Potential and Limits of Web Prefetching
Between Low-Bandwidth Clients and Proxies

Quinn Jacobson
Pei Cao

Technical Report #1372

April 1998

Potential and Limits of Web Prefetching Between Low-Bandwidth
Clients and Proxies

Quinn Jacobson

Department of Electrical and Computer Engineering

University of Wisconsin-Madison
gjacobsoQ@ece.wisc.edu

Abstract

The majority of the Internet population access the
World Wide Web via dial-up modem connections.
Studies have shown that limited modem bandwidth
is the main contributing factor to the Web access la-
tency perceived by the users. In this paper, we in-
vestigate one approach to reduce the user-perceived
latency: pre-pushing from the proxy to the browsers.
The approach takes advantage of the idle time be-
tween user Web requests and uses prediction algo-
rithms to predict what document a user might refer-
ence next. It then relies on proxies to send (“push”)
the documents to the user. Using existing modem
Web access traces, we evaluate the potential of the
technique at reducing user latency, examine the de-
sign of prediction algorithms and measure their ac-
curacy as well as overhead, and evaluate the latency
reduction of pre-push schemes using the algorithms.
Our results show that with perfect predictors, proxy-
based Web pre-pushing with a 256K-byte pre-push
buffer at the browser side can reduce latency by over
20%. Our results also show that prefix-based pre-
diction algorithms works well for predicting user be-
havior. Proxy-based web pre-pushing driven by real
prediction mechanisms can reduce latency by nearly
10%.

1 Introduction

Ever since the World-Wide Web becomes World-Wide
Wait, reducing client latency has been among the
primary concerns of the Internet research and devel-
opment community. For a majority of the Internet
population, who access the World-Wide Web through
modem connections, the low modem bandwidth is a
primary contribution to the client latency. For exam-
ple, studies using commercial ISP traces shows that
even if a Web proxy caching system is employed and
has perfect performance, the client latency can only
be reduced by 3% to 4% [7]. Other studies have shown

Pei Cao

cao@cs.wisc.edu

that when image distillation techniques is used to re-
duce the document sizes, the client latency can be
improved by a factor of 4 to 5, further demonstrating
that the slow modem links are the bottleneck.

In this paper, we study one technique to reduce la-
tency for modem users: prefetching between caching
proxies and clients. The proxy, being exposed to the
Web accesses of multiple users, can often predict what
documents a user will access next. The modem link
to the user often has idle periods as the user is reading
the current Web document. Thus, a proxy can utilize
the idle periods to “push” documents to the user’s
machine. If the user accesses any of the pushed doc-
uments, the latency perceived by the user is reduced.
Since the proxy pushes the documents to the user side
instead of the client fetching the documents from the
proxy, we called this technique prozy-side pre-push.
In the rest of the paper, we use the terms “pre-push”
and “prefetch” interchangably.

We focus on the potential, limits and prediction
mechanisms of the technique in reducing client la-
tency. Using traces of modem users’ Web accesses,
we first study the upper bound on latency reduc-
tion from pre-push, assuming a perfect predictor at
the proxy side. We analyze how this upper bound
is determined by the inherent idle time distribution
between requests from the same user, modem band-
width, and client-size buffers.

We then study the prediction mechanisms for the
pre-push approach. We investigate a family of predic-
tion algorithms that are based on the Prediction by
Partial Matching (PPM) data compression algorithm.
We analyze the accuracy and bandwidth wastes of the
algorithms as the algorithms’ parameters vary. We
also evaluate the impact of practical constraints such
as pruning the history structure and interacting with
the client-side buffers.

Finally, we evaluate the latency reduction under
the prediction algorithms using trace-driven simula-
tion. Our simulator takes into account of proxy la-
tency and user request sequence. Our results show

Department of Computer Science
University of Wisconsin-Madison

that with perfect predictors proxy-based Web pre-
pushing can reduce user observed latency by over 20%
and with real predictors can reduce user observed la-
tency by nearly 10%.

2 Related Work

Prefetching can be applied in three ways in the Web
contexts: between Web servers and clients, between
Web servers and proxies, and between proxies and
clients.

Early studies have mostly focused on prefetch-
ing between Web servers and clients, since relatively
few proxies were deployed then. Padmanabhan and
Mogul [17] analyze the latency reduction and net-
work traffic of prefetching using Web server traces
and trace-driven simulation. The prediction algo-
rithm they used is also based on the PPM data com-
pressor, but with order of 1. The study shows that
prefetching from Web servers to individual clients can
reduce client latency by as high as 45%, at the ex-
pense of doubling the network traffic. Bestavros el
al [2] presents a model for speculative dissemination
of World Wide Web documents. The work shows that
reference patterns observed at a Web server can be
used as an effective source of information to drive
prefetching. They reached similar conclusions in [17].
Finally, Cuhan and Bestavros [5] uses a collection of
Web client traces and studies how effectively a user’s
future Web accesses can be predicted from his or her
past Web accesses. They show that a number of mod-
els work well and can be used in prefetching.

We found that these early studies do not answer
our questions about the performance of prefetching
between clients and proxies. First, the studies in-
vestigate prefetching between user clients and Web
servers; caching proxies were not considered or mod-
elled. There are reasons to believe that a proxy’s
capability to predict users’ Web accesses is different
from the server’s. Since a proxy only sees the Web
requests to its users, its ability to predict is limited
by the smaller sampling size. On the other hand,
a proxy can predict documents across Web servers,
increasing its chances at reducing client latency. Sec-
ond, most of the studies use Web server traces which
do not accurately capture user idle time. From a par-
ticular Web server’s point of view, a user’s accesses
to other Web servers appear as idle time. Thus, it is
difficult to estimate from Web server traces the true
user idle time that can be exploited to push docu-
ments to users over the modem lines. Lastly, Cuhan
and Bestavros [5] uses the trace of client requests that
are not filtered by the browser cache; in practice, a
proxy only sees requests after they are filtered by the

browser cache. The presence of a browser cache often
diminish the effect of prefetching: a predicted docu-
ment may already be in cache and there is no need
to prefetch it. Thus, it is not clear whether the con-
clusions from this particular study are applicable to
our investigation.

