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Abstract

This technical report supplements our results about the instability of some data and query distributions
in high dimensions. We show that under very common conditions, if the data and query distributions are not
stable, any index structure that uses convex shapes as summary of data points will perform badly.

The report uses many of the conventions and terminology described in [1]. It also relies on the main result
in [1]. It is recommended to be familiar with [1] before reading this report.

1 Instability Theorem

This section repeats the main definitions and claims in [1] without the proofs.

Definition 1 A nearest neighbor query is unstable for a given € if the distance from the query point to most
data points is less than (1 + €) times the distance from the query point to its nearest neighbor.

Definition 2:

m is the variable that our distance distributions may converge under (m ranges over all positive integers).
Fdatay, Fdatag, ... is a sequence of data distributions.

Fqueryy, Flquerys, . .. 18 a sequence of query distributions.

n is the (fized) number of samples (data points) from each distribution.

Ym Pma,...,Pmn aren independent data points per m such that Pp, ; ~ Fdatap,.

Qum ~ Fqueryy, is a query point chosen independently from all Py, ;.

0 < p< oo is a constant.

Vm, dm is a function that takes a data point from the domain of Fdatam, and a query point from the domain of
Fquery,, and returns a non-negative real number as a result.

DMIN,, = min {dm (P, @m) |1 <i<n}.
DMAX, = max {dm (P, Qm) |1 <i<n}.

Theorem 1 Under the conditions in Definition 2, if

(dm(Pm,I; Qm))p e
(E[(dm(Pm,l,Qm))P]> =0

(1)

lim wvar
m— o0

Then for everye > 0
lim P[DMAX,, < (1+¢&)DMIN,}=1

m—+o0



2 Convex Index Structures

Any index structure uses the following principle:

e Data points are divided into sets (not necessarily disjoint).

o Each set has some information associated with it. The information summarizes some common quality of
the points in that set.

e Query processing involves looking at the information associated with a set. We decide based on that
information if any of the points in the set might be a valid answer. Only then do we fetch the set and check
all the points in it.

We may build another index structure for the information associated with all the sets. This yields a hierarchical
indexing structure. For example, the leaf nodes of a B-tree contain sets of points. The information for each leaf
node is an interval s.t. all points in the leaf are inside that interval. Each level in the tree is an index into the
level below it.

We call an indexing structure convez if the following hold:

e The information stored for a set is a convex region of space.

e Given only the convex region associated with a set and a point that belongs to that region we can’t exclude
the possibility that the point is a data point in that set. (Le., if the query region overlaps the convex region
associated with a set we must fetch the points within that set.)

3 Performance Theorem

We show that when using the Euclidian distance metric and assuming that the data distribution and query
. distribution are the same, instability means that the performance of any convex indexing structure degenerates
into scanning the entire data set for NN queries.

Theorem 2 Suppose the conditions in Definition 2 are satisfied and for any € >0

DMAX,, 1l

lim P H-E————MINm —

Jim < 5} =1 (2)
If Fdata = Fquery and dm is the Euclidian distance metric then the probability that the number of points fetched
using any convez indezing structure is n converges to 1 as m goes to oo.

Proof Insteéd of dm we use d as the Euclidian distance metric and d? as the square distance. We denote the
query point @, by P . For all 0 < i < n define the folowing random variables:

DMAX,,; = max{d(]gm i,ﬁm,j) 0<j<n and i# j}

]

-

DMIN, ; = min {d(Pm 0 Pu)0<i<n and i# j}

)

Since the points in S, are iid, we can treat any ﬁm,i as the query point and the rest of the set as the data
points and get that for all 0 <4 <n and for alle > 0

DMAXn;

lim P H DMIN,.; ~

m—»o0



Defined the minima and maxima of all these distances as:
RMAX,, = max {DMAX,,; |0 <i<n}
RMIN,,, = min {DMIN,,; |0 <7< n}

Part 1:
We'll now show that for alle > 0

: RMAX,, 3
Jim P Um‘li SE] =1

For each 0 < i < n define r; = DMAX,,;/DMIN,,;. We know that r; —, 1. (This is the same as saying that
for all € > 0 holds lim,,—00 P [|r: — 1] < €] = 1.) Using Slutsky’s theorem we have that for all 0 < 4,7 < n holds
TiTj —*p 1.

For each m we have three possible cases:

Case 1: RMAX,,/RMIN,, =

Case 2: Exist distinct points Pm i P ,J,P & 8.t

RMAX,, _ d(Pmi, Pn;)
RMIN,  d(
In this case we have that RMAX,,/RMIN,,, <r; < rmry.

Case 3: Exist distinct points Pm i P ,J,Pm ks B, 1 s.t.

3

RMIN,, - d(ﬁm ks Pm,l)

3

RMAX, _ d(Pi, Pr)

Therefore,

- -

RMAX,, _ d(Pm inm,j) d(ﬁm,iyﬁm,k)

= — - - — < g
RMINw  d(Pi, Prok) APy Pmit) *

Of course, in all cases P[RMAX,,/RMIN,, > 1] = 1. Therefore, for all m holds

RMAX.. .
Rt ; a0 <
1< RMVIN,. < max{r;ir;|0 <4,j < n}

Using Slutsky’s theorem we have max{r;r;|0 < ¢,j < n} —, 1. Therefore RMAX, /RMIN,, —, 1. In other

words, for alle > 0
, RMAX, 1
A%P{lm'll <e|=1

Part 2:

Consider the case when RMAX,, < \/_RMIN (i.e., € = (v/5/2) — 1). We'll show that in this case the distance
from the query point to any convex region that mcludes at least two data points is at most RMIN,,,. Considering
that the distance from the query point to its nearest neighbor is at least RMIN,, we conclude that any convex
region that includes at least as close to the query point as its nearest neighbor. This means that for any convex
indexing structure, processing the query involves fetching all the data points.

To show that the distance of the query point to a convex region is at most RMIN,,, we'll show that the distance
of the query point to a specific point in the convex region is at most RMIN,,. Take two distinct data points X Y
in the convex region. We'll show that d(§, (X +¥)/2) < RMIN,,. Note that the point (X + V)/2 is the midpoint

between X and Y, so by definition of convex, it is in the convex region.
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2
< (?RMIN,“) - iRMINm2 =
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Therefore d((j, X+ 17) /2) < RMIN,,. Since the probability of the event RMAX,, < l/z—gRMINm converges to 1
as m goes to co we get that the probability that a nearest neighbor query using a convex indexing structure will
result in fetching all data points goes to 1 as m goes to co. B
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