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Abstract. One of the stumbling blocks to applying model checking to
a concurrent language such as Java is that a program’s data structures
(as well as the number of threads) can grow and shrink dynamically,
with no fixed upper bound on their size or number. This paper presents
a method for verifying LTL properties of programs written in such a
language. It uses a powerful abstraction mechanism based on 3-valued
logic, and handles dynamic allocation of objects (including thread ob-
jects) and references to objects. This allows us to verify many programs
that dynamically allocate thread objects, and even programs that create
an unbounded number of threads.

1 Introduction

Our goal is to apply temporal-logic model checking to languages such as Java,
which allow (i) dynamic creation and destruction of an unbounded number of
threads, (ii) dynamic allocation and freeing of an unbounded number of storage
cells from the heap, and (iii) destructive updating of structure fields. This com-
bination of features creates considerable difficulties for any method that tries to
check program properties:

— Dynamic storage allocation and dynamic thread creation mean that there is
no a priori upper bound on either the size of a program’s data structures or
the number of threads that arise in the system at execution time.

— Obtaining useful information about linked data structures that can be de-
structively updated is generally very difficult {30, 5, 35].

In such a situation, the challenge becomes one of how to obtain a model
that abstracts away from the details of the system to be checked, but retains
information relevant to the properties to be checked.

This paper shows how to obtain such a model of a concurrent Java program,
and how to perform LTL model checking on this model. The primary technical
tools used in the paper are as follows: (i) Program configurations are represented
as first-order logical structures. The semantics of the program is expressed in
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terms of transitions that operate on first-order logical structures. A program’s
behavior is modeled by a (potentially infinite) transition system; the use of first-
order formulae allows the semantics of pointer manipulations and the dynamic
allocation and deallocation of threads and objects to be described in a natu-
ral way. (i) A powerful abstraction mechanism based on 3-valued logic is used,
together with methods for performing model checking on 3-valued Kripke struc-
tures. (iii) Given a description of the property to be checked as an LTL formula
(together with a description of the abstraction to be applied), we automatically
construct a finite, conservative, 3-valued transition system that approximates the
program’s behavior. (iv) In the course of the latter construction, the abstraction
is augmented in a way that “tunes” the analysis algorithm for the property being
checked.

In high-level terms, the abstraction principles that we use to obtain a model
of a concurrent Java program that may have unbounded numbers of dynamically
created threads and objects can be characterized as follows:

Observation 1. [Model-Extraction Principles]:

(a) Abstraction of system configurations to atomic propositions: As is
standard in model checking, path properties to be checked will be formulated
in propositional temporal logic. The vocabulary of atomic propositions over
which the temporal-logic formulae are formulated is defined, in turn, by for-
mulae in first-order logic; the values of atomic propositions are obtained by
evaluating the first-order formulae on individual system configurations. The
first-order formulae provide formal definitions of the distinctions among sys-
tem configurations that it is possible to talk about; temporal-logic formulae
over this vocabulary state desired path properties of a transition system.

(b) Abstraction of configurations: Finite—albeit 3-volued—abstractions of
a system configuration can be obtained by partitioning the set of individuals
(storage cells, threads, etc.) according to the values the individuals’ have for
certain unary predicates. The configuration is then represented conservatively
by a condensed (3-valued) configuration in which each abstract individual
represents an equivalence class of concrete individuals [35].

(c) Abstraction of system transitions: 4 finite—albeit 3-valued—abstraction
of a system’s transition system can be obtained by partitioning the set of
system configurations according to the values of certain nullary predicates.
The transition system is then represented conservatively by a condensed (8-
valued) transition system in which each abstract configuration represents an
equivalence class of concrete configurations [89].

Obs. 1(b) and (c) are related to the notion of predicate abstraction introduced
by Graf and Saidi [26], and used subsequently by others [18,8]. In many ways,
the models obtained via Obs. 1 closely resemble the standard ones used for
temporal-logic model checking both for the case of finite-state systems [{10] and—
via predicate abstraction—for infinite-state systems. However, in the models that
we obtain, the “truth-value” associated with atomic propositions, transitions,
etc. may be the indefinite truth value “unknown”.



We also make use of the following observation, which ties in with Obs. 1 to
make model extraction ”property-guided”:

Observation 2. [Property-Guidedness]: It is possible to arrange for the ab-
straction steps of Obs. 1 to be influenced by the characteristics of the algorithm
applied to check the property of interest. This can allow the extracted models to
maintain distinctions that are needed for better precision (i.e., for obtaining a
definite answer — true or false, rather than “unknown”) when performing model
checking on 3-valued structures.

In the case of properties stated in LTL, the “characteristics of the algorithm”
that we exploit are the states of the Biichi automaton built to check the property
of interest.

The contributions of our work can be summarized as follows: (i) We present
a method for model-checking of LTL properties of concurrent Java programs.
Our method uses an abstraction technique based on 3-valued logic. Previous
work [39] only addressed safety properties. (ii) Our abstraction mechanisms are
guided by the wocabulary of properties provided by the user. (iii) Our method
applies abstraction to the product-automaton constructed from the program
and the property being checked. This enables the abstraction to be influenced
by the property being checked. (iv) We have implemented a prototype of our
framework. It currently supports verification of LTL properties given directly as
Buchi automata [40]. This system, and applications of it, will be the subject of
a subsequent paper.

