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Abstract. In this paper we examine preconditioning operators for regular elliptic
systems of partial differential operators. We obtain general conditions under which the
preconditioned systems are bounded. We also provide some useful guidelines for choosing
left and right preconditioning operators for regular elliptic systems. The condition numbers
of the discrete operators arising from these preconditioned operators are shown to be
bounded independent of grid spacing. Several examples of the two-dimensional regular
elliptic systems are discussed, including scalar elliptic operators and the Stokes operator
with several different boundary conditions. Several preconditioners for these regular elliptic
systems are presented and used in numerical experiments illustrating the theoretical results.
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1. Introduction.

Elliptic systems of partial differential equations are important in the study of many
physical processes, including those involving steady incompressible viscous flow and elas-
ticity. The solution of elliptic systems by finite difference, finite element, or other numerical
method requires the solution of large systems of equations. For the linear systems that
arise in this way, iterative solution methods are used and a wide variety of these are avail-
able. These iterative procedures can be accelerated by choosing good preconditioners for
the linear systems.

In this paper we extend the idea of Manteullel and Parter [9] that examining precon-
ditioning operators for the differential system provides insight into choosing good precon-
ditioners. Whereas Manteullel and Parter [9] consider only a single elliptic equation, we
consider elliptic systems. We also extend their results to consider more general boundary
conditions, especially allowing for non-homogeneous boundary conditions.

T This work was supported in part by the National Science Foundation under grants
DMS-9208049 and DMS-9627071.



Regular elliptic systems, defined by Douglis and Nirenberg [3], and Agmon, Douglis
and Nirenberg [1], have an order inside the domain and on the boundary given by a
sequence of integers. The general idea for choosing a preconditioner for a regular elliptic
system is to choose some regular elliptic system with the same order which is “easily
invertible”. By using the theory of Fredholm operators, we provide some useful guidelines
for choosing good left and right preconditioners for regular elliptic systems. We show
that the condition numbers of such discrete preconditioned operators arising from above
preconditioned operators are bounded independent of the grid size.

Manteullel and Parter [9] discussed the preconditioning and boundary conditions for
scalar elliptic operators in the plane. They obtained necessary and sufficient conditions for
the condition numbers of preconditioned operators to be bounded in the Ly and H; norms.
With the ideas of Bramble and Pasciak [2], they extended the results to discrete precondi-
tioned operators arising from the preconditioned differential operators. They showed that
the condition numbers of these discrete preconditioned operators are bounded independent
of grid spacing. We extend their ideas to regular elliptic systems. The difficulties of this
extension have to do with the non-uniqueness and non-existence for solutions of elliptic
systems. Fortunately, regular elliptic operators are Fredholm operators. Using the theory
of Fredholm operators, we can modify these operators so that the solutions of the modified
operators exist and are unique. By using the regularity estimates of Agmon, Douglis and
Nirenberg [1]we can extend the ideas of Manteullel and Parter to regular elliptic systems
in any dimension with rather general boundary conditions. We show the condition num-
bers of left and right preconditioned operators are bounded with respect to more general
norms. The main idea is to use norms that are natural for the boundary operators. More-
over, we can use the results of Martin [10] to extend the above results to finite difference
schemes such that if the condition numbers of the preconditioned operators are bounded,
then the condition numbers of the discrete preconditioned operators arising from the finite
difference schemes are also bounded independent of grid spacing. Therefore, we only need
to consider the preconditioning problems on partial differential equations, not on finite
difference schemes.

Several examples are discussed in some detail, these include two-dimensional regular
scalar elliptic operators and the Stokes operator with different boundary operators. Also,
good preconditioners for these examples are provided and the numerical experiments using
these examples are presented to illustrate the theoretical results.

The structure of this papers is as follows. We first state some definitions and assump-
tions in Section 2. In Section 3, we discuss the preconditioning method for regular elliptic
systems. In Section 4, we will show that the results of Section 3 can be extended to finite
difference schemes. We discuss several regular elliptic systems of the Stokes operator with -
several different kinds of boundary operators in Section 5 and present the precondition-
ers for these elliptic systems. Numerical experiments are presented in Section 6 and the
conclusions of this paper are presented in Section 7.

2. Preliminaries.

Let  C R™ be an open bounded domain with smooth boundary 9€2. We begin by
introducing regular elliptic systems as defined by Douglis, and Nirenberg [3].
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Definition 2.1. A system of partial differential equations L given by

k
Zl”xDu] z)=fi(z), i=1,...,k and =z €, (2.1)
J=1

where D = (=0, ,...,—10g, ), is an elliptic system if there are integers (o'z)’c , and (7'3);“=1

such that

(1) deg l;; (x, D) < oy + 755

(2) denoting by I :(z, D) the sum of terms in l;j(z, D) which are exactly of the order
o; + Tj, we have

x(x, €) = det || [13; (2, )] || # 0 (2.2)
for all z € Q and all € € R™ and € # 0.
The determinant x(z, &) defined in (2.2) is a homogeneous polynomial in £, and since

it does not vanish for non-zero &, its degree must be an even integer, say 2p. It is easy to
see from the determinant that

m
Z(m + 75) = 2p.
i=1

Definition 2.2. A system of partial differential equations L defined by Definition 2.1 is
said to be a properly elliptic system if for all z € ) and every pair of linearly independent
vectors £,£' € R™, the equation x(z,& +n&') = 0 in n has p roots with positive imaginary
parts.

