Computer

Sciences
Department

SafetyNet: Improving the Available of
Shared Memory Multiprocessors with Global
Checkpoint/Recovery .

Daniel Sorin
Milo Martin
Mark Hill

David Wood

Technical Report #1433

December 2001

UNIVERSITY OF

WlSCONSlN

M A D S O N

SafetyNet: Improving the Availability of Shared Memory
Multiprocessors with Global Checkpoint/Recovery

Daniel J. Sorin, Milo M.K. Martin, Mark D. Hill, and David A. Wood
University of Wisconsin—Madison

{sorin, milo, markhill, david} @cs.wisc.edu
Abstract

Availability is increasingly important for shared memory multiprocessors. but the market
for commercial servers preters that availabihity not come at the cost of appreciably more
hardware or a significant degradation in performance. Implementation trends toward less-
reliable deep submicron transistors necessitate architectural techniques that increase avail-
ability (with the modest impact to performance and cost permitted by the server market).
Instead of only relying upon a patchwork of localized fault tolerance schemes (e.g., ECC
or DIVA), we seek a unified mechanism for providing system-wide availability.

We develop an availability solution, called SaferyNet, that uses a unified, lightweight
checkpoint/recovery mechanism to support multiple long-latency fault detection schemes.
At an abstract level, SaferyNet logically maintains multiple, globally consistent check-
points of the state of the system (i.e., processors, memory, and coherence permissions),
and it can recover lo a pre-fault checkpoint of the system and re-execute if a fault is
detected. SafetyNer uses logical time to efficiently coordinate checkpoints across the sys-
tem and “logically atomic™ coherence transactions to free checkpoints of transient coher-
ence state. Runtime overhead is minimized by pipelining checkpoint validation with
subsequent parallel execution (and subsequent checkpoint validation).

We illustrate SafervNer avoiding system crashes due to either misrouted coherence mes-
sages or the loss of an interconnection network switch (and its buffered messages). Using
full-system simulation of a 16-way multiprocessor running commercial workloads. we
find that SafetyNetr (a) adds statistically insignificant runtime overhead in the common-
case of fault-free execution. and (b) avoids a crash when tolerated faults oceur.

1 Introduction

Availability becomes increasingly important as internet services are integrated more tightly into society’s
infrastructure. This is particularly true for the shared-memory multiprocessor servers that run the application
services and database management systems (DBMSs) that must robustly manage business data. However.
unless architectural steps are taken, availability will decrease over time as implementations use a larger num-
ber of increasingly unreliable components in search of higher performance {12, 22,50} The high frequen-
cies and small circuit dimensions of future systems will increase their susceptibility to both transient and
permanent faults. For example, higher frequencies exacerbate crosstalk [3, 8] and supply voltage noise [46],

and smaller devices and wires suffer more from electromigration [53] and alpha particle disruptions [43, 58].

Decades of research in fault-tolerant systems suggest a path toward addressing this problem. Mission-critical
systems routinely employ redundant processors, memories, and interconnects (e.g., triple-modular redun-
dancy [26] or pair-and-spare [54]) to tolerate a broad class of faults. However, for many applications, the

highly compeutive commercial market will sech hghter-weight sulutions. For example, RAID level 5 {34]

Recovery Point

a7

|
r L — =14 FIGURE 1. SafetyNet Abstraction
In SaferyNet, (1) processors operate on the current state
p p
Current | of the system. (2) the system can recover (o the recov-
! imw o | ery point if a faull is detected, and (3) some number of
Systel . . .
ystem - non-current checkpoints can be pending vahidation.
L x p p g

Checkpoints Waiting
To Be Validated

has been deployed widely because its overhead is 1/Nth (for N data disks) rather than the 100% overhead for
mirroring Commercial servers aim for high availability but will accept occasional crashes to improve
cost/performance. Software-visible techniques—including database logging and clustering—help preserve

data integrity and service availability in these cases.

Current servers employ a range of hardware mechanisms to improve availability. Error correcting codes
(OO merconnection network link-level retry [19]. and duplicate ALUs with processor retry [47] larget
specific, localized faults such as transient bit flips on memory, links, or ALUs. Computer architects seeking

system-wide coverage must integrate a patchwork of localized detection and recovery schemes.

In this paper, we seek a unified, lightweight mechanism that provides end-to-end recovery from a broad class
of transient and permanent faults. This recovery mechanism can be combined with a wide range of fault
detection mechanisms, including bstrong error detection codes (e.g.. CRCs), redundant processors and ALUs
[19. 47}, redundant threads [4<], and system-level state checkers [9]. By largely decoupling recovery from

detection, our approach allows a range of implementations with varying cost-performance.

This paper describes a lightweight global checkpoint/recovery scheme called SaferyNet, and we illustrate its
abstraction in Figure 1, SafervNer periodically creates a system-wide (logical) checkpoint. SaferyNet check-
points can span thousands or even millions of execution cycles, permitting powerful detection mechanisms
with long latencies. After detecting a fault, all processors, caches, and memories revert to and resume execu-
tion from a consistent system-wide state, the recoven point SuferyNet is a hardware scheme that reguires no
changes to any software or the instruction set. Moreover, SaferyNer has limited impact on the processor,

coherence protocol, and VO subsystem design.

SuferyNer's basic approach is to log all changes to the architected state. This presents three main challenges
for a lightweight recovery scheme. First, naively saving previous values before every register update, cache
write, and coherence response would require a prohibitive amount of storage. Second, all processurs, cuches,
and memories in a shared-memory multiprocessor must recover to a consistent point. For example, recovery
must ensure that all nodes agree on the ownership and data values of each memory block. Third. SaferyNer
must determine when it is safe to advance the recovery point (i.e., validate a new checkpoint), without

degrading performance to wait for slow fault detection mechanisms.

I~

Node

regisier |
checkpoints

Ul ke “wehe ‘Z(g ' l
o Rt “I Cahe i K :‘-1 Menory H
i

¥ Wik

Ut L. Nemwork !
awaeh inctiac
i L)
-~ [
o

TR
i

]

FIGURE 2. Example SafetyNet System

SaferyNet efficiently meets these three challenges. First, logging is reduced by checkpointing at a coarse
granularity (e.g.. 100,000 cycles). Only the first change to a piece of architectural state—register, memory
block, or coherence permission—within a chechpoint intervaul requires a log entry. reducing the Tog overhead
by one or two orders of magnitude. Second. SafervNer efficiently coordinates checkpoint creation using glo-
bal logical rime and logically atomic coherence fransactions. ensuring a consistent recovery point
(Section 2). Third, checkpoint validation is pipelined and overlapped with normal execution. Pipelining val-
idation allows SafervNer to tolerate long latency detection mechanisms in the background.
We develop a SuferyNer implementation (Section 3) that minimizes runtime overheads for actions in the
common case of faull-free execution. including memory operations and coherenve transactions Figure 2
depicts the register checkpoint buffers and Checkpoint Log Buffers (CLBs) added to processor-memory
nodes. Register checkpoints, CLBs. caches. and memories are deemed “stable storage™ and protected by
LCC. As currently defined. Saferyver cannot recover from uncorrectable errors o these structures, which
may encourage stronger ECC codes [14]. Future work will address this class of faulis, including processor-
cache chip kills, but solutions will necessarily trade some performance to provide availability in this case.
SaferyNet is a recovery mechanism that is largely decoupled from any specific fault detection mechanisms.
In this paper, we focus on two system-level faults, described in Table 1, that we use as running examples.