. System and Property

Fig. 1. Model checking and abstraction.

/ absvoc 7
SE s§° 5° sf
XBA. ¢ XBA_ s XBA-g
7 absvoc+sT n P
spf Spfe SPfo SPs C SpPf




1.1 Related Work

In many model-checking techniques, the number of threads is fixed, and the
global state of a system is usually described as a fixed-size tuple containing
the program counters of individual threads, and value assignments for shared
variables {10, 20,9]. In contrast, in our approach, the number of heap-allocated
objects and threads is unbounded and can vary dynamically.

Many related works address model-checking of Java programs without the
use of abstraction, and therefore usually impose an a priori bound on the number
of allocated objects and threads (e.g., [27, 36, 33, 13]).

The popular LTL model-checker SPIN [28], imposes an a priori bound on the
number of allocated objects and threads, and does not support dynamic alloca-
tion of objects. A variant of SPIN, named dSPIN [19], does support dynamic
allocation of objects; however, it can only handle bounded data structures and
a bounded number of threads.

Many approaches have been proposed for the verification of infinite-state
systems [38, 1, 7], and particularly systems with an unbounded number of threads
[4, 31]. Most approaches do not address dynamic allocation of objects.

Most previous work based on predicate abstraction, e.g., [26,8], does not
address languages that support dynamic allocation and deallocation of objects
and threads. One exception is the work by Das et al. [18], which uses predicate
abstraction to verify properties of a concurrent garbage-collection algorithm.

In [20], the state space is reduced by exploiting symmetries between process
indices. However, the representation used by [20] imposes an a priori bound on
the number of threads, and does not handle dynamic allocation of objects and
threads. In contrast, in our approach, threads are named by so-called canonical
names, which are a collection of thread properties that hold for the thread (see
Obs. 1(b) and Section 5).1 The use of this naming scheme automatically discov-
ers commonalities in the state space, but without relying on explicitly supplied
symmetry properties; there is no need to define a process-naming scheme that
incorporates permutation-equivalences (which may be destroyed anyway in the
presence of dynamic process creation).

Construction of a “product” program from a given program and property was
previously introduced by [11]. However, [11] only addresses safety properties of
sequential programs.

The work described in this paper is an outgrowth of previous work on shape
analysis [30, 5, 35], and specifically the approach of Sagiv, Reps, and Wilhelm,
which is based on 3-valued logical structures [35]. Our work uses abstraction
techniques that handle an unbounded number of thread objects in a manner
similar to the way [35] handles an unbounded number of heap-allocated objects.
This approach was pioneered in [39]; however, the present paper addresses full
LTL, whereas [39] addressed only safety properties.

! One can still express static thread naming in our framework by using unary predi-
cates to denote thread names.



Corbett has applied the results of shape analysis of concurrent programs
to reduce the size of finite-state models of concurrent Java programs [12]. In
Corbett’s work, however, the number of threads is bounded.

Model-checking using multi-valued logics was addressed by [6,2,3] in order
to reason about partial or inconsistent systems. However, all of the above put
an a priori bound on the number of objects and threads, and do not support
dynamic allocation and deallocation.

Theoretical aspects of many-valued modal logics were investigated in the
past by Fitting (e.g., [21], [22]). In particular, [21] presents a family of many-
valued modal logics in which formulae may take values in a many-valued logic,
and the accessibility relation between worlds can also take values in the many-
valued logic. In this paper we use first-order 3-valued models corresponding to
the propositional models discussed in [21].

1.2 Model Checking and Abstraction

Figure 1 gives an overview of the various families of Kripke structures that
arise in our work, and the inter-relationships among them. Boxes labeled with S
stand for Kripke structures of the system; boxes labeled with SP stand for the
product-automaton of the system and the property. Every box in the diagram
is labeled with the kind of logical structures used to label nodes in the Kripke
structure, and with the number of truth values used. We use four different types
of generalized Kripke structures:

— 8P, SPF ¢ K{: standard Kripke structures, in which each state is labeled
with a set of 2-valued propositions.

~ 8P, 8PF € K{: each state is labeled with a set of 3-valued propositions.

— 8§80 SPFO € K£O: each state is labeled with 2-valued first-order structures.

~ SFO SPFO e K¥O: each state is labeled with 3-valued first-order structures.

The relationship between K¥ and K% was previously investigated in [2]
to allow reasoning about partial state spaces. In [2], a partial state space is
represented using a 3-valued propositional Kripke structure.

The SPIN model-checker [28] follows the path S — SPf — DDFS,, which
corresponds to model checking with no abstraction. SPIN only uses 2-valued
propositional logic (the edge labeled “xBA-®” stands for the step in which
5% is combined with the automaton that represents the negation of the prop-
erty of interest). SPIN uses the double-DFS algorithm [25,14] for state-space
exploration.

Previous work by the first author [39] corresponds to the path S5’ O .. §F0,
where the resulting model is later explored for configurations violating a specified
safety property.

In this paper, we concentrate on the following aspects of Figure 1:

— Extraction of a 2-valued model: A 2-valued propositional Kripke structure is
extracted from a program that may contain dynamic object (and thread)
allocations. This corresponds to the path S¥© — Sf in Figure 1. The




extracted Kripke structure may be infinite, since no abstraction has been
applied. (See Section 4.1.)
— Extraction of a 3-valued model that incorporates property-guided abstrac-

tion. This corresponds to the path S§° — SPFO — SpFO ?Pf in
Figure 1. (See Section 4.2 and Section 5.)