As proxies become more widespread, a number of
studies investigated prefetching between Web servers
and proxies [14, 16, 10, 11]. Kroeger el al [14] inves-
tigates the performance limits of prefetching between
Web servers and proxies, and shows that combining
perfect caching and perfect prefetching at the prox-
ies can at best reduce the client latency by 60% for
relatively high-bandwidth clients (i.e. those that ac-
cesses the Web through a LAN instead of modems).
Markatos and Chronaki [16] proposes that Web servers
regularly push their most popular documents to Web
proxies, which then push those documents to the clients.
They evaluate the performance of the strategy us-
ing several Web server traces and find that the tech-
nique can anticipate more than 40% of a client’s re-
quest. The technique requires cooperation from the
Web servers. Furthermore, since the server traces do
not capture each user’s idle time, the study did not
evaluate the client latency reduction resulted from
the technique. Wcol [10] is a proxy software that
prefetches documents from the Web servers. It parses
HTML files and prefetches links and embedded im-
ages. The proxy, however, does not pre-push the
documents to the clients. Finally, Gwertzman and
Seltzer [11, 12] discussed a technique called Geograph-
ical Push-Caching where a Web server selectively sends
its documents to the caches that are closest to its
clients. The focus of the study is on deriving rea-
sonably accurate network topology information and
using the information to select caches.

In terms of prefetching between proxies and clients,
Loon and Bharghavan [15] has proposed the same
idea as we described here. However, the study did not
address the potential and limits of the approach, or
which prediction algorithms are the most successful.
Rather, the study presents a design and an implemen-
tation of a proxy system that performs the prepush-
ing. In this paper, we use recent, large-scale modem
client traces to explore the design space and evaluate
the tradeoffs in pre-pushing.

Outside the Web contexts, prefetching has been
studied extensively in file systems and memory sys-
tems. Several studies investigate application-controlled
prefetching in the file system contexts [3, 4, 13, 19],
where an application gives prediction of what it might
access next. Other studies also investigate the spec-
ulative approach to file prefetching [9, 20, 18]. The
prediction algorithms used there are also derived from

data compressors, while the compressor and the pa-
rameters vary.

Most of the algorithms, including the one stud-
ies here, are inspired by an important early study
by Krishnan and Vitter demonstrating the relation-
ship between data compression and prediction [21, 6].
Their study shows that if the source behind a refer-
ence string can be modelled as an M-order Markov
source, then the compressor-driven prediction algo-
rithm will converge to the optimal predictor given a
long enough reference string. Our algorithms extend
the algorithms described in [21] and [6] by consider-
ing prediction depth of more than 1, that is, not only
predicting which documents might be used next, but
also predicting which documents will be used after
the immediate next ones. Qur experience show that
for best performance, the prediction depth needs to
be larger than 1.

3 Proxy-Side Pre-Pushing

3.1 Overview of Scheme

The basic assumption behind proxy-side pre-pushing
is that users have idle times between requests (be-
cause users often read some parts of one document
before jumping to the next one), the proxy can pre-
dict what documents users will access in the near fu-
ture, and the proxy can take advantage of the idle
time to push the documents to the users. A proxy
observes the behavior of many users’ Web accesses
and from these may be able to learn common access
patterns and use this to predict what document a
user is likely to access in the near future. The gen-
eral configurations of the proxy and clients are shown
in Figure 1.

When a user has a request it can not service with
its own cache it looks into the prefetch buffer. If the
document is in the prefetch buffer the user sends a
small update message to the proxy that it used the
page. If the document is not in the prefetch buffer
the user sends a request for the page to the proxy.
There is a third possibility, the document the user
want may be in the process of being tranferred into
the prefetch buffer, in which case the user can get the
document as it is being downloaded. In this last case
the user waits until the document is downloaded and
then sends an update to the proxy.

When the proxy receives a request from a user it
immediately starts fetching the document from the
correct content server (if the document is not in its
own web cache) and sends the document to the user.
A user request may preempt a document currently
being pushed to the user side. In this case the par-

tially pre-pushed document at the user end is dis-
carded. After the proxy services a request, or when
it receives an update, it updates the history structure
for the user’s last access. The proxy then predicts
what pages, if any, are candidates for pre-pushing.
It then orders these pages by their probabilities and
starts sending them. When the next user request or
update comes in the proxy clears the list of candi-
date pages it is sending and recomputes the list of
candidate pages based on the new information.

A proxy will only pre-push documents to a user
if the documents are in the proxy’s web cache. This
restricts the mechanism from producing extra traffic
on the Internet. Note that prepushing can still cause
increased traffic on the dial-up connection between
the proxy and the users.

3.2 Prefetch Buffer

The prefetch buffer is implemented as a cache. We
model various size prefetch buffers from 256 Kilobytes
to 16 Megabytes. The replacement policy of the user’s
prefetch buffer is a combinations of two different poli-
cies. First, the buffer implements a LRU policy for
the pages in the buffer. During the prefetching se-
quences the buffer management is slightly modified.
The first document of a prefetch sequence is ordered
as the most recently used (highest priority), the sec-
ond document is ordered as the second most recently
used and so on. This ordering is implemented be-
cause documents are sent in the order of decreasing
probability.

A prefetched document should not replace a higher
probability document of the same prefetch sequence.
The proxy attempts to detect this case and stop pre-
pushing when it occurs, but it uses a simple mecha-
nism that can not detect all cases. When the prefetch
buffer is full and there are more pages to prepush
the least-recently used (lowest priority) document in
the buffer is checked to see if it is a higher probabil-
ity document of the same prefetch sequence. If the
new document is larger than the lowest priority doc-
ument it may force multiple documents out of the
buffer, some of these additional documents may be of
a higher probability than the new document.

