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Abstract

Most organizations that offer external access to their data would benefit from some mechanism that ensures a
desired level of service for local users. In this paper, we propose such a mechanism, called the provider agent (PA)
architecture, that protects local users by ensuring a (DBA specified) quality of service for local requests in the face
of computational demands made by external requests. The PA is a general purpose solution that enhances most
information systems currently available. The novelty of our approach is the combination of request profiling with
Joad control mechanisms to improve both protection and performance, while not requiring any modifications to
the underlying information system. We demonstrate the effectiveness of the proposed techniques with a prototype

PA for a commercial DBMS.

1 Introduction

People want access to information within and across organizational boundaries. Many new tools are now available to
allow people to cross old barriers, for example, Web browsers, CGI servers, Java ! and Java Database Connectivity
(JDBC), Microsoft’s ODBC, IBM DataJ oiner?, and data warehouses. People are excited about the potential of these
products, but what happens when a site decides to take advantage of this new technology and allow external users to
access their existing database? The local users of the database have come to expect a certain level of performance.
Suppose the site decides that it is willing to accept a controlled degradation in the performance of local requests
to allow this new service, but the day-to-day business performed by the local users is the ultimate priority. If the
external workload ever degrades the performance to an unacceptable level, the local users’ goodwill might run out,

meaning the elimination of external access.

*Contact Author: 608-262-6629
1Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other

countries.
2DataJoiner is a trademark of IBM Corporation.
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In this environment, the local users are recognized as the owners of the system, and the external requests should
be processed only when the owners allow it. If the site does not take precautions, that fateful day will arrive when
the external workload brings the system to its knees, and correcting the problem could be far from trivial. The
damage caused by a heavy external workload is usually a large increase in local response time, but the damage could
also be unforeseen failures of local requests due to limited resources, for example, a lack of memory or connections.

One way to keep external activity from interfering with local users is to replicate the existing system. Local
users continue to access the original system, while the replicated system services the external requests. The external
requests cannot interfere with local users since they are not using the same system. However, this solution is not
always acceptable for the following reasons. First, the cost of creating and administering a second system could
be prohibitive, especially for large databases. Second, if the external users need access to up-to-date information,
a replicated system is unacceptable. Third, a demand is still placed on the local users system when the replicated
system is periodically updated (e.g., data warehouse updates), and that demand, although more predictable, still
needs to be scheduled. Fourth, if the external requests are prioritized, replicating the system for each priority level-
is infeasible. Finally, replicating the system effectively partitions the computing resources, so one system could be

idle while the other is overloaded. For these reasons, we do not consider the replicated solution further.
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Figure 1: Provider Agent Architecture

This paper describes the architecture of a system, called the Provider Agent (PA), that protects the local quality
of service of a data provider (i.e., any data producing system) in the face of external processing demands. The
PA mediates between the provider and the external world (see Figure 1), much like most multi-database (MDBS)
solutions [5, 26]. The architecture is designed to work with any type of data provider available today, for example,
a DBMS, a Web server, an FTP server, or even data generating programs like a simulation system. The PA
enhances these existing systems, complements current connectivity tools, and can be deployed without waiting for
new versions of these systems. The PA does not mandate any changes to the underlying data provider or the existing
(local) applications.

In designing the PA, we used dynamic load control techniques to protect the local users and request profiling to
improve external response. Load control transforms the worst case external workload from disastrous to predictable
and acceptable. The synergy between load control and profiling enables the administrator to specify load controls
based upon query resource requirements rather than treating all requests the same, independent of the potential
impact of the request. The combination of load control and profiling to protect the quality of service, while not
requiring any modifications to the underlying system, makes the PA an attractive and novel solution.

To evaluate the effectiveness of these techniques, we implemented a prototype PA for a relational DBMS and cre-



ated a testbed for experimentation. We found that our load control mechanisms, which are implemented outside the
DBMS, effectively maintain the local quality of service at a predefined level, and our profiling technique dramatically
improves the throughput of mixed external workloads.

In the remainder of this paper we further motivate the PA by describing some potential applications in Section 2.
Then, in Section 3 we discuss our measure of success. In Section 4 we detail the PA load control and profiling
mechanisms. Section 5 describes an implementation of the PA for a commercial DBMS and Section 6 presents
the performance results. The remaining sections describe related work (Section 7), future work (Section 8), and

conclusions (Section 9).

