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Abstract

We propose a new compression algorithm that is
tailored to database applications. It can be applied to
a collection of records, and is especially effective for
records with many low to medium cardinelity fields and
numeric fields. In addition, this new technique sup-
ports very fast decompression.

Promising application domains include decision sup-
port systems (DSS), since “fact tables”, which are by
far the largest tables in these applications, contain many
low and medium cardinality fields and typically no text
fields. Further, our decompression rates are faster than
typical disk throughputs for sequential scans; in con-
trast, gzip is slower. This is important in DSS appli-
cations, which often scan large ranges of records.

Amn important distinguishing characteristic of our
algorithm, in contrast to compression algorithms pro-
posed earlier, is that we can decompress individual tu-
ples (even individual fields), rather than a full page
(or an entire relation) at a time. Also, all the infor-
mation needed for tuple decompression resides on the
same page with the tuple. This means that a page can
be stored in the buffer pool and used in compressed
form, simplifying the job of the buffer manager.

Our compression algorithm also improves index
structures such as B-trees and R-trees significantly by
reducing the number of leaf pages and compressing in-
dex entries, which greatly increases the fan-out. We
can also use lossy compression on the internal nodes
of an indez.

1 Introduction

Traditional compression algorithms such as Lempel-
Ziv [20, 11, 12], which is the basis of the standard gzip
compression package, require uncompressing a large

portion of the file even if only a small part of that
file is required. For example, if a relation contain-
ing employee records is compressed page-at-a-time, as
in some current DBMS products, a page’s worth of
data must be uncompressed to retrieve a single tu-
ple. Page-at-a-time compression also leads to com-
pressed “pages” of varying length that must be some-
how packed onto physical pages, and the mapping be-
tween the original pages/records and the physical pages
containing compressed versions must be maintained.
In addition, compression techniques that cannot de-
compress individual tuples on a page store the page
decompressed in memory, leading to poorer utilization
of the buffer pool (in comparison to storing compressed
pages).

We present a compression algorithm that over-
comes these problems. The algorithm is simple, and
can be easily added to the file management layer of a
DBMS since it supports the usual technique of identi-
fying a record by a (pageid, slotid) pair, and requires
only localized changes to existing DBMS code. Higher
layers of the DBMS code are insulated from the de-
tails of the compression technique (obviously, query
optimization needs to take into consideration the in-
creased performance due to compression). In addition,
this new technique supports very fast decompression
of a page, and even faster decompression of individual
tuples on a page. Our contributions are:

Page level Compression. We describe a compression
algorithm for collections of records (and index en-
tries) that can essentially be viewed as a new page-
level layout for collections of records (Section 2). It
allows decompression at the level of a specified field
of a particular tuple; all other proposed compression
techniques that we are aware of require decompress-
ing an entire page. Scenarios that illustrate the im-
portance of tuple-level decompression are presented
in Section 4.4.



Performance Study. We present a performance anal-
ysis that underscores the importance of compression
in the database context (Section 4). Our numbers
are based upon a complete implementation of the
algorithms presented in this paper. We measure the
compression ratios and compression/decompression
speeds achieved by our technique on a range of syn-
thetic and real datasets, and compare with gzip,
applied on a page-at-a-time basis. Current systems,
in particular Sybase 1Q, use a proprietary variant
of gzip, applied page-at-a-time. (We thank Clark
French at Sybase IQ for giving us information about
the use of compression in Sybase 1Q.) We typically
get compression ratios of 3 or 4 to 1. On low cardi-
nality datasets, we see compression ratios as high as
88 to 1. These numbers are comparable to gzip, ex-
cept that for low-cardinality data, our compression
is better than gzip because of how gzip is applied
page-at-a-time (the compressed data is rounded up
to blocks of a minimum size, sacrificing some of the
compression). Our algorithm is typically 10 times
faster than gzip in decompressing a full page, and
orders of magnitude faster if only an individual tuple
is required. If all tuples on a page are required, our
decompression is about 3 times faster than sequen-
tial I/O; in contrast, gzip is 2 to 7 times slower than
sequential I/0.

Application to B-trees and R-trees. We study the ap-
plication of our technique to index structures (e.g.,
B-trees and R-trees) in Section 3. We compress
keys on both the internal (where keys are hyper-
rectangles) and leaf pages (where keys are either
points or hyper-rectangles). Further, for R-trees we
can choose between lossy and lossless compression
in a way that exploits the semantics of an R-tree
entry; a capability that is not possible with other
compression algorithms. The key represents a hyper-
rectangle, and in lossy compression we can use a
larger hyper-rectangle and represent it in a smaller
space.

Multidimensional bulk loading algorithm. We can ex-
ploit a sort order over the data to gain better com-
pression. B-tree and R-tree orders are both utilized
well. We present a bulk loading algorithm that has
the following qualities:

e The algorithm first sorts the data, and then packs
the data into pages. These pages are a very high
quality leaf level of an R-tree. Note that these
pages can be used as a compressed version of the
data without creating the rest of the tree.

o A slightly modified version of the algorithm can
ensure that there is no overlap between leaf pages

of the tree for point data.

The compressed file produced by our algorithm is
the set of leaf-level pages of an indexing structure (ei-
ther an R-tree or a B-tree depending on the sorting
algorithm used); retaining the entire tree increases the
size of the compressed file by no more than 10% typi-
cally. Thus, the total size of the compressed file plus a
clustered index with a, potentially multidimensional,
search key is much less than the size of the original
file! In addition to the compression, therefore, we may
obtain an indexing structure for little additional cost.

2 Compressing a relation

Our relation compression algorithm has two main
components. The first component is called page level
compression. It takes advantage of common informa-
tion amongst tuples on a page. This common infor-
mation is called the frame of reference for the page.
Using this frame of reference, each field of each tuple
can be compressed, sometimes quite significantly; thus
many more tuples can be stored on a page using this
technique than would be possible otherwise. The com-
pression is done incrementally while tuples are being
stored, either at bulk-loading time or during run-time
inserts of individual tuples. This ensures that addi-
tional tuples can fit onto a page, taking advantage of
the space freed by compression. Section 2.1 describes
page level compression in detail.

The second component of the relation compression
algorithm is called file level compression. This compo-
nent takes a list of tuples (e.g., an entire relation) and
divides the list into groups s.t. each group can fit on
a disk page using page level compression. Section 2.3
describes file level compression in detail.

The most important aspects of our compression
technique are:

o FEach compressed data page is independent of the
other pages. Each tuple in each page can be decom-
pressed based only on information found on the spe-
cific page. Tuples, and even single fields, can be de-
compressed without decompressing the entire page,
(let alone the entire relation).