(1) Dropped Message: A transient fault causes the loss of a coherence message in the interconnect

(2) Lost Switch: A hard fault kills a switch element, irretrievably losing all buffered messages.
Section 5 expands upon the wide variety of faults and detection mechanisms compatible with SaferyNet.
Like most prior work, we focus on tolerating all single faults, plus coverage for many double fauits.
In Section 4, full system simulations with commercial wor'kloads show that, in the common case of fault-
free execution, SafervNer dues not increase execution time (relative to an unprotected system) by a statisti-
cally significant amount. Moreover. Sufen Ner contnues t run altel the injection ol the two example fuults

Recovery time is reduced from a system crash/reboot to a performance “speed bump™ of less than one milli-

TABLE 1. Two Example Faults

Dropped Message: This example fault assumes a lost or misrouted coherence message due to a transient
environmental condition (e.g.. alpha particle [28. 43. 58]). The fault may corrupt the message while it
is stored in a switch buffer or by disrupting a switch's internal logic. The fault might be detected using
an error detection code (e.g., CRC), by an end-point receiving an illegal message, or by a request tim-
ing out. The detection latency may be large in the case of request time out or if strong error detection
codes are used (long codes are inherently stronger).

Lost Switch: This example fault assumes the permanent loss of an interconnect switch element (e.g .
due to electromigration [53]), causing the loss of all buffered messages. We consider a 2D torus topol-
ogy that prevents a single point-of-failure by splitting each switch into two half-switches. As illustrated
in Figure 2, nodes have separate paths to the north-south and east-west half-switches, providing redun-
dancy in case one half-switch fails. The fault might be detected by the same mechanisms discussed
above and diagnosed as permanent by the service processor. Execution may resuine after reconfiguring
the interconnect to route around the lost switch [15], but with some loss of bandwidth.

second. We also show that 512 kbyte CLBs are large enough, for our commercial workloads. to tolerate fault

detection mechanisms with over 100.000 cycles of latency

In summary. SuaferyNer seeks a lightweight alternative to traditional fault-tolerant systems (Section 6). by
providing efficient support for system-level recovery and long fault detection latencies. By providing & uni-
Hed mechanisin that can tolerate anmacasingly unportant class ol tansient and permanent errors. we hope

to encourage pervasive use of SuferyNer in commercial servers.

2 SafetyNet Overview
This section presents a high-level overview of SaferyNer, discussing how it creates globally consistent

checkpoints of the system. Section 3 describes one specific hardware implementation.

2.1 High-Level View

The purpuse of SuferyNer is to allow the system 1o recover its stale 10 a consistent previous checkpoint,
where a checkpoint includes the state of the processor registers, memory values, and coherence permissions.
SaferyNet has only a small impact on the underlying cache coherence protocol. We assume a sequentially

consistent memory model, and SaferyNet does not affect its implementation.

SafetyNet addresses the three challenges for logging schemes that were raised in Section 1. First, SaferyNet
exploits a coarse checkpoint granularity to reduce the amount of logging (Section 1.2). Second, SuferyNei
creates consistent global checkpoints (Section 2.3) such that all processors and memories recover to a con-
Sistent recoveny point upon fault detection (Section 2°5) Third. SafenNer enables pipelined checkpoint valh-

dation that is off the critical path and hides the latencies of fault detection mechanisms (Section 2.4)

2.2 Checkpointing Via Logging

Logically, SaferyNer checkpoints contain a complete copy of the system’s architectural state. For efficiency,
SafetyNet explicitly checkpoints registers and incrementally checkpoints memory state by logging previous
values and coherence permissions. Conceptually, processors and memory controllers log every change (o the

memory/coherence state (i.e., save the old copy of the block) whenever an action (i.e.. a store or a transter of

ownership) might have to be undone. To reduce storage and bandwidth requirements, SaferyNet only logs the
block on the first such action per checkpoint interval. By using coarse checkpoint intervals (e.g., 100,000
cycles), SaferyNet significantly reduces logging overhead (evaluated in Section 4.3). Checkpointing of pro-
cessor register state can be done in many ways, including shadow register copies or writing the registers into

the cache

2.3 Creating Consistent Checkpoints in Logical Time

A1 ol the components (caches and memory controllers) coordinate their checkpoints. so that the collection
ol local checkpoints represents a consistent global recovery point. Coordinated system-wide checkpointing
avoids both cascading rollbacks [16] and an output commit problem [17] for inter-node communication.
Checkpoints are coordinated across the system in logical time to avoid a potentially costly exchange ol syn-

chronization messages.

To ensure that checkpoints reflect consistent system states, the logical time base must ensure that all compo-
nents can independently determine the checkpoint interval in which any coherence transaction occurs (not
just its request). To do so, we exploit the key insight that, in retrospect, a transaction appears logically
atomic once it has completed. A transaction’s point of atomicity occurs when the owner of the requested
block processes the request. Figure 3 illustrates how SaferyNer determines this point. Note that the requestor
does not learn the location of the atomicity point until it receives the response that completes the transaction.
To ensure that the system never recovers to the “middle” of a transaction, the requestor does not agree to
advance the recovery point until all of its outstanding transactions complete successfully. After completion.
the transaction appears atomic, so there is no “middle.”” Furthermore, by waiting for all outstanding transac-

tions to complete, SaferyNer avoids checkpointing transient coherence states and in-flight messages.

Many bases of logical time exist. A simple example 1n a broadcast snooping system is tor each component Lo
count the number of coherence requests it has processed and use that as its logical time. [f components cre-
ate checkpoints every K logical cycles, it is trivial for all components to agree on the interval in which a

transaction’s request occurred.' In this paper, we focus on systems with directory protocols, and thus we

Progessor Memory FIGURE 3. Example of Checkpoint Coordination

{n this example, physical time Aows downwards. and checkpoint lines

/ Chedkpomt #1 iy Jogical time we not necessarily horizontal since togical time is not

O | <request B> equal o physical time. Logical time respects causality. so @ message

cannot be sent in one checkpoint interval and arrive in an earlier inter-

;T' Checkpoint #2 ya) AL @, the processor issues a request for ownership of block B to

(9] point of the memory, which is currently the owner of the block. The memory

4 atomicity processes the request at @, between checkpoints 2 and 3, and defines

Checkpoint #3 the transaction’s point of atomicity. In retrospect, the transaction

appears lo have occurred atomically at this point. A recovery 0

checkpoint nurnber (CN) 2 or before would restore ownership to the

memory. A recovery to CN 3 or later would maintain ownership at the

e processor A recovery 1o CN 2-5 (the duration of the transaction) is

Checkpoint #5 not possible until alter the transaction. since the processor would not

ph!sical validate any of these checkpoints until the transaction completed suc-
time cessfully ul @

<data>

Checkpoint #4

need a different logical time base. If we could distribute a perfectly synchronous physical clock, we would
have a viable logical time base in which logical and physical time are the same. In Section 3. we relax this

requirement by deriving a logical time base from a loosely synchronized (in physical time) checkpoint clock

2.4 Validating Checkpoints and Deallocating Checkpoint State

Checkpoint validation is the process of determining which checkpoint is the recovery point. Processors and
memories coordinate checkpoint validation so that all components recover to the same checkpoint numbei
on a recovery Coordination can be pipelined and performed in the background. off the critical path For
example, checkpoint number 3 (CN3) can be validated only if every component agrees that it could be the
recovery poinl. i e. all execution prior to CN3 was fault-free. For a checkpoint interval to be fault-free, every
transfer of ownership in that interval must complete successfully, by which we mean that the data was trans-
ferred fault-free to the receiver. Once every component has independently declared that it has received fault-
free data in response o all of its requesis in the interval before the checkpoint. the recovery point can be
advanced. At this point, all transactions prior to this checkpoint have had their points of atomicity deter-

mined. After validation, state for the previous recovery point can be deallocated lazily.