2 Applications

The PA is applicable to a broad range of scenarios. For example, when an enterprise connects its disparate departmen-
tal databases into a multi-database, the PA would ensure that the large ad-hoc queries posed to the multi-database
by someone in the marketing department do not overwhelm any of the underlying production databases. When a
company offers order tracking information to Internet users, the PA prevents the status requests from disrupting
order processing. Many other scenarios exist, and in this section, we describe a few more sample applications to
further motivate the utility of the PA.

NASA’s EQSDIS project is an excellent example of a large scale data provider that will be available to an
enormous group of users. The Earth Observing System (EOS) satellites are expected to return 300 terabytes of
data per year which will then be augmented with additional information [24]. This data will be stored in EOSDIS
(EOS Data and Information System) and made available to anyone from NASA scientists to elementary school
children. We believe that the PA architecture could be used to schedule requests from different groups of users. For
example, NASA scientists could access EOSDIS directly, while anonymous Internet users and university scientists
could access EOSDIS through a PA. The PA would ensure that the NASA scientists’ quality of service needs are met
by controlling the demands placed upon EOSDIS by the external requests. The PA would also distinguish between
the university researchers and the anonymous users by allowing researchers’ requests to be serviced more quickly
than the anonymous requests.

On a smaller scale, consider the processing of data-mining queries or the extraction of production data into a
data warehouse from a standard OLTP system. The response time of the data-mining queries is probably less critical
than that of the standard business transactions like order processing. If the database system has a predictable
local workload, the DBA could avoid some problems by prohibiting any of the less important queries from running
during peak hours. This solution is not generally acceptable for a number of reasons. First, this all-or-nothing
approach is extreme because it might be possible to access the system in a controlled manner during peak hours
without dramatically affecting the OLTP queries, especially since some of the data-mining queries may be easy to

answer. Second, the DBA must translate peak periods into specific times of the day, implying that the system will



not dynamically respond to changing workloads. Third, some coordination between the database site and the user
issuing the request must exist to let the user know when they are allowed to submit their requests. In short, forcing
the DBA to schedule transactions is not a flexible solution and it requires too much manual intervention.

As a final example, consider a Web server that is about to be searched by an automatic indexing robot. If the
robot arrives during a peak period of the day, it would be useful to delay the robot’s requests until an off-peak time or
at least control the rate at which the robot accesses the data. The service provided by the indexing sites is invaluable
to Web users that are trying to locate information, so simply rejecting the request is probably not acceptable. The
current solution is to rely upon the robot writers to space requests to an individual server so that the robot does
not flood the server {16, 11]. The first problem with this approach is that the Web site administrator must rely on
the robot writer to be conscientious and careful when writing the robot. The second problem is that at different
times during the day, the server might be able to process the robots requests at a much higher rate than others.
Why should the robot make arbitrary decisions about when and how frequently the Web server is accessed when the
server is much more capable to answer these questions? If the indexing robot were to access the Web server through
a PA, then the PA would ensure that the robot’s requests do not drastically interfere with the Web servers response

to normal requests.

3 Quality of Service

The primary concern in this paper is the quality of service (QoS) offered to the local users. Although many QoS
measures exist, we use changes in the response times experienced by the local users to illustrate the protection offered
by a particular PA policy. Instead of summarizing the response times into a single number like the average response
time, we use the distribution function3 of the local response times as our QoS measure. The distribution captures
the performance that the local user can expect at all percentiles, rather than at just the average.

Only when the local users are satisfied can the PA consider improvements in external processing. Two scheduling
policies cannot be compared on the basis of external performance without considering the local QoS. In comparing
external performance, we use the throughput rather than response time because we are more interested in the amount

of work completed than how quickly the work is performed.

4 Mechanisms

The PA achieves its objectives through a variety of load control mechanisms. Each of the mechanisms presented
in this section describes a way that the PA can control when and how a particular external job is run. The merits
of load control are well known, dating back to operating systems work of the '60s and '70s (14, 9]. The novelty of

our approach is in extending these ideas to the protection of the local QoS in the presence of an unknown external

37The function, Fx (z) = P(X < z), is the probability that the random variable X is less than z.



workload without changing the existing system, in our definition of fractional MPL, and in combining load control
with query profiling. This section describes our load control mechanisms in detail, after describing some load control
basics.

When considering a given (fixed) system, the response time of a request is determined by its execution time, the
time the job spends waiting for resources (e.g., waiting to perform a disk I/0 or to acquire a lock), and the time
that is “wasted” due to context switches and resource sharing (e.g., decreased buffer hits, increased number of disk
seeks). The execution time of a job is determined by the system, so additional jobs and the PA cannot affect it. The
goal of the PA is to find ways of limiting the increase in response time caused by the latter two sources of delays.

