouped into three cat-
egories: internal state, algorithms, and costs. Within each
category, the information may be either static or dynamic.
We define each of these as follows.

Internal state: any variables that are internal to a tra-
ditional OS. Static variables are configurable, but rarely
change (e.g., only when new hardware is installed, the ma-
chine is rebooted, or when an administrator interacts with




the system); examples include the length of a time slice
for a given priority, the interval at which dirty file blocks
are flushed to disk, or the maximum number of file de-
scriptors. Dynamic variables can change at any time; ex-
amples include the current priority of each runnable pro-
cess, the value of each page reference bit, and the number
of messages waiting to be sent over the network.
Algorithm: the code that is executed by the OS. The
algorithms of the OS will be of interest at different levels
of detail to different applications. For example, two differ-
ent applications may be interested in the allocation policy
of the file system; however, one application may simply
want to know whether or not extent-based allocation is
performed, whereas the other application must know pre-
cisely how each block of a new file will be allocated on
disk. One can view the algorithm statically or dynami-

cally as well; the static description is the general behavior *

of the code, whereas the dynamic description captures the
instructions or events that are currently executing.

Cost: the overhead (e.g., time, space, or power) of per-
forming a given operation within the OS at a given time.
A static cost is relatively constant within the given system
(e.g., what is the cost of switching between threads ver-
sus processes?), whereas a dynamic cost is circumstantial,
depending upon the current internal state of the OS (e.g.,
what is the cost of reading a particular byte of a file, given
the state of the buffer cache and the position of the disk
head?).

2.2 Why is OS information useful?

There are two primary reasons why applications find in-
formation about the OS useful: applications can adapt
their behavior to that of the OS and applications can con-
trol the behavior of the OS. We discuss these two uses in
more detail.

2.2.1 Adaptation

To improve their performance, sophisticated applications
can adapt their behavior to each category of information
provided by the OS. The basic idea is that with more
information, an application knows which operations are
the most efficient to perform at any given time. De-
pending upon the type of information used, the granular-
ity of adaptation can differ significantly. At the coarsest
level of adaptation, a different version of the application
can simply be instantiated on different systems; this usu-
ally occurs when reacting to static information. At the
finest level of adaptation, a different decision is constantly
made; this is usually a reaction to dynamic information.
To illustrate how applications adapt to OS information,
we consider examples ranging from coarse to fine adapta-
tion. First, a greedy, CPU-bound process that knows the

scheduler gives priority to interactive processes (i.e., static
algorithmic knowledge), can periodically print a character
to boost its priority. At a slightly finer level of adaptation,
a memory-intensive application that knows the amount of
physical memory currently available (i.e., dynamic state),
can process its data in multiple passes [23], appropriately
limiting its working set to avoid thrashing. Alternatively,
a process that knows the amount of time remaining in its
time slice (i.e., dynamic state), may decide not to acquire
a contentious lock if it expects to be preempted before
finishing its critical section. Finally, a web server can im-
prove its average response time by reordering how it han-
dles its requests; specifically, it can service those requests
which are expected to complete the fastest (i.e., dynamic
cost) [6].

2.2.2 Control

More surprisingly, applications can also use information
to control the future state of the OS or to change the poli-
cies seen by the end user. The basic idea is that, given
knowledge of how the OS behaves, the application can
probe the OS, or change its normal inputs, so that the OS
reacts in a certain, controlled manner.

We illustrate by using examples of where applications
loosely control OS prefetching and the TCP congestion
control. First, consider an application that knows the file
system performs prefetching after observing a sequential
access pattern; if the application knows that it will not ac-
cess these blocks, then it can squelch the prefetching by
issuing an intervening read to a random block. Second,
with knowledge of the congestion control algorithm and
access to internal state such as the window size and ob-
served round-trip time, an application may implement a
less aggressive sending algorithm, such as TCP Nice [20];
if the application calculates that its desired window size is
smaller than that set by the default algorithm, it can reduce
the amount of data it sends by a corresponding amount.

2.2.3 Discussion

In many cases, there is an equivalence across the three
categories of information; that is, internal state, algorith-
mic information, or cost may each be sufficient on their
own. Consider our previous example of a web server
that improves its average response time by servicing first
those requests that are expected to complete the fastest [6].
Although the most direct approach is to use cost infor-
mation from the OS, the server can approximate this it-
self from either internal state or algorithmic knowledge.
For example, if the OS exposes the contents of the buffer
cache [19], the location of the disk head, and the location
of each file on disk (i.e., dynamic internal state), then the
web server can compute the relative costs for each page



on its own (or, pragmatically, at least order the requests
based upon hitting in the buffer cache). Alternatively,
and more radically, if the OS exposes its algorithms, the
web cache can simulate the OS policy given the observed
stream of past requests to infer the current state of the
OS [4). Although the overhead, accuracy, and complexity
within the application will be different, the end result may
be roughly the same.