The remainder of the paper is organized as follows: Section 2 provides an
overview of automata-based model checking, and gives some background on Java.
Section 3 presents a technique for modelling program behavior using 2-valued
logical structures. Section 4 presents a method for model extraction that lays the
groundwork for property-guided abstraction. Section 5 describes how 3-valued
logical structures are used to perform model checking with abstraction. Section 6
describes a few details of our prototype implementation.

2 Preliminaries

Verification using Linear Temporal Logic

Verification of an LTL property consists of verifying that all of the infinite
execution sequences of a program satisfy the property-formula. It is common
to use automata-based verification techniques to verify LTL properties [24, 14,
37]. Automata-based verification represents the verified system and the de-
sired LTL property using Biichi automata. A Biichi automaton is a five-tuple
A= (5,85, As, S0, F), where ) is the finite alphabet of the automaton, S is
the finite set of states, A; C § x X x § is the relation of labelled transitions,
Sg € S is the set of initial states, and F C S is the set of accepting states.

An execution of A over a word w is an infinite sequence p = 39, 81, ... such
that so € Sp and for each ¢ > 0 : (s;,w(i), 8;41) € As. An execution is said to be
accepting iff some accepting state f € F' appears in p infinitely often. The lan-
guage L(A) is the set of possible behaviors of the modeled system. Traditionally,
verification of an LTL property & consists of the following stages:

~ Building a Biichi automaton A, = (X, 8,,4,,50, F,) for ¢ = —& (the
negation of the property @ being checked). In this paper, we assume that
the construction of a Biichi automaton for ¢ is performed by an existing
algorithm such as [24,17].

— Building a representation of the system as a Biichi automaton 4, = (X, S, A, SY, Ss),
where X' is the automaton alphabet, S, is the set of states, Ay C 55 x 2 x S5,
is a set of labeled transitions. and S? is the set of initial states. Note that
all states of the system automaton are accepting states.

— Constructing the product of the two automata. The product automaton is de-
noted by M = (X, 8, % S,, A’, S% x S’g, Ss x F,), where ((s1,0;),1, (8z,0y)) €
A'ME (84,1, 85) € Ag and (pj,1,py) € Ay

—~ Checking for an accepting cycle that is reachable from one of the initial states
in the product automaton.If an accepting cycle is found, it is a counter-
example for the specification. Otherwise, the property is proven correct.



The double-DFS algorithm [25, 14] efficiently finds accepting cycles in the
constructed product automaton.

Java Concurrency

Our work addresses the problem of verifying properties of concurrent Java pro-
grams. This section gives a brief and partial overview of the concurrency model
used by Java. Only details necessary for our presentation are given. More details
can be found in [32].

Java supports concurrency using a specially designed class java.lang.Thread.
Objects of class Thread are concurrently executing activities. Note, however,
that from an allocation perspective, a thread object behaves just like any other
object.

The constructor for class Thread takes as a parameter an object that im-
plements the Runnable interface, which requires that the object implement the
run() method. A thread is created by executing a new Thread() allocation state-
ment. A thread is started by invoking the start () method and starts executing
the run () method of the object implementing the Runnable interface.

Initially, a program starts by starting up a single thread, which executes the
main() method of a user-specified class. Java assumes that threads are scheduled
arbitrarily.

Each Java object has a unique implicit lock associated with it. In addi-
tion, each object has an associated block-set and wait-set for managing threads
that are blocked on the object’s lock or waiting on the object’s lock. When a
synchronized(expr) statement is executed by a thread ¢, the object expression
expr is evaluated, and the resulting object’s lock is checked for availability. If
the lock has not been acquired by any other thread, t successfully acquires the
lock. If the lock has already been acquired by another thread ¢/, the thread ¢
becomes blocked and is inserted into the lock’s block-set. A thread may acquire
more than one lock, and may acquire a lock more than once. When a thread
leaves the synchronized block, it unlocks the lock associated with it.

The example program shown in Figure 2 consists of a request queue holding
incoming requests, and a main loop creating a new RequestHandler thread for
each request. Each RequestHandler thread repeatedly tries to enter the critical
section, perform some operations on the exclusive shared resource (e.g., a log-
file), and leave the critical section.

3 Modeling Program Behavior via Logical Structures

This section shows how to construct a model of the analyzed program using
logical structures. The section mostly summarizes the work of Yahav [39]. The
formal aspects are described in more detail in [39].




public class RequestHandler public class Main { ...
implements Runnable { ... public static void main() {
public void run() { while (true) {
while (true) { if (curr != tail)
synchronized(1) { r = curr;
// do some critical stuff curr = curr.next;
} t = new Thread(new RequestHandler(r));
t.start();
}r} Prid

Fig. 2. Request handler program.