¢ A compressed tuple can be identified by a page-id
and a slot-id in the same way that uncompressed
tuples are identified in conventional DBMSs.

e Since tuples can be decompressed independently,
we can store compressed pages in the buffer pool,
without decompressing them. The way tuple-id’s
are used does not change with our compression tech-
nique. Thus, incorporating our compression tech-



nique in an existing DBMS involves changes only to
the page level code and to the query optimizer.

e A compressed page can be updated dynamically
without looking at any other page. This means that
a compressed relation can be updated without us-
ing file level compression. However, using file level
compression will result in better compression.

2.1 Page level compression: frames of
reference

Our basic observation is as follows: if we consider
the actual range of values that appear in a given col-
umn on a given page, this is much smaller than the
range of values in the underlying domain. For exam-
ple, if the first column contains integers and the small-
est value on the page in this column is 33 and the
largest is 37, the range (33, 37) is much smaller than
the range of integers that can be represented (without
overflow). If we know the range of potential values, we
can represent any value in this range by storing just
enough bits to distinguish between the values in this
range. In our example, if we remember that only val-
ues in the range (33, 37) can appear in the first column
on our example page, we can specify a given value in
this range by using only 3 bits: 000 represents 33, 001
represents 34, 010 represents 35, and 011 represents 36
and 100 represents 37.

Consider a set S of points and collect, from S,
the minima and maxima for all dimensions in S. The
minima and maxima provide a frame of reference
F, in which all the points lie. For instance, if

S = {(511,1001), (517,1007), (514, 1031)}

then
F =[511,1001] x [517,1031]

The frame of reference tells us the range of possible
values in each dimension for the records in the set S.
For instance, the points along the X-axis only vary
between 7 values (511 to 517 inclusive), and the points
along the Y-axis vary between 31 values. Only 3 bits
are actually needed to distinguish between all the X
values that actually occur inside our frame of reference,
and only 5 bits are needed to distinguish between Y
values. The set of points S would be represented using
the following bit strings:

S = {(000,00000), (110,00110), (011, 11110)}

Since the number of records stored on a page is
typically in the hundreds, the overhead of remember-
ing the frame of reference is well worth it: in our exam-
ple, if values were originally stored as 32 bit integers,

we can compress these points with no loss of informa-
tion by (on average) a factor of 4 (without taking into
account the overhead of storing the frame of reference)!

2 bits per dimension = 4 equally spaced values
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Figure 1: Frame of reference for lossy compression.
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Figure 2: Point approximation in lossy compression.

Sometimes, it is sufficient to represent a point or
rectangle by a bounding rectangle, e.g., in the index
levels of an R-tree. In this case, we can reduce the
number of bits required as much as we want by trad-
ing off precision. The idea is that we can use bits to
represent equally spaced numbers within the frame of
reference (see Figure 1), thereby creating a uniform
‘grid’ whose coarseness depends on the number of bits
used to represent ‘cuts’ along each dimension. Each
original point or rectangle is represented by the small-
est rectangle in the ‘grid’ that contains it. If the orig-
inal data consists of points, these new rectangles are
always of width 1 along any dimension, and we can
represent such a rectangle by simply using its ‘min’



value along every dimension, e.g., the lower left corner
in two dimensions (see Figure 2). For instance, if 2
bits per dimension were used for both the X and YV
axes on S,

S = {(00,00), (11,00), (01,11)}
2.2 Non-numeric attributes

The page level compression technique, as described
in Section 2.1, applies only to numeric attributes. How-
ever, in some situations we can compress non-numeric
attributes. It is common practice in decision support
systems (DSS) to identify attributes that have low car-
dinality for special treatment (see [7]). Low cardinality
attributes are attributes that have a very limited range
of valid values. For example, gender, marital-status,
and state/country have very limited ranges although
valid values to these attributes are not numeric.

In such systems, it is common practice to map the
values to a set of consecutive integers, and use those
integers as id’s for the actual values. The table con-
taining the mapping of values to integers is a dimen-
sion table. The fact table, which is the largest table
in the system, contains the integers. We recommend
building such dimension tables for attributes with low
and medium cardinality (i.e., up to a few thousands
valid values). We get good compression on the fact
table, and the dimension tables are small enough to fit
in memory or in very few disk pages.

2.3 File level compression

The degree of compression obtained by our page-
level compression technique depends greatly on the
range of values in each field for the set of tuples stored
on a page. Thus, the effectiveness of the compression
can be increased, often dramatically, by partitioning
the tuples in a file across pages in an intelligent way.
For instance, if a database contains 500,000 tuples,
there are many ways to group these tuples, and dif-
ferent groupings may yield drastically different com-
pression ratios. [15] demonstrates the effectiveness of
using a B-tree sort order to assign tuples to pages. In
Section 3 we further develop the connection between
index sort orders, including multidimensional indexes
like R-trees, and improved compression.

In this section we present an algorithm for group-
ing tuples into compressed pages. We assume that the
tuples are already sorted. The grouping of the tuples
maintains the given sort order. The algorithm works
as follows:

Input: An ordered list of tuples ¢1,22,...,,.

Output: An ordered list of pages containing the com-
pressed tuple. The order of the tuples is maintained
(i.e., the tuples in the first page are {t1,t2,...,%;}
for some ¢; The tuples in the second page are
{tit1,tiz2,...,t;} for some j > i, etc..).

Method: This is a greedy algorithm. We find maxi-
mal 7 s.t. the set {¢1,%a,...,¢;} fits (in compressed
form) on a page. We put this set in the first page.
Next, we find maximal j s.t. theset {¢iy1,ti42,...,8;}
fits on a page. We put this set in the second page.
We continue in this way until all tuples are stored in
pages.

Note that given the restriction of using our page level

compression and the order of tuples, this greedy algo-

rithm achieves optimal compression.

3 Compressing an indexing struc-
ture

Many indexing structures, including R-tree vari-
ants [6, 3, 19], B-trees [2] , grid files [16], buddy trees
[10, 9, 8], TV-trees [14] (using Lo, metric), and X-
trees [4], all consist of collections of (rectangle,pointer)
pairs (for the internal nodes) and (point,data) pairs(for
the leaf nodes). Our main observation is: All these
indexing structures try to group similar objects (n-
dimensional points) on the same page. This means
that within a group, the range of values in each di-
mension should be much smaller than the range of
values for the entire data set (or even the range of
values in a random group that fits on a page). Hence,
our compression technique can be used very effectively
on these indexing structures, and is especially useful
when the search key contains many dimensions.