A regular elliptic system requires p boundary conditions, specified by an operator B:

k
Zb”:cDu] =¢i(z), 1=1,...,p, z €N
j=1

with integers p;, ¢ = 1,...,p, such that
deg b;;(z, D) < p; + 7j.

Since 092 may not be simply connected and the order of boundary conditions may be
different on different components of dS2, the value of the p; may be different on different
components of &) To keep the notation simpler, we will not include the possible differences '
in the p; on the boundary components in our notation.

Denote by b?j(:n, D) the sum of terms in b;;(z, D) which are exactly of order p; + 75,
and let L°(z, D) = [I%(z, D)} and B®(z, D) = [bY;(z, D)] then we define the complementing
condition as follows.

Definition 2.3. The system
L(z,D),B(z,D), z€0Q
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is said to fulfill the complementing condition if for all z € 9 , ¢’ € T;(0Q) (dual of the
tangent space at x), £ # 0, and if t is the coordinate in the normal direction at x, the

initial value problem
1d
Lo ! =
(ac, <§ > dt>) w(t) =0, t>0,

B° (x <§', %%)) w(t) =0, t=0,

lim; ,ow(t) =0

with the restriction

has the unique solution w(t) = 0.

Definition 2.4. The system
LU=F in Q

BU=® on 09, (2.3)

is a regular elliptic system if

(1) L is properly elliptic in Q and has infinitely differentiable coefficients in Q;
(2) the coefficients of B are infinitely differentiable on 0%2;

(3) the system satisfies the complementing condition.

In practice, we don’t need the requirement that the coefficients of L and B are infinitely
differentiable. For convenience in the discussion, we assume that the coeflicients of L and
B are smooth.

We define the Sobolev norms for 7 € Zﬁ as follows:

k
H ()= [[H" (@),
j=1

k

Iz =5 > ID%ul,

J=1ja|<r;

where H™ () is the usual Sobolev space, U = (u1,...,u;) € H™ and || || is the usual L?
norm in €. On the other hand, we define the Sobolev norm on 9%2 specified by

|BU|Z = Ep: |B;U,
i=1

where |B;U]|,, is the trace function space Sobolev norm on 02 as defined in Lions and
Magenes [8, Chapter 1]. Note that if 9§ is not connected then the value of p; maybe
different on different boundary components as discussed after Definition 2.2.

A regular elliptic system (2.3) satisfies the well-known Agmon, Douglis, and Nirenberg

regularity estimates [1]

U gresi 0y < C (1LU || pri-o (@) + |BU | gi-o-1/2(80) + 1Ul0) » (2.4)
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where [ is an integer and [ > [ = max(0, p; +1).
In this paper, we call the regularity estimates (2.4) the ADN estimates.

We now introduce the important definitions of Fredholm operators and index which
will play important role throughout this paper.

Definition 2.5. Let X and Y be Banach spaces. A bounded linear operator P:X—Y is a
Fredholm operator if

(1) kernel(P) is finite dimensional;
(2) range(P) is closed;
(3) the co-dimension of range(P) is finite.

The index of the Fredholm operator P is
index(P) = dim(kernel(P)) — codim(range(P)). (2.5)

We now give these important results regarding regular elliptic systems and Fredholm

operators as following:

(1) A regular elliptic operator of system (2.3) is a Fredholm operator (see Lions and
Magenes [8], Peetre [11], and Wloka, Rowley, and Lawruk [18]).

(2) Regular scalar elliptic operators with Dirichlet boundary conditions have index zero
(see Lions and Magenes [8], pp. 198-199).

(3) For regular scalar elliptic operators, the value [ in the ADN estimates in (2.4) can be
a real number (see Lions and Magenes [8]).

3. Preconditioning for Regular Elliptic Systems.

In this section we present our main result about preconditioners for regular elliptic
systems of partial differential equations. Let £ be an open bounded domain with smooth
boundary 0. Let E = {L, B} be the regular elliptic operator of system (2.3) with the
order (7,0, p) such that

E: H™YQ) — H"7(Q) x H'=71Y2(8Q),

where [ is an integer and [ > I; = max(0, p; +1). We assume, at first, that F is one-to-one
and onto. The general properties for choosing a good preconditioner P are the following:
(1) P is a regular elliptic operator with the same order (7,0, p) as E such that

P:H™Q) - Ho(Q) x HP712(5Q).

(2) P is one-to-one and onto.
(3) P is easily invertible.

Condition (3) is not precise for the differential system, but for the numerical approx-
imation, it means that the numerical approximation can be easily inverted.

By the above properties, the preconditioned operators P~'E and EP~! are one-to-
one and onto. From the ADN estimates, P~'E and EP~! are bounded operators (we
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show this later). Therefore, iteration methods such as GMRES(m) [12] will be efficient for
the preconditioned operators P~'E and EP~!.

Notice, if P has different order 7/, o', or p/, then the preconditioned operators P~1E
or EP~! are not bounded.

In general, regular elliptic operators are not one-to-one and onto. Fortunately, regular
elliptic operators are Fredholm operators. Because the kernel and co-range of Fredholm

operators are finite dimensional, we can easily modify regular elliptic operators so that the
modified operators are one-to-one and onto.

We begin by discussing the modification of regular elliptic operators and then present

the main theorem of this paper. First, we introduce a useful lemma that will be used to
proved the main theorem.

