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Abstract

In [9] the authors introduced a linear algorithm for determining the affine calibration between two
camera views of a dynamic scene. In this paper, we expand upon the algorithm and investigate its
performance experimentally. The algorithm computes affine calibration directly from the fundamental
matrices associated with various moving objects in the scene, as well as from the fundamental matrix
for the static background if the cameras are at different locations. A minimum of two fundamental
matrices are required, but any number of additional fundamental matrices can be incorporated into
the linear system to improve computational stability. The technique is demonstrated on both real and
synthetic data.

This work is sponsored by the National Science Foundation under Grant No. I1IS-9530985 and by the Defense Advanced Research
Projects Agency (DARPA) and Rome Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-1-0138.






1 Introduction

Most research into camera calibration and scene reconstruction has focused on static scenes, or scenes without
motion. Algorithms developed for static scenes can also be applied to dynamic scenes that contain rigid-body
objects in motion by treating each rigid object individually. However, when a dynamic scene contains several
moving objects, the movement of the objects relative to each other becomes a new source of information about
the cameras and the scene. To utilize this extra information, new algorithms specifically designed for dynamic
scenes must be developed.

In this paper, we explore a linear algorithm that utilizes the relative motion of objects in a dynamic scene
to determine the affine calibration between two cameras viewing the scene. That is, the algorithm finds the
homography induced by the plane at infinity between two views of the scene. Among other things, knowledge
of affine calibration can be used for affine scene reconstruction and as an intermediate step in metric self-
calibration. The basic algorithm was first introduced by the authors in [9] and is expanded herein to allow for
more than two moving objects. Extensive experimental results are also presented.

Our algorithm finds affine calibration directly from the fundamental matrices associated with moving ob-
jects. At least two fundamental matrices are required, but additional ones can be incorporated naturally into the
linear system, providing greater numerical stability. If the two cameras have different optical centers, then the
stationary background elements of the scene give rise to the standard fundamental matrix, which can also be
incorporated into the linear system.

Although two views of a moving rigid-body object will usually give rise to a fundamental matrix, the matrix
can only be used by our algorithm if the object’s motion meets certain conditions. The simplest form of these
conditions is that the object must undergo a rigid translational motion. However, since only two views of the
scene are actually used by our algorithm, this basic condition can be generalized. First, notice that the two views
must be captured at different times for the dynamic nature of the scene to be relevant. Consequently, there is
a missing interval of time between when the views are captured. The object can undergo any motion during
this missing interval as long as the total change in the object and its location is equivalent to a single, rigid
translational motion.

The term object has a specific meaning in this paper, defined by the general condition given above: An
object is a group of particles in a scene for which there exists a fixed vector u € R3 such that each particle’s
total motion during the missing time interval is equal to u. Throughout the paper, objects will be assigned
numbers and the notation u® will represent the motion vector for object 3.

The problem of finding the affine calibration between two views has been widely studied and is of great
use in machine vision. For example, once the affine calibration has been recovered, affine scene reconstruction
is immediately possible (e.g., by triangulation, or see [5]). Among other things, affine reconstruction can be
used for affine model-based object recognition, tracking, augmented reality, feature transfer, and novel view
generation in image-based rendering. Finding affine calibration is also an essential intermediate step in the
stratified approach to metric self-calibration [1, 17, 4, 8, 13, 5]. For instance, if three views of a scene are
available that have all been captured by the same camera with unvarying internal parameters and if the affine
calibration can be recovered for each pair of views, then the metric calibration of the camera can be immediately
determined [12, 11]. In the realm of pure image-based rendering, Manning and Dyer [10] have shown how
affine calibration can be used to directly generate linear interpolation sequences of translational dynamic scenes
without the need for scene reconstruction.

Various techniques for finding the affine calibration between pairs of views have been published. Several
authors [16, 1] have used the fact that if two views are captured by a fixed camera undergoing a rigid translational
motion, then the infinity homography between the views is known to be the identity matrix. Faugeras [5]
describes a different approach to affine calibration that also involves pure translational motion. Some techniques
[3, 2] have been developed for the restricted case of planar camera motion, that is, for when the camera’s internal



parameters do not change and the camera only undergoes translations and rotations that are parallel to a fixed
plane. None of these techniques are directly related to dynamic scenes, and they all place restrictions on camera
motion; our technique places restrictions on object motion but not camera motion.