3.3 Traces and the Simulator

The traces used in this study is the HTTP traces
gathered from the University of California at Berke-
ley home dial-up populations from November 14, 1996
through November 19, 1996. For a detailed descrip-
tion of the trace see [8]. The traces are collected at
a packet sniffing machine placed at the head-end of
the UC Berkeley HomelP modem bank. Thus, it cor-

Low bandwidth
modem connection

Browser
Cachg

CLIENT

Ay
Internet PROXY’

Connection SERVER

Prefetch
Bufer,

®
Browser
Cachg

CLIENT

Figure 1: System Overview.

responds to requests that would be seen by a proxy
between the modem clients and the Internet.

The simulator uses the timing information in the
traces to estimate the latency seen by the modem
client. The trace includes, for each request, the time
the client made the request (Tp), the time at which
the first byte of the Web server response was seen at
the head-end machine (T1), and the time at which
the last byte of the Web server response was seen
at the head-end machine (T3). We assume that the
transfer of the document from the Internet to the
head-end machine and the transfer of the document
from the head-end machine to the modem client can
be overlapped, and since packets typically arrive at
the modem bank faster than they can be sent to the
modem clients 7], we estimate the client-seen latency
to be (T — Tp) plus the document size divided by the
modem bandwidth ®.

Except in our analysis of user idle times, we al-
ways assume the existence of a proxy between the
modem clients and the Internet. The proxy is as-
sumed to have a cache size of 16GB, which for our
traces results in no cache replacement. We do not
simulation the latency of fetching a document from
the proxy cache in detail since in practice there are
many different proxy software that has quite differ-
ent performance characteristics. Rather, we assume
a 10ms fixed delay in fetching a cached file from disk
in order to send to the client. We assume that the
proxy has one disk and the fetching of different files
is serialized.

1We are planning to improve our latency estimate and in-
corporate new results for the final version.

The simulator models a prefetch buffer associated
with each unique client. The prefetch buffer resides
on the local machine of the client. The prefetch buffer
is assumed to be implemented in main memory and
its access time is considered insignificant. From the
traces we can not recognize when a user disconnects
and reconnects to the modem bank. We approximate
this behavior by assuming that a user connection idle
for more than 30 minutes corresponds to a user dis-
connecting. When a user is idle for more than 30
minutes their prefetch buffer is cleared and any state
the proxy has been maintaining for that user is dis-
carded.

For most of the studies we assume that the proxy
has perfect knowledge of the state of each user’s prefetch
buffer. In a real system this could be achieved by ei-
ther the proxy maintaining state on all active users’
buffers or by having the proxy query the user when it
needs information. This query communication would
most likely be very short messages whose latency would
be insignificant as compared to document transfer
times. We will also show that prepushing can be im-
plemented with the proxy having no knowledge of the
state of the user’s prefetch buffer.

4 Potential of Proxy-Side Pre-
Pushing

Before studying the design of the prediction mecha-
nisms, one must answer the question: assuming per-
fect predictors, what’s the maximum latency reduc-
tion possible using this technique? The upper bound

will determine whether pre-pushing is worthwhile.
The upper bound is determined by a number of
factors, including:

e the inherent idle time distribution in a user’s
Web accesses. This determines how much time
can be used for pushing documents to the user
side.

e the modem bandwidth between the proxy and
the user.

e the lookahead of the predictor, that is, how
many requests can be predicted at a time. In
this section we assume that the prediction are
always perfect.

o the size of the user-side pre-push buffer. Pre-
pushed documents are saved at the client ma-
chine. The total amount of storage that can be
devoted to storing the prepushed documents is
limited.

Figure 2 shows the idle time distribution observed
in the UCB traces. Here we estimate idle time by
looking at each user’s requests, and calculate the dif-
ference between the estimated end-of-transmission of
one request to the start of the next request. Dif-
ferences of less than 1 second are presumed to be for
concurrent transfers. The figure show that about 60%
of the requests are preceded by 2 to over 120 seconds
of idle time, indicating that there are plenty of oppor-
tunities to take advantage of the idle time to reduce
client latency.

Our simulation assumes a perfect predictor at the
proxy side; that is, at any time, it can predict the
next k requests for a user for any k. Furthermore,
the simulation assumes that at each user end a pre-
push buffer exists to hold pre-pushed pages from the
proxy. The pre-push buffer is separate from the user
browser cache. User Web accesses that hit in the
browser cache is hidden from the proxy However, we
assume that for every accesses that hit in the pre-push
buffer, the proxy receives a notification message.

Our simulation assumes that a document can only
be pushed if it has been seen before in the trace. Ob-
viously, unless Web servers provide prefetch-hints to
proxies, this is the limitation in reality. We further
assume that the proxy has infinite cache space, and
proxy cache documents on disks, and for every docu-
ment that is pushed, there is a 10ms latency to fetch
the document from disk first.

Finally, the simulation assume that the buffer is
flushed if the user’s idle time exceed 30 minutes. This
is because in reality, the idle time signifies a new ses-
sion and we assume it to be impossible to predict
across the sessions.

4.1 Performance Metrics

We are primarily interested in the following perfor-
mance metrics for our prediction algorithms:

e Latency Reduction: the percentage reduction in
the user-visible latency from the prepush tech-
nique. The latency reduction comes from two
sources:

- latency hidden: the user-visible latency that
is either avoided because the requested doc-
ument is already in the prefetch buffer (com-
pletely hidden), or reduced because it is
being pre-pushed (partially hidden).