Validation latency depends on fault detection latency, since a checkpoint cannot be validated until it has been
verified fault free. For our transient and hard fault examples, the detection latency can be as long as the
requestor’s timeout latency. Timeout latency can be many traversals of the interconnect. plus some slack
built in for contention delays. Adding o validation latency, validation cannot occur unul all nodes have coor-
dinated their validations. and this involves an exchange of messages Since validation latency is long. it is

important for SaferyNer efficiency that it be performed in the background and off the critical path.

Checkpoint validation also determines when the system can interact with the outside world of /O devices
The output commit problem {17] requires that only validated, taull-ree data can be communicated vulside
of the sphere of recovery. For example, the system cannot communicate unvalidated data with the disks if the
effects of this communication cannot be undone through recovery. The standard solution is to delay all out-
put events until a validated checkpoint. Implementing I/O with InfiniBand (www.infinibandta.org) is a good
match for SafetyNet, because 1/O is setup in memory and then committed with a “doorbell ring.” Safery-
Net would need (o delay only the doorbell ring. which should be acceptable to many types of VO (e ¢ . 1o

disks and the Internet).

2.5 Recovering the System to a Consistent Global State
If a fault is detected, SufervNet restores the globally consistent recovery point. The recovery point represents
the consistent state of the system at the logical rime that this checkpoint was taken. Recovery itself requires

that the processors restore their register checkpoints and that the caches and memories unroll their fogs o

1. SMPs do not need to be synchronous, i.e., a request does not need to arrive at every node at the same time. Thus, an
SMP with this logical time base could have skew in logical time between nodes.
N

6

recover the system (o the consistent state al the pre-fault recovery point. All state associated with transac-
tions in progress at the time of recovery can be discarded, since this state is, by definition, unvalidated state
that occurs logically after the recovery point. After recovery, the system reconfigures, if necessary, and
resumes execution from the recovery point. For the lost switch example, reconfiguration involves routing

around the faulty switch. For the dropped message example, no reconfiguration is necessary.

3 A SafetyNet Implementation
In this section, we will discuss one particutar implementation of the SafervNer abstrachon. This implementa:
tion reflects the goal of incurring low overhead in the common case of fault-free execution, while not opti-

mizing the rare case of recovery

3.1 System Model

Figure 2 illustrates a single node, containing a CPU, a cache?, and a portion of the system’s shared memory.
A Checkpoint Log Buffer (CLB), associated with each cache and memory controller. stores logged state. The
system’s multiple nodes communicate through a 2D torus interconnection network (o implement a cache
coherence protocol. The coherence protocol in this paper is based on a typical MOSI directory protocol“j’,
and SufetyNer has only a slight impact on it. The system also includes redundant system service processors
(which exist in many servers, such as the UltraEnterprise E10000 [10]), which help coordinate advancement

of the recovery point as well as system restart after recovery.

3.2 Logical Time Base

As discussed in Section 2. checkpoints are coordinated across the system in logical time For our system
with directory-based coherence, we use a loosely synchronous (in physical time) checkpoint clock that is dis-
tributed redundantly to ensure no single point of failure. On each edge of this clock. each component creates
a checkpoint and increments its current checkpoint number (CCN). While it might be difficult to distribute a
synchronous clock across a system with near-zero skew, it is not nearly so difficult to distribute one with the
same frequency and some amount of skew between nodes. As long as the skew between any two nodes is
less than the minimum communication time between these nodes, the checkpoint clock is a valid base of

logical time, since no message can travel backwards in logical time.*

We use logical time to address the primary challenge in coordinating checkpoints across a system. which i
keeping checkpoints consistent with respect to memory and coherence state. All components must agree. for

every coherence transaction, in which checkpoint interval that transaction occurred. Assigning a transaction

For ease of exposition, we assume a single level cache. but we have implemented SafetyNet with muliiple levels.

In this paper, we assume a directory protocol and 4 2D torus, but we have also implemented SuferyNer on Lop of a sys-
tem with a broadcast snooping protocol and a totally ordered interconnect

4 Otherwise, the following inconsistency could arise. Consider the case in which processor P1 has a CCN of 3 and
sends a request Lo the owner, P2, while P2’s CCN is still 2 Thus. checkpoint 3 would appear (o include the reception of
the request but not the sending of the request!

2
R
3

Cache
Dutt CN

g EEN TR

N e s <t alao [2]
soeA<-15 A5 12]

CON2Z Qe A < 20 A; ANz [Assiont |

Deallocate ON2 '“\I 20 I 3 l

Time coN3 pettocte ON3 A: Fao | null | FIGURE 4. LOggil’lg at the Cache

CLB

to a checkpoint interval is protocol-dependent, and it is the only significant difference in implementing Safe-
rnyNet on top of different classes of protocols (i.e., directory vs. snooping). In a directory protocol, the point

of atomicity occurs when the owner of the block (either the directory or a processor) processes the request.”

3.3 Logging

SaferyNer uses Checkpoint Log Buffers (CLBs) to incrementally checkpoint memory state, Logically, Safery-
Ner writes a memory block to a CLB whenever an updure-action (i.e., store or transfer of ownership) might
have to be undone in the case of a recovery. Since caches perform stores and both caches and memories can
ransfer ownership of blocks. each of these components has a CLLB Except during recovery. CLB« are write-

only and off the critical path.

SaferyNet only logs a block on the first update-action per checkpoint interval. To detect this case. SafervNet
adds a checkpoint number (CN} to each block in the cache. denoting to which checkpoint it belongs. On caclh
update-action, SaferyNet (1) compares the component’s current checkpoint number (CCN) with the block’s
CN, (2) logs the block, if necessary, (3) updates the block’s CN to CCN+1, and (4) performs the updute-
action. Blocks must be logged to the CLB if CCN >= CN. For example, a store by a processor with CCN=3
to a block with CN=4 need not be fogged. Blocks with null CNs have not been written or transterred lately
and they implicitly belong to the recovery point as well as all subsequent checkpoints. Having CNs on
blocks enables logic to determine whether logging of a store or ownership transfer would be redundant.®
Figure 4 illustrates an example of logging at a cache. In Appendix A, we discuss efficient ways to store and

manipulate CNs at the caches.

When giving up ownership of a block, a component performs logging (as described above) and then sends
the block with the updated CN to the requestor This policy follows from a key insight from Wu etal. [57]. u
ransfer of ownership is just like a write. in thal we cannot be sure that it will not be undone by a recovery.
Consider the case where block ownership is transleried with its CN set o 3 (i.e., the sender’s CCN 1s 2y and
the receiver wishes to then perform a store to it while its CCN is still 2. Logging is unnecessary, since the
receiver was not the owner at checkpoint 2. This is the same as if the owner of a block with CN=3 performed

a store to it while its CCN is still 2.

5. Note that the ordering poini in a directory protocol is difterent, and it occurs when the directory processes the request.