The most direct method for finding affine calibration is to identify four conjugate directions (i.e., points on
the plane at infinity) that are not all coplanar; like all planar homographies, the infinity homography is com-
pletely determined by its behavior on four points [5]. Pollefeys demonstrated that affine calibration between two
views taken by the same camera can be determined from just two conjugate directions if the modulus constraint
is utilized [12]. Since one conjugate direction can be determined from the motion of each moving object in
the scene, these techniques might be applicable when two or more moving objects are present. However, the
technique presented in this paper is usable even when only one moving object is present (because the static
background can provide the second necessary fundamental matrix).

The technique presented by Zisserman et al. [17] and later expanded upon by Horaud et al. [8] applies,
in general, to a different class of problems than our technique and uses a completely different mathematical
approach. Zisserman’s algorithm is for a stereo rig viewing a static scene from two different locations and is
mathematically based upon projective reconstruction of conjugate points. In contrast, our technique works di-
rectly from fundamental matrices without any need for reconstruction; thus additional errors introduced during
projective reconstruction (e.g., errors introduced through triangulation) are avoided. Furthermore, in our tech-
nique it is not strictly necessary to identify conjugate points at all if the fundamental matrices can be determined
by some other means. For example, Stein [14] presents a direct method for finding the trilinear tensor between
three views using optical flow; the required fundamental matrices could be determined from such a trilinear
tensor. While our technique could be applied to the stereo rig problem for static scenes if the rig undergoes a
rigid translation (see Section 5.2), it is not possible in general to apply Zisserman’s technique to the dynamic
scenes considered here.

Finally it should be mentioned that, although virtually no previous work has been done on utilizing dynamic
scene information for calibration, Stein [15] has presented a method for finding the weak calibration between
two widely-separated views by using statistics acquired from a dynamic scene over an extended period of time.
His technique is unrelated to the present work and will not be discussed further.

2 Notation and preliminary concepts

Assume two camera views are captured at times ¢ = 0 and ¢ = 1 using pinhole cameras, which are denoted
camera A and camera B, respectively. In this paper, a fixed-camera formulation is used, meaning the two
cameras are treated as if they are at the same location and the world is moving around them; this is accomplished
by subtracting the displacement e between the two cameras from the motion vectors v® of all objects in the scene.
In the reformulated scene, object 4 moves by u* = v' —e and what had been the stationary background becomes
an object that moves by —e. Under the fixed-camera formulation, the camera matrices are just 3 x 3 and each
camera is equivalent to a basis for 2. The basis induced by camera A will be called basis A, and so on. Note
that, although we choose to reinterpret the cameras as sharing the same optical center, in actuality the cameras
can be at different locations and can be completely different internally and externally.

The quantity e used above is called the epipole. A position or a direction in space, such as e, exists in-
dependently of which basis is used to measure it; when necessary, we will use a subscript letter to denote a
particular basis. For instance, e, is € measured in basis A. If cameras A and B are at different locations in
the original scene, then e is nonzero and there exists a fundamental matrix F for the cameras which has the
following representation [6]:

F = [e5]<xHSS ()
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where [-]x denotes the cross product matrix. When the two cameras share the same optical center, the funda-
mental matrix is 0 and has no meaning. However, for each moving object ¢ in the scene, we can define a new
kind of fundamental matrix. If, after switching to the fixed-camera formulation, object ¢ is moving in direction
u?, then the fundamental matrix for the object is:

Fé = [u}]HS (2)

The epipoles of F* are the vanishing points of object ¢ as viewed from the two cameras, and the epipolar lines
trace out trajectories for points on object s.