Lemma 3.1. Let X, Y, and Xy be Banach spaces and we denote their norms by || - || x,
Il |lv, and | -||x,.- Suppose that X C X, and the natural injection v — u of X into

Xy is compact. Let ¥ be a continuous linear mapping from X into Y that satisfies the
inequality

ullx < e (1Pully + llullx,) , (3.1)

where c is a constant. If U is one-to-one on X, then we can improve the inequality (3.1)
to

lullx < cz [[Wully. (3.2)
Proof. If ¥ satisfies (3.1) and the natural injection of X into Xp is compact, then ¥
has closed range (Peetre [11]). Thus by the Open Mapping Theorem, ¥~! is bounded on
the range of ¥. This proves (3.2).
The ideas for the modification of F are the following: Considering
E:H™YQ)/K(E) ® K(E)— R(E) & R*(E),
where K(FE) and R(E) are the kernel and range of E, we have that the elliptic operator

E : H*(Q)/K(E)—~ R(E) is one-to-one and onto, and the dimensions of K(F) and
R*(E) are finite.

Define the norm || - ||gr+t/x(z) on H™"/K(E) as follows:
| U+t /5y = inf {|U |grrsr, U’ ~ U, for U,U' € H™*}
where U’ ~ U if U' — U € K(E). By the definition of || - || g+, x (), we obtain
WU+t /5y < MU g-+e (3.3)

We modify E as follows, such that the modified operator E is one-to-one and onto.
Case 1: index(E) =d > 0.
We modify E to E such that

E:H*(Q)/K(E) & K(E)— R(E) ® R*(E) ® R*
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where E = (E|g-+ Kk m),T) and T is a finite dimensional bijection from K (E) to RY(E)o®
R%. Then F is one-to-one and onto.

Notice that T is not unique. If we take a different bijection T”, we will get a different
modified operator £’. But if the data of E are only contained in R(E), T does not affect
the solution of the original equation.

Since E is a regular elliptic operator, the ADN estimates hold

U+t < c(ILU|n-o + |BU|gi-p-1/2 + [|Ullo) -
By (3.3), we have

1tz 1y < € (LU ti=e + |BU =172+ 1U1lo) (3.4)
Since E|gr+1 /K (g) is one-to-one and (3.4) holds, by Lemma 3.1, we have
WUl g+ 5y < c(ILU | gi-o + |BU|gi-p-1/2)
for U € H™*'/K(FE). This implies

lull ey + U e+ k() < ¢ ILU |l gi-e + |BU|gi-p-1/2 + || Tul| gar) (3.5)

where d’ = dim(K (E)) and v € K(E).
Define the norms || - ||p and || - ||r as follows:

I(U, wllp = Ulgr+t/x ) + ullxm)
and
|E(U, w)||g = ||LU|| gi-o + |BU|gi-p-172 -+ || T0| gar,
we have by (3.5) A
(U, w)llp £ ¢ |EWU,u)|r-

Hence £~ is bounded. On the other hand, F is naturally bounded under the norms || -||p
and || - ||g, L.e.,

IEU,uw)llr < c (U, u)llp-

completing this case for the modification of E.

Examples of how to modify the Stokes operator with several boundary conditions are
given in section 5.

Case 2: index(E) = ~d < 0.
We modify E to E such that

E:H™Q)/K(E) ® K(E) ® R —» R(E) ® R*(E)

where E = (E|gr+i/x(g),T) and T is a finite dimensional bijection from K (E) & R% to

RL(E). Then E is one-to-one and onto. With the same idea as Case 1, E|g-+t k()
satisfies (3.4) and E|g-+,k(g) is one-to-one, by Lemma 3.1,

WU+t x(m) < c(ILU||gt-o + |BU|gi-p-1/2),
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for U € H™*'/K(E). This implies
WUl g+ (my + ullkmyore < ¢ (ILU| - + [BU|gi-p-172 + | Tul| gar) -

where d’ = dim(K (E) ® R%) and u € K(F) & R%.
Define the norms || - ||p and || - || as follows:

WU, Wlp = Ullgr+/xE) + lull k(2R

and
IEU,u)llr = |LU| gi-o + |BU|g-p-172 + | Tull g

we have
U u)llp < ¢ |EU, u)lz
Hence £~ is bounded. On the other hand, £ is naturally bounded under the norms |- ||p

and || - ||r, i.e., )
IEU, )l < cll(Uv)]b-

completing the modification of E.

By the above discussion, E is one-to-one and onto, and so E and E-! are bounded.
If we have a regular elliptic system P with the same (o, 7) in  and (7, ) on 0N as F,
then we can modify P to P such that Pis one-to-one and onto, and P, P~ are bounded.
Also, if index(P) = index(E), then £ and P have the same domain and same range. We

also can easily show that the condition numbers of preconditioned operators P-1'FE and
EP~1 are bounded.

Now we come to the main theorem of this paper.

Theorem 3.2. Let E = {L;,B,} and P = {Ly, By} be two regular elliptic operators
defined on the same space. Suppose E and P have the same order boundary conditions
on the same boundary components and index(E) = index(F). Then, for some constant ¢

|P'E|p <c and ||E7'P|p<c
|EP Y g <c and |PE7YR<c

Hence, the condition numbers of the left and right preconditioned operators are bounded,
Cp(P7'E)=||P'E|p ||E"'Pllp < ¢

Cr(EP~™Y) = ||[EP~Y\r |PE~ YR < %

Proof. From the above modification, we have that E and P are one-to-one and
onto from the same domain to the same range. Also, E, E‘l, P, and P~1 are bounded
operators. Hence, EP~1, PE~!, P~'F, and E~'P are well-defined, one-to-one, onto, and
bounded. Therefore, the results follow immediately.
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From Theorem 3.2, we only need the same order boundary conditions on the same
boundary components for E and P. This result lessens the restrictions on boundary
conditions discussed in Manteuffel and Parter [9]. On the other hand, it is hard to imagine
that we can find weaker conditions such that P~1E, E~'P, EP~!, and PE~! are well-
defined, one-to-one, onto, and bounded.