3.1 Representing Program Configurations via Logical Structures

A program configuration encodes a program’s global state, which consists of (i) a
global store, (ii) the program-location of every thread, and (iii) the status of locks
and threads, e.g., if a thread is waiting for a lock. First-order logic is used in
this paper to express configurations and their properties. For every analyzed
program, we assume that there is a set of predicate symbols P, each with fixed
arity. A program configuration? is a 2-valued logical structure Ch = (U, ),
where

— U is the universe of individuals. Each individual in U" represents a heap-
allocated object (some of which may represent the threads of the program).
— Y is the interpretation function mapping predicates to their truth-value in

the structure, i.e., for every predicate p € P of arity k, ¢!(p): Ut {0,1}.

Table 1 contfains the predicates used to analyze the example program. Note
that predicates in Table 1 are written in a generic way and can be applied to
analyze different Java programs by modifying the set of labels and fields.

In this paper, configurations are presented as directed graphs. Each individual
from the universe is displayed as a node. A unary predicate p which holds for
a node v is drawn inside the node. The name of a node is written inside angle
brackets and only used for ease of presentation. A true binary predicate p(u1, uz)
is drawn as directed edge from u; to ug labelled with the predicate symbol.

Example 31 In the program in Figure 2, handler threads compete for a shared
lock 1. Figure 3 shows a possible configuration arising with this program. The
configuration consists of five requests, r1, ..., r5 arranged in a queue. Three of
the requests, 1, r2, and 73, are already handled by three created threads, t1, t2,
and t3. In this configuration, the lock ! has been acquired by the thread £;.

Properties of a configuration can be extracted by evaluating logical formulae
with respect to the configuration. For example, the formula 3¢ : is_thread(t) A
held_by(l,t) describes the fact that the lock | has been acquired by some thread.

2 In this paper, we use the natural symbol () to denote entities of the concrete domain.
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Fig. 3. A possible configuration Cst of the example program.

[ Predicates [Intended Meaning
15 thread(t) t is a thread
{at[lab](t): lab € Labels} thread ¢ is at label lab

{rvalue[fld](o1,02): fld € Fields} |field fld of the object o1 points to the object o2

{global[f1d](0): fld € Fields} |field fld of the global environment points to the object o

held.by(l,t) lock ! is held by the thread ¢

blocked(t, 1) thread ¢ is blocked on the lock [

Table 1. Predicates for the semantics of a Java fragment.

3.2 System Traunsitions
Informally, a transition is characterized by the following kinds of information:

— A source label l .. which is the source label for the transition.

— A precondition under which the action is enabled. A precondition is expressed
as a logical formula. This formula may make use of free variables, including
a designated free variable ¢, to denote the “scheduled” thread on which the
action is performed. Our operational semantics is non-deterministic in the
sense that many actions can be enabled simultaneously, and one of them
is chosen for execution. In particular, it selects the scheduled thread by an
assignment to t,. This implements the interleaving model of concurrency.

— A collection of predicate-update formulae (for example, see Table 2). An en-
abled transition creates a new configuration, where the interpretation of ev-
ery predicate p of arity k is determined by evaluating a formula ¢p(v1, .. ., Ug),
which may use v1,...,v; and ts, as well as other predicates in P.

~ a target label lyg which defines the target label for the transition.

We refer to the pair of an enabling-condition and predicate-update-formulae
as an action. A transition is enabled under an assignment Z in a source con-
figuration C; only when at[lsrc](ts) holds under Z, and Z satisfies the action’s
precondition.




Note that the predicates at|[lab](t) are just regular unary predicates, and are
encoded as part of the program configuration.

We use special actions for the creation and removal of individuals. The
special action new creates a new individual une, and results in a structure
oY = (U U {Unew}, t'). The special action free removes an individual from
the universe.

Figure 4 shows the transitions

for a single RequestHandler thread.

We write transitions in the form lo lock(l) Iy

lsre aclargs) lige where ac is used to : lo blockLock(l) lo
denote a pair consisting of a precondi- l; critical() Is
tion and update-formulae (whose de- ls unlock(l) Is
tails are given in Table 2). A program I3 skipQ) g
transition system (PTS) is a collec-

tion of such transitions.

Procedure calls are handled as
in [34], and exceptions are modelled
with appropriate transitions. Due to  Fig. 4. Transition system for a Handler
space limitations, we omit additional  thread.
discussion of these language features.

Example 32 The transition-system given in Figure 4 corresponds to the state-
ments executed by a single RequestHandler thread. Actions used in the transi-
tion system are defined in Table 2. Note that a single statement (or condition)
may be represented by more than a single transition.

[ Action | Precondition | Predicate-Update Formulae

|

lock(v)

~3t # ts @ rvalue[v)(ts, )
Aheld by(l,t)

heldmby'(ll,h) ES held_by(l1,t1) \Y (t1 =ts Al = l)
blocked'(tl, ll) = blocked(tl, ll) A ((tl 7& ts) \ (l1 # l))

unlock(v)

rvaluelv](ts, )

heldby (11, t1) = heldby(ls, t1) A (b1 # ts V 1 # 1)

block Lock(v)

3t # &5 : rvaluelv|(ts, )

blocked'(t1,11) = blocked(t1,l1) V (t1 = ts Aly =1)

Aheld_by(l, t)

Table 2. Operational semantics for lock actions.

We divide our predicates into two (disjoint) sets: core predicates and instru-
mentation predicates. Core predicates serve as the building blocks used in for-
mulae to model the semantics of actions (i.e., the predicates in Table 1 are used
by actions in Table 2). Instrumentation predicates are used to record derived
properties of individuals. Instrumentation predicates are defined using logical
formulae over core predicates. Table 3 lists the instrumentation predicates used
in our example program.