— contention avoidance: the reduction in user
latency that is due to the document being
transfered to the user earlier than in the
no-prefetching case. When multiple docu-
ments are being sent to the user, the trans-
fers share the limited modem bandwidth.
If prefetching can make one of the doc-
ument transfers happen earlier, then the
rest of the document transfers all complete
quicker and result in reduction in user-
visible latency.

o Wasted Bandwidth: the amount of bytes that
are pre-pushed from the proxy to the client but
are not read by the client. That is, it is the sum
of the sizes of files that are pre-pushed from the
proxy to the user but are replaced from the user-
side prefetch buffer without ever being accessed
by the user. In our following figures we show the
ratio between bandwidth wasted and the total
bytes accessed by the users.

o Request Savings: the number of time that the
user requests a document that is already in the
prefetch buffer, or is being sent from proxy to
the user. We can further characterize the re-
quest savings into the following three categories:

- prefetched: the document is in the prefetch
buffer, and and the user is accessing it for
the first time since it is in the prefetch
buffer.

— cached: the document is in the prefetch
buffer, but this is not the first time that
the uses has accesses it since it has been
in the prefetch buffer.

— partially prefetched: the document is still
being sent from the proxy to the user.

The reason for separating the request savings
into the three categories is that we would like to
separate the caching effect of the prefetch buffer

0.4

0.35

0.3

.
//

0.25

AR

0.15
i I S—
0.05

Fraction of all Requests

0 S~

Time (sec)

N ™ o > b I o ™
N © q(;) ’\Q‘\) VQO) \’bcb

o

Figure 2: Distribution of idle time between user requests.

from the prefetching effect. The prefetch buffer
also acts as an extended browser cache for the
user, and to understand the latency reduction
due to the prediction algorithm, it is important
to separate the two effects.

Latency reduction is the primary goal of the pre-
push scheme. Bandwidth wasted measure the extra
bandwidth consumed by the algorithm. Unlike in the
wide-area network, wasted bandwidth on the modem
line can be tolerated: the modem line would stay idle
anyhow. For most users who do not initiate other
network transfers (such as ftp) while Web-surfing, the
wasted bandwidth has virtually no effect. Finally, we
need to investigate request savings to understand the
source of latency reduction.

4.2 Limit Study Results

Figure 3 shows the fraction of requests that are ser-
viced by the prefetch buffer for users connected to
the proxy via 56Kbps modems, under different looka-
heads (256, 8 or 4) and with different prefetch buffer
sizes (16MB, 2MB or 256KB). Around 60% of user
requests (that miss in the browser cache) are ser-
viced by the prefetch buffer. In the case of the 256
look ahead and large buffer every document that is
not seen for the first time is serviced by the prefetch
buffer. Even with the minimal look ahead there is
opportunity to prefetch nearly every request. The re-
quests serviced by the prefetch buffer are broken into
three categories. The first category is the cache affect.
This is the case when a requests is for a document in
the prefetch buffer that has already been used at least

once since being brought into the buffer. This occurs
in limited cases where the browser either doesn’t have
a cache, or the cache doesn’t use the LRU replace-
ment policy. The second category are requests that
first use a document that has been brought into the
buffer. This is the case of true prefetching. The third
category is a special case of the second where the
document the request is for is in the process of be-
ing brought into the buffer when the user requests it.
In this last case the user sees a partial reduction in
latency.

Figure 4 shows, for the same lookahead and buffer
size combination, the fraction of requests serviced by
the prefetch buffer, the average reduction in latency
seen by the user and the extra bandwidth consumed
by prefetching. The latency reduction is considerably
smaller than the fraction of requests serviced by the
prefetch buffer. The major reasons for this is that
prefetching can only be used on requests that hit in
the proxy cache, these requests on average have a
smaller latency than requests that require accessing
a server over the Internet. We also see that there is
wasted bandwidth even with perfect prediction and
in one case it is significant. This is an artifact of the
prefetch buffer management where we may replace a
document with one that has a lower prefetch proba-
bility (occurs later). This is discussed in Section 3.2.
In the case of the 256 look ahead and the small buffer
there is extreme pressure on the prefetch buffer and
we see that this effect is significant, in the other cases
the impact is minimal.

The latency reduction for the long look ahead is
significantly larger than the reduction for more mod-

% of Requests
o
W

\bé\ q’@ 6& \,@\ ‘b:ﬁ\ q(?&' x@ b‘:\»@ ({pb%'
& S
> >y &

S o
& & & ©

Figure 3: Fraction of requests that are serviced by the prefetch buffer (the first number specifies the lookahead,
the second number specifies the prefetch buffer size).

Request Savings
i1 ELatency Redcution |_
D Extra Bandwidth

Figure 4: Request Savings, Latency Reduction and Extra Bandwidth.

Latency Hid

B Contention Avoidance

Figure 5: Breakdown of latency reduction.

erate look ahead even though the fraction of requests
serviced by the prefetch buffer varies only slightly.
The reason for this can be seen when we break the
latency savings down to user latency hidden and con-
tention avoidance, Figure 5. The user latency hidden
is calculated by determining the amount of time the
user would have waited for a document to be fetched if
it had not been in the prefetch buffer. The contention
avoidance is calculated by taking the total latency ob-
served when there is no prefetching and comparing it
to the total latency observed with prefetching plus the
latency that was directly hidden by prefetching. We
see that the long look ahead has significantly larger
savings due to contention avoidance. This is logical
because the ability to reduce contention is strongly
dependent on how far you can move requests in order
to capitalize on idle periods.

The latency directly hidden by prefetching is a di-
rect result of prefetching. Some contention avoidance
will occur from prefetching, but it is not clear that
some, or even most, of the contention avoidance is an
artifact of the trace driven nature of the simulation.
Many requests are the direct result of a directive en-
coded into a preceding request. If the first request
was serviced earlier the subsequent request would be
issued earlier, but our simulations due not take this
into account. In the case that there is a long chain
of overlapping requests (each caused by the previous)
our simulator may be able to move the first one earlier
and it will observe that the requests now no longer
overlap.