Also, Theorem 3.2 shows that the modification of regular elliptic operators not only
ensures the existence and uniqueness of the solution but also provides some useful guidelines
for choosing good preconditioners. The relations between the modification operator and
original regular operator are described in the following important theorem.

Theorem 3.3. If the data of E is contained in R(E), then the solution of the system
of equations with respect to FE is the same as the solution of the system of equations
with respect to E within the additive finite dimensional kernel. The choice of the finite
dimensional operator T' does not affect the solution of the system.

Proof. The results follow immediately from the above two cases and the theory of
Fredholm operators.

4. Preconditioning for Regular Difference Schemes.

In this section we show how to extend the results of the previous section to finite
difference operators. Let Q2 € R™ be an open bounded domain with smooth boundary.
We consider only boundary-fitted grids, i.e., those in which the boundary is a coordinate
surface. This excludes the grid systems which the boundary curve is not parallel to a
coordinate line. Boundary-fitted grids are in common use in computational fluid dynamics.
We define Q, as the set of grid points inside 2 and 99, as grid points on 9Q (for the details
of definitions of Qp, 0Q4, and boundary-fitted grids see Strikwerda, Wade and Bube [14]).

Consider a finite difference system (Lyp, By) approximating the regular elliptic system (2.3)
defined by:

k
ZLh,i,j'Uh,j(x) = fh,i(:E), 1= 1, .., T E Qh (4.1)
j=1
k
ZBLh,i,jvh,j(iﬂ) =1 pi(z), i=1,....,p €N (4.2)
j=1
k
ZBz,h,z‘,jvh,j(ﬂ?) = doni(z), t=p+1,....,q TEINY (4.3)
j=1

Here the boundary operators Bjp;; approximate the differential operators bij, for i =
1,...,p, while By ; ; are numerical boundary operators which must arise if the stencil of
Ly, goes “outside” of 0€2y,.

Under regularity constraints on the finite difference operator, Strikwerda, Wade, and
Bube [14] obtained the discrete Sobolev space regularity estimates

“’U}LHH;-H + I'UhIH;H—uz
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S c (|.B1’hvh|H;1—p—'l/2 + lhp—tm*'l/ng’h’l)thi—t -+ H-thh”H,'I‘“f’ -+ thHO) y (4.4.)
withp <l < p*and t =9+ %[2(1 — p)] where

p= max (ps +1,0),

and _
pt = min;>q(p;) +1, ifp<g
00, if p=gq.

The discrete Sobolev norms above are defined by:
k
HE () = [[ Hy (@),

=1

lonll%; = L D D 105un(@) A,

i=1 |o|<T; TEQ

l’uhlz—p Z Z Z [(5+Uh Izhn 1

i=1 |aj<p; TEON,

Let E = {L, B} be a regular elliptic operator defined in (2.3) and let
Q:H* - K(E)

is a projection on the kernel of E in H T+l We first state the theorem which was proved
by Martin [10].

Theorem 4.1. If By, = {Ly, B1,n, B2 s} is a regular approximation to a regular elliptic
operator E = {L, B} and the system with the operator E satisfies

U+t < e (ILUllm-e + |BUgi-p-1/2 + [|QUll0) , (4.5)

then the finite difference solutions vy, satisfy

[onll g+t + VRl grrsi-1/2

< e (1Bupvnlgivevz + 0742 By ponl o+ [ Lavnll e +[Quonllo) — (46)
for h sufficient small.

In order to use Theorem 4.1 to extend the results of Section 3 to finite difference
schemes, we need to modify Theorem 4.1. Using ideas similar to that of Lemma 3.1, we
can easily modify Theorem 4.1 as follows.
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Theorem 4.2. If E, = {Lp, B1,n, B2n} is a regular approximation to a regular elliptic
operator E = {L, B} and the system with the operator E satisfies

WU+ m) < e1 (ILU] g0 + |BU|gi-p-1/2) ,

then the finite difference solutions vy satisfy
thHH;‘*“'/K(E’h) + lvthZH_l/Q/K(Eh)

<c (|B1,hvhtH;l—p~—1/2 + Ihp*t_*‘l/zBZ,h'Uh.lH;;‘ + 1|thh|lH;;°)
for h sufficient small.

Using Theorem 4.2 and ideas analogous to those of Section 3 we obtain

Theorem 4.3. Let E = {L;,B1} and P = {Ly, B2} be two regular elliptic operators
defined on the same space. Suppose E and P have the same order boundary conditions on
the same boundary components and index(E)=index(P). Let En={Lin,B11,h B124}
and P,={Lan,B21h,Ba2n} be regular approximations to E and P, repectively. Then
there exists a constant ¢, independent of h such that

|B 7 ER|lp <c and |E Prllp < c

|EnP Y r <c and ||BLE;M|R<c.

Hence, the condition numbers of left and right discrete preconditioned operators are
bounded

Cp(B7 Ey) = 1P Enllp | B Pallp < &

Cr(EnPy) = 1EnB; R 1PER IR < .

5. Examples.

In this section, we discuss three regular elliptic systems. We also provide good pre-
conditioners for these elliptic systems. Numerical experiments for some of these examples
are presented in Section 6.

Example 5.1 (The Stokes Operator with the Dirichlet Boundary Condition.)

