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Abstract: We analyze the accuracy of the fractional step method of Kim and Moin [3]
for the incompressible Navier-Stokes equations. We show that the boundary conditions
can not be exactly satisfied in the projection step and that this limits the accuracy
of the method. We also show that the pressure in any projection method can be at
best first-order accurate. Qur analysis is simpler and more direct than the previous
analyses of this method. We also show that there is no numerical boundary layer for

velocity or pressure, but there is one for the auxiliary pressure variable.

1. Introduction.

The fractional step method proposed by Kim and Moin [3] has been used extensively
in computations of time-dependent fluid flow. Studies of its accuracy have been made by
Perot [5] and by E and Liu [2]. In this paper we offer a rigorous analysis of the accuracy
of this method, which illustrates several defects of the method. Perot [5] has argued that
the pressure can only be determined to first-order accuracy in time and we improve upon
his heuristic argument, and justify his claims. Furthermore, we show that this method can
not satisfy the boundary conditions on the velocity. Our argument shows that all methods
based on the projection method must suffer from the same defects.

The scheme analyzed by E and Liu [2] is a variant of the original Kim and Moin

scheme [3] and that variant has a numerical boundary layer for the pressure. As we show
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in this paper, the pressure of the original Kim and Moin scheme does not have a numerical
boundary layer, although the auxiliary pressure variable does have a numerical boundary
layer.

Our analysis here is restricted to schemes that are discretized only in time. We do not
consider the discretization in the spatial variables. This restricts the analysis to implicit
schemes for the time advancement step, the explicit schemes being unstable. However, the
conclusions about the disadvantages of projection methods are general enough that they
apply to the explicit schemes as well.

There are schemes for which the pressure can be determined with high accuracy and for

which the boundary conditions can be satisfied. These, however, are completely implicit,

see e.g., [6].
The unsteady incompressible Navier-Stokes equations are
1 — — -3
iy — —Ev%ﬂ V(@it) + Vp =0, (1.1)
V-id=0. (1.2)

The vector function # is the velocity and the scalar function p is the pressure. We consider
the Navier-Stokes system holding in the right half plane, a specific but important domain.

To specify a unique solution initial conditions and boundary conditions must be given, i.e.,
(0,2, y) = oz, y) (1.3)

@(t,0,y) = b(t,y) at z=0. (1.4)

Since the domain is unbounded, a few additional constraints are needed. We assume
that
#—0 and p—=0 as |z|+ |y — 0. (1.5)

By considering only the half-plane we simplify the analysis as compared with E and
Liu [2], who considered a channel, but we do not sacrifice generality. The accuracy along
any portion of a straight boundary can be of no higher order than that obtained on a
half-plane. Similarly, any boundary segment can be mapped locally to a half-plane, with
the introduction of source terms, and the order of accuracy for the mapped equation can
be no higher than that for the simple half-plane problem. Thus the half-plane problem
is the simplest problem on which to study the accuracy of boundary conditions, and the

conclusions carry over to the general case.



A seemingly small, but significant, variation from the discussion by others (see [2]
and [5]) of the boundary conditions is the introduction of the function b. In these other
discussions, the boundary condition (1.4) is given as “the velocity is specified on the
boundary.” However, as we show, the velocity that is computed does not satisfy (1.4).
That is, the computed velocity is not equal to the intended velocity on the boundary. Thus
it is essential to distinguish between the velocity on the boundary, #, and the intended
values of the velocity on the boundary, b. Kim and Moin never distinguish between b and
.

In the following, we consider only the Stokes equations for simplicity. These are

—

ity — V2@ + Vp = 0, (1.6)

(1.7)
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The Stokes equations are valid in the limit of vanishing Reynolds number and are also the
highest order terms in the Navier-Stokes equations. For smooth solutions of the Navier-
Stokes equations, our conclusions about the scheme for the Stokes equations apply to the
Navier-Stokes equations as well.