The time spent waiting for resources is proportional to the number of jobs concurrently accessing the system —
as more jobs are added to the system, the waiting time increases. Wasted time is more difficult to characterize. The
maximum amount of wasted time could be achieved when only two jobs run concurrently. Even when only one job
is run at a time, the system might still waste time due to inter-job sharing. For example, job A scans a relation that
fits exactly within the buffer pool, and job B scans another relation. Alternately running jobs A and B implies that
job A must read the relation from disk each time it executes, but if job B were not run, then job A would only read
the relation once. By decreasing the frequency of the B jobs, the amount of time spent re-reading A’s relation can
also be decreased.

By controlling the maximum number of concurrent jobs and the frequency of the jobs, the sources of delays should
in turn be controlled. This is the basic PA protection mechanism — to control the number of concurrent external
jobs. But by running external jobs the number of local requests in the system will increase, so the PA must account
not only for the delays caused directly by the external jobs, but also for the increase in local response times caused

indirectly by the increased number of local jobs. Sections 4.1 through 4.4 describe the PA load control mechanisms.

4.1 Integer MPL

Adjusting the multiprogramming level (MPL), by definition, controls the maximum number of active requests in a
system. By limiting the number of external jobs to E, the DBA controls the worst case performance of a the local
workload. Theoretically, by constraining the external workload to any E, a stable local workload will never become
unstable by running external jobs. This can be seen by looking at the effective service rate. The effective local service
rate of any one service center is*:

1 1 L

- *
Heff Hact L+E

where L and E are the number of local and external requests respectively, and 1/pqce is the actual service rate of

the center. Unfortunately, the number of local requests in the system, L, will continue to increase until the system
again stabilizes, so the local response times become unacceptable or the system runs out of some critical resource,

for example the maximum number of connections.

4This assumes that all requests take fact seconds which is reasonable for a CPU or a disk drive.



MPL is a simple and effective control because it smoothes the external service demands by queuing requests
outside of the provider, but MPL has several weaknesses. First, MPL is an integer value, so the impact on the local
users cannot be fine tuned, and in particular, if an MPL of 1 causes too great of an impact, then external queries
cannot be processed (see Sections 4.2 and 4.4). Second, MPL does not consider which resources will be affected,
so the DBA must plan for the worst case of all the external requests accessing the same device (see Section 4.5).
Third, small external requests get poor response times because they are forced to wait behind large requests (see
Section 4.5). Finally, slow external consumers tie up provider connections and delay the processing of other external

requests (see Section 4.6).

4.2 Fractional MPL via Spacing

If the response times of the local requests are still unacceptable even after an MPL is applied to the external requests,
the requests can be further subdued by spacing job executions. By spacing jobs, the average MPL is reduced, thus
allowing a fractional MPL to be specified. Spacing jobs further reduces the amount of time that local jobs must wait
due to external jobs and gives the system time to recover from any short-term resource deficit caused by the external
jobs, thereby avoiding long periods of lower QoS.

The interval between jobs can be specified in several ways. In its simplest form, a space can be a fixed time
period. For example, after every job, pause for 10 seconds. A second way to define the space is based upon the
amount of resources consumed by the job. The amount of resources used by the job can come from the provider,
if the provider supplies such information, or the amount can be estimated by the profiler (Section 5.1). Defining
spacing in this manner means that the pause after large jobs is longer than after short jobs. One last way to define
spacing is based upon the amount of time the job spends in the provider. For example, if the space is specified as
100% and a job executes for 30 seconds, then the PA would wait an additional 30 seconds before allowing another
job to enter the system. This last type of spacing not only responds to the length of the job, but it also responds to
how busy the system is. Another advantage of this definition of spacing is that it correlates directly with MPL; the

effective MPL is defined by
MPLact

MPL.ss = W
For example, an MPL of 0.5 can be achieved with an MPL of 1 and a 100% spacing, and an MPL of 1.5 can be
achieved with an MPL of 2 and a 33% spacing.

However, the effect of spacing is not identical to that of MPL, since the spacing oscillates more than MPL. While
an external job is running, the local jobs experience higher response times, and while no job is running, the response
times are lower. This oscillation implies that an MPL of 2 with 100% spacing does not control the system in the

same way as an MPL of 1, but in either case, the average number of external requests running is one.