6. There are other optimizations lor reducing logging due to attaining ownership. but they are less important

The CLBs can be sized for performance and not correctness, since SaferyNet can avoid situations in which
the CLB fills up. Even when it appears that an entry must be logged in the CLB, logging can be avoided at
the cost of some performance. In the case of store overwrites, we can throttle requests from the CPU. In the

case of coherence ownership transfers, we can negatively acknowledge (nack) coherence requests

3.4 Checkpoint Creation

Checkpoint creation is kept simple. since it is a common-case event that occurs on each edge of the check-
point clock. A processor checkpoints its non-memory architectural state (i.e., registers) and increments its
CCN.7 A memory controller simply increments its CCN Checkpointing of memory and coherence state i

achieved through logging, so no checkpointing of that state is necessary at checkpoint creation.

Checkpoint creation policy is simply choosing a suitable checkpoint clock frequency. f. As f. decreases
(given a constant number of outstanding checkpoints), SaferyNet can wlerate longer fault detection latencies.
For example, we allow four outstanding checkpoints and choose f, equal to 10 MHz (i.e., the checkpoint
interval is 100.000 processor cycles at a processor clock of | GH7) to enable 400.000 cycles (0 4 msec) of
detection latency tolerance. The cost of increasing tolerable detection latency is more storage at the CLBs
While decreasing f, allows for more compression of logged data, since only the first of muluple writes or
ownership transfers in a checkpoint interval requires logging, total CLB storage is a function both of logging
frequency and interval length. The value of f; has little effect on common-case performance, since SaferyNet
adds little overhead, as will be shown in Section 4. The choice of f, has a greater impact on recovery latency,

as will be discussed in Section 4.2.

3.5 Checkpoint Validation and Deallocation of Checkpoint State

Checkpoint validation requires that all components agree that execution up until that checkpoint was fault-
free. A cache controlier only agrees to validate a checkpoint once every transaction it initiated in the interval
before that checkpoint completed successfully. A directory controller only agrees once every transaction for
which it forwarded a request to a processor owner (i.e., 3-hop transaction) completed successfully. Thus. the
requestor must send an acknowledgment to the directory after its request has been satisfied. so that the direc-
tory can deallocate its buffer entry for the transaction. Any lost message will prevent recovery point
advancement. If the recovery point cannot be advanced after a given amount of time, the system assumes an
error has occurred (such as a lost message) and triggers a systemn recovery. We coordinate validation with a
2-phase scheme. Once every component has informed the service processor that it is ready to advance the

recovery point, the service processor broadcasts the new recovery point checkpoint number (RPC N).2 Exe-

7. Since checkpoint numbers are encoded in a finite number of bits, say k, we can only have M active checkpoints ON

wraparound can only occur if validation ceases (i.e.. because a coherence transaction does not complete) while check-
point creation continues. We avoid wraparound by choosing a request timeout latency that is shorter than the latency 1o
wraparound. Thus, a request would timeout before it could stall validation Lo the pownt al which wraparound could oceur.

8 Communication of coordination messages (which are infrequent) can be made reliable through redundancy. if this
double fault model is to be tolerated. We will discuss this issue in Section 5

cution does not stow down while checkpoints are validated in the background. similar to a fuzzy barmer [23].

Processor and memory controllers deallocate a checkpoint by discarding their now unneeded architectural
checkpoint. A processor discards its register checkpoint. In the caches, a checkpoint is deallocated by clear-
ing the CN of all blocks that had CN set to the newly deallocated checkpoint. Logged data at the cache and

memory CLBs from this checkpoint is discarded.

3.6 System Recovery and Restart

If a component detects a fault, it triggers a recovery. The recovery message, which includes the RPCN, is
broadcast (redundantly) by the service processor, and all nodes proceed to recover to the recovery point. The
process of recovery involves several steps, and it leverages the insight that any transactions in progress. by
definition. belong to unvalidated checkpoints that can be discarded. First, the interconnection network is
drained, and all state related to coherence transactions that were in progress at the time of the recovery are
discarded. Second, processors, caches, and memories recover the RPCN checkpoints. Memories just sequen-
tially undo the actions in their CLBs. Processors restore their register checkpoints. Caches invalidate all
blocks wfiuen or sent in an unvalidated checkpoint interval (i.e., blocks with non-null CNs), and they undo

the logged actions in their CLBs.

After recovery and reconfiguration (if needed), a restart message is broadcast 1o inform the nodes that they
can resume operation. The restart cannot begin until every node has finished its recovery. As with coordina-
tion to validate checkpoints, we implement a 2-phase coordination where every node informs the system ser-

vice processor once it is ready to restart and then the service processor broadcasts the restart message.

3.7 Summary of Implementation

We have developed one particular implementation of the SaferyNer abstraction. The implementation
addresses the three challenges that were raised for logging schemes. First. we exploit checkpoint granularity
to reduce the amount of logging necessary. Second. we efficiently coordinate checkpoints across the svstem
in a logical time base that is loosely tied to physical time. Third, we enable checkpoint validation to be per-
formed in the background, thus hiding the potentially length latency of fault detection. We now quantita-

tively evaluate our design with full-system timing simulation and commercial workloads.

4 Evaluation

In this section, we evaluate SaferyNer. We begin in Section 4.1 by describing our methodology. Then, in
Section 4.2, we quantitatively determine SuferyNet performance by running three experiments in which we
compare the performance of SafervNer versus that of an unprotected system. Lastly, in Section 4 3. we per-

form sensitivity analyses on the amount of cache bandwidth and CLB storage that SaferyNer uses.

TABLE 2. Target System Parameters

Cache 4 MB. 4-way set associative

Memory 2 GB, 64 byte blocks

Miss From Memory 180 ns cminimum. uncontended. 2-hop)
Checkpoint Log Bulfer 512 kbytes total. 72 byte entries
Interconnection Network 2D torus, link bandwidth = 1 6 GB/sec
Checkpoint Interval 100.000 cycles = 100 psee

4.1 Methodology
We simulate a 16-processor target system with the Simics full-system, multiprocessor. functional simulator
[31]. and we extend Simics with a memory hierarchy simulator to compute execution times. We evaluate

SaferyNet with four commercial workloads and one scientific workload.

Simics. Simics is a system-level architectural simulator developed by Virtutech AB that can boot unmodi-
fied commercial operating systems and run arbitrary unmodified applications. We use Simics/sundu, which
can simulate Sun Microsystems's SPARC V9 platform architecture (e g, used for Sun E6000s) in sufficient
detail to boot an unmodified copy of Sun Solaris 8. Simics is a functional simulator only, and it assumes that
each instruction takes one simulated cycle to execute (although I/O may take longer), but it provides an

interface to support detailed memory hierarchy simulation.

Processor Model. We use Simics to model a processor core and LT cache that. given a perfect memory sy
tem. would execute four billion instructions per second and generate blocking requests to the L.2 cache and
beyond. We use this simple processor model to enable tractable simulation times for full-system simulation
of commercial workloads. While an out-of-order processor model might have an impact on the absolute val-
ues of the results, it would not qualitatively change them (e.g., whether a crash is avoided). For evaluating
processor/cache overhead for checkpointing register state, we model a conservative latency of 100 cycles.9
We conservatively charge eight cycles for logging store overwrites (8 bytes/cycle for 64 byte cache blocks),

but these are only about 0.1% of instructions.