We begin our analysis by reducing the general initial value problem (1.6) and (1.7)
with data (1.3) and (1.4) to the special case with homogeneous initial data. We assume
that there is an extension of the initial data (1.3) to the whole plane such that there is a
solution #@; and p; to equations (1.1) and (1.2) on the whole plane. Let @y = % — @; and
po = p—p1. Then iy and ps satisfy the equations (1.1) and (1.2) on the half-plane. @y has

the initial condition #s(0,z,y) = 0 and must satisfy the boundary condition
in(t,0,y) = b— w1 (,0,y) at z=0. (1.8)

In the remainder of this paper we consider iy and ps, the solution of equations (1.6)
and (1.7), with initial condition (1.3) with @y equal to 0, and boundary condition (1.4)
with data given by (1.8). To simplify the discussion we write @ and p instead of i, and
P2, respectively.

We now consider the finite difference scheme of Kim and Moin [3] for (1.6) and (1.7).
The scheme is a two step time-advancement scheme that uses an intermediate velocity @*

and can be written as follows:

U

At

,&,**,n+1 _an

1
= —ivz(a*’““ + ™), (1.9)



n+1 __ s%ntl -
“ A: = —Vgntl, (1.10)
V@t =0, (1.11)
where ¢ and p satisfy the relationship
At
p=¢-— -2—v2¢>. (1.12)

An important issue is how to impose boundary conditions for the intermediate velocity
field and the pressure in this time splitting scheme. Kim and Moin suggest the boundary

condition
et = P L AtV R, (1.13)

which was developed by following the ideas of LeVeque and Oliger [4].

It is important to note that the system consisting of (1.10) and (1.11) for @"*! and
#™*1! in terms of @™t requires only one boundary condition for the solution to be well-
defined. This is the cause of the inability of the projection methods to satisfy the velocity
boundary condition for both components.

For the solution of the system (1.10) and (1.11) we apply the one boundary condition
upty = byt (1.14)

for the normal component of the velocity.

We analyze the accuracy of the intermediate boundary condition (1.13) and other
boundary conditions by solving the equations (1.9), (1.10), and (1.11). In section 3 the
solutions are found in the transformed variables and in section 5 we discuss the accuracy

of the fractional step method and the rate of convergence.

2. Other Projection Methods.

Several other projection methods have been proposed, among them are the scheme of
van Kan [8]. As applied to the Stokes equations, this may be seen to be equivalent to the
Kim and Moin scheme by redefining the intermediate velocity.

For example, the scheme of van Kan is

T T | .
— 5’v?(u’*’”‘“« + @) — Vp™, (2.1)
gntl — grontl 1o
= -2V n+l . n .
A7 5 V(P "), (2.2)
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V.t =0, (2.3)

By redefining variables the scheme of van Kan in (2.1)-(2.3) is seen to be equivalent to the
fractional step scheme of Kim and Moin. Letting the subscript of km mark the Kim and
Moin variables in (1.9)-(1.11) and vk mark the variables in (2.1)-(2.3), and setting

ko = an
Uy = Upyn Atv¢vk

and A
t
Pok = (bvk - _"'V d)vk

the schemes are seen to be the same in the sense that 47, = i}, for all n.

The scheme of Bell, Colella, and Glaz [1] involves an iterative method, each step of
which has a projection step similar to the scheme of Kim and Moin. Therefore it is subject
to the same difficulties as those discussed here.

E and Liu [2] discuss the relationships between other fractional step methods.

3. The Solution in the Transformed Variables.

By using (1.10) in (1.9) we can eliminate @* obtaining the equations

1 1 " 1
(KZ - §v2) Gt At (Z‘t ~ 5v2> Vertt = (At + v2> (3.1)

—

V-aq*tt = 0.

We solve this system using the Fourier and Laplace transforms. Because of the ho-
mogeneous initial data, we can extend the solution back in time, taking both @™ and p"
to be zero for n negative. The Laplace transform of a discrete function v™ on a grid with

spacing At is defined by
0(2) :—-—-——At Z z7™", for |z >1

and the Fourier transform @(w) is defined by

e~ WYy(y)dy. for weR.