2.3 What are the goals of an infokernel?

To allow adaptation and control in a pragmatic way, an
infokernel should have the following properties.

Export all information. Because one cannot know a
priori what information is useful to applications, all in-
formation from the OS is exported. The only information
that is concealed is for security or privacy (e.g., the data
read and written by applications).

Incur low burden on developer. It is easy to modify
an existing OS to expose information; if this task is oner-
ous, then few infokernels will be created, particularly for
pieces of information whose benefits are not yet demon-
strated. ‘

Allow partial information. If the onus of exporting all
information is too high, or if a developer (or more likely,
a company) feels that trade secrets will be compromised,
then the OS can expose a subset of information.

Be flexible. New formats of information are express-
ible, since one cannot predict all types of information that
will exist in future systems.

Be portable. Applications can be ported easily across
platforms, even to systems that export different types of
information.

Incur low overhead. The overhead of updating and
accessing information is low.

2.4 How can one implement an infokernel?

We briefly discuss two open questions for building an
infokernel. First, how can one provide an interface that
meets the conflicting requirements of flexibility, portabil-
ity, and efficiency? Second, how can the information be
expressed?

Some of the infokernel goals contradict one another;
in general, exposing more information breaks modular-
ity, making applications more difficult to port across
infokernels. Consider an application that wants to know
the next page to be evicted by the OS: if the application is
developed on an infokernel that uses Clock replacement,
the application examines the clock hand position and the
reference bits; if this application is run on an infokernel
with pure LRU replacement, the application must instead
examine the position of the page in the LRU list. This
may require a significant change to the application.

Thus, a two-tiered approach is needed for the infokernel
interface. At the first level, the OS exports information
in the form that is most convenient (e.g., marking pages
read-only and mapping them into the address space of
each process or by leveraging existing interfaces such as
/proc). This information is platform specific. At the
second level, an infolibrary provides a portability layer;
this layer converts the OS-specific formats into a more
standard interface. Applications are free to skip the in-
folibrary to access system-specific information.

A further challenge is to determine appropriate repre-
sentations for the three categories of information. Repre-
senting internal state is relatively straight-forward: vari-
ables are a natural match. Functionality allowing ap-
plications to block until a variable contains a particular
value may be useful as well [9]. Representing algorithms
and costs is not as simple. Many representations for al-
gorithms at various levels of detail are possible, rang-
ing from exporting the source-level or assembly code, to
leveraging a specification language 8, 15], to simply ex-
porting a well-known name that captures the spirit of the
algorithm (e.g., LRU, FIFO, LFU, MRU). Finally, expos-
ing costs has the additional challenges that this informa-
tion is not already directly available in the OS and it de-
pends upon the hardware. Given that applications often
use cost to choose between operations, an infokernel may
be able to export only relative, and not absolute, costs.

3 Examples

“Everybody gets so much information all day
long that they lose their common sense.”
Gertrude Stein (1874 - 1946)

In the previous section, we gave a number of short ex-
amples where an infokernel would be useful to applica-
tions. In this section, we briefly elaborate on two addi-
tional examples that have been implemented in previous
systems to demonstrate the benefits of extensibility. We
focus on control, rather than adaptation, since we believe
the ability of an infokernel to supply control is more chal-
lenging.

3.1 File Layout

Although I/O-intensive applications, such as database sys-
tems and web servers, benefit from controlling the layout
of their data on disk [18], traditional file systems do not
provide this control. Thus, controlling file layout has been
used to demonstrate the power of extensible systems [9].
We believe that this functionality can also be built on an
infokernel that uses an FFS-like file system; we refer to
this application-level service as PLACE [13]. For simplic-
ity in our discussion, we consider a version of the service




that allows files to be placed within a particular cylinder
group (abbreviated with simply “group”) on the disk.

PLACE needs algorithmic and dynamic state informa-
tion from the infokernel: the file allocation algorithm used
by the OS, the group in which each file or directory is
allocated, and the current “fullness” of each group. We
assume that the algorithmic information is at a sufficient
level of detail to reveal the following properties of FFS-
like allocation [12]: a new directory is placed in the “least
full” group, files are placed in the same group as their par-
ent directory, and data blocks are usually placed in the
same group as their corresponding inode.

PLACE initializes itself by creating directories such that
at least one directory, D; exists in each group, <. To en-
sure a directory is allocated in the target group, PLACE
fills the non-target groups with dummy data such that the
target directory is the least “full” and the FFS allocation
algorithm will choose it for the next directory. When an
application wishes to create a file in a particular group,
it contacts PLACE. To allocate a file named /a/b/c in
group 4, PLACE creates the file under directory D;, and
thus, with its algorithmic knowledge, knows that the file
will be allocated in the appropriate group. Through the
infokernel interface, PLACE can verify that the inode and
all the data blocks of the file are in the desired group and
take corrective action if needed. PLACE then renames the
file to the user-specified name.