Memory Model. We have implemented a memory hierarchy simulator that supports a directory protocol,
not unlike that of the SGI Origin, with and without SaferyNer support. The simulator captures all state transi-
tions (including transient states) of our coherence protocols in the cache and memory controllers. We model
a 2D torus interconnection network contention within this interconnect, including contention due to valida-
tion coordination messages. In Table 2, we present the design parameters of our larget memory system. With
a checkpoint interval of 100,000 cycles and four outstanding checkpoints, SafetyNet can tolerate fault detec-
tion latencies up to 400,000 cycles (0.4 msec at IGHz). To exercise the protocol implementation, we drove it

for billions of cyclgs with a random tester that injected taulls and stressed corner cases by exploiting false

9. If checkpointing was a more frequent event (e.g., if we were using SaferyNet to support speculation), we could opti-
mize register checkpointing latency by using shadow register copies

11

TABLE 3. Workloads

OLTP: Our OLTP workload is based on the TPC-C v3 0 benchmark using IBM’s DB2 v7 2 EEE database manage-
ment system. We use a | GB 10-warehouse database stored on Ave raw disks and an additional dedicated database log
disk. There are ¥ simulated users per processor. We warm up tor 10.000 transactions. and we run tor 50 transactions

Java Server: SPECjbb2000 is a server-side java benchmark thal models a 3-tier system and includes driver threads to
generate lransactions, We used Sun's HotSpot 1.4.0 Server JVM. Our experiments use 24 threads and 24 warehouses
(~500 MB of data). We warm up for 100,000 transactions, and we run for 10,000 transactions.

Static Web Server: We use Apache 1.3.19 (www.apache.org) for SPARC/Solaris 8. configured to use pthread locks
and minimal logging as the web server. We use SURGE [6] to generate web requests. We use a repository of 2,000
files (totalling ~50 MB). There are 10 simulated users per processor. We warm up for ~80.000 requests. and we run
for 500 requests.

Dynamic Web Server: Slashcode is based on a dynamic web message posting system used by slashdot.com We
use Slashcode 2.0. Apache |3 20, and Apuche’s mod_perl | 25 module for the web server MySQL. 3 23 39 is the
database engine. The database is a snapshot of slashcode.com, and it contains ~3,000 messages. A multithreaded
driver simulates browsing and posting behavior for 3 users per processor. We warm up for 240 transactions, and we

run for 5 transactions.

Scientific Application: We use barnes-hui {rom the SPLASH-2 suite [55], with the 16K body input set. We begin
measurement at the start of the parallel phase to avoid measuring thread forking.

sharing and reordering messages {56]. We simulate each design point multiple times with small. pseudo-ran-
dom perturbations of memory latencies to cause alternative OS scheduling paths. and error bars in our

results represent one standard deviation in each direction.

Workloads. Commercial workloads are an important workload for high availability systems. As such, we

evaluate SafervNer with four commercial applications and one scientific application. described in Table 3

4.2 Experiments
We perform three experiments to evaluate SaferyNet performance and show their results in Figure 5. For
each of our five workloads, we plot five bars: two bars for systems unprotected by SafervNer and three bars

for systems with SaferyNer.

Experiment 1: Fault-Free Performance. In this experiment, we run two systems, SaferyNer and unpro-
tected by SaferyNet, in a fault-free environment. In Figure 5, the first and the third bars (from the left) for
each workload reflect the normalized performances of the unprotected system and SaferyNet, respectively.
We observe that the two systems perform statistically similarly for all workloads. Intuitively, SaferyNer does
not impact common case actions, such as loads and stores that do not require logging. Overheads due 1o reg-
ister checkpointing (every 100.000 cycles) and stores that require logging (0 1% of all instructions) are neg-
ligible, and back pressure due to filling up the CLBs 1s rarely needed. We present sensitivity analysis of CLB

sizing in Section 4.3.

Experiment 2: Dropped Messages. In this experiment. we periodically inject transient faults into the sys-
tem by dropping a message every billion cycles (i.e., once per second). The requestor times out on its request
and triggers recovery. The second “bar” reflects the unprotected system performance (crash). The fourth bar

from the right represents SaferyNet behavior, and we see that it 1s staustically similar to the tault-free sce-

g 1.04
g
E Unprotected fault-free
£ [Unprotected with fault
g == SafetyNet fault-free
-é 0.5+ 2 SafetyNet w/l transient fault/sec
E [SafetyNet w/hurd fault
]
=
0.0

witp ibb apache slusheode barnes

FIGURE 5. Performance Comparison of SafetyNet with an Unprotected System

nario. Sensitivity analysis (not shown) involved injecting faults even more frequently, and we discovered

that they start to impact performance at the frequency of one per million cycles (i e . every miflisecond)

The exact recovery latency is not critical, since SaferyNer's recovery latency is orders of magnitude shorter
than the latency of crashing and rebooting (while preserving data integrity). Recovery latency consists of
discarding unvalidated checkpoint state, restoring the state from the recovery point, re-configuring (e.g.,
changing the routing to avoid a dead switch) if necessary, and re-executing the work that was lost between
the recovery point and the fault. Re-executing lost work is the dominant factor. since the recovery point can
be hundreds of thousands of cycles in the past. SaferyNer can tolerate longer fault detection latencies with
less frequent (i.e., larger) checkpoints, but it does so at the cost of more potential lost work. Nevertheless,

even a one million cycle recovery latency is still only epe millisecond (i e.. much shorter than a crash).

Experiment 3: Lost Switch. In this experiment, we inject a hard fault into an interconnection network
switch after 5 million cycles, killing the half-switch and dropping its buffered messages. The second “bar”
reflects the crash ot the unprotected system. The fifth bar retlects SaferyNer performance, and we observe
that., most importantly, SafervNer avoids a crash. Its performance is degraded, with respect to the fault-free

scenario, due to the restricted post-fault bandwidth.

4.3 Sensitivity Analyses: Cache Bandwidth and Storage Cost

Cache Bandwidth. SaferyNer's additional consumption of cache bandwidth depends on the frequencies of
stores that require logging. These stores consume additional cache bandwidth for reading out the vld cupy ol
the block. Logging due to transferring cache ownership, however, does not incur additional bandwidth, since
the cache line must be read anyway. In Figure 6, for the OLTP workload, we plot this frequency as a function
of the checkpoint interval. Both the x and y axes are log scale. Distinguishing between all stores and only
those stores that require logging, we notice the striking dropoff in the latter as the checkpoint interval
increases. These trends are the same for the other workloads, and the intuition explaining this is that spatial
and temporal locality reduce the number of distinct blocks touched per checkpoint interval. For a checkpoint

interval of 100,000 cycles, only 2-3% of stores (less than 0.1% of all instructions) require logging. In

- all stores
e e e e = stoTES that use CLB
~ all coherence requests

\\ coherence requests that use CLB

0 ‘
10000 100000 1000000
checkpoint interval (in cycles)

FIGURE 6. Frequencies of Stores and Coherence Requests (OLTP Workload)

events per 1000 instructions
1

1.0 —
= ==
3 = 034 Y
£ 08H - H H — E
= 1| COLogging E 1.0
S061 1 MM 3 Coherence € IM
'é o4 L4 1 | Cache Fills & o o fIZK
S 3 Cache Hits g 05+4¢ : @ 256k

N 11 2 128k

E02H H H H H— =
: | :

’ ﬂk 10k 100k 1M = 0.0

checkpoint interval (cycles) olip jbb
FIGURE 7. Bandwidth vs. Checkpoint FIGURE 8. Performance vs. CLB Size

Interval (OLTP Workload)

Figure 7, we plot the percentage of cache bandwidth used by cache hits, cache fills, responding to coherence
requests, and logging due to store overwrites. The additional cache bandwidth used by SaferyNer ranges

from 0.3% for million cycle intervals up to 4% for short 5,000 cycle intervals

Storage Cost. An implementation of SafervNer seeks to size the CLBs to avoid performance degradation
due to full CLBs. Total CLB storage is proportional to the number of allowable checkpoints and the number
of entries per checkpoint. We allow for four checkpoints and a CLB entry is 72 bytes (8-byte address and 64-
byte data block). The number of entries per checkpoint corresponds to logging frequency which is, in turn, a
function of the frequencies of stores and coherence requests. Figure 6 shows that, on average, only about
100-150 CL.B entries are created per 100,000 instructions (although the variance in this rate requires more
storage). In Figure 8. we plot the performance of SafervNer as a function of CLB size. While 512 kbyle and
1 Mbyte CLBs produce statistically equivalent performances across the workloads, 256 kbyte CLBs degrade

the performances of jbb and apache, and 128 kbyte CLBs degrade the performances of all of our workloads.