While the behavior of our compression technique
when used in index structures is similar in some ways
to B-tree prefix compression, our compression scheme
is different in that:

e We translate the minimum value of our frame of
reference to 0 before compressing.

o Lossy compression makes better use of bits for in-
ternal nodes than prefix compression since all bit
combinations fall inside our frame of reference.

o We also compress leaf level entries, unlike prefix
compression, which is applied only at non-leaf nodes.
Compressing an indexing structure can yield ma-

jor benefits in space utilization and in query perfor-
mance. In some cases, indexing structures take more
disk space than any other part of the system. (Some
commercial systems store data only in B-trees.) In



those cases, the space utilization of indexing struc-
tures is important. The performance of I/O bound
queries can increase dramatically with compression.
If the height of a B-tree is lower, than exact match
queries have better performance. In all cases, each
page 1/0 retrieves more data, thus reducing the cost
of the query.

Another reason for compression is the quality of
the indexing structure. Our work in R-trees yields
the following result: As dimensionality (number of at-
tributes) increases, we need to increase the fan-out of
the internal nodes to achieve reasonable performance.
Compressing index nodes increases the utility of R-
trees (and similar structures) by increasing the fan-
out.

In Section 3.1 we describe our B-tree compres-
sion technique. In Section 3.2 we discuss dynamic and
bulk loaded multidimensional indexing structures. Of
particular interest is our bulk loading algorithm for
compressed rectangle based indexing structures (called
GBPack).

3.1 Compressing a B-tree

The objects stored in the B-tree can be either (key,
pointer) pairs, or entire tuples (i.e., (key, date) pairs).
The internal nodes of the B-tree contain (key, pointer)
pairs and one extra pointer. In both cases, we can
compress groups of these objects using our page level
compression. (The extra pointer in internal nodes can
be put in the page header. It can also be paired with a
“dummy” key that lies inside the frame of reference.)

3.1.1 Dynamic compressed B-trees. Note that
compressed pages can be updated without considering
other pages. However, updates to entries in a com-
pressed page may change the frame of reference. When
implementing a dynamic compressed B-tree, we need
to observe the following:
¢ When trying to insert an object into a compressed
page, we may need to split the page. In the worst
case, the page may split into three pages. (Details
on our algorithm for dynamic changes in the frame
of reference are in Section 3.2.1.) This may happen
when the new object is between the objects on the
page (in terms of B-tree order), and the frame of
reference changes dramatically because of the new
object. (Note that this can happen only if the key
has multiple attributes.) The B-tree insertion algo-
rithm should be modified to take care of this case.

¢ We may not be able to merge two neighboring pages
even if the space utilized in these pages amounts to

less than one page.

e When deleting entries we can choose to change the
frame of reference. However, it is not necessary to
do so.

3.1.2 Bulk loading. We sort the items in B-tree
sort order, after concatenating the key of each item
with the corresponding pointer or data. We use the
file level compression algorithm on these sorted items
(see Section 2.3). The resulting sorted list of pages is
the leaf level of the B-tree.

We create the upper levels of the B-tree, in a bot-
tom up order. For each level, we create a list of (key,
pointer) pairs that corresponds to the boundaries of
the pages in the level below it. We compress this list
using the same file level compression algorithm. The
resulting sorted list of pages is another level of the
B-tree.

3.2 Compressing a rectangle based in-
dexing structure

Most multidimensional indexing structures are rect-
angle based (e.g., R-trees [6], X-trees [4], TV-tree [14]
etc.). They all share these qualities:

o These are height-balanced hierarchical structures.

o The objects stored in the indexing structure are ei-
ther points or hyper-rectangles in some n-dimensional
space.

e The internal nodes consist of (rectangle, pointer)
pairs. The pointer points to a node one level below
in the tree. The rectangle is a minimum bounding
rectangles (MBR) of all the objects in the subtree
pointed to by the pointer.

e All the MBR’s are oriented orthogonally with re-
spect to the (fixed) axes.

In this section we describe our R-tree compression

technique. The discussion is valid for the other rect-

angle based indexing structures as well.
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Figure 3: Compressed R-tree page layout



InternallNode: : ChangeFOR (NewFrame)

for every valid entry number EntryNum in our node
Boxes [EntryNum] = Uncompress(Entry[EntryNum] .box_part, CurrentFrame, BitsPerDim)

CurrentFrame = NewFrame

for every valid box number BoxNum in Boxes
PAGE.entry[BoxNum] .BoxPart = Compress(Boxes[BoxNum], CurrentFrame, BitsPerDim)

Figure 4: Algorithm for changing the frame of reference.

3.2.1 Compression within R-tree internal nodes
Since the internal nodes of R-trees simply store (hyper-
rectangle, page-pointer) pairs, compression is used to
compress the hyper-rectangle stored in each pair. As
a result, the header for the internal node must now in-
clude the frame of reference for all hyper-rectangles on
the page (see Figure 3). Potentially lossy compression
using a global number of bits per dimension can be
used in all internal nodes to ensure fixed size entries
in internal nodes. (This simplifies the implementation
of the insert algorithm, in particular splitting.)

Given this representation for an internal node, mod-
ifications to the R-tree can cause a change in the frame
of reference for an internal node. For instance, suppose
a point, is added to a region not represented by an R-
tree. A path from the root to a leaf must be created
that covers the space which the point resides in. This
involves widening the range of values for pages along
that path. When one of these changes of reference oc-
cur (actually, this only happens in insert and modify,
not delete), we must convert all entries from the old
frame of reference to the new one. This can be done
with the following:

BitsPerDim : The bits per dimension for each dimen-
sion of entries on the page

Boxes : an array of uncompressed hyper-rectangles

Entry(¢) : the i-th entry on our node

Compress(Box, Frame, BitsPerDim) : returns the com-

pressed representation of a box

Uncompress(Box, Frame, BitsPerDim) : inverse of
Compress.

The algorithm for changing the frame of reference is

shown in Figure 4.

Note, from the algorithm above, that changes of
references are done by widening the rectangles (see
Figure 5). This can lead to very large successive ap-
proximation error. To alleviate this problem, several
steps must be taken. These steps use the frames of
references in the children as bounding boxes for the
actual data in the child. The corrective steps taken
are:

Legend
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Figure 5: Change of approximation of point after
frame of reference changes
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Figure 6: Conservative bounding box in parent is
tied to exact bounding box in child

1. When following child pointers down the tree dur-
ing insert, the frame of reference for a child is always
used to update the corresponding entry in the parent
node (see Figure 6).

2. The number of times the frame of reference has
been changed is stored in the header. This informa-
tion is used to determine when occasional cleanups
occur, where a cleanup consists of getting minimally
lossy bounds for the entries. These minimally lossy
bounds are determined by examining the frames of
reference for all children of the page being cleaned.

Note that the cost of Step 1 is virtually nil since no

additional I/0 is done. In practice, this step has an

enormous effect on reducing successive approximation



error. Step 2 is much more expensive since it involves
loading all the children of the node being cleaned, and,
therefore, should be done much less frequently. A dis-
cussion of how frequently cleanup must be run is de-
ferred until later.