4.3 Suspending Jobs

Instead of spacing between external jobs, the jobs can be run more slowly by placing the spaces between sub-job units
of work. The advantage of this technique is that a large job behaves like a group of small jobs, therefore the average
local response time is achieved in a smaller time period. This technique also allows external jobs to use a processor
sharing scheduling policy, although the quanta would be relatively large. We identified three ways of slowing down
a job: intra-job spacing; suspending jobs; and dividing jobs. The effectiveness of these techniques depends upon the
type of provider and the type of requests.

Intra-job spacing places an idle period between every block of the result. For example, the space could be placed
between every 100 tuples fetched from a DBMS. If a result buffer exists between the provider and the PA, then
intra-job spacing might not slow the external requests at all because the provider is filling the buffer while the job
is sleeping. The buffering effect can be diminished by using larger block sizes. A more difficult problem with using
intra-job spacing is the amount of data in the result might not correspond with the amount of work needed to find
the result. For example, if an aggregate, like count, is applied to a large join query, the result is one tuple but the‘
query might execute for an hour. The spacing should be based upon the amount of work done at the provider, rather
than the size of the result.

Intra-job spacing can be generalized to job suspensions. When the system load is high, suspend the job until
the system recovers. If a job is monopolizing an MPL unit for too long, suspend it and let another job run instead.
Unfortunately, many providers offer no way to suspend a job except when its result buffer is filled, so jobs that cause
constraint violations, for example, exceeding a maximum execution time, and cannot be satisfactorily suspended
must be killed. Most providers can cancel a job without a long delay, although if the job is restarted, it will most
likely need to be restarted from the beginning. A provider with a feature like the DB2 Governor Facility could assist
the PA by automatically suspending the job after each unit of work.

Another technique that the PA can use to slow the execution of a job is to break the job into smaller jobs. The
smaller jobs can then be scheduled using the job spacing of Section 4.2. Unfortunately, dividing jobs into smaller
jobs is generally difficult or impossible.

The major drawback to all of these techniques is that they hold resources, like disk and memory buffers, locks,
and connections, for a longer period of time. If a suspended job were holding read locks on some data and a local
job wanted to update that data, then suspending the job actually slows down the local job, rather than speeding it
up as intended. This problem still exists even when dividing the job into smaller jobs. If each of the smaller jobs are
executed in a separate transaction, the combined answer could be inconsistent, so the jobs should be run within one
transaction which implies that locks will be held between job executions.

Some providers, and in particular Oracle 7, have a form of optimistic concurrency control that allows updates to
proceed in the presence of read locks. When a job tries to re-read a page that was updated since the last time it
read it, the previous page is recovered from the log. If the job attempted to update the page instead of re-read it,

the job would be aborted. This type of concurrency control allows read-only external jobs to be suspended without



any fear of blocking local jobs.

4.4 Feedback

In this section, we describe a feedback mechanism that monitors the utilization of key resources, for example, the
disk drives, CPU, network, and memory, to decided when to start and stop jobs. This mechanism can be used in
three related but distinct ways.

First, it can detect periods of relatively low activity, similar to the way the Condor system [18] finds idle resources
to run batch programs. If the local workload experiences periods of high and low activity throughout the day, the PA
can run external jobs during the periods of low activity. If an external job is running when the system is experiencing
a heavy load, the PA can kill or suspend the job and restart it when the load decreases. For example, the PA could
take advantage of low utilization during the lunch hour, a departmental meeting, or over the weekend.

Another way to take advantage of the utilization information is to detect the start and end of local jobs. If the
local workload is such that periods of inactivity arise frequently and these periods are long enough for one or more
external jobs to be completed, then the PA can start an external job whenever it detects one of these periods.

The third way that resource utilization can be used is to define the spacing of external jobs, similar to the spacing
in Section 4.2. With this mechanism, external jobs are allowed to start only when the utilization of the busiest device
is below some threshold. The mechanism can be extended so that if the utilization of some device exceeds another
threshold, an external job is suspended or killed. The advantage of the feedback mechanism is that it responds more
appropriately to changes in the local workload. For example, if the system is under a heavy load, feedback will keep
the PA from starting a job, while spacing must occasionally start a job to determine that the system is indeed still
busy.

The feedback mechanism is controlled by three parameters: the threshold that determines when to take action,
the sampling interval, and the moving average time window. The utilization is sampled from the provider or the
operating system by the PA once per sampling interval. Instead of basing decisions on one sample alone, a sliding
window of samples can be averaged together. Using the moving average allows the PA to account for larger durations
but the PA does not have to wait for the entire duration before making a decision.