Notice that, under the fixed-camera formulation, the stationary background in the original scene becomes
just another moving object (provided e is nonzero). Hence by using the fixed-camera formulation, we are able
to create a single mathematical theory that applies to pairs of cameras at different locations as well as to pairs
of cameras that share the same optical center (e.g., two views from a single camera that is undergoing a zoom
or rotating around its own optical center).

3 Motion-based affine calibration

We now show how affine calibration can be computed directly from the motion of two scene objects. Let the two
objects be indexed by the set {0, 1} and consider Eq. 2. Observe that HS is a rank three invertible matrix, but
[u,]x is rank two, and consequently F* is also rank two. Because of the rank deficiency in [ui]y, the following
arises: Let S; = {M € R3%% : F! = [u}]M}. Then S; is a 4-dimensional vector space over the real numbers.
A basis for S; is given by the matrices P}, p}, pb, and p’é, where

p%) = H?t%’ pil = [112,0,01, p% = [07‘13370]’ pé = [O,O7u§3]

Because HSS, is in the basis of both Sy and 51, and because u® and u! are not parallel, Sp N 51 =< HSG >,
where < - > denotes the subspace generated by a set of vectors. Since we only need to find H3S up to a scalar,
we only need to find one nonzero element in the intersection of Sy and Sy. This is accomplished by first finding
any two matrices p such that

F' = [u})xpi. ©)
Next, notice that S; is spanned by pt, pb, p}, and pi (because if pj is in < pi, ph, p§ >, then [ul]p} = 0).
Consequently, there exist scalars ki, ..., kg such that
HSS = —kip] — k23 — k3§ — kapd = kspi + kep3 -+ krp3 + kspi )
The second equality means that

[pY pd P P3 PI P 3 Pillk:1 k2 ks ky ks ke kr ks]T =0 (5)

Here we treat the matrices pé- as column vectors in %°. The above can be solved using standard techniques from
linear algebra (e.g., singular value decomposition to find the eigenvector of eigenvalue 0). Once the k;’s are
found, we can find H3, (up to a scalar) using Eq. 4.

Formally, we must show that the left-most matrix in Eq. 5 has rank 7. The rank is less than 8 since Eq. 4
has a solution. The vectors p{, p3, p3, P}, pi, pi clearly form a linearly independent set because u® and u!
are not parallel. If p} = hip? + hopd + hap) + hap! + hsps -+ hepj for some scalars h;, then by Eq. 3,



F! = [h1u?, hou?, hau?] where u? = u! ® u®. This is a contradiction since F! has rank 2, not rank 1. Thus 7
of the column vectors are linearly independent.

Because of the reliance on the linear independence of the column vectors in Eq. 5, it is crucial that u® and
u! be linearly independent; the algorithm becomes unstable as the two objects move in more parallel directions.

Notice that the right-hand equality in Eq. 4 represents a new constraint similar in nature to the epipolar
constraint, the trilinear constraint, or the modulus constraint. Such a constraint could be incorporated, for
instance, into a nonlinear algorithm for finding the fundamental matrices of objects moving in non-parallel
directions. It could also be used in conjunction with the modulus constraint for finding HS3.

3.1 Generalizing to multiple objects

If more than two moving objects are present in the scene, then the mathematics presented above can be gener-
alized to incorporate each object’s fundamental matrix simultaneously into one large, linear system.
Let the objects be numbered 0 to n — 1. Let P (%) denote the matrix:

[P P P} Pl 6)
and let Ogy4 denote the 9 x 4 matrix filled with all 0’s. We construct a matrix M by the following method:

Start with M empty. For eachi € {0,...,n-2} and j € {i+1,... ,n-1} such that u* and W are not parallel,
enlarge the matrix M by appending the following matrix to its bottom:

[O9xd,--.,00x4,P(i),09x4,...,00x4, —=P(5),00x4,...,09x4 ] (7
N / N - e e

i1 j—i—1 n—j

Once M has been constructed, the following system is solved (e.g., by singular value decomposition):

M [kiky... k)T =0 (8)
Affine calibration can now be determined from the following, which holds for every i € {0,...,n — 1}:
HSS, = kai4 1P} + kair2Dh + KaiyaDh + kairapl 9

4 Experiments with synthetic data

Extensive experiments with synthetic data were conducted to test the ideas of this paper. In this section, we
summarize the experimental method and present the results.