3.2.2 Compression within the R-tree leaf nodes
Note that if the index is a secondary index, the global
bits per dimension scheme mentioned for use in inter-
nal nodes can apply to leaves as well. In this situation,
the only differences between leaf nodes and internal
nodes arise from successive approximation error, which
cannot be fixed using corrective step 1 above. Thus a
slightly modified version of step 2, which retrieves the
actual data from the database, is the only available
method to correct error. Again, a discussion of how
frequently cleanup must be run is deferred until later.

If the index is a primary index, the bits per di-
mension for each page are individually determined by
the data on that page. No cleanup is ever necessary
since no information is lost.

Leaf nodes of secondary indexes over point data:
Note that if the index is a secondary index, and the
actual data is points, changes in the frame of reference
result in widening of the box implicitly used to ap-
proximate the point (see Figure 7). At first glance,
this seems to indicate that a box representation of
the point must be used, resulting in a doubling of en-
try size! Upon further reflection, this is unnecessary.
The width of the box used to represent a point is ex-
actly one more than the number of frame of reference
changes since the last cleanup. This is easy to see when
considering the scenario depicted in Figure 7.

3.2.3 GBPack: compression oriented bulk load-
ing for R-trees. All bulk loading algorithms in this
paper partition a set of points or rectangles into pages.
The partitioning problem can be described as follows:

input. A set (or multiset) of points (or rectangles)
in some n-dimensional space. We assume that each
dimension (axis) of that space has a linear ordering
of values.

Qutput. A partition of the input into subsets. The
subsets are usually identified with index nodes or
disk pages.

Requirements. The partition should group points (or
rectangles) that are close to each other in the same
group as much as possible. The partition should also
be as unbiased as possible with respect to (a set of
specified) dimensions.

We bulk-load the R-tree by applying the above prob-
lem to each level of the R-tree. We do the bulk loading
in a bottom up order. First, the data items (points or
rectangles) are partitioned and compressed into pages.
Second, we create a set of (rectangle, pointer) pairs,
each composed of a bounding rectangle of a leaf page
and a pointer to that page. We apply the above prob-
lem to compress this set. We continue this process
until a level fits on a compressed page that becomes
the root of the R-tree.

We solve the partition problem by ordering the set
of points. Then we apply the packing algorithm (de-
scribed in Section 2.3). If we have a set of rectangles,
we use the ordering of the center points of the rect-
angles, and then apply the packing algorithm to the
rectangles. The most important part is finding a good
ordering of the points.

First, we’ll give an example of the sorting algo-
rithm. Then, we’ll describe it in detail.

-
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Figure 8: Example for the bulk loading sort operator
(Using GBPack).
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Figure 9: Example for the bulk loading sort operator
(Using STR). Bold points belong to partitions to the
right of the point.

The following example in two dimensions demon-
strates the GBPack algorithm. Consider the set of 44
points shown as small circles in Figure 8. Suppose we
determine that the total number of pages needed is
15. We sort the set on the X dimension in ascend-
ing order. Then we define p := [V15] = 4 as the
number of partitions along the X dimension; taking
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the square root reflects our assumption that the num-
ber of partitions along each of the two dimensions is
equal (i.e., we expect each of the X-partitions to be
cut into 4 partitions along the Y dimension). We sort
the first partition on the Y dimension in ascending
order. Then the second partition is sorted in descend-
ing order, the third in ascending order and the fourth
in descending order. Figure 8 shows the partitions.
The arrow in the figure shows the general ordering of
points for that dataset. Note that the linearization
generated by the alternation of sort order guarantees
that all but the last page are fully packed at the ex-
pense of a little spatial overlap amongst the leaf pages.
In the above description, we assumed that the number
of pages needed was known to be 15. This number was
then used to determine the number of partitions along
each axis. In actuality, we don’t know the final number
of pages needed since it depends on the compression
obtained, which depends on the data. Therefore, we
use an estimate of the number of pages, obtained by
assuming that we have the bounding box of all the data
and values in tuples are uniformly distributed over this
range.

Finally, in the case of low cardinality data, we
want to guarantee that the partition divisions hap-
pen along changes in value of the dimension being cut.
This results in a much better division of the partitions
into small ranges when one considers the degenerate
case of low cardinality data. This is a result of nar-
rowing the ranges over all the pages in the dataset,
since the same value isn’t in more than one partition

(since the partitions don’t overlap). For instance, in
Figure 9, note that one of the natural partition divi-
sions occurred between two points that had the same
X value. Nonetheless, we did not make the partition
there since it would have reduced compression of our
dataset. See Section 3.2.4 for more details.

Our partitioning technique is similar to STR in
that, starting with the first dimension, we divide the
data in the leaf pages into ‘strips’. For instance, Fig-
ure 9 shows how STR decomposes the data space into
pages. Since, in STR, we are sorting uncompressed
data, we can calculate exactly the number of pages P
produced by the bulk loading algorithm. P, in this
case 15, is used to calculate the number of pages in
each strip (except the last). In this case, we deter-
mine that the first three strips have four pages, while
the last has three. Thus, since the first three strips
contain four pages each, each strip contains 4*3=12
points each. The last strip contains whatever points
are left (8 in this case). Each of the strips are then
grouped into partitions with 3 entries each, except the
very last page, which contains 1 point. Note that all
pages are fully packed except the last.

The important differences between our algorithm
and STR arise from three considerations:

e We are using our bulk loading algorithm to pack
data onto compressed pages, and are willing to trade
off some tree quality for increased compression.

o The degree of compression is based on the data on
a given page, and this makes the number of entries



per page data-dependent.

¢ In the case of low cardinality data, it is very impor-
tant that when we cut a dimension, it is done on a
value boundary in the data.

The first item listed above simply means that we
pack pages more aggressively at the expense of in-
creased spatial overlap among the partitions. We do
this by creating a linearization of the data that allows
us to ‘steal’ data from a neighboring partition to fill
a partially empty partition. In particular, if one con-
siders the above example, there is a partially empty
page at the top of each strip. These pages can be
filled when one considers the effect of reversing the
sort order of each strip. The results are illustrated by
Figure 8. Once this linear ordering is achieved, the
data may be packed onto pages from the beginning of
the linearization to the end. The second point means
that we have to estimate the required number of pages.
The third point constrains how we determine partition
boundaries.

We now present the GBPack algorithm in more de-
tail. The ordering of points is determined by a sorting
function sort(A,k, D). The arguments are:

A: An array of items to be ordered. This is a 2
dimensional array of integers where the first array
index is the tuple number and the second identifies
a particular dimension (i.e. A[g] is tuple ¢, A[¢][j] is
the value of the jth dimension for the ith tuple). We
use the notation |A]| to refer to the number of tuples
in A.

k: The number of elements in A.