The sampling interval controls the resolution of decisions within the PA. As the sampling interval gets smaller,
the PA get a more detailed view of the system. If the sampling interval is set too low, the overhead of sampling will
adversely affect performance. Conversely, if the sampling interval is too high, the PA becomes sluggish because as
far as the PA is concerned, the state of the provider has not changed. The proper setting for the sampling interval
depends upon the duration of the external jobs and the volatility of the local workload.

The moving average time window controls how responsive the PA is to changes in the provider. A small time
window means the PA will react quickly, but if the window is too small the PA tends to over-react. If the time
window is longer, the PA is more tentative and responds slowly to both increases and decreases in utilization. When

using feedback to detect changes in the workload, the moving average time window should be long enough to get a



reasonable estimate of the true average and filter out the variation. If the goal is to detect when no local jobs are
using the system, the window should be small, perhaps eliminating the moving average altogether. When controlling
the job spacing, the size of the window depends upon the duration of the external jobs. The window should be long
enough to at least cover the execution of the job and the desired spacing. When using feedback to stop external jobs,

the window should no less than the maximum allowed duration of an external job.

4.5 Profiling

Information about the potential resource consumption of an external job is invaluable to the PA, but when an external
requests arrives it is tagged with any such information. As discussed in Section 4.1, one of the major drawbacks of
limiting the MPL is that small jobs are forced to wait behind large jobs. But by using the job profile information, the
PA can schedule small jobs differently from large jobs. From the perspective of protecting the local users, scheduling
small and large jobs differently is intuitively reasonable because a single small job is not as likely to seriously impact

the performance of the system.
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Figure 2: Queuing Strategies

The profile information can be used in a variety of ways (see Figure 2). One possible strategy groups jobs that
perform less than 10 I/Os into one group, between 10 and 100 into a second group, between 100 and 10,000 in a
third group, and rejects any job that is expected to do more than 10,000 I/Os. Each group is given its own queue
and scheduling policy (MPL, spacing, etc.). The maximum MPL in this case is the sum of the MPLs for each group.

Another strategy uses a single queue and scheduling policy, but orders the queue by the number of expected
1/0s® With this strategy, a small job would wait behind at most one job that was longer than it, and only because
the longer job was already executing when the small job arrived. If the MPL were more than one the small job must

wait for only one job to complete.

5This strategy is often called shortest-job first or shortest processing time first in the scheduling literature.



The advantage of the first strategy is that small jobs will get better service because they never wait for a large
job, but the second strategy is a little easier for the administrator to configure. Also, if the administrator decides
that only one external job may be executing at any given time, only the second strategy is feasible.

Notice that with both of the strategies, absolute accuracy of the profile is not necessary. As long as the profiles
are accurate relative to one another, both schemes function properly, except when a job is rejected. Occasionally, a
profile could be completely wrong. The PA must ensure that the use of an incorrect profile will not detrimentally
affect the protection that it provides, and secondarily, the PA should keep small jobs from waiting behind a large
job that masqueraded as a small job. One way to provide insurance against running a job with a bad profile is to
place a time limit on the execution of a job where the time limit is based upon the job’s profile. The PA should also
provide override that allows the administrator to accept a request that was mistakenly rejected.

When the profile contains details regarding the individual resources that a job is expected to use, the PA can
more fully utilize the the providers resources. Either of the above strategies could be extended, for example, with
a policy that allowed up to 5 jobs to run concurrently (MPL=5) as long no two jobs accessed the same disk drive.
Whenever less than 5 jobs are running, the PA looks through its queue and starts the first job that doesn’t access
any of the devices that are already in use.

Most data providers quickly estimate the cost of executing a job without actually executing it. For example, most
relational DBMSs use an optimizer to estimate the cost for candidate execution plans with the goal of finding the
least expensive plan. The optimizers usually compute the cost as a weighted sum of the expected number of CPU
cycles, disk I/Os, and network messages. Using additional catalog information about the location of relations, the
total disk I/Os can be broken down on a per disk basis. Although optimizers do not need this information, the PA
could use it to keep from over utilizing any one device.

Unfortunately, the profile information is usually not exported by the provider — most DBMSs discard the cost
estimates once the plan is produced. The PA could use the plan and reapply the statistics that the DBMS used to
produce the plan to reconstruct the profile, but often the statistics are not exported eitherS.

A work-around to these limitations is to replicate the profiler in the PA, similar to the approach taken in the
Pegasus project at HP [10]. The profiler will frequently consult catalog information, so to avoid placing an additional
strain on the provider, all of the needed catalog information should also be replicated within the PA. The advantage
of using the provider’s profile is that no effort is duplicated and the profile will generally be more up-to-date than
the PA’s profile, for example when an index is added or dropped but the PA has not been updated. The problem
with using the provider to produce the profile, when it is an option, is that requesting profiles from the provider
consumes provider resources. In some cases, for example, a 15-way join, the amount of resources used is far from

trivial, implying that profiling must also be scheduled.