In the case of the moderate look ahead there is
only minimal latency reduction due to contention avoid-

ance and most of the user latency reduction is due to
the direct hiding of latency due to prefetching. The
next section will show that in for real predictors the
contention avoidance is also a minimal impact.

5 Prediction Algorithms

5.1 Overview

The prediction algorithms in this study observe pat-
terns from past accesses from all the clients to predict
what each client might access next. The patterns we
capture are in the form of “a user is likely to access
URL B right after he or she accesses URL A.” Clearly,
only accesses from the same user should be correlated;
accesses from different users are not related and may
arrive at the proxy in any order.

The actual prediction algorithm is based on the
Prediction-by-Partial-Match (PPM) data compressor [1,
6). A m-th order predictor uses the context of the
past m references to predict the next set of URLs.
The algorithm maintains a data structure that keeps
track of the URLs following another URL, following a
sequence of two URLs, and so on up to a sequence of
m URLs. In the context of the past m references, the
immediate past reference, the past two references, the
past three references, etc. are matched against this
data structure to produce the set of URLs that are
likely to be accessed next. The URLs are sorted first
by giving preferences to longer prefixes, and then by
giving preferences to URLs with higher probability
within the same prefix.

There are two aspects of the algorithm that are

particular to the Web proxy contexts. First, the al-
gorithms use patterns observed from all users’ ref-
erences to predict any particular user’s future refer-
ences. On the one hand, this may reduce the accu-
racy of the prediction because one user’s patterns are
used to predict a different user’s accesses. On the
other hand, this increases the number of times the
algorithms can make predictions because the sam-
pling size is increased. We feel that in the context
of prepushing, the second factor is likely to be more
important. A good browser cache should absorb most
of the repeated accesses from the user, and it is im-
portant to predict the first-time access to a document
from a user (i.e. a modem client).

Second, the algorithms separate embedded objects
from non-embedded objects, and treat a document
and its embedded objects as the same entity. That
is, if the algorithm decides to push the document to
the client, it pushes the embedded objects as well.
The reasons for doing so are two fold. First, embed-
ded objects have an access probability of 1 following
the access of the document, and finding the embed-
ded objects in practice is easy — the proxy simply
has to scan the document. Second, embedded objects
are often fetched concurrently over four connections
to the proxy, and the order of request arrival at the
proxy can be random. Separating them out can sim-
plify the data structures keeping track of the observed
patterns.

Since the trace does not indicate which URLs are
embedded in other documents, we estimate the infor-
mation by treating all “.gif” files that are referenced
after the reference of one “.html” file and before the
reference of another “.html” file to be the embedded
objects in the first “.html” file. This estimate errors
on the side of overclassifying “.gif” files as embedded
objects, and we are working on refining the estimate.

5.2 History Structure

The implementation uses a history structure, which
maintains information about the order pages were
seen in. There is one history structure shared and
updated by all the users of a given proxy. Gif files
are not included in this history, as they are consid-
ered to be sub parts of html pages.

The history structure is a forest of trees of a fixed
depth K, where K > m. This history encodes all
dynamic sequences of accesses (by any one user) up to
a maximum length K. One root node is maintained
for every page seen, and in this node is a count of
how often this page was seen. Directly below each
root node are all pages ever requested immediately
after the root page and a count of how often the pair
of requests occurred. The next level encodes all series

of three pages and a count of how often this particular
sequence of three pages occurred. This is continued
to the K-th level.

Every time a user makes a request for a page the
history structure is updated. For each user there is a
list of the last K pages the user requested (this can
be maintained as a list of pointers into the history
structure). The update involves incrementing coun-
ters and possibly adding new nodes “to the history
structure. Each update involves changing one node
at each level of the history structure. Figure 6 shows
an example of the history structure. In this example
K = 3, and the structure is being updated after a
user accesses page C following accessing pages A and
B. The sequence ABC is updated, with the counters
for A and B and C incremented. The sequence BC is
updated and so is the sequence C.

Encoded into the history structure is the observed
relative probability of what page will follow a given
sequence of references. This can be calculated by fol-
lowing a given sequence through the history structure
and then looking at the relative counts of all nodes
immediately following that sequence. The probabil-
ity of a node following another node is the ratio of
the count of the child to the count of the parent.

5.2.1 Aging and Pruning

There are a couple undesired effects if the history
structure is allowed to continuously grow. First, the
structure will grow very large which makes imple-
menting the prefetch engine more costly. Second,
users access patterns change over time and the his-
tory should dynamically adapt. Both of these issues
are solved by what we refer to as aging.

All the nodes in the tree have a count, and we
add to them a time of the last update. Periodically,
in our case every hour, we initiate a pruning of the
tree. When the tree is pruned all leaf nodes in the
history structure are checked. For every eight hours
(the threshold time used is arbitrary) of not being
updated we half the count value by shifting the value
right by one. We propagate these changes up by hav-
ing the count of internal nodes be equal to the count
of their immediate children. When a nodes count
reaches zero we delete the node.

Choosing the threshold is complicated. If we make
the threshold time used for pruning to short we will
remove information from the tree that is still relevant
and important for making predictions. If we make
the threshold to long we have the problem that old
information stays around to long. Old information
can be a problem because we may issue a prefix for
a page based on old information, or we may fail to
issue a good prefetch for a page because with the old

Figure 6: History Structure (being updated for user sequence A..B...C).

information the new dominate page to prefetch does
not meet the prefetch threshold.

In case aging cannot remove enough history nodes
to keep the structure under certain size, a “pruning”
mechanism is triggered. The nodes that are least-
recently traversed are replaced until the history struc-
ture is small enough.