4.1 Overview of the experimental procedure

The general pattern for each trial run was as follows: Two or more objects were generated, a camera was created
that viewed the objects, each object was then moved by a random amount, and a second camera was created that
viewed the objects in their new positions. If the second camera could not be created after a reasonable number
of tries, the whole process was started over. When both cameras had been successfully generated, noise was
added to the projected points on each image plane and then the equations presented earlier were used to recover
the affine calibration between the cameras.

For different trials, the overall scale of each object was magnified or reduced, the distance the objects
moved was scaled by different amounts, and the amount of noise was varied. The error in the recovered HS;,
was measured using the following error metric:



Error Metric: Treating the matrices as vectors in %7, with vectors p and q corresponding to the calculated
HSS and the true HSS, the error was calculated as:
;P

Iplllall

Note that this quantity is 1 —| cos(6)|, where @ is the angle between the vectors. Also note that when the matrices
are equal the error is 0.

Each object consisted of up to 100 points selected randomly in a unit sphere such that the density of points
was uniform throughout the sphere. The internal parameters of the cameras were randomly generated within
ranges that are realistic for actual cameras: The principal point was chosen to be roughly within the middle third
of the image, the skew between the z and y axes was in the range [—10°, +10°], and the unit = and y distances
were within 10% of each other. The retina of each camera was fixed at 640 x 480 pixels; this fact is crucial for
interpreting the results that follow since measurements (e.g., noise added) will often be given in pixels.

Within the framework outlined above, three different scenarios were created to simulate different conditions
under which the algorithms of this paper might be used in practice:

Scenario I: At time ¢ = 0, the objects are near each other in space; by time ¢ = 1 the objects have moved (each
in an arbitrary direction) and are viewed by camera B, which is near camera A in space.

Scenario II: Objects are located arbitrarily within a circle and are only allowed to move parallel to the plane of
the circle. Cameras are positioned randomly along the outside of the circle at a higher elevation than the objects.

Scenario III: Objects are located within a sphere of radius five units, and cameras are located in a larger,
co-centered sphere but outside the sphere of the objects. Objects can move in any direction.

The positioning of cameras A and B close together in Scenario I simulates a hand-held camera, where the
camera might not travel very far between views compared to how far the objects travel. Scenario II simulates
a “parking lot” where vehicles drive along the flat surface of the lot and surveillance cameras are positioned on
buildings around the lot. Scenario III tests the algorithm under fully general conditions. Note that, when only
two objects are used (as was usually the case), each scenario corresponds to the motion of vehicles over level
terrain because two vectors are always mutually parallel to some plane.

One final detail should be noted: Noise was added to the projected points on the retinas in such a way that no
outliers were created. Specifically, if the trial run called for an average of v pixels of noise, then uniform noise
with a radius of 2v pixels was added to each point; thus no conjugate point was more than 2v pixels from its true
position on the retina. It is assumed that, in practice, outliers would be removed by earlier steps in processing.
Because of the lack of outliers, accurate fundamental matrices could be found by a normalized linear method

{7].



4.2 Results

The following table shows how calibration error was related to the number of conjugate points and to the average

amount of noise added to each conjugate point. Error values have been multiplied by 100.

CALIBRATION ERROR (10™7)
average noise added per point
5.003 pixels | 2.500 pixels | 1.250 pixels | 0.500 pixels | 0.250 pixels
0=0.261 0=0.130 0=0.065 0=0.026 0=0.013
100 points || error=8.383 | error=3.377 | error=2.067 | error=0.5363 | error=0.2766
0=15.26 0=8.388 0=1.767 0=1.017 0=0.3996
60 points 10.29 4.696 2.002 0.9931 0.2765
0=16.67 0=10.88 0=4.965 o=5.161 0=0.4131
30 points 14.16 6.317 2.950 1.251 0.7640
o=18.18 o=11.50 0=7.263 0=3.838 0=2.254
10 points 38.08 22.99 11.54 4.938 3.127
0=27.55 0=23.65 0=17.09 0=10.06 0=9.110

As would be expected, error decreases as the number of conjugate points increases and as the amount of noise
decreases. The large standard deviations stem from occasional outliers; the scatter graphs in Figs. 1-4 give a
visual indication of how the error values are distributed.