=75 .-

Notice that if w™ = v™*! then @ = 29. See Strikwerda [7] for more discussion of the use

of transforms for analyzing difference schemes and differential equations.
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We define f(z,w) to be both the Fourier transform and Laplace transform of a function
fty).

We begin our analysis of the system (3.1) by taking the Fourier transform in the
variable y and the discrete Laplace transform in ¢. We also now write the equations using

the velocity components u and v for the velocity vector @. By letting
_ At -
p= [1 - 7(392; - Wz)]¢,

according to (1.12) we have

2 1\ N (1

[-A—t<1~—-z->+w <1+;>}u+2pm—um<z+1>,

2 1 \ N, .. (1

{Zg(lm;>+w <1+—Z—>]U+2zwp—-vm<z+l>, (3.2)

We solve this system of ordinary differential equations by determining the solutions

of the form of
O(za UJ)

olz,w) | e
P (z,w)

Do
Substituting this expression in the system (3.2) we have the set of equations

S &2
jod]

— Az

i
=

— Mg -+ twPg = 0,

2 1 2 9 1 - P
[ZZ <1 Z)+(w A)<1+;>}u0—2/\p0-—0,
2 1 2 2 1 _ 9, ~
[At (1 z) + (w? =A%) (1-}- z)} By + 2iwpg = 0,

where g, U9, and 150 are not all zero. There are four solutions for A given by

Since we are only interested in solutions that decay as x increases, see (1.5), only the

two values of A with Re A > 0 are of interest. For convenience, we set

m—\/w2+—2—z_1
- Atz+1




Then the solution, when |w| # k&, is of the form

7| = k| e+ B | ~AtZqiw e~z (3.3)
P 0 1

where A(z,w) and B(z,w) are determined by the boundary conditions. Note that [z > 1
implies that & # |w|.

We now solve for ¢. Since p = Be™*|* from (3.3), we obtain from (1.12)

At -

Be~lwle — [1 5 (82 — w2)} b.

Hence we have

and ¢ is given by
¢ = doe™® + Be~lvle, (3.4)

where
a=/2/At + w2

and ¢g is to be determined by the boundary conditions.

From the equation (1.10) i.e., the relationship
T =i+ AtV e, (3.5)
the transform of #* can be expressed by

7:L =A (zw) e "+ B At < |wl > eIz 1 Aty <—.a> e ", (3.6) .
v* K z—1 \ —iw w

Note that an additional term e~** is introduced for @* and that this term with decay

rate « is the numerical boundary layer discussed by E and Liu [2]. It is of interest that

this boundary layer term does not appear in the expressions for p or 4, it appears only in

¢ and a*.



4. The Solution of the Partial Differential Equation.

The solution of the initial boundary value problem for the system given by partial
differential equations (1.6) and (1.7) is

i W —IL—;-I

Tl =4 Vst w? |e Vet ez gl jw | el
S

D 0 1

This can be obtained either by transforming the Stokes equations and solving the system
similar to what was done for the difference equations or from (3.3) by taking the limit as
At goes to zero using the relation

z = eSht (4.1)

which relates the transformed variable for the discrete Laplace transform to that of the

continuous Laplace transform, see [7].

5. The Accuracy.

In this section we discuss the accuracy of the finite difference scheme and show how it
depends critically on the boundary condition for the intermediate velocity @*. Note that
the elliptic system given by the equations (1.10) and (1.11) for the second step of the
scheme needs only one boundary condition for the solution to be determined. We consider
several boundary conditions and show that the fractional step method can not satisfy the
intended boundary condition (1.4).