D: An integer identifying the dimension we want to
sort on.
In addition, there exists the following global vari-
able:
S: An array of d booleans where d is the dimension-
ality of the data.
If S[d] is true, the current sort order for dimension d is
ascending, otherwise it is descending. The initial value
of S does not matter.
The function sort(A4, k, D) has the following steps:

1. S[D] = not S[D]. Reverse the sort order for every
dimension. This step ensures the linearization of the
space illustrated in the example later in this section.

2. Sort the array A on dimension D according to the
sorting order S[D].
3. D #1do
(a) Estimate P as the number of pages needed for

storing the items in the array. This estimate is
more difficult since the frame of reference for an

individual page is needed to determine the com-
pression ratio. Currently we estimate this number
by retrieving all tuples to partition and using their
frame of reference and the number of tuples to get
a very accurate estimate of the number of pages.

(b) Set p:= | P'/P]. This is the number of parti-
tions on dimension D for the array.

(c) Definealist Ls.t. for 0<j<dL;=4%1k [
is the list of partition start locations.

(d) Lower all values in L s.t. a particular L; is the
first occurrence of A[L;][D] in A.

(e) Remove any duplicates from the L array. This
and the previous step guarantee that dimensions
aren’t overcut; an important guarantee for low car-
dinality fields.

(f) For 1< j<|L|—1 do the following:

sort(array starting at A[L;], Ljt+1 — L;, D —1).

(g) sort(array starting at A[L[|L|]], k—L;, D-1).

To perform bulk-loading of an entire tree to maxi-
mize compression, we use the function sort(4, |4|, D).
Since the resulting array A is now sorted, we simply
pack the pages of the leaf level maximally by introduc-
ing entries sequentially from the array until all entries
are packed. This process is repeated for higher levels
in the tree by using the center points of the resulting
pages in the leaf level as input to the next level. Ob-
serve that both leaf and internal nodes are compressed
in the resulting R-tree index.

3.2.4 GBPack: quality oriented R-tree bulk
loading algorithm. To perform bulk-loading of an
entire tree to maximize R-tree quality, the deepest
level of the recursion (1D strips) writes out pages in-
stead of sorting the entire array first. This, when com-
bined with partitioning only along changes of value,
results in lower page occupancy, and guarantees no
overlap amongst leaf pages over point data. Note that
it still handles low cardinality attributes more grace-
fully than STR.

4 Performance evaluation

This section tests the effectiveness of our compres-
sion technique in a variety of situations. Section 4.1
focuses on the effectiveness of our compression strategy
when used to compress relations. We explore the com-
pression over both real and synthetic datasets. In addi-
tion, the appropriateness of our compression strategy
is examined for B-trees. Section 4.5 examines the per-
formance gains when our compression technique is ap-
plied to R-trees. Section 4.1.4 demonstrates our com-



pression techniques applied to the Tiger GIS dataset.
Section 4.2 discusses the CPU costs associated with de-
compression in comparison to gzip. Section 4.3 com-
pares our compression techniques with those found in
Sybase 1Q. Finally, Section 4.4 gives some examples
in which cheap tuple level decompression significantly
enhances performance.

4.1 Relational compression experiments

Since relational file compression improves both space
utilization and linear scan performance, the experi-
ments here measure the size of the compressed file as
compared to the original in a variety of situations.
Compression is examined under several tuple parti-
tionings, including maximum occupancy random par-
titioning, maximum compression R-tree (STR) parti-
tioning (using the modified STR algorithm), maximum
quality R-tree (STR) partitioning, and B-tree parti-
tioning.

All results are shown in compressed file size as a
percentage of the original file size. For example, when
we get a 25% compression ratio it means that the space
taken by the relation was reduced by a factor of 4.
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Figure 10: Sales dataset. Compression achieved by
varying dimensionality and partitioning strategy.

Since, we want to examine the effect of partition-
ing strategy on relation compression, we conducted an
experiment in which we studied the partitioning strat-
egy over a real dataset. For three partitioning strate-
gies, namely random, R-tree optimized for compres-
sion and B-tree, we varied the dimensionality of the
datasets while keeping the number of tuples constant.
The results are shown in Figure 10. Note that B-tree
partitioning and R-tree partitioning, while producing
almost identical compression results, are significantly
better than random partitioning. This demonstrates

the value of spatial grouping as the basis for tuple dis-
tribution over pages.

In addition, note that as dimensionality increases,
the effect of smart partitioning is reduced. The un-
derlying reasons for this trend become clear when one
thinks about the effect of grouping close points to-
gether: In order to reduce our key size by some per-
centage, we must reduce the size of each dimension
by the same percentage. Suppose that percentage de-
termines that we need a reduction of 1 bit in each
dimension. We must, therefore, divide the range of
every page along all dimensions by a factor of 2. This
means we must divide the data into 2" pages to obtain
our improvement due to smart partitioning! Thus the
benefit of smart partitioning decreases exponentially
w.r.t. dimensionality. As a result, as dimensionality
was increased, the benefit of smart partitioning was
reduced to nil for the higher dimensions.

4.1.1 Synthetic data sets. In this section, syn-
thetic datasets were used to test our compression scheme
under a variety of conditions. The following is a list of
variables in our experiments:

Size: The number of tuples in the relation.

Dimensionality: The number of attributes of the re-

lations.

Range: The range of values for the attributes.

Distribution:  The distribution of values for each at-
tribute was varied using both uniform(worst case)
and exponential distributions.

Partitioning strategy As described in Section 2.3 we
have three strategies. These strategies are: maximal
compression for R-tree partitioning, maximal quality
for R-tree partitioning, and B-tree partitioning.

Page size. Since we varied page size from 1KB to
8KB and found only slight differences, all presented
experiments were performed on a page size of 4KB.
Increasing page size beyond 4K B had a slightly neg-
ative effect on compression ratio.

Each dataset had the following characteristics:

o All attributes for a particular experiment had iden-
tical distributions (created by the same randomizing
process).

o Attributes were statistically independent.

The figures in this section occur in pairs, where
the left figure refers to an experiment using a uniform
attribute distribution and the right figure refers to the
same experiment using an exponential distribution.