5 Tolerating Other Faults with SafetyNet
To this point, this paper has explained how SafetyNet can enable a recovery after the detection of a lost mes-
sage or lost switch fault. Most generally, SafetyNet can enable recovery for any fault that does not corrupt

ECC-protected architectural state, provided that:

¢ a system can be augmented with a mechanism to detect the fault (or sign off on its absence),

e and faults are detected while SafervNet still maintains a fault-free recovery point.

SaferyNet can maintain a recovery point as long as necessary, in the worst case, by stalling execution. How-
ever, fault-free performance is best if, in the average case, fault detection mechanisms validate checkpoints

fault-free in one or a few checkpoint intervals (e.g, in 100,000 cycles or 0.1 milliseconds).
The rest of this section considers some additional faults that SaferyNet could tolerate.

Interconnection Network Faults. A typical interconnection network fault model focuses on link errors, try-
ing to detect single, double, or burst errors. Link errors are normally detected with error detecting codes
(EDC). such as parity, SECDED. or cyclic redundancy check (CRC) [15. 35. 39]. Current systems [19] use
short codes (e.g., on 8 or 16 bytes). since the code must be checked before the data is torwarded or used.
SaferyNet permits the use of longer, and inherently stronger codes [36] because of its ability to tolerate long
fault detection latencies. SaferyNet is also compatible with other fault models/such as lost and misrouted
messages (e.g., detected with time-outs), corrupted internal switch state (e.g., detected with internal EDC),

and switch controller malfunction (e.g., detected with internal consistency checks).

Coherence Protocol Faults. There are numerous soft faults in the protocol engine that can be tolerated with
global checkpoint/recovery. This class of faults includes sending the wrong message or sending duplicate
messages. as well as faults in the reception of messages. SafetyNet also could be used to recover from design
faults in the protocol, if they could be detected reliably [9, 18] and would not keep recurring after recovery

(leading to livelock).

Cache Hierarchy and Memory Faults. Fault tolerance schemes for memory, both SRAM and DRAM. are
already well-established, and we present the fault model and prior detection techniques for completeness.
Detecting faults in storage cells can be accomplished with error detecting codes. A system with SafetyNet
has to protect the cache hierarchy and memory with ECC, since they contain memory blocks that could
potentially be the only valid copies in the system. so an uncorrectable fault could be unrecoverable. Memory

chip kills can be tolerated by using a RAID-like scheme for DRAM [14].

Processor Core Faults. Processor faults can be detected with numerous schemes, including parity, redun-
dant ALUs, and redundant threads [44, 42, 49]. Localized recovery schemes, including DIVA [4], can toler-

ate processor faults, but SaferyNet provides a unified mechanism that tolerates these faults, as well as others.

SafetyNet Hardware Faults. The SuferyNer hardware itsell is also suscepuble to {aults. Most luults 1n the
SafetyNet hardware only manifest themselves during a recovery, which implies a double fault situation.
While our fault model targets single faults, we discuss a few simple techniques for tolerating this specific
class of double errors. The processors’ checkpoints of their architectural states are protected with ECC, since
an error in this state is unrecoverable if we have to restore a checkpoint. Also, the mechanism for communi-
cating messages regarding checkpointing (e.g., a message telling each node to recover) must to]er.ate faults.
We assume a redundant transmission of these messages over the existing interconnection network. One pos-

sibility is time redundancy, in which a message is sent multiple times, possibly over different paths Triple

15

modular redundancy (TMR) with voting can mask a corrupted or lost message in any of the redundant trans-

missions Performance is not critical for these messages. but reliable delivery is crucial

6 Related Work

Related research exists in fault tolerance, as well as in logging for speculation and versioning of data. Prior
work in tfault tolerance can be classified into two broad categories: backward error recovery (BER) through
checkpointing or logging and forward error recovery (FER) through redundant hardware. Among other dif-
ferences. the evaluation of SafervNer also advances previous work in fault tolerance by using full-system

simulation of commercial workloads.

Hardware Backward Error Recovery. In BER schemes, the state of the system is checkpointed periodi-
cally (or differences are logged), and a fault is tolerated by recovering to a previously checkpointed state.
IBM mainframes [24, 47] have long used register checkpoint hardware and store-through caches to recover
from processor and memory system errors, respectively. The CARER scheme [25] for uniprocessors uses a
normal cache with a writeback update policy to assist rapid rollback recovery. This scheme is integrated with
the cache controller, checkpointed system state is maintained in main memory, and checkpoints are estab-
lished whenever a modified cache block needs to be replaced. Ahmed et al. [1] extend CARER for multipro-
cessors by synchronizing the processors whenever any of them need to take a checkpoint Wu et al’s [57]
multiprocessor extension of CARER allows a processor to write into its private cache between checkpoints.
Checkpointing, which flushes all modified blocks, is performed when ownership of a block modified since
the last checkpoint changes. SuferyNet is more efficient, since it does not checkpoint before every ownership
transfer. The Sequoia computer system [7] uses private caches to hold state between checkpoints. The mem-
ory holds the consistent (checkpoint) state, and all dirty cache blocks are flushed to the main memory at
every checkpoint. Banétre et al. [5] describe a scheme that is identical to a normal bus-based SMP except
that the traditional memory module has been replaced by an RSM (Recoverable Shared Memory) module.
RSM requires a shadow copy of the entire memory as well as a mechanism for maintaining the inter-proces-

sor dependence graph to establish consistent recovery points.

Software Backward Error Recovery. Software checkpointing has also been done, but at radically different
engineering costs. Tandem machines prior to the S2 (e.g.. the Tandem NonStop) use checkpointing, where
every process periodically checkpoints its state on another processor [45]. If a processor fails, its processes
are restarted on the other processors that hold the checkpoints. Condor [30], a batch job management tool,
can checkpoint jobs in order to restart them on other machines. Work by Plank [37, 38} and Wang and
Hwang [52, 51] uses software to periodically checkpoint applications for purposes of fault tolerance. These
schemes differ from each other primarily in the degree of support required from the programmer, libraries,

and the operating system. SaferyNer differs from these works in that it is a hardware solution.

(Hardware) Forward Error Recovery. FER schemes use redundant hardware to mask fauits. For exam-

ple. redundant processors [4. 26, 27, 54] or redundant threads within a processor [49] can be used to mask

16

processor faults. Redundant paths through adaptive networks allow packets to be routed around faults |13,
15]. There are many industrial systems that use FER. The Intel 432 [27] uses replication of VLSI compo-
nents (i.e., commodity parts) to achieve a range of fault tolerance needs. The Stratus [54] computer system
uses two pairs of processors to mask faults. Within each pair, the two processors compare results—if the
results do not match, a fault has been detected and the other pair is now responsible. The Tandem S2 [26]
uses triply modular redundant (TMR) processors to mask laults. Slipstream [49] is a lighter-weight proves-
sor FER scheme that can use redundant threads within a processor to mask faults. DIVA [4] uses a checker

processor to implement FER on the processor (but not on the system).