5.3 The Predictor

The predictor uses the history structure to identify
the set of pages a user is likely to access in the near
future. It looks at a user’s recent m accesses. For the
sequence of the last ! requests, where [=m, ..., 1, it
finds the corresponding tree and the node in the his-
tory structure. The predictor then follows all paths
from that node in the tree for k levels down to cal-
culate the relative probabilities of those pages being
accessed in the near future. This produces a list of
candidate pages for prefetching. Each list first sorts
its pages by their probabilities, then deletes the pages
whose probability is below certain threshold ¢, where
0 < t < 1. Finally, the lists are merged by putting
lists corresponding to longer sequences first.

The final list is then sent to the proxy. The proxy
pushes the documents on the lists in the order spec-
ified as long as the modem link is idle. When a new
request from the user arrive, the ongoing push (if any)
is stopped. A new round of prediction and push then
starts again.

Clearly, there are three parameters for the predic-
tion mechanism:

e m: the order of the predictor, that is, how many
past accesses are used to predict. We call it the
“prefix depth.”

¢ I: how far down in the tree to search for eligible
documents. We call it the “search depth.”

e t: the threshold used to weed out candidates.

Their impacts on the predictor’s performance are quan-
titatively analyzed in Section 6.

The algorithm is similar and yet different from
previous proposed prefetching algorithms. Papadu-
manta and Mogul [17] studies the same algorithm,
but with m always equal to 1. Pk and Vitter [6]
also studies the PPM-based algorithm as one of their
prefetching algorithms, but always have [equal to 1.
The reason for considering algorithms with m > 1
is that more context can help improve the accuracy
of the prediction. The reason for considering algo-
rithms with [> 1 is that sometimes, a URL may not
be always requested as the immediate next request
after another URL, but rather within the next few
requests. Thus, in some sense, our algorithm is the
more comprehensive version among the existing algo-
rithms.

6 Performance

Using the UCB traces, we study the performance of
the prediction algorithm varying the parameters m,
I, and £. The user-side prefetch buffers are assumed
to be 2 Megabytes. The performance metrics are the
same as described in Section 4.1. We also study the
performance effect of limiting the size of the history
structure, and that of imperfect interaction with user-
side prefetch buffers.

In our first set of simulations, we assume that his-
tory structure can occupy up to 64MB, and the inter-
action between the proxy and the user-side prefetch
buffers are as described in Section 3.2. We experi-
mented with the prefix depth m being 4 and 1, the
search depth I being 8, 4, and 1, and the threshold
being 0.01, 0.10, and 0.25. We simulated two modem
speeds: 56Kbps and 28.8Kbps.

The performance results assuming 56Kbps mo-
dem lines are shown in the following three figures.
Figure 8 shows three bars for each algorithm config-
uration, illustrating the request savings, latency re-

% of Requests

0.18 Ol Partial ||
016 @ Prefetch
0.14
0.12
0.1 -
0.08
0.06
0.04
0.02
O..

Figure 7: Fraction of requests that are serviced by the prefetch buffer (the first number specifies the prefix depth,
the second specifies the search depth, the last specifies the threshold).

0.6
o A Request Savings
0.5 1] Latency Redcution|
| I O Extra Bandwidth
04 1l
0.3

Figure 8: Requests serviced by prefetch buffer, latency savings, extra bandwidth.

B Contention Avoidance

@ Latency Hid

cal

B P b D P P
& b(?n b“\\\ ANTONY NS

G X AN

Figure 9: Breakdown of latency savings.

duction, and wasted bandwidth. Figure 9 shows the
breakdown of latency reduction due to latency hid-
den and contention avoidance. Figure 7 shows the
breakdown of requests savings in to three categories.
Figure 8 shows that for 56Kbps modem lines, the
pre-pushing scheme can reduce user-visible latency by
9.3% at a cost of 52% wasted bandwidth (at (1,8,0.01)),
by 8.2% at a cost of < 20% wasted bandwidth (at
(4,8,0.10) or (1,8,0.10)), and by about 7% at a cost
of about 10% of wasted bandwidth (at (4,8,0.25)).
Thus, there is an inherent tradeoff between the la-
tency reduction and wasted banwidth: the more ag-
gresive the prediction algorithm, the more chances
it pushes useful documents, and the more chances it
pushes the useless documents. On the other hand,
a balance between the latency reduction and wasted
bandwidth can be achieved. Depending on the envi-
ronment and the effect of the wasted bandwidth, any
one of the above configurations can be desirable.
Figure 8 also shows that the threshold ¢ has the
biggest effect on wasted bandwidth. This is to be
expected since a lower threshold means more files
are pre-pushed. Within the same threshold, increas-
ing the search depth [tends to increase both wasted
bandwidth and latency reduction, particularly for very
low thresholds. This is because under low thresholds,
higher search depth will generate a lot of candidate
documents. Thus, for low threshold, if the wasted
bandwidth is a concern, | = 1 seems to be most ap-
propriate. However, for high threshold (e.g. 0.25),
higher search depth will yield more documents that
satisfy the threshold constraints and are useful, and
a high search depth (for example, ! = 4) is more ap-

propriate. Finally, note that the performance of [= 4
is very close to that of [= 8.

Looking at the prefix depth m, we see that it has
different effects depending on the threshold ¢. For
t = 0.01, higher prefix depth reduces wasted band-
width and results in slightly lower latency reduction.
For t = 0.10, the effect of high prefix depth is min-
imal. For t = 0.25, higher prefix depth increases
the latency reduction and wasted bandwidth. The
reason is that for low threshold, higher m finds the
documents that are more specific to the context (and
therefore more likely to be references) and move them
to the front of the prepush list. In other words, it
improves the accuracy of the prediction. Thus, it re-
duces the bandwidth wastes without affecting latency
reduction much. For high threshold, higher m uses
more previous accesses as context information, and
increase the probability of the context-specific docu-
ments because the sample size for longer contexts is
smaller. Thus, more context-specific documents are
made eligible for prediction.

Figure 9 shows that the latency reduction from
contention avoidance is only a small percentage of
the total latency reduction. This is consistent with
our study of perfect predictors with small lookahead.
Clearly, contention avoidance relies on predictions that
are far into the future.