Figures 11, shows the compression achieved on a
file size of 100000 tuples with high compression R-tree



partitioning. The left side graph corresponds to a uni-
form distribution of values for each attribute. The
right side graph corresponds to an exponential dis-
tribution. We varied both dimensionality and range.
The different result lines represent datasets with vary-
ing attribute range. We assumed that all attribute
values were represented in the original relation using
4 bytes. Since, as the range of the attributes de-
crease, the frames of reference for individual pages
narrows, compression improves as attribute range de-
creases. More specifically, if we examine the top line
in the graph, the range of values covers 24 bits of the
32 bit integer in the original dataset. As a result, we
expect to compress the file to at most 75% of its orig-
inal size. Note that compression is significantly better
for the exponentially distributed data. This is due to
a large part of the data falling into a narrower range,
resulting in smaller frames of reference on average.

Figures 12 and 13 show results for the exact same
datasets as Figure 11. The difference is that we use
the partitioning for R-tree quality and B-tree ordering
respectively. Note that the B-tree partitioning and R-
tree high compression partitioning are nearly identical
while the R-tree quality partitioning lags slightly in the
higher dimensions. Note that in all the experiments
with skewed (exponential) distributions, the compres-
sion worked remarkably well.

Figure 14 shows results for the same experiment as
Figure 11 while using 500000 tuples instead of 100000.
Note the slightly improved compression. This is un-
derstandable when one considers that the number of
cuts made in STR is based upon the size of the input,
and in this case, results in about 2 bits of reduction in
total key size.

The results in the previous experiment motivated
another experiment whose results are shown in Fig-
ure 15. In this experiment the number of tuples in a
2 dimensional dataset was repeatedly doubled. Note
the significant improvement in compression with each
doubling.

4.1.2 Companies data set. This section describes
compression experiments on a sample of the Compus-
tat data set. This dataset’s attributes describe many
aspects of companies on a stock exchange. Some of
these attributes include asset value and share price.
The sample contained 82600 tuples and about 300 at-
tributes. In this experiment all indexes were parti-
tioned for high R-tree compression. We projected 10
attributes from the relation. Many of the fields in this
dataset, while having very high range, were also ex-
tremely skewed.

Figure 16 shows the compression results when we
varied dimensionality and page size. (We varied di-
mensionality by using a further projection on the 10
attribute dataset.) All tuples were used in all experi-
ments. We achieved compressed file sizes between 18%
and 30%. Note that, as asserted in the previous sec-
tion, page size had little effect on compression.
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Figure 15: Synthetic dataset, changing number of
tuples.
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Figure 16: Relational compression for Compustat
dataset.

4.1.3 Sales data set. This section describes rela-
tional compression experiments done on a sales dataset.
The dataset is taken from a catalog sales company and
has eleven attributes. Four attributes were low cardi-
nality. For each of those attributes we created a table
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Figure 11: Results for R-tree bulk loading geared for compression.
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Figure 17: Sales dataset. Compression achieved
versus dimensionality.

that maps the values possible for that attribute to the
range 0, ..,k where k -+ 1 is the number of possible val-
ues. Then, we use the mapped values in the relation
instead of the original values.

Al experiments on the sales dataset were parti-
tioned for R-tree high compression. The experiment
in this section, whose results are shown in Figure 17,
examined compression as dimensionality was increased
by taking progressively larger projections of the origi-
nal dataset. The cardinality of the added dimension is
shown for each dimension. Note that when a low car-
dinality attribute is introduced, the compression im-

proves while a high cardinality attribute reduces com-
pressibility. This is easily understood since low cardi-
nality attributes need fewer bits to represent. In addi-
tion, the different data lines represent different dataset
sizes. Note that the effect of file size is diminished with
dimensionality.

The compression we see in Figure 17 is quite good.
In comparison, gzip, which uses Lempel-Ziv compres-
sion, when applied to the file in B-tree sort order, was
able to compress the file slightly better (about 6%).
Of course we maintain the notion of a tuple ID and
guarantee light decoding costs for single tuples while
gzip does not.

4.1.4 A GIS data set. In this experiment, we used
the Tiger dataset for Orange county, California. The
objects in the data are polygons (roads, rivers, etc.).
We used 150000 tuples. When partitioning for R-tree
compression we got 54% compression (i.e., the result-
ing relation size is 54% of the size of the original data
file). When partitioning for R-tree quality we got 55%
compression.

When the file was unsorted, we got only 68% com-
pression. By comparison, gzip compressed to 96% of
its original size when the dataset was unsorted and to
61% of its original size when sorted. Therefore, for
this dataset, we achieved better compression in all sit-
uations.
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Figure 12: Results for R-tree bulk loading geared for R-tree quality.
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Figure 13: Results for B-tree bulk loading.

4.2 CPU vs. I/O costs

In this section, we explore the CPU costs associ-
ated with decompressing information on compressed
pages. For comparison’s sake, we also present CPU
costs associated with gzip when used in a manner con-
sistent with Sybase 1Q.

All experiments conducted using our compression
techniques extracted information from the first hun-
dred pages of both the CompuStat dataset. In both
cases, all 100 pages were in memory compressed, re-
sulting in no I/O costs. Our measurements included
the time to scan the contents of a full compressed page
(Everything), the time to scan one field of all tuples
on a full compressed page (Field), the time to scan one
tuple on a full compressed page (Tuple), and the time
to count the number of entries on each page (Count).

The corresponding throughputs are also given (i.e. the
rate at which a disk needs to supply information to
the CPU to keep the CPU busy). Note that all of the
code that was used for these experiments used an en-
dian/platform independent bit string package. These
numbers could be improved significantly by writing
the code in platform specific assembly language. The
results are in Table 1

All gzip experiments were performed by dividing
the uncompressed dataset into 64KByte blocks, which
were then compressed. Note that the resulting com-
pressed blocks ranged in size between 4KBytes and
32KBytes. The CPU time was then measured for de-
compressing all blocks within each size category (4K,
8K, 16K, 32K). To ensure that any overhead in start-
ing gzip was taken into account, the time to decom-
press the same number of compressed 1Byte blocks
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Figure 14: Synthetic dataset, 500000 tuples, R-tree bulk loading geared for compression. Left graph is for
uniformly distributed data. Right graph is for exponentially distributed data.

Everything | Field Tuple Count
Processing Time 0.256ms 0.099ms | 0.013ms | 0.047ms
Throughput 16MB/s | 41MB/s | 305MB/s | 88MB/s

Table 1: Our Compression Results

was subtracted from the measured times. Note that
since field and tuple level decompression isn’t possible
with gzip style compression, only the cost associated
with decompressing an individual block is measured.
The corresponding throughputs are also given (i.e., the
rate at which a disk needs to supply information to the
CPU to keep the CPU busy). The results are in Table
2.

Note from the above tables that our decompres-
sion is a great deal faster than gzip. While we can
easily keep up with a linear scan in all situations (ap-
proximately 5MB/s), gzip doesn’t keep up under any
of the measured circumstances. In addition, there is
a large performance benefit in accessing individual tu-
ples or fields of a page, while gzip is unable to take
advantage of such situations. See Section 4.3 for more
information about the advantages/drawbacks of gzip
style compression in comparison to ours.