Recall that the algorithm becomes unstable as the objects move more parallel to each other in 3D when
considered under the fixed-camera formulation. This instability is demonstrated in Fig. 1. Notice that there are
few outliers for angles above approximately 20°. Thus for the remaining scatter graphs as well as for the table
just presented, trials in which the angle between the object motion vectors was less than 20° were eliminated.
For every trial in all the scatter graphs, 100 conjugate points were used per object and an average of 1.25 pixels
of noise was added per point.

The scatter graph in Fig. 2 shows how error is reduced as noise is reduced. Notice that there are some
outliers even at small noise levels, but the general trend is clear.

Fig. 3 demonstrates how error is reduced as the objects appear larger on the image plane. Notice that when
the average object size covers less than about 40 pixels on the retina, error increases rapidly.

It might be hypothesized that the algorithm would be stabilized by greater retinal object motion. However,
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Figure 5: The four views on the left are the source views of the box that were used to find the two fundamental
matrices for calibration. Views from camera A are on the left and views from camera B are on the right; the top
pair shows object 0 moving towards the camera while the bottom pair shows object 1 moving laterally. The three
rightmost views show the affine reconstruction of the box as seen from different angles, including an end-on
view that shows a clear angle between the two surfaces of the box.

Fig. 4 shows that error was not affected by the amount of apparent motion of the objects across the image plane,
at least for the ranges tested. It would be expected that, as the amount of retinal motion approached the noise
level, the error would increase; this was not tested, however.

Finally, the table below shows how the algorithm was significantly stabilized by the use of more moving
objects. Error values have again been scaled by 100. Also note the improvement gained by using 30 conjugate
points rather than 10; this could be due to increased stability brought on by increased conjugate points in the
algorithm we used for finding the fundamental matrices.

CALIBRATION ERROR (1072)
2 objects | 3 objects | 4 objects
100 points 2.067 1.443 1.023
60 points 2.002 1.691 1.245
30 points 2.950 2.351 2.178
10 points 11.540 6.957 6.508

5 Experiments with real data

In this section, we present the results from two experiments performed with real scenes.

5.1 Experiment I

The first experiment was designed to produce very reliable data. The object that was used in the experiment was
covered with a regular dot pattern (see Fig. 5), and the center of each dot was determined to subpixel accuracy by
an automatic algorithm that found the center of mass of each dot. The cameras were fixed in position throughout
the experiment.

Only one actual object was used, but it was moved in two different directions and thus served as two different
objects. This means the two objects were not visible at the same time, but that fact is irrelevant to the algorithm
when the cameras are in fixed positions relative to each other (e.g., as on a stereo rig). A situation like this might
happen commonly in practice. For instance, consider a pair of fixed cameras monitoring the intersection of two
roads. Occasionally, lone vehicles will cross the intersection, going in either direction. Each vehicle would give
rise to a fundamental matrix, and over time the affine calibration could be accurately computed.



Figure 6: Views used in the second experiment. From left to right: the view from camera A4 at time 0, the view
from camera B at time 0, and the view from camera A at time 1.

The ground truth affine calibration between the two views was acquired by using a three-dimensional cali-
bration grid containing several hundred points at known positions. Each camera matrix was computed directly
from the known 3D to 2D correspondences stemming from the calibration grid. Prior to this, radial distortion
was corrected for as a separate step by minimizing the curved appearance of straight lines on the calibration
grid.

The ground truth affine calibration, as determined directly from the full camera matrices, was

0.005270 —0.002681 0.3752
HY = 0.002858 0.004966 —0.9269
| 0.0000009253 —0.0000000624 0.005347 |

while the affine calibration determined using the motion of the box was

0.005127 —0.002625 0.3773 |
HY = 0.002789 0.004809 —0.9260
| 0.0000009684 —0.0000001226 0.005186

The distance between the matrices, using the same error metric used for the synthetic experiments, was 2.71 x
107%, or about 0.13°. Note that only the two fundamental matrices arising from the motion of the box were
utilized; a third fundamental matrix corresponding to the stationary background could have also been used.