Figure 7 shows that there is only a small percent
of requests that hit on documents that are currently
being pushed, and the caching effect of the prefetch
buffer counts for about 38% of the request savings.
In other words, about 38% of the latency reductions
observed is in fact due to the caching effect of the

prefetch buffer. This first suggests that in the UCB
traces, the users are probably using browser caches
that are too small. In general, the browser cache
should be increased. Second, assuming that the first
step in reducing user latency is to increase browser
cache size, we should then study the performance of
the algorithm assuming a larger browser cache. Since
requests that hit in the browser cache are not reflected
to the proxy, the effect of a larger browser cache on
the algorithm’s performarnce is not clear. We are cur-
rently investigating this question. Third, comparing
with the results in Section 4, we see that another 2MB
increase to the browser cache seems to be sufficient.

Finally, comparing the latency reductions with
the Limit studies in Section 4, we see that the pre-
diction algorithm achieves about half of the latency
reduction under a perfect predictor.

Figures 10 through 12 shows the corresponding
results for 28.8Kbps modems. As we can see, the la-
tency reduction and the request savings are generally
reduced by 10% comparing to those under 56Kbps
modems. This is because that in many cases, there
isn’t enough time to prepush a document to the client.
The increase of the partial prefetch requests demon-
strates it. The effect of the parameters are the same
as for 56Kbps modems.

Although we only show the threshold values up
to 0.25, we have experimented with higher threshold
values, and the trend is the same: the wasted band-
width is reduced, the latency reduction is reduced,
the better performance relies more on higher search
depth and higher prefix depth.

Effects of Limiting History Sizes In our sec-
ond set of simulations, we pick the algorithm con-
figuration (1,1,0.01) and study how its performance
is affected by smaller history structures. The size
of the history structure is constrained by specifying
a maximum number of nodes implementing an LRU
replacement. This size constraint is in addition to the
normal aging. The (1,1,0.01) configuration is chosen
because it only needs two-level trees and yet yields
almost the highest latency reduction. Table 1 shows
the results on request savings and latency reduction.
The 32MB history size is sufficient that nodes are
never prematurely removed.

The results show that when the history size is re-
duced, the latency reductions decreases, as the algo-
rithm no longer has access to some patterns observed
in the past. However, the degradation is gradual and
as more memory can be devoted to the history struc-
ture, the performance improves.

History Size | Request Savings | Latency Reduction
32MB 15% 9%
4MB 12% 7%
1IMB 9% 5%

Table 1: Performance of the (1,1,0.01) under differ-
ent history sizes.

Effects of Limiting Prefetch-Buffer Interactions
We also study the effect of imperfect interactions with
user-side prefetch buffers on the algorithm perfor-
mance. We first simulate the scenario where the proxy
is unaware of the content of the prefetch buffer, and
pushes documents that are already in the prefetch
buffer at the user-side. The results for the (1,1,0.01)
configuration show that the performance is degraded
moderately; request savings changes from 15% to 12%,
and the latency reduction changes from 9% to 7%.

We then simulate the scenario where the proxy is
unaware of the user accesses that hit in the prefetch
buffer. That is, the proxy would not know which of
its predictions are right, and which are wrong. The
results show that the performance is impacted signif-
icantly. The request savings is reduced from 15% to
8%, and the latency reduction changes from 9% to
5%.

Thus, it is important for the proxy to know the
accesses that hit in the prefetch buffer. In practice,
sending the information to the proxy requires a small
update message from the client machine to the proxy.
Qur results show that this update message is impor-
tant and should not be omitted.

7 Limitations of Our Study

There are many limitations in our study. First, we
assume fixed user request arrival times in our simula-
tion. In practice, as requests are serviced quicker,
the requests also arrive faster. Thus, the latency
reduction discussed only serves as an indication of
how much pre-pushing schemes can speed up user re-
quests. Second, our calculation of client latency is
merely an estimate based on the timestamps recorded
in the traces and the modem bandwidth. It does not
include protocol overhead and is far from accurate.
However, we feel that the estimate is good enough
to give us an indication of how well the pre-pushing
scheme might perform.

Third, our simulator does not model the prox-
ies accurately. In practice, the latency that a proxy
incurs to fetch a document from its cache depends
on many factors, including whether the document is
cached in main memory, the load on the proxy, and
the number of disk arms in a proxy. Our simula-

% of Requests
0.16

O Partial

0.14

Figure 10: Fraction of requests that are serviced by the prefetch buffer (the first number specifies the prefix
depth, the second specifies the search depth, the last specifies the threshold).

04

0.35 — B Request Savings
Latency Redcution

. B [Extra Bandwidth

025 4| I

02 |

0.15 —{ | —{}—

$HFSS SO IEIPeN
bf..)"’W b\?ﬂ o \3’ R4 \.\ vc»b e \%’ Ny

Figure 11: Requests serviced by prefetch buffer, latency savings, extra bandwidth.

Latency Hid

B Contention Avoidance

C“b« ?» }« %,-. ?‘-\ \>~ b‘%a b‘?ﬂ v}\ \(p" \?u \}q b‘OP-.

ORI SPLOLOL PP P PP P

Figure 12: Breakdown of latency savings.

tor takes the simplifying assumption that all cached
documents are on disk, there is only one disk arm,
and the proxy always takes 10ms to fetch a doc-
ument. Clearly, only implementation experiments
can demonstrate the real performance of pre-pushing
schemes, and we are currently working on an imple-
mentation.
Finally, since the traces we use do not mark whether

a response from the Web server carries cookies or not,
our simulation considers all responses cacheable at
the proxies. This inflates the proxy cache hit ratio.
In addition, our simulation does not consider docu-
ment changes, and treat modified documents as cache
hits. This also has the effect of inflating proxy cache
hit ratio. On the one hand, high proxy cache hit ra-
tio may make our latency reduction appear higher.
On the other hand, there are other techniques such
as delta compression that can reduce client latency
for modified documents, which we did not simulate.
Thus, we believe that the results reported here still
serve as a good indication of achievable latency re-
duction from the pre-push technique.