The equations (3.3)-(3.6) contains all the information in (1.9)-(1.11) except for bound-

ary conditions. We first consider the boundary condition
gontl = gt (5.1)
Later we consider the more accurate boundary condition (1.13). From (3.6) and (5.1) we

A(f)”ﬁtl(lﬁu)”t%(;f):@:)- (5:2)

Since u?5 = b7 by (1.14), from (3.3) we have

obtain

Aiw + B;—i——l—At w| = by. (5.3)
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The system composed of (5.2) and (5.3) is three equations for the three unknowns A, B,
and ¢0.
Using (5.3) and the first equation in (5.2) to eliminate A, we obtain

40 = -8 (5.4)
and so, from (3.4)
¢=B (—J—gje““‘” + e“'“"m> . (5.5)

The form (5.5) also follows from u?X} = wX:™* which is a result of (1.14) and (5.1). By
(1.10), it is seen that for this boundary condition ¢Z$}_—o =0.
Using (5.4) in (5.2) gives

Tl -
W z = by
A + BAt =1- . (5.6)
K - <————1—1 + M) iw ba
2 — o

Equation (5.6) is a system for A and B and can be solved to obtain explicit formulas for
them. However, for our purposes this is unnecessary. What we are interested in is an
expression for vz—p, the second component of the velocity on the boundary. By (3.3), we

have that
z

Ug—o = AK — BAtz W

and comparing this with the second equation in (5.6), we have

Vgm0 = Ez — wAtB ( - M) .
(87

Since 1 — Lzl = O(1) and B = O(1), (by (3.3) B = py=0) we obtain
Ug=p = ba + O(At) .

This shows that the boundary condition (1.4) is not satisfied for the tangential component
of velocity with boundary condition (5.1).
We next consider the boundary condition (1.13) suggested by Kim and Moin, which
is,
@ = g AtV ", (5.7)
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From the expression for the transform of @* in (3.6) and the expression for ¢ in (3.4), the

boundary condition (5.7) is

A(z’w>+B At <"ﬁ")+At¢o(‘f“>:(51‘*%(”“4)0‘31‘”‘)), 5.5)

K z—1\ —iw w by + _Az_t(% + B)iw

Since u”t! = b7t we again have from (3.3)
Az’w+B;—§TAt|w| =By (5.9)

The system composed of (5.8) and (5.9) involves three equations for the three unknowns
A, B, and ¢y.
Similar to the previous boundary condition, using (5.9) and the first equation in (5.8)

to eliminate A, we obtain

po = B]—Lﬂ (5.10)
o
as before, and hence
¢=B (—I-Li]e““ + e”'w'””) : (5.11)
o
Using (5.10) in (5.8) gives
z
w E'_—lel 7)1
(") emae| _ -(3)
22 — 1 z—1)jw|\ .
: ~<z(§—-1)+( za)l I)W b
from which A and B can be determined. Relation (5.10) also follows from ¢Z;LO = ¢ =0

which is a consequence of (1.10), (1.14), and (5.7).
As with the previous case, we solve for the value of ¥ on the boundary. From (3.5) we

have

I

7= 7" — iwAtd

and from (5.7)
Z'D;:Q = 2152 + z'wAthmzo.
solving these last two equations for U9, we obtain from (5.11)

2Ug—0 = 2by — (2 — 1) At iwdg—g
- . |w]
= zby — (2 — 1)At iwB (1 - )

= zby + O(At?),

10



where we have used that z — 1 = O(At) by (4.1). This shows that the boundary condi-
tion (5.7) gives less error than does the boundary condition (5.1), i.e., it is second-order
accurate as opposed to the first-order accuracy of (5.1). But again the velocity boundary
conditions are not satisfied for the tangential component of velocity. Therefore neither of
these boundary conditions give @+ = b+,

In order to be able to exactly satisfy the velocity boundary conditions using the

fractional step method, it is necessary to have

Tl =5+ AtVRES.

==

However it is not possible to implement this condition in an actual fractional step method

since ¢"*! can be not determined at the stage that 7*™*!

is computed. Therefore fractional
step methods can not satisfy the velocity boundary conditions.

Now we show that the pressure p is only first-order accurate in time, not second-order,
even if we impose the exact boundary condition #"t?! = pn+l, (As we pointed out above,
the method of Kim and Moin does not satisfy o = by.) The solution p; to finite difference

equations (1.9)-(1.11) with the exact boundary condition @#™t! = 57+1 is given by

zu%a a-wmm>)ﬂm

pr = |
A

Let us compare with the solution p, to partial difference equations,

= _ <B_1 n 51 - %isgn(w))(ﬂ__lw]w
lw| Vs +w? ~|w]|

By considering only the coefficient of b; /|w| and observing that

= |s)?0 (A1)

_z——l
5 Atz

by (4.1), we see that the pressure is at most first-order accurate in time.