Speculation and Versioning of Data. Prior research for supporting speculation has logged changes in state
that is local to a given node {20. 41]. SafervNer’s logging is logically similar, although SafervNer must also
log transfers of ownership in our global checkpoint/recovery scheme. Researchers have used data versioning
in the context of sequential semantics. Databases use versioning to maintain serializability [33]. Speculative
multithreading schemes use versioning lo implement sequential program semantics [2, 11, 21, 32, 40, 48].
Our goal differs in that we superimpose checkpoints on system execution with parallel semantics, to support
availability. We use globally consistent checkpoints rather than local checkpoints at different places in a

sequential execution.

7 Conclusions and Future Work

In this paper, we develop a scheme, called SaferyNet, that improves the availability of shared memory multi-
processors. We describe an implementation of SaferyNer, and we demonstrate that it adds little performance
overhead and has reasonable storage costs. In developing SaferyNer, this paper makes three contributions

which allow SaferyNetr to be efficient in the common case of fault free execution.

e SafetyNet adds no latency to the common case of 99.9% of all instructions.

o SaferyNet hides the latency of fault detection by pipelining the validation of checkpoints. The system

can continue to execute while it determines if old checkpoints can be validated.

e SufervNet maintains memory and coherence checkpoint state in place within the cache hierarchy instead

of copying it to memory and/or disk.

We see interesting avenues for future work. First, we will use SaferyNet to tolerate many of the faults dis-
cussed in Section 5 by developing suitable detection mechanisms. Since SaferyNet provides recovery for
long-latency detection mechanisms, we can focus on stonger. high-latency vodes and signatures Second.
we will use SafetyNet to tolerate harder faults, such as the loss of architectural state in a processor-cache
chip kill. However, this alternative design will achieve this higher level of fault-tolerance for increased over-
heads in time. space. and/or cost. Finally, we will use SafervNer to tolerate selected hardware design errors
by developing mechanisms for detecting such errors and addressing forward-progress issues. Notably, some
of these detection mechanisms can use system-wide communication to detect violations of global invariants

(e.g., in the coherence protocol), since SaferyNet efficiently supports long-latency detection mechanisms.

17

Acknowledgments

We thank the following people for their helpful comments and suggestions on this work: Alaa Alameldeen.

Peter Hsu, Carl Mauer, Ravi Rajwar, Craig Zilles, and the Wisconsin Industrial Affiliates. This work is sup-

ported in part by the National Science Foundation with grants EIA-9971256, CDA-9623632, and CCR-

0105721, IBM Graduate Fellowship (Martin), Intel Graduate Fellowship (Sorin). two Wisconsin Romnes

Fellowships (Hill and Wood), and donations from Compaq Computer Corporation, Intel, IBM Corporation,

and Sun Microsystems.

References

{1

[2}

R.E Ahmed, R C Frazier, and P. N. Marinos. Cache-Aided Roliback Error Recovery (CARER) Algorithms for Shared-Memory
Multiprocessor Systems. In Proceedings of the 20th International Symposium on Fault-Tolerant Computing Systems, pages 82—
88, June 1950.

H. Akkary and M. A. Driscoll. A Dynamic Multithreading Processor. In Proceedings of the 315t Annual IEEE/ACM Internutional
Symposium on Microarchitecture, pages 226-236, Nov. 1998,

R. Anglada and A. Rubio. An Approach to Crosstalk Effect Analyses and Avoidance Techniques in Digital CMOS VLSI Circuits
International Journal of Electronics, 6(5):9-17, 1988.

T.M. Austin. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design. In Proceedings of the 32nd Annual
TEEE/ACM International Symposium on Microarchitecture, pages 196-207. Nov. 1999,

M Bandtre. A. Gefflaut, P. Joubert, P. Lee, and C. Morin. An Architecture for Tolerating Processor Failures in Shared-Memory
Multiprocessors. /EEE Transactions on Computers, 45(10):1101-1115, Oct. 1996.

P Barford and M. Crovella Generating Representative Web Workloads for Network and Server Performance Evaluation. In
Proceedings of the 1998 ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 151160, June
1998,

P. Bernstein Sequoia; A Fault-Tolerant Tightly Coupled Multiprocessor for Transaction Processing. JEEE Computer, 21(2). Feb
1988.

M Bohr Interconnect Scaling - The Real Limiter to High Performance. In Proceedings of the International Electron Devices
Meeting. pages 241-244. Dec. 1995

J.F Cantin. M. H. Lipasti, and J. E. Smith. Dynamic Verification ol Cache Coherence Protocols. In Workshop on Memory
Performance Issues, June 2001. In conjunction with ISCA.

A Charlesworth. Starfire: Exlending the SMP Envelope. IEEE Micro, 18(1):39-49, Jan/Feb 1998.

M. Cintra, J. Martinez, and J. Torrellas. Architectural Support for Scalable Speculative Parallelization in Shared-Memory
Systems. In Proceedings of the 27th Annual International Symposium on Computer Architecture, June 2000.

B Colwell Maintaining u Leading Position. [EEE Compuier pages 45 47 Jan 1098

W.J Dally, L. R Dennison, D. Harris, K. Kan, and T. Xanthopoulos. Architecture and Implementation of the Reliable Router
In Proceedings of 2nd Hot Interconnects Symposium, Aug. 1994

T.]. Dell. A While Paper on the Benefits of Chipkill-Correct ECC for PC Server Main Memory. IBM Microelectronics Division
Whitepaper, Nov. 1997,

J Dualo. S Yalamanchili. and L. Ni_ Interconnection Nerworks. IEEE Computer Society Press. 1997

E Elnohazy. D. Johnson, and Y. Wang. A Survey of Rollback-Recovery Protocols in Message-Passing Systems. Technical
Report CMU-CS-96-181, Department of Computer Science. Carnegie Mellon University. Sept. 1996.

E Elnohazy and W. Zwaenepoel. Manetho: Transparent Roliback-Recovery with Low Overhead. Limited Rollback, and Fast
Output Commil. JEEE Transactions on Computers, 41(5):526-531, May 1992.

S. J. Frank. Tightly Coupled Muitiprocessor System Speeds Memory-access Times. Electronics, 57(1):164-169, Jan. 1984

M. Galles Spider: A High-Speed Network Interconnect. /JEEE Micro, 17(1):34-39. Jan/Feb 1997.

C. Gniady, B. Falsafi, and T. Vijaykumar. Is SC + ILP = RC? In Proceedings of the 26th Annual International Symposium on
Compuiter Architecture, pages 162-171, May 1999.

S. Gopal. T. Vijaykumar, J E Smith, and G.S. Sohi. Speculative Versioning Cache. In Proceedings of the Fourth IEEE
Symposium on High-Performance Computer Architecture, pages 195-205, Feb. 1998.

G. Grohoski. Reining in Complexity. /JEEE Compuier, pages 41-42, Jan. 1998,

R.Gupta. The Fuzzy Barner: A Mechanism for High Speed Synchronization of Processors. In Proceedings of the Third
International Conference on Architectural Support for Programming Languages and Operating Svstems, pages 54-63. Apr
1989

R. Gustafson and F. Sparacio. IBM 3081 Processor Unit: Design Considerations and Design Process. /BM Journal of Research
and Development. 26:12-21, Jan. 1982.