4.3 Comparison with techniques found
in commercial systems

Many commercial vendors are utilizing compres-
sion techniques in their data warehousing products.

We discuss Sybase IQ in particular because their tech-
niques are among the best in current commercial sys-
tems, and published information on the use of com-
pression in commercial DBMS products is generally
lacking. Sybase compresses data using a technique
similar to gzip; in the rest of this section, we will sim-
ply say ‘gzip’ for brevity. Note that if all values of
all fields are listed in the same order w.r.t. tuple ID,
tuple IDs don’t need to be stored with the projection.
Sybase also uses bit vectors, and applies gzip to com-
press each bit vector.

Note that the use of gzip has advantages and
drawbacks. One advantage is that gzip is a general
compression technique and can be used to compress
any type of field, including strings. The drawback
of gzip is that it does not support random access
to tuples within a page, and decompression is rela-
tively slow. This means that pages being actively used
must be stored in memory uncompressed. Another
drawback is that applying gzip page-at-a-time causes
some complications, which we outline below. (Apply-
ing gzip file-at-a-time would mean that if we need a
particular tuple, or page, we would have to decompress
the entire file!) (An important exception to this prob-
lem occurs during linear scans. During linear scans,



4KBytes | 8KBytes | 16KBytes | 24dKBytes | 32KBytes
Processing Time 5.6ms 6.6ms 9.6ms 11.2ms 14ms
Throughput 0.7MB/s | 1.2MB/s | 1.7MB/s | 2.1 MB/s | 2.3 MB/s

Table 2: gzip Compression Results

processed pages can be “tossed” immediately.)

A consequence of applying gzip page-at-a-time is
that since different pages compress to different extents,
the result of compressing a page is of variable size.
Since pages in the buffer pool are of some fixed size,
we need to map variable sized “compressed pages” to
fixed size “logical pages”. In Sybase 1Q, pages of 64K
are compressed by applying gzip, and each compressed
page is rounded up to a 4K, 8K, 16K, 32K or 64K “log-
ical page”. (When a logical page is uncompressed, it
yields a 64K page of the original file.) This means that
there is empty space at the end of a logical page, which
affects the compression that is obtained. Logical pages
are allocated sequentially on disk, and prefetched in
64K increments. If random access to a page in the
original file is desired, a mapping from logical pages to
disk pages must be maintained.

In summary, gzip provides high flexibility in the
type of data compressed while complicating buffer and
storage management. These complications lead to in-
efficiencies in memory and disk utilization. Another
drawback of gzip is that gunzip can only sustain an
decompression throughput of 1.7MB/s (see Section 4.2)
on a 200MHz Pentium Pro. This decompression rate
is not high enough to keep up with a linear scan. Note
that this may be improved with a more efficient im-
plementation of gunzip—Sybase IQ uses a proprietary
version of gzip from Stacker, not the standard Unix
gzip—but we do not have access to an optimized gzip
implementation.

We note that Sybase 1Q stores relations column-
wise. While this is likely to improve the compression
obtained using gzip (or other compression techniques,
including ours), the decision of whether to vertically
partition a relation is in general orthogonal to whether
to use compression. If vertical partitioning is used, and
columns are stored in the same order as the original
set of tuples, our compression technique can be used
to compress columns without storing tuple IDs with
each field value. On the other hand, if a column is
reordered (e.g., using B-tree ordering), tuple IDs must
be stored with each field value in the column; this is
the case in either the Sybase approach or ours, and in
either case the tuple ID is compressed too.

The table 3 summarizes the resulting size of com-
pressed files when using Sybase IQ vertical partition-

ing with compression; compressed bitmaps; and our
compression technique. (Experiment marked in the
table by “NA” were not performed since there were
several medium cardinality attributes which make the
use of bit vectors inappropriate.) In all cases, the val-
ues of each tuple in each field were mapped to a num-
ber between 0 and n-1 where n is the cardinality of
that field. For the Sybase experiments, gzip is used
with the uncompressed buffer page size 64Kbytes and
the compressed size either 4Kbytes or a multiple of
8KBytes. The page size used in our experiments was
4Kbytes. These experiments were done with columns
stored in the same order as the original tuples, so tuple
IDs weren’t stored with each value.

Note that Sybase’s techniques typically result in
comparable performance. Of note is the low cardinal-
ity sales data, where the 1/16 compression limit that
results from the “impedance mismatch” of buffer pool
and disk pages limits compression.

4.4 Importance of tuple level decom-
pression

In this section we present two scenarios where fast
tuple level decompression significantly enhances per-
formance. The first example is an index nested loops
join where the inner relation’s index (a compressed B-
tree) and the compressed inner relation fit in memory,
but the uncompressed inner relation does not fit.

In this scenario, the tuples from the outer relation
are brought into memory one page at a time. Each
tuple from the outer is then used to probe the inner
through the index, and the cost of the join is dom-
inated by the cost of retrieving matching inner tu-
ples. If either the inner or the outer isn’t sorted on
the join column, each probe matches tuples that are
randomly distributed across the inner relation; thus,
we need just a few tuples from each page containing a
matching tuple. In our approach, the rid of a match-
ing tuple identifies the (compressed) inner page and
slot containing the tuple, and locating and selectively
decompressing the tuple is extremely fast. If page-at-
a-time gzip compression is used, the rid of a tuple
in the uncompressed inner relation must be mapped
to the logical page containing the tuple (or the com-
pressed page containing the tuple must be identified



Sybase Vertical | Sybase Bit vectors | Qurs
Low Cardinality Sales 10% 7% 1%
Medium Cardinality Sales 23% NA 37%
Compustat 29% NA 30%
Table 3: Sybase 1Q compression comparison
somehow), and this logical page must be decompressed ] -
in its entirety. The difference in CPU costs between Sg | T
this and our approach to retrieving a matching tuple g: :/
is a factor of about 500 (see Section 4.2). Since the 5?;» !
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be superior because the total I/0O is just one scan of
the outer plus the (compressed) inner, plus the CPU
cost of individually decompressing each matching tu-
ple; we've seen that the CPU cost is very low.

A second scenario in which tuple level decompres-
sion is beneficial occurs in a multiuser system where
the dataset fits in memory compressed, but not un-
compressed. In this scenario, it is easy to imagine
that many people will be simultaneously accessing ran-
dom tuples within the database. For instance many
people could be performing exact match queries, or
queries which use indices to retrieve small portions of
the database. Note that even substantial queries (e.g.
5% selectivity) using secondary indices result in ran-
dom access to the underlying pages in the relation.
(Similar scenarios can be constructed for a single-user
environment as well, by using a different workload.)
Being able to store pages compressed and extract in-
dividual tuples rapidly is the key to good performance
here.