As can be seen in the raw source images, the cameras had significant radial distortion. This was never
completely corrected for, as is evident in the slight curvature of the lines in the reconstructed box object (Fig.
5). Nonetheless, even with some remaining distortion error, our technique produced an affine calibration very
close to the “ground truth” calibration (which may have had some errors itself).

5.2 Experiment I1

The second experiment utilized objects that had more natural texture so that fewer and less reliable point cor-
respondences were obtained. In this experiment, several objects were placed on a piece of paper such that the
paper could be slid across a table to simulate motion of the objects or the cameras. As before, the object was
viewed by two cameras that were fixed in position throughout the experiment. The input images that were used
for this experiment are shown in Fig. 6. Notice that the center view is zoomed in and has much less radial
distortion than the left view. The left and center views, corresponding to camera A and camera B respectively,
form one pair representing the object at time ¢ = 0. From this pair, a fundamental matrix was recovered via
standard techniques using about 30 point correspondences that were selected by hand. Next, the object was slid
across the table in a manner approximating a pure translation. One final view was then captured from camera A
only; this is shown as the rightmost view in Fig. 6. A second fundamental matrix was computed using the right
and center views, again using about 30 point correspondences selected by hand. ‘
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Figure 7: As an additional test of the affine calibration determined in the second experiment, affine reconstruc-
tion of a planar calibration grid was performed using two views of the grid (/eft). Four views of the reconstructed
surface are shown on the right.

Our algorithm was then applied to the two fundamental matrices, yielding an affine calibration of

0.351  0.153 0.196
H = | —0433  0.505 0.151
~0.222 —0.053 0.546

The ground truth affine calibration was determined from vanishing points. In particular, a regular grid was
viewed by both cameras as it was placed in various orientations in space. The vanishing points of this grid,
found automatically by a separate program, represent conjugate directions in the two views; four such points at
infinity are sufficient for finding the affine calibration and many more than four were actually used. The affine
calibration thus determined was

0.359  0.139 0.208
HS = | —0.431  0.497 0.128
—0.211 -0.069 0.557

Again, agreement is very good despite the many potential sources of error in this experiment. The distance
between the matrices, using the same error metric, was 0.000756, or about 2.2°,

As an additional test of accuracy, the affine calibration determined by our algorithm was used to reconstruct
a regular, planar grid of points that was viewed by both cameras (see Fig. 7). The reconstruction shows some
curvature in the grid lines, probably resulting in part from residual lens distortion errors since reconstruction
using the “ground truth” affine calibration yielded similar curvature artifacts. Radial distortion was prominent
in camera A and less so in camera B; this distortion was corrected for as a separate preprocessing step using
the same method as in the first experiment. However, some distortion seems to have remained. Despite this, we
still see agreement in the two affine calibrations even though they were determined by distinct methods.

6 Conclusion

Dynamic scenes contain sources of information that are not present in static scenes, but not many methods exist
to utilize this extra information. This paper presented a linear algorithm for determining the affine calibration
between two camera views of a dynamic scene. The algorithm has been shown to work on both synthetic and
real data. Through experiments with synthetic data, it has been shown that the algorithm degrades gracefully
with noise and the results improve as more moving objects are incorporated.

The equality in Eq. 9 represents a new constraint for the calculation of fundamental matrices for moving
objects; this constraint could be combined with other constraints like the epipolar or trilinear constraint to

10



improve fundamental matrix accuracy, or used in conjunction with the modulus constraint to determine better
affine calibration.

It remains to be investigated how the ideas of this paper could be extended to utilize more than two views.

The trilinear tensor thus available should stabilize the fundamental matrix calculation and improve results.
Moreover, it may be possible to compute the affine calibration directly from pairs of trilinear tensors.
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