D. Hunt and P. Marinos. A General Purpose Cache-Aided Rollback Error Recovery (CARER) Technique. In Proceedings of the
17th International Symposium on Fault-Tolerant Computing Systems, pages 170-175, 1987

I8

133
[34]

{351
136]
{37
[38]
{39]
[40]

[411

[43]
(44]

[45]
{46}

(47
[48]
149]
(501
(54
[52)
{53]
[54]
[55]
[56]
{57]

[58]

D Jewelt Integrity $2° A Fuult-Tolerant UNIX Platdomn b Peocecdigy of she 2 dmcintione! Nvarpoegias o Proeis 1 s
Computing Systems, pages 512-519, June 1991

D Johnson. The Intel 432: A VLSI Architecture for Fault-Tolerant Computing. IEEE Computer, pages 40-48, Aug. 1984,

T Juhnke and H. Klar. Calculation of the Soft Error Rate of Submicion CMOS Logic Circuits. [EEE Journal of Solid-Siate
Cireuits, 30(7):830-834, July 1995,

D. D. Lee and R. H. Katz. Using Cache Mechanisms to Exploit Nonrefreshing DRAM’s for On-Chip Memories. [EEE Journul
of Solid-State Circuits, 26(4):657-66, Apr. 1991,

M. Litzkow. T. Tannenbaum. J. Basney. and M. Livny. Checkpoint and Migration of UNIX Processes in the Condor Distributed
Processing System. Technical Report 1346, Computer Sciences Department, University of Wisconsin—-Madison, Apr. 1997
P.S. Magnusson et al. SimlCS/sundm: A Virtual Workstation. In Proceedings of Usenix Annual Technical Conference, June
1998

J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. §. Lam, and K. Olukotun. Software and Hardware for Exploiting Speculative
Parallelism with a Multiprocessor. Technical Report CSL-TR-97-715, Stanford University, May 1997.

C Papadimitiiou The Theory of Database Concurrency Control Computer Science Press, Rockville, Maryland, 1986.

D A Pauerson.G. Gibson. and R. H. Katz A Case for Redundant Arrays of Inexpensive Disks (RAID). In Proceedings of 1988
ACM SIGMOD Cunference, June 1988,

L L Peterson and B. S. Davie. Computer Networks: A Systems Approach. Morgan Kaufmann, 1996.

W W Peterson and E 1 Weldon, Jr. Error-Correcting Codes. MIT Press, 1972,

1.S. Plank. An Overview of Checkpointing in Uniprocessor and Distributed Systems. Focusing on Implementation and
Performance. Technical Report UT-C$-97-372, Department of Computer Science, University of Tennessee, July 1997.

1S Plank, K Li. and M. A. Puening. Diskless Checkpointing. I1EEE Transactions on Parallel and Distribuied Systems,
9(10):972-986, Oct. 1998.

D. K Pradhan. Fauli-Tolerant Computer System Design. Prentice-Hall, Inc., 1996.

M Pivulovic, M. J. Garzaran, L Rauchwerger, and J Torrellas. Removing Architectural Bottlenecks to the Scalability of
Speculative Parallelization. In Proceedings of the 28th Annual International Symposium on Computer Architecture, pages 204-
2135, July 2001

P Ranganathan V' S Puand SV Adve Usmg Speculanve Retnemont and Tozer Tsbaction MWindoaws 1 N
Performance Gap between Memory Consistency Models. In Proceedings of the Ninth ACM Symposiurn on Parallel Algorithms
and Architectures. pages 199-210, June 1997.

S. K. Reinhardt and S. S. Mukherjee. Transient Fault Detection via Simultaneous Multithreading. In Proceedings of the 27th
Annual International Svmposium on Computer Architecture, pages 25-36. June 2000.

J. Robertson. Alpha Particles Worry IC Makers as Device Features Keep Shrinking, Semiconductor Business News. October 21,
1998.

E. Rotenberg. AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors. In Proceedings of the 29th
tnternational Symposium on Fault-Tolerant Computing Systems, pages 84-91, June 1999.

O Serlin. Fault-Tolerant Systems in Commercial Applications. /[EEE Computer, pages 19-30, Aug. 1984.

K. Seshan, T. Maloney. and K. Wu. The Quality and Reliability of Intel’s Quarter Micron Process. Intel Technology Journal.
Sept. 1998.

L. Spainhower and T. A. Gregg. IBM 5/390 Parallel Enterprise Server G5 Fault Tolerance: A Historical Perspective. IBM Journal
of Reseaich and Development. 43(5/6), September/November 1999

3G Seflanand T C Mowny The Potential for Using Thiead Tevel Data Speculation o Facihiiane Mot Pacbs st
Proceedings of the Fourth I[EEE Symposium on High-Performance Computer Architecture, Feb. 1998.

K. Sundmiamoorthy. Z. Purser. and E. Rotenberg. Slipstream Processors: Improving both Performance and Fault Tolerance. In
Proceedings of the Ninth International Conference on Architectural Support for Programming Languages and Operating
Sysiems. Nov. 2000.

M. Tremblay. Increasing Work, Pushing the Clock. JEEE Computer, pages 40-41, Jan. 1998.

Y. M. Wang, E Chung,'Y Huang. and E. Elnozahy. Integrating Checkpointing with Transaction Processing. In Proceedings of
the 271h International Symposium on Fault-Tolerant Computing Systems, pages 304-308, june 1997.

Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala. Checkpointing and Its Applications. In Proceedings of the 250
International Symposium on Fauli-Tolerani Computing Systems, pages 22-31, June 1995,

N. Wesle and K. Eshragian. Principles of CMOS VLSI Design: A Systems Perspective. Addison-Wesley Publishing Co., 1982.
D. Wilson. The Stratus Computer System. [n Resilient Computer Svstems, pages 208-231, 1985

S. C. Woo, M. Ohara, E Torrie,]. P, Singh, and A. Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 24-37, June 1995.
D. A. Wood. G. A. Gibson. and R. H. Katz. Verifying a Multiprocessor Cache Controller Using Random Test Generation. [EEE
Design and Test of Computers, Aug. 1990.

K. Wu. W. K. Fuchs, and . H. Patel. Error Recovery in Shared Memory Multiprocessors Using Private Caches. [EEE
Transactions on Parallel and Distributed Systems, 1(2):231-240, Apr. 1990.

J. Ziegler et al. IBM Experiments in Soft Fails in Computer Electronics. /BM Journal of Research and Development, 40(1):3-18,
Jan. 1996.

19

Appendix A: Cache Implementation Details

In this appendix, we describe how to store and manipulate checkpoint numbers at the caches. Cache opera-
tion is conventional, with three important exceptions: (1) a store hit may trigger logging of the block that
would be overwritten, (2) a validation of checkpoint i must find blocks with CN=/ and then set CN=null, and
(3) a recovery must invalidate blocks with CN#null. Since we always recover to RPCN, there are no partial
rollbacks. Case (1) can be detected by comparing the processor’s CCN and the stored block’s CN in parallel
with a standard tag comparison. A store to the cache thus reads the cache tags (but not data) before writing i,

but this is also true for normal stores, since they require a tag lookup (like updating the LRU bits).

Checkpoint validations and system recoveries can be made to operate globally on the caches in constant time
with two changes. First, we store checkpoint numbers encoded as 1-hot bit vectors. This encoding requires &
bits to support k active checkpoints, which is not a problem for the small & we envision (e.g., four). Second,
we keep the checkpoint numbers in the same SRAM with the cache tags and augment the cache tags with a

flash clear on each CN bit column, similar to the mechanism in caches with flash invalidation [29].

20