[ Predicate | Intended Meaning Defining Formula |

r[fid}(l) I is referenced by the feld fld of some object  [Jo: rvalue[fld](o,1)

is_acquired(l) 1 is acquired by some thread Tt: held.by(l,t)

object o is reachable from the object referenced b .
ralglb, f1d)(0) | o) onal[glb] wsing & path of fid od ées Y |30, : global[glb](01) A rvalue*[fid](o1,0)

Table 8. Instrumentation predicates for the semantics of a Java fragmént.

What has been described above can be thought of as a specification for a
variant version of a Kripke structure for the program. In this Kripke structure,
a node is labelled with a 2-valued logical structure rather than with a subset of
atomic-propositions, as is done in most work on model checking. More formally,
a KO structure is a four-tuple k§'© = (S, R, So, I), where S is the (potentially
infinite) set of states, R C S x S is the transition relation, Sy is the set of initial
states, and I : § — 2-STRUCT[P] where 2-STRUCT[P] is the set of general
two-valued logical structures over the set of predicates P.

4 Model Extraction

This section describes a non-standard approach to the construction of a prod-
uct automaton. This approach plays a key role in Section 5, which presents an
abstraction of the product automaton that (i) is more precise than if we had
first built an abstracted version of the system-automaton, and computed the
product-automaton afterwards, and (ii) is property-guided in the sense that the
abstraction is specific to the property to be verified.

4.1 Extracting Atomic Propositions

In standard model-checking [10], the atomic propositions of the problem are
usually presented by fiat, and represent the lowest level of information that is
made available about the actual actions of the system. In this paper, the atomic
propositions are obtained by evaluation of logical formulae in first-order logic.
Such formulae are expressed in terms of the core predicates and are evaluated
with respect to system configurations.

We call the extracted nullary predicates the vocabulary of the model-checking
problem, since the set of such predicates forms the language in which one can
express the properties to be verified. The (finite) set of vocabulary predicates is
denoted by Iec.

This approach is the embodiment of Obs. 1(a). It explains where atoric
propositions come from in the complicated situation that we are dealing with,
where objects and threads can be dynamically allocated and deallocated.

We assume that the defining formulae for the vocabulary predicates are pro-
vided by user. These formulae provide formal definitions for the distinctions that




the user wishes to be able to make about execution states. Using LTL formulae
over this vocabulary then allows the user to state desired path properties.

Given a 2-valued logical structure 7', and a set of nullary predicates @,
nT,Q) = {plp € Q,ir(p) = 1} is the set of all nullary predicates in @
that hold in 7. Given a K&© structure k§'° = (S, R, So, I2), the exztraction
of a Kripke structure from k£© is k = (S, R, Sy, 1), where for all s in S,
I1(8) = n(I2(8), Tnoc)-

4.2 Representing the Product Automaton

In this section, we use a single K¥© structure to represent the product of the
K¥O structure for the program, and the Biichi automaton for the negation of
the property of interest. This creates a kind of infinite Biichi automaton, but
where acceptance is now defined with respect to the finite-cardinality partition of
the state space induced by the finite number of accepting states of the property
automaton. That is, a path through the constructed K&'© structure is accepting
if infinitely often the path encounters a state whose property-automaton-state
component is accepting.

Instead of constructing a system-automaton and property-automaton sepa-
rately, and then combining them by a product construction, we present a tech-
nique in which the product-automaton itself is constructed directly from an
instrumented version of the system actions.

Given an LTL property and a concurrent program represented as a tran-
sition system, we first construct a property-automaton for the negation of the
desired property using a standard construction algorithm. We then create an
instrumented version of system-actions to track the state of the desired property
for each program configuration. This construction produces the product of the
system and the property: every configuration of the constructed K4 structure
incorporates information about both the state of the system, and the state of
the property automaton.

Our approach is to incorporate the state of the property automaton in the
configuration as a set of nullary predicates. We do this by adding nullary predi-
cates corresponding to property-automaton states — one predicate for each au-
tomaton state. (A more efficient approach is to encode the states of the property-
automaton using logs|states| predicates. To simplify the presentation, we present
only the first approach).

Let 4, = (X, S(,,,A(p,Sg,Fw) be a property automaton where 2 consists
of subsets of instrumentation predicates from the set o (i€, 2 = 2lvee). We
define

— A set of nullary predicates {n|n € S,} corresponding to states of the
automaton. In addition, a designated nullary predicate accepting is de-
fined to denote accepting states. We denote the set of nullary predicates
as N = {n|n € S,} U {accepting}.

— A set of actions representing automaton transitions. A transition (s;,1,s;) €
A, is represented by an action with the precondition s; Al, and a predicate-
update formula to update s;, s;, and possibly accepting.



Example 41 Consider the example program given in Figure 2. For the purpose
of illustrating the machinery, suppose that we would like to check whether the
system has the property “no thread ever acquires the lock referenced by ". An
appropriate atomic proposition could be formulated as ¢ = —3t, u: is.thread(t) A
rvalue[l)(t, u) A held-by(u,t). The LTL formula is therefore Gi.