6This is especially true when the DBMS maintains histograms rather than simple averages.
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4.6 Buffering

Until now, we have not considered the rate at which the external users consume their results. We implicitly assumed
that the results were consumed as quickly as they were produced. What happens when results are consumed slowly?
Assume that the only control was an MPL of 1. If one job decided not to consume any of its results for a while,
the PA could not process any additional jobs and the job would be holding resources, like locks, for a long time.
Similarly, since the PA is can be used on the Internet, the network connection between the PA and the external user
could be slow. Again, the other external requests will pay for the added delays caused by this request.

One way to limit the impact of a slow consumer is to enforce a maximum execution time or a minimum transfer
rate. If the constraints are violated, the job is suspended or killed and another job takes its place. A more forgiving
strategy places a buffer between the PA and the external client. If the buffer is large enough, the PA can pull the
entire result out of the provider as quickly as possible and allow the job to proceed as slowly as it wishes. The
provider is no longer impacted by the slow consumer, and the PA can execute another job. Of course, the same
problem could happen with the next job, and eventually the PA would run out of buffer space. When faced with this
situation, the PA must either kill one of the slow jobs and reclaim its buffer space, or the PA must stop executing
jobs and wait for enough buffer space to clear.

The buffer between the PA and the client can be both main memory and disk pages. All of the buffer space
can be pooled together and shared among all of the PA clients. The page size should be relatively large since all
I/0 within one connection will be sequential. When swapping out a page to disk within one connection, the most
recently filled page should be sent to disk. When choosing a page to swap out from all connections, the page least
likely to be accessed should be swapped out. To find the least likely page, let r; denote the rate at which connection
i is consuming pages, and d; denote the distance that the last page of a connection is from the head of the queue.
Then t; = d;/r; denotes the expected time until the last page is referenced. The least likely page to be accessed is

the page with the maximum expected reference time.

4.7 External Priorities

The PA can be extended to support priorities among external requests. The techniques used to enforce priorities are
similar to the techniques used in Section 4.5 to take advantage of profile information. One queue ordered by priority
can be used to essentially achieve absolute priorities. Multiple queues, one per priority, with the total MPL divided
among the queues based upon priority achieves relative priorities. The other mechanisms can also be extended with

priorities. For example, when a job must be suspended or killed, choose the job with the lowest priority.

4.8 Provider Specific

Each provider comes with its own set of features that could be used to assist the PA in its task. For example, some

providers have separate buffer pools based upon user-id, some have prefetching, and others have priority scheduling.
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While we encourage the use of these types of features, this paper focuses on general solutions, so these features are

not discussed further in this paper.

5 Implementation

We implemented a prototype PA to experiment with the mechanisms and evaluate policies described in the previous

section. This section describes the design decisions we made while implementing the PA for a modern commercial

relational DBMS.
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Figure 3: Provider Agent Architecture

5.1 Profiler

When a request arrives at the PA, it is first profiled to estimate its resource needs and the expected impact that this
request will have on the provider. The profiler is a fully functional query optimizer designed to mimic the provider’s
optimizer. We chose to replicate the query optimizer inside the PA because the DBMS that we considered, like most,
did not export the cost estimate. The goal of the profiler is not to find the best plan, but the plan that is expected
to be produced by the provider. If the PA maintains additional statistics that the provider does not consider, the
statistics should not be used during plan generation, but once the plan is chosen the PA can use the additional
statistics to produce a better profile.

The profiler will frequently consult catalog information, so to avoid placing an additional strain on the provider,

we cached all of the catalog information within the PA. Although not implemented in our prototype, the PA must
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have some mechanism for updating its statistics and becoming aware of new database objects. The mechanism could

be automatic updates, or the administrator could update the catalogs as needed.

5.2 Scheduler

After a request is profiled, it is queued until the scheduler decides that the request can be safely executed without
adversely affecting the local requests. This component uses the mechanisms described in Section 4 to enforce the
policies established by the administrator, and in the next section, we evaluate the effectiveness of several possible

schedulers.

5.3 Executor

An executor is the provider client that processes requests on behalf of the PA and its external clients. The executor
contacts the external client to inform it that its job is ready to be processed. The executor then sends the request
to the provider and receives the result which it translates to a standard form sends it to the client, either directly
or through the buffer manager. Our current prototype does not include a buffer manager, and in our experiments,

external clients consumed results as quickly as possible.