Let © be an open bounded domain with smooth boundary 952 in R?. The Stokes
operator S : H™(Q)—H~?() is defined by

V2 0 "am U fl
SU=| 0 V? -9, v ] =1 fo (5.1)
Oz Oy 0 D g
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with the values 7 =(71, 72, 73) =(2,2,1) and ¢ = (01, 02,03)=(0,0,~1). We consider the
Dirichlet boundary operator B : H™=1/2(8Q) —H~*~1/2(8Q) with p = (p1, p2) = (-2, -2)

such that
U
({1 0 O s
wo-(3 0 ) (4) - (2) 52

Let E = {S, B} be the regular elliptic operator. It is well known that the solution of
this system is unique to within an additive constant for pressure (see Temam [16]). Hence,
K(E) =< (0,0,1)T >. Also, the solution exists under the constraint

[o=[aro)= [atun= [ @o-a=] o).

on the range. Hence the co-dimension of the range is 1. Therefore, index(E) = 0. It is
easy to check that a basis of the complementary space of R(E) is (0,0,1)T x (0, 0)T, where
(0,0,1)T is in Q and (0,0)T on 0.

The modification E of E that we use is the following:

A V:Z 0 -0, u
SU=| 0 V2 -9, v in Q,
0z 0y A D

BU =BU on 09,

and

where ]
Ap=p=-—= / . 5.3
ol o (5:3)

Note that £ maps (0,0,1)7, a basis of K(E), to (0,0,1)T x (0,0)7, a basis of the comple-
mentary space of R(E). Hence F is a bijection on HT ().

We provide three preconditioning operators P(®) = {L(®) B}, i = 1,2,3, for F using
the following:

v:Z 0 0
W=1{0 V2 0}, (5.4)
8 0, 1
v: 0 0
L@={ 0 V2 0], (5.5)
—0; -0, 1
and
vV: 0 0
I®=10 V2 0 (5.6)
0 0 1

in Q with the same ¢ and 7 as the Stokes operator and the same Dirichlet boundary
operator B.
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We now show that P() consisting of

V:Z 0 0 U f1
OWy=(0 V2 0)|wv]|=|f] in Q
Or Oy 1 P g

and the boundary operator B from (5.2) has index zero. Given data fi, f2 in L(2) and
b, by in H3/2(8Q), it is well known that the solutions u and v for the equations

Viu=f in 2
u = by on 0N

and
Vv = fy in
v = by on 00

exist and are unique on H2(f2), see Gilbarg and Trudinger [4]. We can obtain a unique
solution p € H'(Q) from the equation

Uz "+'Uy +p=g

for any g € H'(). Therefore P(!) is one-to-one and onto. Similarly, P® and P®) are
one-to-one and onto. Since P9 is one-to-one and onto, we don’t need to modify PO je.,
PG = pG),

Grisvard [6] has shown that the above properties of Stokes equations are still true
on convex polygonal domains. Also, the properties of above preconditioners are valid on
convex polygonal domains (see Grisvard [7]). Therefore, the above discussion is still valid
on convex polygonal domains.

Example 5.2 (The Stokes Operator with the Stress Boundary Condition.)
Let Q be an open bounded domain with smooth boundary 002 in R?. The Stokes

operator S was defined in Example 5.1. Also, define the stress boundary operator B :
H™Y2(8Q) — H~P~1/2(6Q) with p = (p1, p2) = (—1, —1) such that

. —Bn 0 Ng u _ b1
(P ) ()0 e

where 7 = (ng, ny,) is the outer normal along the boundary.
Let U = (u,v,p)T and V = (a, 8,7)T. By integration by parts, we have

du Ov
U+ [ arn- g+ [ B mn - 5=

Ja a8
(U’SV)‘*/BQU'(’Y'%-57"1‘)*%/8{20'(7'%“_‘5,”), (5.8)
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where (-, -) is the inner product operator. Therefore, the operator E = {S, B} is self-
adjoint. On the other hand, E is a Fredholm operator, so we have

codim(range E') = dim(kernel E*),

where E* is the adjoint of E (see Wloka, Rowley, Lawruk [18] pp. 367). Since E is
self-adjoint, we have

dim(kernel E') = dim(kernel E*).
Therefore,
codim(range F) = dim(kernel E),

and hence, index(E) = 0.
It is easy to see that the system

SU=0 in © and B:U=0 on 0N

has the nontrivial solutions (ug, 0, 0)T and (0, vg, 0)T for any constants ug and vo, hence,
dim(kernel(E)) = 2. On the other hand, we know codim(range(E)) = 2 from the above

discussion. If we put (ag , Bo, 0)T with ag and By any constants into (5.8), then we obtain
two constraints for the range of E:

/f1+ b]_:O and /f2+/ b2:O_
Q o0 Q on

It is easy to check that a basis of the complementary space of R(E) is (1,0, 0)T x (0,0)T
and (0,1,0)T x (0,0)T. A
The modification operator E of E that we use is

X VZ+A 0 — 0Oy U
SU = 0 V2 +A —0y v in Q
O Oy 0 D

BU =BU
where A is the average operator defined in (5.3). E is easily seen to be a bijection on
HT ().
We provide three preconditioning operators P = {L®) By} where ¢ = 1,2,3, and
L) were defined in (5.4) to (5.6), with the Neumann boundary operator:

-0, 0 O
B2:< 0 -8, 0> on ON. (5.9)

and

We now show that P(Y) = (L(Y), By) has the index zero. It is well known that the
solutions v and v of equations

{ Viu=f; in Q
ou

g o 80
on b1 on 0
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and

—— = by on 0N.

exist on H2(Q) for f1, fo € Lo(Q) and by, by € H3/2(8Q) if they satisfy the two constraints

/fl+/ by =0 and /f2+/ by =0,
Q 519 Q an

and the solutions v and v are then unique to within an additive constant. Therefore, we
can obtain a unique solution p € H'(Q) from

Uz + Uy +Pp=4g

for g € HY(Q2). Also,
K(PW) =< (1,0,0)7,(0,1,0)T > .