We first compute the negation of
the property, and generate instrumen- i True

tation predicates to encapsulate first- . .

order formulae. The negation of the g
property is F-i — i.e., eventually a —
thread will acquire the lock . An au-

tomaton for the negated property is
now constructed. The resulting prop-
erty automaton is given in Figure 5.

The automaton has two states:
Sout and Sy,. The initial state is S =
Sout- The accepting state is F,, = Sin.

The generated set of property-nullary predicates is N = {n|n € Sy} U
{accepting} = {Sout, Sin, accepting}. The corresponding set of actions is given
in Table 4.

Fig. 5. An automaton for a simple live-
ness property.

[ Action [Precondition|Predicate-Update Formulae |

Sout — Sin Sout A1 |Sour =0, Sin, = 1, accepting =1
So'u.t — Sout Sout A=
Sin -+ Sin Sin

Table 4. Actions for the property automaton of Figure 5.

A configuration of the product-automaton is defined as a product of the
system-configuration and the property-configuration as follows:

A product configuration is a 2-valued logical structure Ch = (U",i?) over the
predicates P U N, where each individual in the universe U" represents a heap-
allocated object, for every predicate p € P of arity k, A(p): Ut {0,1}, and
for every predicate n € N, fin— {0,1}.

Because the precondition for the property-action is formulated in terms of
current predicate values, the system-action and the property-action can be com-
posed into a single product-action. Table 5 shows the product of the property-
actions with the system’s lock(v) action. The prime notation denotes the value
of a predicate after the action has been applied, and is simply a shorthand for
the corresponding predicate-update formula. For example, i’ denotes the value
of the instrumentation predicate ¢ after the system-action has been applied.




[Product Action[Product Precondition] Product Predicate-Update Formulae

lock(v) % -3t # t, : rvalue[v](ts, 1) Sout = 0, Sin = 1, accepting =1
Sout — Sin Aheld. by(l,t) i = —rvaluellock](ts,!)
ASout A 3’ held by (l1,t1) = held by(l1,t1) V (t1 = ts Al1 =)
blocked' (t1,11) = blocked(t1,l:) A ((t1 # ts) V (I1 # 1))
lock(v) x -3t # s : rvaluev](ts, 1) i’ = —rvaluellock)(ts,!)
Sout = Sout /\held_by(l, t) held_by'(ll, tl) = held_by(ll,tl) \ (tl =t Al = ])
ASput A =t blocked'(t1,11) = blocked(t1,1:) A ((t1 # ts) V (I # 1))
lock({v)x Sin 1 = —wrvaluellock](ts,1)
Sin — Sin held_by’(ll,tl) = held_by(l1,t1) vV (tl =t; Aly = l)
blocked' (t1,11) = blocked(t1,11) A ((t1 # ts) V (I # 1))

Table 5. Product actions for the property automaton of Figure 5 and the action
lock(v). Note the use of ¢’ in the precondition.

5 Verification with Automatic Abstraction

In this section, we describe how to create a conservative representation of the
concrete model presented in Section 3 in a way that provides both finiteness and
high precision.

5.1 Representing Abstract Program Configurations via 3-Valued
Logical Structures

This section presents the abstraction mechanism of Obs. 1(b). To make it feasible
to perform model checking, we conservatively represent multiple configurations
using a single logical structure that is finite, but uses an extra truth-value, 1/2,
which denotes values that may be 1 or may be 0. The values 0 and 1 are called
definite values, the value 1/2 is called an indefinite value. The commutative join
operator denoted by U is defined as follows: zUz = z, 1/2Uz = 1/2, 0U1 = 1/2.

Formally, an abstract configuration is a 3-valued logical structure C = (U, 1),
where each individual in the universe U represents possibly many allocated heap
objects, and for every predicate p € P of arity k, ¢(p): U* — {0,1,1/2}. An
individual u € U that represents more than a single object is called a summary
node.

Example 51 The configuration Cg represents the concrete configuration Cal of
Figure 3. The summary node labeled s;; represents the threads t2 and t3, both
of which are at the same program label lp. The summary node labeled s, rep-
resents the requests ro and r3, both already handled by a handler thread. Note
that the abstract configuration Cg essentially represents all concrete configura-
tions that have one or more threads residing at program label ly, when one or
more requests are already (possibly) handled. Thus, configuration Cg represents
infinitely many concrete configurations. (Note, however, that Cs also represents
configurations in which only some of the requests preceding curr are handled).
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Fig. 6. An abstract configuration Cs that represents the concrete configuration Csh.

Configuration Embedding We now formally define how concrete configura-
tions are represented by abstract configurations. The idea is that each individual
from the concrete configuration is mapped into an individual in the abstract con-
figuration. More generally, it is possible to map individuals from an abstract con-
figuration into an individual in another less precise abstract configuration (note
that the concrete configurations are a subset of the abstract configurations).

Formally, let C = (U,1) and C’ = (U’,/) be abstract configurations. A
function f: U — U’ such that f is surjective is said to embed C into C' if for
each predicate p of arity k, and for each u1,...,ux € U one of the following
holds:

Up(ur,- -y uk)) = L (O(F (), fwe))) or (p(f(wa)s ... flur))) =1/2

We say that C’ represents C when there exists such an embedding function
f. We denote the fact that C can be embedded in C" as C C C'.