5.4 System Monitors

The monitors periodically sample statistics provided by the operating system and the provider to inform the scheduler
about current resource utilizations. The OS monitor was the only component of the PA that ran on the same
machine as the provider because the operating system we used did not allow remote applications to directly obtain

OS statistics.

6 Experiments

In this section, we evaluate the effectiveness of the key mechanisms of the prototype PA. We demonstrate the need
for local QoS protection by running a moderately heavy, but realistic external workload without the PA. Although
we can disrupt local processing to an arbitrary degree, we show that even a moderately heavy load can increase
average response times over 2,000%.

We then add the PA and show that load control with spacing allows the DBA to set the worst case performance of
the local workload. Once we establish that the basic load control mechanism is effective at controlling the performance
degradation, we improve the PA by using a dynamic load control mechanism. We show that the dynamic control
responds to the local workload by allowing more external jobs to be processed when the system is under-utilized.
Lastly, we demonstrate that profiling dramatically improves the throughput of small external jobs in a mixed external

workload.
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We generated a synthetic workload for the experiments so that our results were repeatable, but we used our
prototype PA and a current version of a commercial DBMS to ensure that our results were realistic. The local
workload modeled a transaction processing system. We ran one experiment that performed updates to verify that
updates did not affect our results unduly, but in the rest of the experiments the transactions were read-only. The
external workload modeled exploration queries that needed to perform scans over large portions of the data. The

experiment parameters are summarized in Table 1.

Table 1: Experiment Parameters

Class Parameter Setting

local #terminals 40

inter-arrivals | exp(0.2) sec.

queries 10 compiled point selects, using non-clustered index
external | MPL 0-20

#jobs infinite

queries range count, 25-75% of relation, using clustered index
system #disks 1

#relations 7

tuple size 208 bytes

relation size | 12MB
data cache 7.4MB of 1 page blocks
5.0MB of 8 page blocks

duration 25 minutes + 5 minutes warm-up without external

6.1 Experiment 1: No Control

To demonstrate the impact that external requests can have on the local response times, we ran a constant external
workload of 20 queries. Figure 4 shows the cumulative distributions of the local response times over the 25 minute
experiment. An MPL of 20 increased in average response over 20 times more than the response when no exterrial
jobs were run. Although not illustrated by an experiment, when we pushed the system harder, we inadvertently
caused a large percentage of local requests to fail because of a lack of memory needed to run the queries. Notice

even a small period of high external activity is enough to wreak havoc on the hapless local users.

6.2 Experiment 2: Fixed MPL

In Figure 5, we show that the local response time can be controlled by adjusting, via MPL and spacing, the average

number of external requests in the system. Decreasing the MPL shifts the entire distribution of response times
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towards the original response time curve when no external queries were run (MPL=0). For this particular external
workload, increasing the MPL beyond 1 actually decreases the throughput of the external requests because the
competition between external jobs changes the disk access pattern from sequential to random access.

We ran a similar experiment except that each local transaction updated the last record read after a 3 second
delay. Figure 6 shows that the external MPL still controls the local response time, therefore the techniques described

still function properly in the presence of updates.
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Figure 5: Fixed MPL Control

6.3 Experiment 3: Dynamic MPL

Figure 7 illustrates that by adjusting the add threshold, monitoring the utilization to control the spacing of external
requests protects the local response times much like spacing. The advantage of this feedback mechanism is that

it can aptly avoid periods when the local users place a heavy load on the system, or take advantage of periods of

15



08}

Time

08 |

ion of Locat A

04} s - . 404

02

" - L. g2

5 10
t.ocat Response Time (sec )

Figure 6: Fixed MPL with Updates

low activity. Figure 8 shows the difference between spacing and feedback. When we increased the average local
interarrival time from 0.2 seconds to 0.4 seconds (i.e., decreased the local demand), the dynamic version kept the
local users at the same QoS, but allowed more external work to be completed than spacing.
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Figure 7: Dynamic MPL Control

6.4 Experiment 4: Profiling

Profiling allows the PA to keep small jobs from waiting for large jobs to complete. This experiment, which is
summarized in Table 2, illustrates the need for profiling by running an external workload with both large and small
jobs. The arrival times of the queries were uniformly distributed over the 25 minute experiment. We assume that
the administrator decided that they wanted at most one large query in the system at a time. Furthermore, they
chose a dynamic MPL with an add utilization of 70%. In the first run, the profiler was not used, so small queries

entered the same queue as the large queries. In the next run, the profiler was used, and the administrator decided
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Figure 8: Dynamic vs. Fixed MPL

that at most two small queries could enter the system at a time as long as the utilization was below 90%. So in this
case, the PA scheduler consisted of two queues, one for small queries and one for large queries.