6. Overwriting the Boundary Velocity.

In this section we analyze the consequences of modifying the fractional step scheme
given by adding the additional step of overwriting the tangential velocity obtained in
the projection step with the boundary value by. That is, after the projection step has

determined the velocity components u™*!(z,y) and v™*!(z,y), we impose the condition
v (0,) = b3 (y)
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and then proceed with the next step. We presume that this is done in many codes that
use methods such as these, since the graphical display of the solution will appear to satisfy
the correct boundary conditions. We call this scheme the fractional step scheme with
overwriting.

To analyze this changed scheme, we consider the effect of the change in equation (1.9)
where the value of @™ is replaced by @ + d(z)(b™ — @"). That is, we use the Dirac delta
generalized function to modify the value of the function at the boundary. We then rewrite

the equation (1.9) as

'l”l:*’n+l - ,am 1 —k T ~n n )
= 5V“Z(u mtl [@” +6(z)(b™ — a™)))
_ Lot 4 @) B - ) ).

Notice we do not have to modify the values of #*"*+! in the time difference in the interior
of the half plane since the ¢ function has no effect there.

This equation shows that the effect of overwriting the value of the velocity at one
step, e.g., step m, is equivalent to using the original fractional step scheme but changing

the boundary condition to

—k.n+l _ —kn+1,0 n —n,
U‘m’:'O Up—0 + 0" — Ug=—0

where the value of a;;‘(;* 1.0'is determined by whatever boundary condition one was using for

the first step of the fractional step method with overwriting. For example, with boundary
condition (5.1) we have
ﬁ;ilg—l — gn+1 + gn _ 71’::0

and with (5.7) we have
grrl = gt L AtV @R 4 B — @0, (6.1)

=0

The accuracy of these boundary conditions can be analyzed in the same manner as
was done in section 5. We now analyze boundary condition (6.1). Substituting in the

expressions (3.6) for @* and from (3.3) for @, we obtain

A(iw) B2t ( o >+At¢0<fo‘>
K z—1\ ~iw w
() ()2 ()22 ()
ba z z w z W
A [iw Atz |w
wmzm</~z>“Bz(z—1) (—-iw)‘
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After collecting terms and dividing by (2 + 1)/z we obtain

iw At 3z—1( |w| z—1 (-« by
A B At ().
<ﬁ>+ z-1 241 <~—z'w>+ ¢Oz+1<z’w> <b2>

Once again, we have (5.4) and the formula for ¢ is (5.5), and hence,

_ __ z—1 |w]
=0 = by — iwAtB 1——.
Ve=0 2w z+1 ( o' )
and this gives
Tp=o = bg + O(At?) .

Thus overwriting gives the same order of accuracy for v(¢, 0, y) before overwriting, and this

gives second-order accuracy globally.

7. Summary

In summary, we have shown that the projection methods that rely on solving equa-
tions such as (1.10) and (1.11) can not satisfy both boundary conditions for the projected
velocity. This is inherent in the method since the system composed of (1.10) and (1.11)
requires precisely one boundary condition, yet the original system requires two boundary
conditions.

Our analysis is simpler and more direct than that of E and Liu [2]. Secondly, the
analysis shows that the pressure is determined to only first order. Based on our analysis,
it seems very difficult, if not impossible, to modify the scheme to get a higher order
approximation to the pressure.

We also correct the conclusion of E and Liu [2] about the boundary layer in the
pressure. We show that the boundary layer is in the auxiliary pressure variable, but not in
the pressure itself. Our analysis of the overwritten boundary conditions is novel and fits
within the general framework of our analysis.

In this paper we did not consider the spatial discretization, but the discretization can
not affect the basic conclusions we have drawn regarding the accuracy of the pressure and

velocity. Norm estimates based on our analysis will be published in a subsequent paper.
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