One way of creating an embedding function f is by using canonical abstrac-
tion. Canonical abstraction maps concrete individuals to an abstract individual
based on the values of a subset A of the unary predicates, called the abstraction
predicates. All individuals having the same values for predicate symbols in A are
mapped by f to the same abstract individual. This leads to a bounded-size logi-
cal structure because there can be no more than 3!4! individuals in the resulting
structure.

Given a first-order structure C!, we denote the abstraction of ChY over the set
of abstraction predicates A by abs4(C").

Note that canonical abstraction captures commonalities among the different
individuals that populate concrete configurations. In particular, for any given set
of properties T' that characterize threads, there are only 2T possible names of
thread equivalence classes. When a transition in the program involves dynamic




allocation (or deallocation), the new abstract configuration automatically adjusts
to take into account the presence (or absence) of the new (or deleted) entity.
By these means, canonical abstraction clusters processes into a finite number
of equivalence classes according to property patterns that actually arise in the
reachable configurations.

Implementing an algorithm for applying actions on abstract configurations
is non-trivial because one has to consider all possible relations on the (possi-
bly infinite) set of represented concrete configurations. Roughly speaking, this
corresponds to evaluation of the precondition and predicate-update formulae in
3-valued logic. [39] describes how the focus and coerce operations of [35] can be
used to perform rewrites directly on abstract configurations in a conservative
but quite precise way.

5.2 Kfo Structures

A KFO structure is a four-tuple K¢ = (S, R, Sp, I}, where S is the set of states,
R C § x S is the transition relation, Sy is the set of initial states, and [ : S —
3-STRUCT|P] where 3-STRUCT|P] is the set of 3-valued logical structures over
the set of predicates P.

Since every state of a K{'© structure is labeled with a 3-valued logical struc-
ture, every state may actually represent a (possibly infinite) number of states of
the corresponding K4'© structure.

Embedding into KI? Structures This section presents the abstraction
mechanism from Obs. 1(c), which creates a K{© structure k{'C from a K£©
structure k%’ O, In particular, the structure k{ © is a finite structure whenever
the FO structures labeling k4'C have been abstracted via canonical abstraction.

Suppose that k£° = (8%, R, S" Iy € KFO. Tt is convenient for us to be
able to consider R and Sp" as mappings into Boolean values. That is, the 2-
valued transition relation R! is now considered to be the characteristic mapping
Rb = St x S% — {0,1}. Similarly, So" is now considered to be a characteristic
function that identifies the set of initial states, So? = St — {0,1}.

Given a structure k¥ = (S" RY, 8o ') in K£© and a set of abstraction
predicates A for the FO structures of ks node labels, k is the induced K%¢
structure, where

S = {absa(s)|s € S}
R fead >\81'>\s2'L-I{abs,q(81h)=S1,absA(32h)=32} Rh(31752) (1)
Sp = XSO-U{absA(son)mo} Soh(so)

Note that R is a 3-valued transition relation, mapping into the values
{0,1,1/2}. Similarly, the 3-valued set of initial structures Sp maps elements
of § into {0,1,1/2}.

Note that transition edges in a condensed K. f © structure are typically “may-
transition” edges. This contrasts with previous work that has made use of surjec-
tive embeddings for abstracting system models, where 2-valued Kripke structures
are mapped to 2-valued Kripke structures (cf. [8]).



Slmulatlon Preorder of KFO Structures In this section, we show that a
K structure may simulate a more precise K&’ O structure. We define the sim-
ulatwn preorder between K O structures, and show that the results obtained
by evaluating LTL formulae over an abstracted K4'© structure are conservative.
The semantics of 3-valued propositional modal logics is described in [3]. Combin-
ing 3-valued modal logic with a first-order language yields a 3-valued first-order
modal Jogic as the one used in this paper. The reader is referred to [23] for more
details on ﬁrst order modal logic.

Given MFO = (8, R, 8%, I,) and Q5O = (Sg, Ry, 59, 1), two K3 © struc-
tures, a relatlon H C S, x Sy is a simulation relation lﬂ for every Sm € Spy and
Sq € Sg such that (sm,sq) € H the following holds:

~ Im(8m) T I4(sq), ie., the configuration labeling s, is embedded in the
configuration labeling s;.

— for every state s,, such that (sm,s),) € Rm, there exists s, such that
(5q,84) € Ry and (sp,,sy) € H.

We say that MEC is simulated by Qf £O. denoted by M{© < Q , if there
exists a simulation relatlon H such that, for every 1n1t1a1 state s0, € S5, there
is a corresponding initial state s € SO such that (s9,, q) € H.

Lemma 51 < is a preorder on the set of K¥© structures.

Theorem 52 Given two K¥© structures, Mi FO < QFO. For every LTL formula
¢, [M5° = ¢] T 1QF° = ol

We now show that the (finite) abstraction of the product-automaton simulates
the (possibly infinite) concrete product-automaton. This corresponds to SPf o
of Figure 1 simulating SPF© of the same figure.

Theorem 53 Let S§© € K£'© be a 2-valued Kripke structure modelling system
behavior, and BA_g be the Buchi automaton for the property to be verified.
The product automaton constructed using our framework, SPf O simulates the
* (possibly infinite) concrete product automaton SPfO, i.e., SPfO < SPfe.