The results of the experiment are show in Figure 9. The left chart shows that allowing the two small queries to
execute along with the large query had little impact on the local QoS. The chart on the right, however, shows that
the throughput of the small queries increased by 25 times when profiling was used, with only a small decrease in the

throughput of the large queries.

Table 2: Mixed External Workload Parameters

Class Parameter Setting
large MPL 1
external | add utilization | 70%
#jobs 76
queries range count, 25-75% of relation, using clustered index
small MPL 2
external | add utilization | 90%
#jobs 2530
queries point select, using non-clustered index

7 Related Work

Our work inherits much from the work on operating system load control [14, 9]. Our contribution is in applying load
control in a novel way to protect the local QoS. A significant amount of work on database scheduling has also been

completed, especially on memory allocation [15, 13, 19, 20, 3, 4, 8]. The main difference between our work and the
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Figure 9: Profiling Results

database scheduling is that ours exists outside the database and is not specific to any particular DBMS.

A few vendors, especially noteworthy is IBM’s DB2 for MVS [7], have some load control mechanisms similar to
ours, but as far as we are aware, they do not have our fractional MPL mechanisms and they do not use profiling to
enhance external scheduling. Two other classes of applications that extend the scheduling of DBMSs are currently
available: Query Analyzers and Transaction Processing (TP) Monitors.

Query analyzer products are sold, for example, by Platinum Technologies (Query Analyzer, DB Analyzer, SQL-
Spy, Governor Facility, Detector) [23], Blue Lagoon (DBProfiler), Level\5 (SmartMode, Quest) [17], and MicroStrat-
egy (DSS Administrator) [21]. The analyzers provide a feature like our profiler to estimate the cost of executing a
query before actually running it. The difference between query analyzers and our project is that the analyzers use this
information to warn users and developers of poorly formed queries that could consume large amounts of resources,
while we, on the other hand, use the profile for scheduling. An exception to this is DSS Administrator which appears
to use the profile information to schedule the queries from their Decision Support System (DSS) product.

TP Monitors are sold by Transarc (Encina [12]), Novell (Tuxedo [1]), NCR (Top End [25]), and IBM (CICS [6]),
to name a few. The main thrust of a TP monitor is to coordinate transactions through a TP system, but TP monitors
do offer priority queuing and load balancing [2]. The priorities controlled by the applications, not through profiling,
and their load balancing just tries to keep the machines in the TP system equally busy. NCR is developing a product
called DBQM that addresses the issue of external query access, but we were unable to get additional information

before submission.

8 Future Work

We have identified a number of areas for future work. We described some mechanisms in Section 4, for example
the buffer manager, that we believe to be useful, but we have not yet demonstrated that fact with experiments.

Another issue with our current prototype is that it can be unfair to large requests because small requests can keep
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large requests from starting. The grouping of multiple requests into a transaction, from the perspective of locking
and resource consumption, presents additional challenges to the PA. We are also looking into the ParaDyn project

[22] to see how it can enhance the performance monitoring of the PA.

9 Conclusions

We identified the potential performance dangers of allowing external access to an existing information system, and
we described several such scenarios that need a solution. We believe organizations should address this problem before
allowing external access. We offer the PA as a general solution that can, with little effort, protect most sites without
requiring changes to the underlying system or any of the programs that the site uses for local access.

We described how load control, request profiling, buffering, and priority scheduling can be combined to form an
elegant, novel solution. We demonstrated the need for load control, and that MPL and spacing effectively limit the
impact of external requests, even in the presence of updates. Feedback is used to obtain a dynamic MPL that allows
the PA to respond to changes in local workload. Profiling enables the administrator to base scheduling decisions
on the resource requirements of a job. In particular, we showed that discriminating between large and small jobs
improved the processing of the small requests by over 25 times while only marginally slowing the large requests. All
these features working from the outside of the database combine to provide a realistic and effective solution to a very
real problem.

We believe that the demand for the PA will continue to increase as Internet services, data mining, and data
integration projects proliferate. We also believe that the ideas presented in this paper can be quickly integrated
with existing products like middleware tools, TP monitors, query analyzers, multi-database systems, and database

schedulers which implies that commercial products with PA-like features should appear in the near future.
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