8 Conclusion and Future Work

Today, a large percentage of the Internet population
access the World Wide Web via low bandwidth mo-
dem connections. The users spend a lot of time im-
patiently waiting for web pages to come up on their
browsers. New infrastructure to lessen the latency
will not be available for some time. In the mean time
anything that can reduce the latency over the exist-

ing infrastructure will be a big win. We have inves-
tigate the potential of prefetching between the low-
bandwidth clients and caching proxies (called proxy-
based pre-pushing) can be implemented in hiding the
observed latency of the web over these low bandwidth
connections.

Our results show that with perfect predictors proxy-
based Web pre-pushing can reduce user observed la-
tency by over 20%. Using a PPM compressor-based
predictor, the latency can be reduced by nearly 10%.
Thus, proxy-side pre-pushing is a promising technique
that can have a considerable effect on user’s Web surf-
ing experience.

Much future work remains. We are planning to
implement the pre-pushing scheme and measure the
latency reduction in reality. We are also looking into
ways to improve prediction accuracies for the proxies,
including better predictors. Finally, we are investi-
gating how the scheme might perform in high-latency
high-bandwidth environments such as satellite trans-
fers.

References

[1] T. C. Bell, J. C. Cleary, and I. H. Witten. Tezt
Compression. Prentice Hall Advanced Reference
Series, 1990.

[2] Azer Bestavros and Carlos Cunha. Server-
initiated document dissemination for the www.
IEEE Data Engineering Bulletin, September
1996.

(3]

[12]

(13]

Pei Cao, Edward W. Felten, Anna R. Karlin,
and Kai Li. A study of integrated prefetching
and caching strategies. In Proc. 1995 ACM SIG-
METRICS, pages 188-197, May 1995.

Pei Cao, Edward W. Felten, Anna R. Karlin,
and Kai Li. Implementation and performance
of integrated application-controlled file caching,
prefetching and disk scheduling. In TOCS,
November 1996.

Carlos Cunha and Carlos F. B. Jaccoud. De-
termining www user’s next access and its ap-
plication to pre-fetching. In Proceedings of
1SCC’97: The Second IEEE Symposium on
Computers and Communications, July 1997.
URL: http://www.cs.bu.edu/students/alumni/
carro/Home.html.

Kenneth M. Curewitz, P. Krishnan, and Jef-
frey Scott Vitter. Practical prefetching via data
compression. In Proceedings of SIGMOD’93,
pages 257-266, May 1993.

Fred Douglis and Gideon Glass. Performance of
caching proxies. Private Communication, 1997.

Steven Gribble and Eric Brewer. Ucb home IP
HTTP traces.
Available at http://www.cs.berkeley.edu/ grib-
ble/traces/indez.html, June 1997.

Jim Griffioen and Randy Appleton. Reducing file
system latency using a predictive approach. In
Conference Proceedings of the USENIX Summer
1994 Technical Conference, pages 197-208, June
1994.

Wecol Group. Www collector - the prefetch-
ing proxy server for www. hitp://shika.aist-
nara.ac.jp/products/weol/wcol. html, 1997.

James Gwertzman and Margo Seltzer. The case
for geographical push-caching. In Proceedings of
the Fifth Workshop on Hot Topics in Operating
Systems, 1995.

James Gwertzman and Margo Seltzer. An anal-
ysis of geographical push-caching.

hitp://www.eecs.harvard.edu/vino/web/server.cache/

icdes.ps, 1997.

Tracy Kimbrel, Pei Cao, Edward W. Felten,
Anna R. Karlin, and Kai Li. Integrated par-
allel prefetching and caching. Technical Report
TR-502-95, Princeton University, Department of
Computer Science, November 1995.

[14]

(15]

[17]

[18]

[19]

21]

Thomas M. Kroeger, Darrell D. E. Long, and
Jeffrey C. Mogul. Exploring the bounds of web
latency reduction from caching and prefetching.
In Proceedings of USENIX Symposium on Inter-
net Technology and Systems, December 1997.

Tong Sau Loon and Vaduvur Bharghavan. Al-
leviating the latency and bandwidth problems
in www browsing. In Proceedings of the
1997 USENIX Symposium on Internet Tech-
nology and Systems, December 1997. URL:
http://timely.crhc.uiuc.edu/.

Evangelos P. Markatos and Catherine E. Chron-
aki. A top-10 approach to prefetching on the
web. Technical report, Technical Report No. 173,
ICS-FORTH, Heraklion, Crete, Greece, August
1996. URL http://www.ics.forth.gr/proj/arch-
vlsi/www.html.

Venkata N. Padmanabhan and Jeffrey C. Mogul.
Using predictive prefetching to improve world
wide web latency. ACM SIGCOMM Computer
Communication Review, July 1996.

Mark Palmer and Stanley B. Zdonik. Fido: A
cache that learns to fetch. In Proceedings of
the 17th International Conference on Very Large
Data Bases, pages 255-264, September 1991.

R. Hugo Patterson, Garth A. Gibson, Eka Gint-
ing, Daniel Stodolsky, and Jim Zelenka. In-
formed prefetching and caching. In Proceedings
of 15th ACM Symposium on Operating Systems
Principles, December 1995.

Carl D. Tait and Dan Duchamp. Detection and
exploitation of file working sets. Technical Re-
port CUCS-050-90, Computer Science Depart-
ment, Columbia University, 1990.

Jeffrey Scott Vitter and P. Krishnan. Optimal
prefetching via data compression. In Proceed-
ings of the 32nd Annual IEEE Symposium on
Foundations of Computer Science, pages 121-
130, also appears as Brown Univ. Tech. Rep. No.
(CS-91-46, October 1991.