5.3 Instrumentation, Abstraction, and the Property-Guidedness
Principle

An instrumentation predicate is defined using a logical formula over core pred-
icates. However, rather than evaluating the defining formula for each config-
uration that arises, instrumentation predicates are explicitly updated by the
predicate-update formulae of the actions. The reason for doing things in this
way is that, in 3-valued logic, the value generated for a configuration by an in-
strumentation predicate’s predicate-update formula—evaluated in the previous
configuration—may be more precise than the value obtained by evaluating the
instrumentation predicate’s defining formula in the (current) configuration. This
is known as the Instrumentation Principle [35].




A critical aspect of instrumentation predicates is the fact that they affect
the precision of the abstraction applied to configurations. In our framework,
abstraction is guided by two things:

— Unary abstraction predicates: Individuals having identical values for unary
abstraction predicates are mapped into a single abstract individual. There-
fore, adding unary abstraction predicates may allow maintaining finer dis-
tinctions among individuals.

— Nullary predicates: The value of a nullary instrumentation predicate of a
2-valued configuration is unaffected by canonical abstraction (cf. Eqn. (1)).
Therefore, when we introduce more nullary predicates, we refine the set of
K¥O structures that is induced by canonical abstraction.

Nullary instrumentation predicates are being used here in two ways: (i) to
record the vocabulary of the temporal-logic property of interest, and (ii) to record
the state of the property automaton (see Section 4.2). Both kinds of nullary pred-
icates introduce distinctions between configurations that are otherwise identical.

The nullary automaton-state predicates are particularly important for im-
proving the precision of the analysis. Because these instrumentation predicates
capture different states that are relevant to the verification of the property, the
abstraction that they induce is targeted to the structure of the automaton—
and hence to the formula that states the property of interest. It is this aspect
of our approach that permits us to claim that model extraction is “property-
guided” in the sense of Obs. 2. It should also be noted that, because the nullary
automaton-state predicates are generated automatically from the automaton for
the property of interest, property guidedness is obtained fully automatically.

The vocabulary instrumentation predicates are also important for improving
the precision of an analysis, as shown by the following example:

r{nexi]
rgihead.next]
rgfcurr.next]

<x5>
rinext]
rglhead,next}
rgfeurr.next]
rgltail.next)

rfnext)
rgihead.next]

globaljhead])

globalfcurr}

handles

rvatue{l}
rvajuc]l]

Fig. 7. A concrete configuration C7 with partial request coverage.

Example 52 The concrete configuration C* shows a configuration, in which
only part of the requests preceding curr in the request queue have been handled.



The concrete configuration Cs5" corresponds to a similar configuration in which all
requests preceding curr have been handled. Both configurations are represented
by CG.

Now, suppose that we want to reason about whether all requests preced-
ing curr in the request queue are handled. We formulate this requirement
as: Vr: rglhead, next)(r) A —rglcurr,next] — 3t: is_thread(t) A handles(t,r).
We would define a vocabulary that includes the instrumentation predicate
rc = Vr: rglhead, next|(r) A —rglcurr,next] — 3t: is_thread(t) A handles(t,r),
and Fre would be the property of interest.

When instrumentation predicates from the vocabulary are ignored, the con-
figurations Cs" and C;" are represented by the same abstract configuration Cs,
which does not contain definite information about whether all requests preceding
curr are handled. That is, rc evaluates to 1/2 in Cs.

Adding rc as an instrumentation predlcate refines the abstraction so that
it is capable of dlstlngmshmg between Cs' and C;% that is, with rc as an in-
strumentation predicate, C5" and C;" map to different abstract configurations.
Moreover, all abstract configurations of the abstract state-space now record
whether “some” versus “all” requests that precede curr in the request queue
have been handled.

6 Prototype Implementation

We have implemented a prototype of our framework called 3VMC [40].

Our framework follows the path S¥° — SPF° — SPF o E?P shown in
Figure 1. The result of this path is a finite abstract 3- valued proposﬂ:mnal model

simulating the possibly infinite concrete model. Moreover, the model S’P3 ob-
tained by following this path may be more precise than the model SPF obtained
by following the path S§© — S§O — S — SPF since it allows the abstraction
to be affected by the property being verified.

Tedmically, our prototype implementation does not perform the extraction
ofa KF 3 model from the Kj FO model In our prototype 1mp1ementat1on, DDFS
performs exploration of the K¥O model, building the K. O model on the fly.

The algorithm is conservative: it cannot miss a counter-example, but it might
find an artificial counter-example that is caused by the abstraction used. That
is, the algorithm may produce false alarms; it may detect a cycle (and return a
counter-example) even when the language L(M) is empty. This is a consequence
of Theorem 53.

In general, model checking of programs with procedure calls, concurrency,
and unbounded data structures is undecidable. Here we have side-stepped this
problem by giving an algorithm that—in a finite amount of time—is guaranteed
only to provide a safe answer.

The number of abstract configurations that can arise for a program when
using a particular abstraction is 0(23!““”) where |A] is the number of abstrac-




tion predicates used for modelling a global state of a program, and |P| is the
number of predicates used to encode the property automaton.

of

Our experience in [39] indicates that for safety properties, the actual number
configurations arising for a program is significantly smaller than the upper

bound. We do not yet have an experience with liveness properties of large pro-
gras.
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