It is easy to check that a basis of the complementary space of R(P) is (1,0,0)T x (0,0)T
and (0,1,0)T x (0,0)7.
Similarly, we have

dim(kernel P®) = codim(range P®) = 2

and
dim(kernel P®) = codim(range P®) = 2.

Therefore,
index(P(") = index(P®) = index(P®) = 0.

By using the same idea for the modification of E, we can modify P® to PO as the

following:
) VE+A 00
LM = 0 VZ4+A 0],
Oz o, 1
) VE+A 00
L® = 0 V2+A 0],
—04 -8, 1
and
A VZ+A 0 0
L® = 0 VZ+A 0
0 0 1
in 2, and

~

By = Bs

where A is the average operator defined in (5.3). P is easily seen to be a bijection on
H™ ().
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Grisvard [5] has shown that the traction (Neumann) problem of linear elasticity is
a regular elliptic system on open bounded convex polygonal domains. It is likely that
the Stokes operator with the stress boundary condition is a regular elliptic system on any
open bounded convex polygonal domains. The numerical experiment on a square domain
is presented in Experiment 6.3.

Example 5.3 (The Stokes Operator with Mixed Boundary Conditions.)
Let  be an open bounded domain with smooth 9Q = I'g{JI'1 where ToNOT: = 0.

The Stokes operator S was defined in Example 5.1. Define the mixed boundary operator
B, consistent with (5.2) on I'g and consistent with (5.7) on I';.

Proposition 5.1. The solution of the above system exists and is unique.

Proof. Let E = {S,B;} be the regular elliptic operator. We first show that the
solution of system is unique. Consider

SU=0 in © and B;U=0 on O0f.

Using integration by parts, we have

- / w(Vu — pg) + (V% — py)
Q

= [ @t [ oG-y - [0+ (@0

—~/[(Vu)2 + (Vv)2].
Q

This implies
Vu = Vv =0,

i.e., u and v are constant. But u = v = 0 on I'g, so we have u = v = 0. On the other hand,
pe=Viu=0 and py=V2v:O.

This implies p is constant. But p = 0 on I'y, so we have p = 0. Therefore, the solution is
unique.

We show that there is a solution (u,v,p)T € (H%(Q), H%(Q), H}(Q))T satisfying

SU=F in Q@ and BiU=® on 00 (5.10)
for any data
F = (f1, f2,9)7 € (L2(Q), L2(Q), H' ()7,
® = (b1, b2)" € (HY?(o), H¥/*(To))",
and @ = (bs,bs)” € (HY?(I'y), HY/?(T1))".
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It is well known that the solutions of % and v of equations

(V2i=fi inQ

U = b1 on Fo
ou
"5, = bs onI'y
and
( V2~ = fz in Q
U = by on Iy
ov
{ —% = b4 on Fl
exist and are unique on H?(Q). Let
u=u +1
1
{v =v'+7 (5.11)
and substitute these expressions for u and v in system (5.10), we have
SU'=F in Q BU =0 on 0Q (5.12)
where F' = (0,0,¢")T and ¢’ = g — (fiz + #,) € H*(Q). Consider
SU'=F in Q@ BU =% on 09 (5.13)

where
U' = (u,v',p)" € (HE, (), HE, (), ()T,
HE () ={ue H*(Q)lu=0 on T},
F'=(f1, f2,9)",
@' = (0,007 on Ty
and @' = ¥

/
31 Y4 on F]_.

/
Let V' = (o, 8, 7)T € (HE (Q), HE (Q), HY(Q))T, by integration by parts, we have

Y] / ou’ / ov’ ;o A
STVt [ o pene =G+ [0 om = [l v =

lle'd op’
(U’,SV’)+/FI u' - (v ng - 57—{”/1*1 v (v ny - 5%)+/1~0(u/a/+vlﬁl)’
ie., E = (8, By) is self-adjoint on (HZ (), HE (Q), H'(2))T. By the same computation
as the original system, the solution of (5.13) is unique in (HZ_(2), HZ (), H*())7. Thus,
dim(K(E")) = 0. On the other hand, E’' is a self-adjoint operator and Fredholm operator.
Then E' is onto. Hence, for any ¢’ € H*(Q), system (5.12) has a unique solution (u’, v', p)T
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€ (HE, (), HE (Q), HH(R))T. We can find a solution (u,v,p)Te (H*(Q), H*(Q), H}(Q))T
for system (5.10). This proves Proposition 5.1.

Consider the preconditioner P; = (L), By) where L(}) was defined in (5.4) and B,
was defined by (5.2) on I'g and (5.9) on I';. We show that P; is one-to-one and onto on
(H?% H?,H'). 1t is well known that the solutions u and v for the following equations

Viu=f in Viu=f, in Q
—u, =b; on Iy and —v,=b3 on T
u=by on T v=>bs on T

exist and are unique in H2(Q) for f1, fo € L2(R), by, bs € HY?(T'1), and by, by € H3/2(T).
We can get a unique solution p € H' from the equation
Uy + Uy +Dp=4g.
Therefore, P; is one-to-one and onto on (H?2, H2, H').
Grisvard [6] has shown that the Laplacian operator with mixed boundary conditions
is a regular elliptic operator on open bounded convex polygonal domains with all corners
having interior angle less than or equal 7/2 and I'g and I'; meet at the corners. It is likely

that the Stokes operator with mixed boundary conditions is a regular elliptic system on

such domains. The numerical experiment on a square domain is presented in Experiment
6.4.