3.2 Page Replacement

It is well known that different applications benefit from
different page replacement algorithms [5], and modifying
the replacement policy of the OS has been used to demon-
strate the flexibility of extensible systems [16]. This func-
tionality can also be approximated in an infokernel envi-
ronment; we call this service REPLACE.

To support REPLACE, an infokernel must export the
page replacement algorithm and enough dynamic state
such that REPLACE can determine the next victim page.
As a simple example of how page replacement can be
controlled with an infokernel, consider the case where the
page P will be the next page evicted from the OS cache
and an LRU-replacement policy is being used. If the ap-
plication knows that it will access P soon in the future,
it can probe P to adjust its position in the LRU list and
ensure that it stays in the cache. More generally, one
replacement policy can be converted to another by prob-
ing pages at some frequency and recency before they are
evicted. Our prototype of REPLACE, implemented for the
buffer cache of NetBSD 1.5, is able to convert an LRU
replacement policy into MRU, LFU, LRU-K [14], and
EELRU [17]; converting to LRU-K, we have measured
I/O-based applications with improvements up to 33%.

4 Related Philosophies

“The idea is to try to give all the information
to help others to judge the value of your con-
tribution; not just the information that leads to
judgment in one particular direction or another.”
Richard Feynman (1918-1988).

One could view an infokernel as a very limited sub-
set of an exokernel [7], which has the goal of separating
protection from management. When developing Aegis,
the authors found three important principles: expose allo-
cation, expose names, and expose revocation. Exposing
allocation and revocation provide control to applications,
whereas exposing names (e.g., page numbers and book-
keeping data structures, such as freelists and cached TLB
entries) provides information. This point is made more
explicitly in the second exokernel paper [9], in which “ex-
pose information” is added as a fourth principle. In con-
trast, an infokernel exposes information directly, but not
control.

There are two additional differences between the exok-
ernel and infokernel philosophies. First, an infokernel is
designed as an evolution of an existing operating system,
as opposed to a completely new exokernel. We believe
that an infokernel is more feasible to implement and de-
ploy, while providing many of the same benefits. Second,
an infokernel strives to expose all types of information
(i.e., internal state, algorithms, and costs), whereas an ex-
okernel focuses on internal state; however, given that the
goal of an exokernel is to remove all resource manage-
ment, one could reasonably argue that an exokernel does
not have interesting algorithms to expose.

The philosophy of the Open Implementation
project [10] is similar to ours, although they do not
specifically target operating systems. The goal of an open
implementation is to tailor the behavior of a module,
while still hiding “unnecessary” details of its implemen-
tation; in other words, understanding how a module is
implemented helps clients use it more appropriately. The
authors propose several ways for changing the interface
between clients and modules; most of the approaches
have the clients specify their anticipated usage or require-
ments of the module, and thus do not involve exposing
information from the implementation. However, in one
of their suggestions, clients choose a particular imple-
mentation from an available list (e.g., BTree, LinkedList,
or HashTable). This approach is directly related to our
proposal of exposing the algorithms employed by the OS.

Finally, there is a relationship between infokernel and
the authors’ own work on gray-box systems [2]. The phi-
losophy of gray-box systems also acknowledges that in-
formation in the OS is useful to applications; however,
a gray-box system takes the more extreme position that
the OS cannot be modified and thus applications must ei-
ther assume or infer all information. The limitation of the



gray-box approach is that its assumptions may be incor-
rect and its inferences may impose significant overhead.

However, an infokernel is not a panacea; in some cases,
the OS may not be able to obtain and export all informa-
tion. For example, the OS may interact with information
that is directly controlled by hardware or another software
component (e.g., the OS is unlikely to know the exact lo-
cation of the disk head, although it can infer this infor-
mation by combining knowledge of the last disk request
serviced with rotational speeds [21]); thus, unless every
component in the system exposes all of its internal infor-
mation, gray-box techniques will still be needed. Further-
more, in networked and distributed settings, it may not be
possible to explicitly expose information. For example, to
implement gang-scheduling across autonomous systems,
the local OS must know which processes are scheduled
elsewhere; however, by the time this information has been
communicated, it may have changed. Thus, inferencing is
the only suitable option [1].

Finally, gray-box techniques are likely to be useful
when implementing the portability library for a new
infokernel. A major challenge of the infolibrary is to
handle cases where the infokernel does not export all in-
formation defined by the standard interface. Gray-box
techniques may be able to infer this information, rather
than have the infolibrary report that the information is
not available. In summary, we believe that infokernel and
gray-box techniques are complementary.

5 Conclusions

“Errors using inadequate data are much less
than those using no data at all.” Charles Bab-
bage (1791-1871)

Through the ages, many people more eloquent than we
have extolled the virtues and the vices of information. In
this paper, we have joined this dialog by arguing that op-
erating systems should expose all available information.
We believe that such an OS, or infokernel, is pragmatic
because it is evolutionary; this approach will gain some
of the benefits achieved by more radical extensible sys-
tems, while still retaining the large code base of modern,
commodity operating systems.
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