4.5 R-tree compression experiments

This section examines the overall impact of com-
pressing R-tree pages on R-tree performance. Note
that compressing the leaf pages of indexes results in
size improvements comparable to general relational com-
pression. The internal nodes benefited from signifi-
cantly improved fanout.

Since the experiments in Section 4.2 determined
that compressed pages can be decompressed as fast
as current disk drives doing sequential access, queries
over R-trees, which exhibit random access character-

Figure 18: Testing the quality of R-trees on Sales
dataset.

istics, are bounded by the I/O costs associated with
getting pages from disk. As a result, only the page
I/0 is measured for these experiments.

These experiments used the three real datasets al-
ready discussed to test the quality of a compressed
R-tree (using R-tree quality partitioning) vs. the qual-
ity of an uncompressed R-tree. For that purpose we
performed identical queries over both compressed and
uncompressed R-trees, and measured the page I/0
caused by each query. For the purposes of making our
results more realistic, we assumed that the root of each
tree remains in memory and doesn’t incur I/O costs.
Each query type was run 100 times. Using the page
I/0 results, we calculated the average relative I/0O be-
tween the compressed and uncompressed R-trees. In
addition, we calculated the standard deviation.

The types of queries were:

Point queries. The query region was a random point
in the region of the R-tree.

Partial match queries. We specified a value for a
subset of the attributes. The query retrieved all tu-
ples that matched the values for the specified at-
tributes. The query was non-discriminatory with re-
spect to the unspecified attributes.

Range queries. We specified a range for each at-
tribute. We varied the hyper-volume of the resulting
query region.

Figure 18 shows the results for the Sales dataset.
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Figure 19: Testing the quality of R-trees on Com-
pustat dataset.
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Figure 20: Testing the quality of R-trees on Tiger
dataset.

We used five attributes of that dataset and 750000
tuples. The rate of improvement (page retrieval ratios)
is from 35% for point queries to 62% for the worst
average on partial match queries. This is a clear win
for the quality of the compressed R-tree.

Figure 19 shows the results for the Compustat
dataset. Again we used five dimensions and 82600 tu-
ples. In this case we got even better gains than in the
Sales dataset case.

Figure 20 shows the results for the Tiger dataset.
Here we have two dimensions and 150000 tuples. We
see the same good results as in the other datasets.

5 Related work

Ng and Ravishankar [15] discussed a compression
scheme that is similar in some respects to our work.

In particular, their paper did the following.

e Introduced a page level compression/decompression
algorithm for relational data.

s Explored the use of a B-tree sort order over the
compressed data as well as using actual B-Trees over
the data.

Note, however, that the details of their compres-
sion scheme are quite different.
o Qur scheme decompresses on a per field, per tuple
basis, not a per page basis.

¢ Except for the actual information in the tuples, we
store extra information only on a per page basis.
Their compression technique uses run length encod-
ing which stores extra information on a per field per
tuple basis.

o Our compression scheme is easily adapted to be
lossy, which is important for compressing index pages
in R Trees.

Some scenarios that highlight the differences be-
tween our schemes are:

o Multiuser workloads that randomly access individ-
ual tuples on pages. Clearly, our approach would be
superior in this case.

e Performing a range query using a linear scan over
the data. Since the bounding box for the entire page
is stored on each data page, our scheme can check to
see if the entries on the page need to be examined.

o Performing small probes on a B-tree. Using our
compression scheme, a binary search can be used
to search on a page, since each record is of fixed
length. Note that this becomes a serious issue in a
compressed environment, where many more entries
can fit on a page.

Additionally, we demonstrated the application of
multidimensional bulk loading to compression, and pre-
sented a range of performance results that strongly ar-
gue for the use of compression in a database context.

[5, 18, 1] discuss several compression techniques
such as run length encoding, header compression, en-
coding category values, order preserving compression,
Huffman encoding, Lempel-Ziv, differencing, prefix and
postfix compression, none of which support random
access to tuples within a page. Like the compression
described in Section 4.3, the above techniques, unlike
ours, handle any kind of data, but introduce buffer and
storage management problems.

[17] discusses several query evaluation algorithms
based on the use of compression. While this paper as-
sumes gzip compression is used, our techniques could



be used as well in most of the examples discussed there.

6 Conclusions and future work

This paper presents a new compression algorithm
and demonstrates its effectiveness on relational database
pages. Compression ratios of between 3 and 4 to 1
seemed typical on real datasets. Low cardinality datasets
in particular produced compression ratios as high as
88 to 1. Decompression costs are surprisingly low. In
fact, the CPU cost of decompressing a relation was
approximately 1/10 the CPU cost of gunzip over the
same relation, while the achieved compression ratios
were comparable. This difference in CPU costs means
that the CPU decompression cost becomes much less
than sequential I/O cost, whereas it was earlier higher
than sequential I/0 cost. Further, if only a single tu-
ple is required, just that tuple (or even field) can be
decompressed at orders of magnitude lower cost than
decompressing the entire page. This makes it feasi-
ble to store pages in the buffer pool in compressed
form; when a tuple on the page is required, it can
be extracted very fast. To our knowledge no other
compression algorithm allows decompression on a per-
tuple basis.

The compression code is localized in the code that
manages tuples on individual pages, making it easy
to integrate it into an existing DBMS. This, together
with the simplifications it offers in keeping compressed
pages in the buffer pool (also leading to much better
utilization of the buffer pool), makes it attractive from
an implementation standpoint. A related point is that
by applying it to index pages that contain (key, rid)
pairs, we can obtain the benefits of techniques for stor-
ing (key, rid—list) pairs with specialized rid represen-
tations that exploit “runs” of rids.

In comparison to techniques like gzip compres-
sion, our algorithm has the disadvantage that it com-
presses only numeric fields (low cardinality fields of
other types can be mapped into numeric fields, and in
fact, this is often done anyway since it also improves
the compression attained by gzip). Note, however,
that it can be applied to files containing a combination
of numeric and non-numeric fields: it will then achieve
compression on just the numeric fields. Nonetheless,
the range of applicability is quite broad; as an exam-
ple, fact tables in data warehouses, which contain the
bulk of warehoused data, contain many numeric and
low-cardinality fields, and no long text fields.

We also explored the relationship between sort-
ing and compressibility in detail. Among the sorts
explored were sorts suitable for bulk loading multidi-

mensional indexing structures and B-trees. The im-
portant conclusion is that both sorts worked equally
well-—which implies that compression will work well
on both linear and multidimensional indexes—and are
significantly better than no sort. The latter observa-
tion underscores the importance of sorting data prior
to compression, if it is not already at least approxi-
mately sorted.
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