6. Numerical Experiments.

In this section, we describe computational results for scalar elliptic operators and
the Stokes operator with several different kinds of boundary operators on the annulus
and square. The experiments use a second-order difference scheme for the scalar elliptic
operators and regularized central difference schemes for the Stokes operator with a = 0.001.
The regularized central difference scheme was developed by Strikwerda [13]. The initial
condition was that the initial iterate was zero inside the domain. We use the GMRES(m)
[12] method for the iteration method, and take m = 7 for all experiments. Each solution
procedure was terminated when the minimized residual was less than 10~8. The inversions
of the Laplacian operator for preconditioning are accomplished by the Fourier method for
polar coordinates and the Fast Poisson Solver of [15] for Cartesian coordinates. Both of
methods solve the discrete Laplacian operator directly by taking the Fourier transformation
to reduce the original problem to a tridiagonal system, and using the Thomas algorithm
to solve this system.

Experiment 6.1

The first experiment is with a scalar elliptic operator with mixed boundary conditions
on the unit square. Let Q = {(z,y)]|0 < z,y < 1} and E be the scalar elliptic operator

V2u+um+uy in Q

U on =0
E=<u on y=20
Ugp + U on z=1
Uy + U on y=1
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Take the domain of E as H?(f2). By standard results, E is one-to-one and onto on
H?(Q) (see Grisvard [5]). Hence, we don’t need to modify E.

Consider the following three preconditioning operators:

Vu in V2u in Q V2u in

U on z=20 U on z=20 Ug on z=0
Pi=<u on y=0, Po=qu on y=0, FP3s=qu on y=0.

Ug on =1 Ug on z=1 Ug on z=1

Uy on y=1 u on y=1 U on y=1

Similarly, Py, P,, and P3 are one-to-one and onto on H2(2). Therefore, we don’t need to
modify these three preconditioners.
The preconditioner P, has the same order of boundary conditions on the same bound-

ary components as E and index(E) = index(P;). By Theorem 3.2, P; should be a good
preconditioner to F.

We take the data so that the exact solution is
u = ye®. (6.1)

The computational results are shown in Table 6.1.

Left-Preconditioning Right-Preconditioning
h Iterations Error Iterations Error
1/10 2 1.49FE-3 2 1.49E-3
1/20 1 3.66E—4 2 3.66E—4
1/40 1 9.05E-5 2 9.06E-5
1/80 1 2.24E-5 2 2.25E-5
Table 6.1

From Table 6.1, we can see the iteration numbers are very small and almost constant,
showing that this is a very good preconditioner. The order of the errors are O(h?).

On one of the sides of the square the boundary condition for P, has an order different
from E. Therefore, Theorem 3.2 does not apply to P,, but because P; does satisfy Theorem
3.2, we can predict preconditioner P; will be better than F,. The results of using P, are
shown in Table 6.2. Also, Table 6.2 shows the order of errors are O(h?). Notice that the
number of iterations grows as h decreases.

The preconditioner P; has two different order of boundary conditions from E. We can
predict the computational results will be poor and the results show in Table 6.3 confirm
this.
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Left-Preconditioning Right-Preconditioning
h Iterations Error Iterations Error
1/10 5 1.49E-3 6 1.49E-3
1/20 6 3.66E—4 8 3.66E—4
1/40 9 9.11E-5 13 9.03E-5
1/80 18 2.18E-5 83 2.25E-5
Table 6.2
Left-Preconditioning Right-Preconditioning
h Iterations Error Iterations Error
1/10 29 1.49E-3 45 1.49E-3
1/20 * * 129 3.66E -4
1/40 * * 445 9.07TE-5
1/80 * * * *
Table 6.3

In the table, x indicates the solution didn’t converge in 500 iterations or the GMRES(m)
method stalled.

Experiment 6.2

The second experiment was with the Stokes operator with the Dirichlet boundary
condition on the annulus. Let {2 be the annulus centered at the origin with interior radius
equal 1 and exterior radius equal 2. Let E = {S, B} be the elliptic operator with S
defined in (5.1) and B defined in (5.2). By the discussion of Example 5.1, we know the
dimension of kernel(F') and co-dimension of range(FE) are equal to one. For convenience
of computation, we use the notion of factor spaces rather than the modification ideas in
Section 3. Consider E mapping from factor space H™*!/K(E) to H'~?/R*(E). For the
modified operator E, we have

EIHT*“/K(E) = EIH”‘“/K(E)‘

Therefore, the idea of factor spaces is equivalent to the modification ideas in Section 3.
In this experiment, we consider F on (H?(Q), H?(Q2), H*(Q)/R)T where R is the real

line. The algorithm for computing the averages and norms is due to West [17], see also
Strikwerda [13].

Consider the following preconditioner P = (L), B) with L) defined in (5.4) and
B defined in (5.2). From the discussion of Example 5.1, P is one-to-one and onto on
(H%(Q), H*(Q), H*(2))T. 1t is also one-to-one and onto on (H2(Q), H2(Q), HX(Q)/R)T.
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Since P has the same order of boundary conditions on the same boundary components
as F and both index are the same, by Theorem 3.2, P is a good preconditioner.
We take the data so that the solution is

(u,v,p)T = (sin(y), cos(z), cos(zx) + cos(y))T (6.2)

for the exact solution. The computational results are shown in Table 6.4.

Left-Preconditioning Right-Preconditioning
Ar, A#f Iterations Error Iterations Error
1/10,7/10 6 7.67E—-02 8 7.67E—-02
1/20,7/10 7 2.00E-02 10 2.00E-02
1/40,7/10 7 7.26 E—03 7.25E—-03
1/80,7/10 7 5.54E-03 5.56 ' —03
Table 6.4

As we expected, the iteration numbers are essentially constant for all grid spacings and
the order of errors are approximately O(h?).

Experiment 6.3

The third experiment was with the Stokes operator with the stress boundary condition
on the unit square. Let Q@ = {(z,y)|0 < z,y < 1} and F = {S, B} be the elliptic
operator with S defined in (5.1) and B defined in (5.7). From Example 5.2, we know the
dim(kernel(E)) = codim(range(£)) = 2. For convenience of computation, we use the ideas
of factor space which are discussed above to modify E on (H*(Q)/R, H?(Q)/R, HY(Q))T
such that E is one-to-one and onto.

We use two preconditioners for this experiment. The first preconditioning operator
is P, = (LM, By) with L) defined in (5.4) and B; defined in (5.9) and the second
preconditioning operator is P, = (L(Y), B) where B is the Dirichlet boundary operator in
(5.2).

From Example 5.2, we know that the dimension of kernel(P;) and the co-dimension
of range(P;) are 2. With the ideas of factor space, P, on (H2(Q)/R, H2(Q)/R, H*(Q))T
is one-to-one and onto.

Since P; has the same order of boundary conditions on the same boundary components
as F and both index are the same, Theorem 3.2 is satisfied. Therefore, P; is a good
preconditioner.

We take the data so that the exact solution is

(u,v,p) = (2, —y*, z + 2y)" (6.3)
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Left-Preconditioning Right-Preconditioning
h Iterations Error Iterations Error
1/10 3 3.79E-06 3 5.98E-07
1/20 2 3.48E-06 3 7.35E-07
1/40 2 1.04E-06 3 2.42E-07
1/80 2 5.31E-07 3 9.08 E—08
Table 6.5

and we obtain the computational results in Table 6.5.

From Example 5.1, P; is one-to-one and onto on (H?(Q), H2(Q), H(Q2))T. But the
order of the boundary conditions for P, are totally different from Those of E. Even
though the values of index of ' and P, are the same, we can predict that Ps is not a good
preconditioner. For the experiments with preconditioner P, GMRES(7) stalled for grid
size less than 1/10. These results are not displayed.

Experiment 6.4

The fourth experiment was with the Stokes operator and mixed boundary conditions
on the unit square. Let Q = {(z,y)|0 < z,y < 1}, To = {y =0 or y = 1}, and
I'N={z =0 or z =1}. E is the Stokes operator with mixed boundary operators
that we discussed in Example 5.3. By Example 5.3, we know E is one-to-one and onto on
(H?(Q), H*(Q), HY(2))T and its index is zero.

We use two preconditioners for this experiment. First preconditioning operator P; =
(LM, By) with L defined by (5.4) and B; defined by (5.2) on I'g and (5.9) on I';. Second
preconditioning operator Py = (L1, By) with the Dirichlet boundary operator B, defined
in (5.2).

By Example 5.3, P; is one-to-one and onto on (H2(Q2), H%(Q), H'(R2))T. Since P; has
the same order of boundary conditions on the same boundary components as F and both
indices are the same, by Theorem 3.2, P; is a good preconditioner.

We take the data so that the exact solution is

(u,v,p)T = (sin(y), sin(z), cos(z) + cos(y))T (6.4)

and get the computational results in Table 6.6. In Table 6.6, we see that the [, errors are

O(h?).
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Left-Preconditioning Right-Preconditioning
h Iterations Error Iterations Error
1/10 4 1.45FE-03 6 1.45E—-03
1/20 4 3.42E-04 6 3.42E-04
1/40 3 8.29E—-05 7 8.16 E—05
1/80 3 2.05E—-05 7 1.97E—-05
Table 6.6

From Example 5.1, P, is one-to-one and onto on (H2(Q), H(Q), H}(Q))T and so we
don’t need to modify it. But since P, has two boundary conditions of different order than
E, Theorem 3.2 is not satisfied. We can predict that preconditioner P; will be better than
P,. With the exact solution (6.4) we can see the results of P, in Table 6.7. Notice that
the number of iterations increases as h decreases which is a consequence of P; 'E being
unbounded.

Left-Preconditioning Right-Preconditioning
h Iterations Error Iterations Error
1/10 31 1.45E-03 50 1.45E-03
1/20 41 3.44E-04 * *
1/40 78 8.54E—-05 * *
1/80 151 2.23E-05 * *
Table 6.7

In the table, x indicates the solution either didn’t converge in 500 iterations or that the
GMRES(m) method stalled.

7. Conclusions.

We have presented methods for analysis of preconditioners for regular elliptic systems
and provided some useful guidelines for choosing good left and right preconditioners.

Some good preconditioners for the scalar elliptic operators and the Stokes operator
with several different kinds of boundary conditions are given in Section 5. Several computa- -
tional results illustrating the theoretical results and good preconditioners that we provided
are presented in Section 6.

The methods given in this paper lead to a great improvement in the efficiency of
numerical solutions of regular elliptic systems. Although our examples have all used finite
difference methods, the basic ideas can be applied with other numerical methods.
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